
A Self-Organizing Defect Tolerant SIMD
Architecture

JAIDEV PATWARDHAN

MIPS Technologies

CHRIS DWYER

Department of Electrical and Computer Engineering, Duke University

and

ALVIN R. LEBECK

Department of Computer Science, Duke University

The continual decrease in transistor size (through either scaled CMOS or emerging nanotechnolo-
gies) promises to usher in an era of tera to peta-scale integration but with increasing defects.
Regardless of fabrication methodology (top-down or bottom-up), defect-tolerant architectures are
necessary to exploit the full potential of future increased device densities.

This article explores a defect-tolerant SIMD architecture (SOSA) that self-organizes a large
number of limited capability nodes with high defect rates into SIMD processing elements. Simu-
lation results show that SOSA matches or exceeds the performance of conventional systems for
moderate to large problems, but with lower power density.

Categories and Subject Descriptors: B.4.3 [Input/Output and Data Communications]: Intercon-
nections (Subsystems); B.6.1 [Logic Design]: Design Styles; C.1.2 [Processor Archtitectures]:
Multiple Data Stream Architectures (Multiprocessors)

General Terms: Design, Performance, Reliability

Additional Key Words and Phrases: Self-organizing, SIMD, data parallel, bit-serial, defect toler-
ance, DNA, nanocomputing

ACM Reference Format:

Patwardhan, J., Dwyer, C., and Lebeck, A. R. 2007. Self-organizing defect tolerant SIMD architec-
ture. ACM J. Emerg. Technol. Comput. Syst. 3, 2, Article 10 (July 2007), 33 pages. DOI = 10.1145/
1265949.1265956 http://doi.acm.org/10.1145/1265949.1265956

This article is an extended version of a previous published paper in ASPLOS XII 2006.
This work is supported by an NSF ITR grant CCR-0326157, the Duke University Provost’s Common
Fund, AFRL contract FA8750-05-2-0018, and equipment donations from IBM and Intel.
Author’s address: A. R. Lebeck, Department of Electrical and Computer Engineering, Duke Uni-
versity, Durham, NC; email: alvy@cs.duke.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must be
honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on servers,
to redistribute to lists, or to use any component of this work in other works requires prior specific
permission and/or a fee. Permissions may be requested from Publications Dept., ACM, Inc., 2 Penn
Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212) 869-0481, or permissions@acm.org.
C© 2007 ACM 1550-4832/2007/07-ART10 $5.00. DOI 10.1145/1265949.1265956 http://doi.acm.org/
10.1145/1265949.1265956

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

2 • J. Patwardhan et al.

1. INTRODUCTION

Manufacturing defects, power density, process variability, transient faults, bulk
silicon limits, rising test costs, and multibillion dollar fabrication facilities are
some of the challenges facing the continued scaling of CMOS. While archi-
tectural modifications (e.g., multicore) can provide some short-term relief, the
semiconductor industry recognizes the importance of these issues and the need
to explore long-term alternatives to CMOS devices and fabrication techniques
[ITRS 2005].

One promising alternative is DNA-based self-assembly of nanoscale com-
ponents using inexpensive laboratory equipment to achieve tera to peta-scale
integration. Although much of this technology is in its infancy (i.e., demon-
strated in research lab experiments), by studying its potential uses for building
computing systems, architects can gain a deeper understanding of its limita-
tions and opportunities while providing important feedback to the scientists
developing the new technologies.

DNA-based fabrication produces precise control within a small area (e.g.,
9 µm2) enabling the construction of a large number (∼109−1012) of small nodes
(computational circuits with ∼104 transistors) that can be linked together using
self-assembly. This produces a random network of nodes, due to the lack of
control over the placement and orientation of nodes, that contains defective
nodes and links. While our work is motivated by DNA-based self-assembly, it
is applicable to any technology with similar characteristics (e.g., scaled CMOS
with high process variability, high defect rates, and point-to-point links between
relatively small compute nodes). The challenge for computer architects is to
efficiently exploit the computational power of the large number of nodes while
overcoming two primary challenges (1) loss of precise control over the entire
fabrication process and (2) high defect rates.

This article presents a SIMD architecture designed to address these chal-
lenges. The fundamental building block in our architecture is a relatively small
node (e.g., 1-bit ALU with 32 bits of storage and communication support for
four neighbors) that operates asynchronously. A configuration phase at startup
isolates defective nodes and allows groups of nodes to self-organize into SIMD
processing elements (PEs) which are connected in a logical ring, thus simplify-
ing the programmer’s view of the system.

Simulations using conservative estimates for node size and device speed
show that the proposed design can match the performance of aggressively scaled
architectures for 8 out of 9 benchmarks tested. Furthermore, this performance
is achieved with a very low power density of 6.5 W/cm2 (vs. >75 W/cm2 for
modern cores), while conservatively assuming that about 90% of the devices
in the system switch every nanosecond. Finally, we show that our system can
tolerate up to 30% defective nodes. Our results demonstrate the potential of
this technology for building high performance architectures despite high defect
rates and loss of precise control during fabrication. Further improvements are
possible as the technology scales to allow more complex nodes, better internode
connectivity, and faster devices. The main contributions of this article are:

—adapting self-organization methods to computer architectures,

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 3

Fig. 1. Patterned DNA [Park et al. 2006].

—designing a node that balances fabrication constraints with functionality
needed to communicate, compute, and self-organize and,

—demonstrating these capabilities by composing a high-performance, defect-
tolerant SIMD architecture from a random network of nodes.

The rest of this article is organized as follows. Section 2 describes self-
assembled nanoscale systems. Section 3 presents a brief overview of our sys-
tem. Section 4 describes the node architecture in detail. We present node self-
organization mechanisms in Section 5 and system architecture in Section 6.
We evaluate system performance in Section 7, describe limitations and identify
areas for improvement in Section 8, and discuss related work in Section 9. We
conclude in Section 10.

2. DNA-BASED SELF-ASSEMBLED NANOSCALE SYSTEMS AND THE
ARCHITECTURAL IMPLICATIONS

Self-assembly of nano-electronic devices has the potential to emerge as a
lower cost alternative to top-down manufacturing. DNA-based self-assembly
[Robinson and Seeman 1987] uses the precise binding rules of DNA with
nanoscale devices to build computing systems. We assume a proposed assem-
bly process [Patwardhan et al. 2004] to place electronic circuits on a DNA grid
[Winfree et al. 1998; Yan et al. 2003]. The basic principle is to replicate a simple
unit cell on a large scale to build a circuit. The unit cell consists of a transis-
tor placed in the cavity of a DNA-lattice. A key requirement of this process
is the ability to control the placement of electronic devices (e.g., carbon nan-
otubes [Bachtold et al. 2001; Dwyer et al. 2002] or silicon nanowires [Huang
et al. 2001]) at specific points on the DNA scaffold to form a circuit. Recently,
two critical steps towards this goal were demonstrated: (1) aperiodic patterns,
with a 20 nm pitch, on a DNA grid [Dwyer et al. 2005; Park et al. 2006] and
(2) DNA-guided self-assembly of nanowire transistors [Skinner et al. 2005].
Figure 1 shows an atomic force microscope image of the letter A patterned on a

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

4 • J. Patwardhan et al.

Fig. 2. DNA Lattice with transistors and interconnect.

Fig. 3. Self-assembled network of nodes.

DNA grid. Figure 2 shows a schematic of a small lattice with carbon nanotube-
based transistors. We currently assume only two layers of metal interconnect
within a lattice, which limits our ability to place and route circuits. We propose
the use of conducting metallic planes separated by insulating layers to provide
power and ground to the circuit. Figure 4 depicts a cross-sectional view of the
lattice with two layers of interconnect and the power and ground planes.

Current self-assembly processes produce limited size DNA grids and thus
limit circuit size. However, the parallel nature of self-assembly enables the
construction of many nodes (∼109−1012) that may be linked together by self-
assembled conducting nanowires [Yan et al. 2003]. The proposed self-assembly

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 5

Fig. 4. Lattice with two levels of interconnect and connections to vdd and ground.

method does not control the placement and orientation of nodes as they are
interconnected, resulting in a random network of nodes that contains de-
fective nodes and links. Communication with external CMOS circuitry oc-
curs through a metal junction (via) that overlaps several nodes but inter-
faces with the network of nodes through a single anchor node. There may
be several via/anchor node pairs in large networks. Figure 3 shows a small
network of nodes, including regions with defective links, and a via/anchor. In
the rest of the article, we use the term anchor to refer to an anchor node/via
pair.

A computing system built from this random network must (a) tolerate node
and interconnect defects, (b) not rely on underlying network structure, (c) com-
pose more powerful computational blocks from simple nodes, (d) minimize com-
munication overheads, and (e) achieve performance that is at least comparable
to future CMOS-based systems. Several research projects examine building
computing systems with a subset of these goals, including self-organization
[Schroeder et al. 1991; Abelson et al. 2000], routing and resiliency in the face
of defects [Abelson et al. 2000; Intanagonwiwat et al. 2000], and the abil-
ity to compose complex computational units from simpler blocks [Mai et al.
2000], but we face added challenges because of the extremely limited com-
putational capabilities available in nodes. Our previous work, the nanoscale
active network architecture (NANA) [Patwardhan et al. 2006], is a general
purpose architecture designed with a similar set of goals, assuming similar
underlying technology. However, it fails to match the performance of conven-
tional CMOS systems since it is unable to efficiently utilize the computational
capabilities of the nodes at the same time. The design of the SIMD architecture
presented in this article is guided by the lessons learned through the design and
evaluation of NANA. We defer discussion of other closely related research to
Section 9.

3. SYSTEM OVERVIEW

The goal of this work is to build a defect-tolerant computing system with a ran-
dom network of nodes using a mix of new solutions and adaptations of known
techniques and achieve performance comparable to future CMOS-based sys-
tems. To efficiently utilize large numbers (>109−1012) of nodes, we implement

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

6 • J. Patwardhan et al.

a SIMD architecture and focus on data parallel workloads. Our proposed sys-
tem, called the Self-Organizing SIMD Architecture (SOSA), supports a three
operand register-based ISA with predicated execution and explicit PE-Shift
instructions to move data between PEs and communicate with an external con-
troller. We assume that the external controller has access to a conventional
memory system and that it executes conditional branches, such as loops, that
cannot be implemented with predication.

Each self-assembled node is a fully asynchronous circuit and there is no
global clock to synchronize data transfers between or within nodes. Each node
has a 1-bit ALU with a small register file and connects to other nodes with
(up to four) single wire links. Each link supports low-bandwidth asynchronous
communication that transfers 1 data bit per-handshake. To support deadlock-
free routing, we add support for three virtual channels (1 bit each). The random
network of nodes is organized at two levels during a configuration phase. First,
since a node is too small to hold a PE, we group sets of nodes to form a PE.
Second, PEs are linked in a logical ring providing programmers a simplified
system view to reason about inter-PE communication.

The configuration process, initiated from an anchor, maps out defective nodes
and connects functional nodes in a broadcast tree. The system can be configured
in two ways: (a) as a monolithic system, all nodes on one logical ring (one cell)
or (b) as multiple, independent logical rings (multiple cells). For a monolithic
system, anchors can be used to speed up PE configuration and data input/output
by serving as taps into the logical ring. The only constraint enforced during con-
figuration is that an anchor cannot partition a PE. In case (b), we achieve space
partitioning by running the configuration algorithm from multiple anchors to
create independent cells. Space partitioning is a common technique used in
highly parallel systems to increase resource utilization by enabling the execu-
tion of multiple instances of one workload or running multiple workloads. We
discuss space partitioning for our benchmarks in Section 7.

In the next three sections, we describe SOSA in detail. Though we present
a bottom-up view of the system, the actual design process was iterative and
involved several passes through node and system design, requiring a balance
between size constraints and adding hardware optimizations to improve per-
formance.

4. NODE MICROARCHITECTURE

Careful node design is critical in maximizing system performance. Due to lim-
ited node size, designing the node architecture involves a trade-off between
maximizing functionality (compute, communicate, and self-organize) and per-
formance while minimizing circuit size. To avoid the area and power overhead
of routing clock signals and to mitigate the effects of device parameter vari-
ation, instruction execution and sequencing within a node are asynchronous.
The rest of this section describes the node microarchitecture, splitting the dis-
cussion into the data path (Section 4.1), control (Section 4.2), and internode
communication (Section 4.3), highlighting the trade-offs between functionality,
performance, and circuit size (Section 4.4).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 7

4.1 Data Path

Each node has a simple data path that consists of a 1-bit ALU, a 32-bit register
file, and a 1-bit data buffer that stores incoming and outgoing data. The register
file and data buffer can act as sources and/or sinks for the ALU. The data buffer
cannot be written to unless the current instruction is waiting for data, and once
written, cannot be overwritten until the data is used by the ALU. All internal
node communication occurs on dedicated point-to-point links. Where possible,
we overlap the latency of moving a bit between two parts of the node with other
operations.

Nodes can be designed to partition the 32-bit register file into N-bit wide
registers that require an N-bit ALU or repeated use of a single-bit ALU. For
example, a 32-bit PE could be created with 32 1-bit registers, requiring 32 nodes
for the PE, or with 16 2-bit registers, requiring 16 nodes to form the PE. Increas-
ing register width increases the work done per instruction in a node, reduces the
number of nodes required to form a PE, and reduces inter-PE communication
overheads (since PE length reduces). However, for a fixed-sized node, wider reg-
isters reduce the number of registers available to a programmer. Simulations
reveal that 2-bit wide registers achieve the best trade-off in terms of maximizing
the benefit of wider registers and the number of registers available to program-
mers (see Section 7.3.3). We also find that program performance is not sensitive
to ALU execution latencies shorter than the time taken to send/receive a bit
between nodes (see Section 7.3.4).

4.2 Control

The control logic in the node can be divided into two parts. The first part (con-
figuration logic) is used only during configuration and has control registers for
defect testing/isolation (main control register) and PE configuration (PE con-
trol register). Figure 5 shows a floorplan of the node with the configuration logic
demarcated by a dashed rectangle within the control and data block.

The second part is the runtime control logic used to decode and execute in-
structions. To reduce design complexity, we sacrifice latency and use microcoded
control logic with each instruction divided into multiple microinstructions. The
runtime control logic has three control registers to hold each of three microin-
structions that comprise an instruction (a) opcode, (b) register specifier, and (c)
synchronization (synch). The synch microinstruction holds an optional counter
value (repeat counter) to enable the repeated execution of one instruction and
avoid broadcasting the same instruction consecutively. The register specifier
includes fields that allow simple increment/decrement operations on register
specifiers in conjunction with their reuse (for striding through registers). We
add a shared circuit that is used to increment/decrement register specifiers and
the repeat counter. Because of high instruction execution latencies, the incre-
ment/decrement operations can be overlapped with other operations effectively
hiding their latency.

All arriving microinstructions are sent to an instruction buffer before
they are moved to the control registers, creating a simple two-stage pipeline
(buffer, execute). Each entry in the instruction buffer can hold all three

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

8 • J. Patwardhan et al.

Fig. 5. Node floorplan.

microinstructions that form a full instruction. The instruction opcode is fully
decoded and copying the instruction into the control registers enables all con-
trol signals required to execute the instruction and detect its completion so that
the next instruction can begin to execute. Increasing the instruction buffer size
can improve performance by overlapping instruction broadcast with execution
but can also cause greater contention (and reduce performance) on the network
since instructions and data must share link bandwidth. Simulations reveal
that a single entry instruction buffer offers the best trade-off between improv-
ing performance and minimizing design complexity.

4.3 Internode Communication

Nodes communicate with each other on single-bit asynchronous links. Each
end of a link terminates in a transceiver that can handle three virtual channels
(using 1-bit buffers per virtual channel). The transceiver can route each virtual
channel (VC) independently and requires three bits of state per-VC to store the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 9

destination address. To support self-organization, nodes include logic to config-
ure static routes (see Section 5.1). Virtual channel 0 (VC0) is used to broadcast
instructions. Virtual channel 1 (VC1) and virtual channel 2 (VC2) are used to
route data in opposite directions on the logical ring. Each asynchronous trans-
action on a link is controlled through a four-phase handshake. The links support
bidirectional full-duplex transfers. To simplify transceiver circuit size and com-
plexity, we transfer 1 bit per-handshake (which severely limits link bandwidth).

4.4 Circuit Size and Power Estimates

We have completed the circuit design for all node components except the
transceivers. We use this design in conjunction with layouts of simple logic
blocks to estimate node size and power consumption. Our simulator (discussed
in Section 7) models the system in sufficient detail to make it relatively easy to
extract a circuit model for most components. Figure 5 depicts a floorplan of a
node, showing the approximate position (not to scale) of the datapath, control,
and transceivers. We estimate that the entire node will require 10,000 transis-
tors. Since the proposed fabrication technology currently imposes limitations
on the number of metal layers, we estimate the final area of the node to be the
equivalent of 22,000 transistors (based on our experience in laying out circuits)
which translates to a 3µm × 3µm node. Recent work [Yan et al. 2003] has shown
that it should be possible to manufacture DNA grids of this size. The transistor
overhead is large, but it enables support for defect tolerance.

To estimate system power consumption, we use the energy delay product for
carbon nanotube field effect transistor (CNFET) circuits [Dwyer et al. 2004].
Based on a switching speed of 1ns (see Section 7.1) and estimated node gate and
latch counts, we calculate an upper bound on the per-node power consumption.
During execution, the configuration logic and a large part of the register file
are inactive (at most 3 registers can be active). Accounting for these inactive
elements yields a node activity factor of 0.88, which corresponds to a power
consumption of 0.775µW per node. To obtain an upper bound on the power den-
sity of this system, we assume that nodes are packed with no space between
them. Using our estimated node area (9µm2) and power (0.775µW), we get a
maximum power density of 6.5W/cm2, with a node activity factor of 0.88. As
a point of comparison, this is much less than the power densities of current
CMOS processors, which are greater than 75 W/cm2. However, this compari-
son is between different technologies. Nonetheless, our estimate is pessimistic
since the node activity factor is a conservative estimate, we cannot pack nodes
perfectly, and defective nodes will further reduce power density.

4.5 Summary

Each node in SOSA is a small circuit that can communicate with up to four
neighbors, store small amounts of state, and perform simple computation. To
minimize area and power overheads, the nodes use asynchronous logic, how-
ever, like current processors, we still dedicate significant area to control and
communication circuitry. The challenge is to coordinate the operation of these
nodes connected through an unstructured network to execute programs.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

10 • J. Patwardhan et al.

5. SYSTEM CONFIGURATION

To use the random network of nodes to perform useful computation, we use a
configuration mechanism to impose logical structure on the network and isolate
defective nodes and links from the rest of the system. This allows nodes to
self-organize and avoids the need for an external defect map which would be
impractical to obtain given the scale and bandwidth limitations of the system.
Once defective nodes are isolated, the functional nodes are grouped to form
PEs. We now describe this configuration in detail.

5.1 Logical Structure and Defect Isolation

We use a variant of the reverse-path-forwarding (RPF) algorithm [Dalal and
Metcalfe 1978; Patwardhan et al. 2005] to impose a logical tree structure on the
network and isolate defects. When the system is powered up or reset, all nodes
enter a configuration mode, steer incoming packets to the configuration control
registers, and execute the distributed RPF algorithm. A small packet is inserted
through an anchor and is broadcast on all its active links (the transceiver analog
control circuitry tests the liveness of its physical link).

The RPF algorithm states that any node receiving the broadcast propagates
it on all links except the receiving link if and only if the node has not seen the
broadcast before. The node also stores the direction (gradient) from which it
received the broadcast and sets up internal routing information based on this
direction. Following the gradient through a set of nodes leads to the broadcast
source, the tree root. A depth-first traversal is established by nodes locally
selecting links in a predefined order relative to their gradient link. Opposite
orderings are used for forward (VC1) and reverse (VC2) traversals. This method
can be used to have all nodes in the system self-organize into a tree or it can
be used to create multiple trees by initiating the broadcast through multiple
anchors. For example, we could self-assemble the random network of nodes on
a silicon wafer with a grid of vias to create a system with multiple anchors.

Defect isolation is achieved by (1) augmenting each node with a built-in self-
test to implement fail-stop behavior [Patwardhan et al. 2006] and (2) including
a simple test vector in each broadcast packet that each node must successfully
execute before propagating the broadcast. Nodes failing the test are isolated
since there is no path through the node. Simulations show that the gradient
can reach a very large fraction of functional nodes (i.e., achieve good coverage)
for node defect rates up to 30%. Handling more complex defects like Byzantine
failures is beyond the scope of this work.

5.2 Configuring Processing Elements

A node is too small to hold an entire PE so we logically group a set of nodes
to form a PE. To create PEs with N bits (we assume N = 32), we traverse
the broadcast tree in depth-first order (on VC1) and group N + 2 consecutive
unconfigured nodes. We use one configuration packet per PE. An unconfigured
node receiving a configuration packet examines it to determine what node in
the PE is to be configured next. The first node holds auxiliary control bits for
the PE and is called the head node. The next N nodes serve as compute nodes

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 11

Fig. 6. PE layout.

that form the N-bit PE. The last node (tail) serves as the terminating point
of the PE and is used to store the status bits (carry/borrow) resulting from
an arithmetic operation. A newly configured tail node sinks the configuration
packet. To minimize PE setup time in large networks (>109 nodes), we could
distribute the configuration by exploiting multiple anchors.

If the broadcast tree does not have sufficient nodes to form an integral num-
ber of PEs, the incomplete PE is deconfigured before execution begins by per-
forming a reverse depth-first traversal on VC2. PE deconfiguration uses a sim-
ple packet and starts with the last configured node of the partial PE (i.e., PEs
with no tail), and deconfigures all intermediate nodes until it reaches (and ter-
minates at) the head node. Figure 6 shows the logical order of nodes within a
PE. Figure 7(1) shows the network from Figure 3 in a configured state with
three 8-bit PEs ordered by the depth-first traversal of the network. The links
shown with solid lines correspond to edges on the broadcast tree. Links that do
not lie on the broadcast tree (dashed lines) are not used. The unlabeled nodes
outside the via are part of a partial PE that has been deconfigured. The num-
bers within each node identify the PE that the node belongs to (first label) and
the position of that node within the PE (second label).

We extend PE configuration to optimize PE length (hops from head to tail).
Very long PEs (e.g., a PE that spans the broadcast tree root) may reduce perfor-
mance due to longer intra-PE communication latencies. Since the postconfigu-
ration step deconfigures partial PEs, a PE that crosses a length threshold can
be rejected by starting a new PE without creating a tail node. By varying the PE
length threshold and determining the corresponding effect on performance, we
empirically find that a threshold of 4 times the minimum PE length (compute
nodes + head + tail) achieves a good balance between extra nodes required and
performance gained by reducing PE length. Section 7.3 provides further details
on this evaluation.

Once PEs are configured, all nodes set a run mode bit. Packets are no longer
routed to the configuration control registers unless the node receives a global
reset instruction. Each PE waits for instructions to execute. In the next section,
we describe how SOSA uses the configured PEs to execute instructions.

6. SYSTEM ARCHITECTURE

In this section, we describe the architecture of SOSA. Careful node design
coupled with the self-organizing capability of each node enables us to map
a data parallel architecture onto the random network of nodes. We begin by
describing the instruction set (Section 6.1) and execution model (Section 6.2).

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

12 • J. Patwardhan et al.

Fig. 7. Instruction execution in a random network with three configured PEs. The via is shown
to cover multiple nodes which are rendered unusable. The via is connected to the PEs through the
anchor node (A).

Then, we present an example illustrating the execution of an instruction in
the system (Section 6.3).

6.1 Instruction Set Architecture

SOSA uses a three register operand ISA with microcoded instructions (Table I
shows the instruction set). A full instruction has between 39 and 44 bits and
contains (a) a 16-bit fully decoded opcode microinstruction, (b) a 20-bit register
specifier microinstruction (4 bits per-register specifier for a 16-entry register file
and 2 extra bits per-register specifier to allow increment/decrement/no change
operations), and (c) a 3-bit synch microinstruction with an optional 5-bit synch
repeat counter. Each microinstruction can be independently broadcast and in-
cludes 2 bits of control overhead to select a control register as a destination.
Since opcodes are fully decoded, it is relatively straightforward to support fused
instructions that include combinations of operations to increase the work done
per instruction. For example, a Copy-Shift first copies the source to the desti-
nation register, and then performs a shift operation on the destination register.
SOSA also supports predicated instruction execution (all instructions can be
predicated) and has three types of instructions that can modify predicate bits:
(a) conditional instructions, (b) unconditional predicate modifying instructions,
and (c) predicate-shift instructions.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 13

Table I. Instruction Set

Instruction Type Opcodes Description

Arithmetic ADD, SUB, INC, DEC, SETGT,
SETLT, SETEQ, SETNEQ

Various arithmetic and
conditional instructions, Set
instructions set the specified
predicate register if the
condition is satisfied

Logical AND, XOR, OR, NOT Various logical instructions

Shift SHIFTML, SHIFTLM,
PSHIFTML, PSHIFTLM

Various SHIFT instructions.
ML=>MSB to LSB,
LM=>LSB to MSB. The
prefix ‘p’ indicates that the
instruction modifies the
specified predicate register
(not a predicated instruction)

PE-Shift SHIFTMLPE, SHIFTLMPE, PE-Shift instructions. Move
register to adjacent PE

Bit PE-Shift BITSHIFTMLPE,
BITSHIFTLMPE,
MVSTCURRPE,
MVSTNEXTPE

Shift single bits between PEs

Register Operations CLEAR, CPREG, SWAP Clear, Copy or Swap registers

Predicated PR[OPCODE] Any instruction with the prefix
‘Pr’ is predicated. The
predicate register corresponds
to the first source register

Predicate Modifying PSet, PSetEven, PSetOdd, PInv Predicate modifying
instructions

Fused CPSHIFTML,CPSHIFTM Copies source into destination,
and performs a shift on the
destination

Signal SIG CTRL Send signal to external
controller

Data exchange with the external controller and between PEs is handled
through PE-Shift instructions. When PEs in a cell execute a PE-Shift instruc-
tion, each PE sends the contents of the specified register to a neighbor (left or
right), and receives a new value for the register from the other neighbor (right
or left). Since these instructions are critical for data communication, it is im-
portant to minimize their latency. We optimize PE-Shifts using the following
observation: for a N-bit PE, each bit moves exactly (N + 2) positions to the left
or right, and a node only needs to store the (N + 2)th bit in its register file and
can forward the remaining bits without register access. We use the synch re-
peat counter to track the bits forwarded by the node. The node stops forwarding
when it receives the (N + 2)th bit. When a node is forwarding data, it copies
the data bit directly from its input buffer to its output buffer. This reduces the
critical path of a bit through the node.

6.2 Execution Model

Instructions are broadcast on VC0 to all nodes, thus PEs, in a cell. Nodes first
place instructions in the instruction buffer, and then forward them down the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

14 • J. Patwardhan et al.

broadcast tree. Instruction broadcast stalls when the instruction buffer is full.
The arrival of the synchronization microinstruction is a signal to the node that
all parts of the instruction have been received. An instruction moves from the
instruction buffer to the node’s internal control registers only when the previous
instruction finishes execution. Since nodes are bandwidth limited, we allow the
partial broadcast of instructions to reduce the number of bits broadcast. If an
instruction broadcast skips a microinstruction (except synch), we reuse the
previously latched value from the corresponding control register. The synch
repeat counter also helps reduce the number of bits broadcast.

Nonpredicated instructions can be executed independently by nodes of a PE
if there are no interbit data dependencies (e.g., for an OR instruction). The head
and tail nodes act as PE delimiters and ensure that intra-PE data packets do
not cross PE boundaries. The tail node also stores the carry/borrow out from
arithmetic operations. The head node stores predicate bits (one per physical
register) that are used to conditionally execute predicated instructions. The
head node reads the specified predicate bit and informs the remaining nodes
in the PE whether the predicated instruction is to be executed or squashed by
sending a synch microinstruction on VC1. Since each node in a PE must wait
for the extra synchronization microinstruction (which is consumed by the tail),
execution of predicated instructions is serialized through a PE.

6.3 Instruction Execution Example

Figure 7 uses the small configured network with three 8-bit PEs to illustrate
the different steps involved in executing an ADD instruction. The anchor node
broadcasts three microinstructions that form the ADD on VC0 (step (1)). As
each node receives the microinstructions, it buffers them (step (2)) and waits
for the synchronization microinstruction to arrive. Once this microinstruction
arrives (step (3)), the node can start execution. Since we are executing an ADD,
the head node of each PE must insert a carry-in for the first node (step (3)).
Each node then performs the ADD as it receives the carry-in (steps (4), (5), (6)),
and sends the carry-out to the next neighbor. When a node finishes with the
ADD, it clears any temporary internal state used by the instruction and goes
back to waiting for instructions to arrive (steps (8)).

One important aspect of the execution model is that different nodes and PEs
can be in different stages of execution at the same time. In step (3), nodes 3.H
and 3.3 are still idle, while other nodes in PE-3 are receiving data (3.0, 3.2),
and some have received the full instruction and are stalled waiting for data
(3.1, 3.4-3.T). This asynchronous execution within and between PEs allows
them to make forward progress independently (as long as data dependencies
are satisfied) and helps SOSA tolerate large internode communication latencies
and achieve good performance. In the next section, we evaluate the performance
of SOSA.

7. EVALUATION

This section describes our evaluation methodology, simulation infrastructure,
and workloads (Section 7.1), then compares SOSA performance to four other

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 15

Table II. SOSA System Parameters

Parameter Value Parameter Value Parameter Value

Register File 16 entry,
2-bits/node

Synch Repeat
Counter
Width

5 bits Data Width 32 bits

Time
Quantum

1 ns PE Length
Optimization

Enabled Instruction
Buffer
Size

1 entry

ALU
Latency

1 Time
Quantum

Register
Increment/
Decrement

Enabled Link Type Full-Duplex

architectures (Section 7.2). We find that SOSA achieves good performance on
benchmarks that have data parallelism. For a configuration with more than
64K PEs, SOSA matches the performance of an ideal 16-way CMP. Thus, de-
spite SOSA’s severe limits on node computational power, network bandwidth,
and connectivity and low control over the fabrication process, it matches the per-
formance of idealized conventional architectures with lower device switching
speeds and a lower power density. Section 7.3 explores the sensitivity of SOSA to
changes in various design parameters. We find that the instruction buffer and
microinstruction reuse optimizations improve performance. Increasing ALU
execution latency does not impact performance provided the total execution
latency is less than communication latencies. We then show that SOSA can
tolerate high node defect rates (Section 7.4). For the encryption benchmarks,
performance gracefully degrades as the fraction of defective nodes increases to
30%. For the other benchmarks, by over-provisioning the system, SOSA toler-
ates up to 20% defective nodes with a small (<10%) degradation in performance.

7.1 Methodology

We evaluate SOSA using a custom, event-driven simulator and use results from
simulating smaller systems to extrapolate the behavior of larger systems. Since
the nodes do not use a clock, we define the time taken to perform one part of the
internode asynchronous communication handshake as one time quantum. The
latency of all activity in the node is a multiple of this time quantum. Experi-
mental devices are expected to operate at frequencies exceeding 100GHz [Burke
2004] with demonstrated frequencies over 10GHz [Rosenblatt et al. 2005] (time
quantum of 0.1ns), and asynchronous handshakes at high speeds have been
demonstrated for high-bandwidth crossbar networks [Lines 2004]. We expect
SOSA’s performance to scale with device performance but assume a conserva-
tive time quantum of 1 nanosecond to avoid overestimating performance due
to aggressive technological parameters. We list our default simulation parame-
ters in Table II. We use a custom tool that models the growth of DNA nanotubes
between nodes to generate network topologies.

We compare the performance of SOSA to a Pentium 4 (P4) (3GHz, 1MB L2,
1GB RAM), an ideal out-of-order superscalar (I-SS) (128-wide, 8K ROB, 1-cycle
memory latency), an ideal 16-way CMP (16-CMP) (obtained by linearly scaling
performance of the I-SS) and an ideal implementation of SOSA (I-SOSA) that

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

16 • J. Patwardhan et al.

Table III. Ideal Superscalar Parameters

Parameter Value Parameter Value Parameter Value

Width 128 (Fetch/
Decode/
Issue/Commit)

Integer ALU 128 ADD,
128 Mul

Branch
Prediction

Perfect

Instruction
Fetch
Queue

1024 Entries FP ALU 128 ADD,
128 Mul

Memory
Latency

1 cycle

ROB/LSQ 8192 Entries,
1 cycle latency

Frequency 10 GHz Memory
Ports

128

Table IV. Benchmark Descriptions

Application Class Benchmark Description

Scientific Multiply integer N × N matrices (N2 PEs)

Image Processing

Apply a generic 3 × 3 filter on an N × N image (N2 PEs)

Apply a separable Gaussian filter on an N × N image (N2 PEs)

Apply a median filter on an N × N image to reduce noise (N2 PEs)

General Purpose Odd-Even Transposition Sort [Knuth 1973]—Parallel sort with nearest
neighbor communication (N PEs for sorting N numbers)

Cryptography
Tiny Encryption Algorithm (TEA) —Simple encryption algorithm used

in the XBox (64 PEs)
eXtended TEA (XTEA)—Eliminates known vulnerabilities in TEA (64

PEs)

Search Search a database for a match with an input 32 bit string (O(N) PEs for
N strings)

Bin-Packing Pipelined version of bin-packing with first-fit heuristic (N PEs for N bins)

uses the same instruction set, but assumes unit instruction execution latencies,
and no communication overhead. Table III lists the parameters used to simulate
the I-SS with SimpleScalar [Austin et al. 2002].

Table IV contains brief descriptions of the test programs, the broad applica-
tion classes they fall under, and the number of PEs required by SOSA to run one
instance of a program. For all programs other than the encryption algorithms,
we configure the system as a single cell with the necessary PEs. For the encryp-
tion algorithms, we configure the system as a collection of cells, each of which
operates as a pipelined encryption unit. We use gcc to generate PISA binaries
for simplescalar (flags: -O3) and Intel’s C Compiler (icc, flags: -O3 -fast -tpp7)
for the P4 since optimized icc binaries outperform optimized gcc binaries. We
test several versions of matrix multiplication from [Runnels and Scarlata 1995]
and identify the best version for the P4 (naı̈ve version with three nested loops,
since icc vectorizes loops for the SSE units) and I-SS (static loop unrolling).
For sorting, we use an implementation of quicksort. For SOSA each program
is hand-optimized (e.g., loop unrolling, code reorganization). The SOSA code
for matrix multiplication and the image filters assumes data is in place before
execution begins. However, this overhead forms only a small fraction of total
execution time and can be reduced by exploiting multiple anchors in the sys-
tem. The other workloads explicitly account for I/O overheads. The running
times of programs do not include system configuration time (which is propor-
tional to the number of nodes in the system). To estimate SOSA performance for

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 17

configurations with more than 16K PEs, we use simple extrapolation (simulat-
ing a 256 × 256 matrix multiplication on a 3GHz P4 with 32GB RAM takes ∼50
days, which is impractical for data collection purposes). For matrix multiplica-
tion, we extrapolate running time using R(N) = 3.8*R(N/2), where R(N) is the
running time for an N × N matrix. For generic and median filters, we use
R(N) = 1.85R(N/2), and for the separable Gaussian filter, we use R(N) =

2.77R(N/2). To validate the extrapolations, we compare extrapolated runtimes
to simulated runtimes for large configurations (8K–16K PEs). We do not need
to extrapolate for sorting since we are able to simulate systems with up to
16K PEs (and hence, sort 16K numbers). The other workloads are throughput
oriented, and do not require extrapolation.

7.2 Results

We now examine the performance of applications on SOSA with no defects.
SOSA provides users the flexibility to configure the system to minimize program
running time (single cell, single program instance) or to maximize throughput
(multiple cells, one program instance each). We divide our evaluation into two
parts based on the performance metric being used (execution time or through-
put).

7.2.1 Execution Time. For many workloads (image filters, matrix multipli-
cation, sorting), system performance is determined by program execution time
since we are solving a single instance of each problem. To evaluate the perfor-
mance of these programs on SOSA, we configure the system to create one cell
with the required number of PEs. The latency of an individual instruction in
SOSA is high due to the overhead caused by limited node capabilities. However,
SOSA can amortize this overhead by executing the same instruction in all PEs
at the same time. Hence, we expect SOSA to perform poorly for small input sizes
where each instruction is executed in a small number of PEs. However, SOSA
performance should improve as input size increases and eventually match (or
exceed) the performance of the P4, I-SS and 16-CMP. The input size at which
SOSA outperforms a particular architecture is application dependent.

Inspecting the main loop body for matrix multiplication in Figure 9 (opti-
mizations are omitted to keep the code compact and readable, see Appendix
for details on the optimizations we performed to tune matrix multiplication),
we see that the primary advantage for SOSA is the simultaneous computation
of all products in the N2 PEs. This allows SOSA to convert the O(N3) algo-
rithm to O(N2). Image filters and sorting are reduced from O(N2) algorithms
to O(N).

We plot the running time of matrix multiplication, gaussian filters median
filters, and sorting on different architectures in Figure 8, marking the input
size beyond which SOSA outperforms the P4 with a vertical line (results for
the generic 3 × 3 filter are qualitatively similar to the gaussian filter and are
skipped due to space constraints). As expected, SOSA does worse than the
conventional architectures for small input sizes, but matches and overtakes
them as input size increases (except for median filter and sort). The P4 matches
the I-SS on matrix multiplication for two reasons: (a) the P4 makes use of its

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

18 • J. Patwardhan et al.

Fig. 8. Single Cell Program Runtimes: (a) Matrix Multiplication, (b) Gaussian Filter, (c) Median
Filter and (d) Sort. The vertical line denotes the input size beyond which SOSA does better than
the Pentium 4.

SSE units and (b) I-SS only achieves an IPC of 9. The P4 performs much worse
without the SSE units.

The performance of the median filter and sort algorithms is limited by their
dependence on predicated instructions which serialize execution in a PE. While
the number of predicated instructions in the median filter is fixed (independent
of input size), for sort, it scales with input size. For the median filter, SOSA is
able to match the performance of the uniprocessors, but not the ideal 16-CMP
(for image sizes up to 16K × 16K). For sort, the potential speedup on SOSA
over quicksort on a single processor (average case) is O(log(N)). However, the
overhead introduced by predicated instructions makes it impossible for SOSA
to match the performance of the I-SS or P4. Exploring techniques to reduce this
overhead is future work. Note that even I-SOSA cannot outperform the I-SS at
sorting. This highlights one key limitation of SOSA: it is not a general purpose
architecture and cannot match the performance of conventional processors on
general purpose workloads.

7.2.2 Throughput. There are a large number of workloads where high sys-
tem throughput is desirable. The parallel computational capabilities of SOSA
can be used to achieve high system throughput by dividing the system into mul-
tiple cells, each having a set of PEs. While there are multiple ways to improve

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 19

; Initialize Before Multiply

CPREG R4, R2 ; Copy R4 R2

CPREG R3, R1 ; Copy R3 R1

CLEAR R5 ; Clear R5

; Multiply (Loop Dw times) (Dw: Data Width)

SHIFTLM R1 ; Shift LSB MSB (multiply by 2)

PSHIFTML R2, R5 ; Shift MSB LSB, LSB Predicate register 5

PRADD R5, R1, R5 ; If predicate register 5 is set, R5=R1+R5

CLEAR R6 ; Clear R6

; Accumulate Partial Products

; Repeat log2(N) times (i is iteration count)

ADD R6, R6, R5 ; Accumulate Partial Sum

CPREG R6, R5 ; Copy R6 R5

SHIFTMLPE R5 ; Repeat i*2 times

; End Repeat

ADD R6, R6, R5 ; Final Add

; Align rows of matrix A for next set

; of multiplies (Repeat N times)

SHIFTMLPE R4 ; Move ‘A’ N PEs to the left

; Move Result

CPREG R8, R9 ; If Pred. Reg 8 == 1, this PE holds the

 9R ot evom ,tnemele loc/wor tsrif ;

PSHIFTML R9, R6 ; Move that bit into the predicate register 6

PRCPREG R6, R7 ; if predicate register 6 ==1, copy R6 R7

SHIFTMLPE R7 ; Move R7 one PE to the left

Fig. 9. Matrix multiply: assembly code (no unrolling) (see appendix A for more details).

throughput, we focus on using multiple instances of a single application (oper-
ating on different data) running on different cells. For example, if we assume an
area of 100mm2 (approximately the area of a P4 in 90nm CMOS), we can con-
figure over 5,000 cells (assuming an average internode gap of 1µm) that each
perform an 8 × 8 matrix multiplication and achieve much higher throughput
than the P4 or the I-SS.

TEA [Wheeler and Needham 1994] and XTEA [Needham and Wheeler 1997]
are two simple encryption algorithms developed at the University of Cambridge
that use a combination of shift, add, and xor operations to encrypt 64-bit blocks
of data with a 128-bit key, with XTEA requiring more operations per-iteration
to achieve better cryptographic security. We implement pipelined versions of

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

20 • J. Patwardhan et al.

Table V. TEA Throughput for Different
Architectures

Architecture Encryptions/sec

P4 @ 3GHz (100mm2) 3.9 M/sec

I-SS 73.62 M/sec

16-CMP 1180 M/sec

SOSA (1 cell ∼ 0.019mm2) 0.175 M/sec

I-SOSA (1 cell = 64 PEs) 27.7 M/sec

SOSA (5400 cells ∼ 100mm2) 940 M/sec

I-SOSA (5400 cells) 72300 M/sec

both algorithms that require 64 PEs (corresponding to 64 encryption itera-
tions) in a cell (i.e., 1 cell = 64 PEs). Due to their requirement of fixed sized
cells, these algorithms are well suited for the high-throughput multiple cell
configuration.

Since each cell operates independently and can handle multiple data blocks
in parallel, TEA and XTEA achieve better throughput on SOSA than on the
I-SS or P4. A single cell can perform 175,000 TEA encryptions per-second and
170,000 XTEA encryptions per-second. Table V compares the performance of
TEA on different architectures. The table shows that SOSA can achieve 79%
of the throughput of the ideal 16-CMP while using about the same area as
a single core with devices switching at a tenth of the speed (1ns vs. 0.1ns).
The comparison with I-SOSA highlights the overhead due to simple nodes and
limited bandwidth in SOSA.

We have implemented pipelined versions of searching and bin-packing al-
gorithms in SOSA to maximize throughput. Our implementation of search
achieves about 10 billion comparisons per-second on SOSA while using the
same area as a P4 (the P4, I-SS and 16-CMP achieve about 0.5, 2 and 32 billion
comparisons per-second, respectively). We see qualitatively (not quantitatively)
similar results for bin-packing. SOSA’s ability to exploit data parallelism in
these workloads helps it outperform conventional architectures.

7.3 Sensitivity Analysis

In this section, we quantify the effect of various optimizations and changes
in system parameter values on the performance of SOSA. We start with the
effect of the PE length optimizations. Next, we examine the effects of various
software optimizations (synch reuse and register specifier reuse) that reduce
the number of instruction bits broadcast. We then describe the effect of one- or
two-bit wide registers on performance. Next, we measure the effect of different
compute and communication latencies on performance. We then evaluate the
impact of various instruction buffer sizes, and, finally, we examine the effect of
various node operating speeds.

7.3.1 PE Length Optimization. In Section 5.2, we described a mechanism
to limit the length of PEs in order to improve system performance. We pick
two representative benchmarks (1) matrix multiplication for workloads that
require monolithic cells and (2) TEA for workloads that require multiple cells.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 21

Fig. 10. PE length vs. number of nodes.

Fig. 11. Effect of PE length optimization on program running time.

In Figure 10, we plot the number of nodes required for 32 × 32 matrix mul-
tiplication (1024 PEs) and TEA (64 PEs) as we vary the maximum permitted
PE length in multiples of the ideal PE length (ideal PE length = 2 + data
width/bits per-register, Inf corresponds to no restriction on PE length). The re-
sults are normalized to the number of nodes required if there is no constraint
on PE length. We see that as we restrict the PE length, the number of nodes
required increases for both benchmarks (up to 14% for matrix multiplication,
up to 38% for TEA). In Figure 11, we plot the running time for both benchmarks
normalized to a configuration with no restrictions on PE length. As expected,
limiting PE length reduces program running time (up to14% for matrix multi-
ply, up to 22% for TEA). However, this increased performance comes at a cost
of reduced node utilization as some nodes are now unused. For workloads that
use multiple cells, this also implies a reduction in the number of available cells
(since each cell is larger) which is likely to reduce system throughput. We can
strike a balance between improved performance and extra nodes required by
limiting PE length as described in Section 5.2.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

22 • J. Patwardhan et al.

Fig. 12. Effect of instruction reuse.

7.3.2 Instruction Reuse. The results presented so far show the best per-
formance of the SIMD architecture on matrix multiply with instruction reuse
allowed. In this section, we quantify the benefits of instruction reuse using
matrix multiplication. Figure 12 plots the runtime of matrix multiply normal-
ized to a configuration without hardware support for instruction reuse. The
base configuration includes hardware to optimize the PE-Shift and uses par-
tial broadcast of instructions. We evaluate three cases in addition to the base
case, the first with hardware support for synch reuse, the second with hard-
ware support for register increment/decrement, and the third with both. The
two bars for each configuration represent the results for 32 × 32 and 64 × 64
matrices. Both reuse optimizations reduce the bandwidth requirement of the
system by reducing the number of instruction bits broadcast. From our experi-
ments, we see that program runtime decreases by 12% and 19% for N = 32 and
N = 64, respectively, if the synch microinstruction is reused. Adding support
for register increment/decrement decreases program runtime by 12% for a 32
× 32 matrix, and by 8% for a 64 × 64 matrix. The larger matrix multiply is af-
fected less because the runtime of the program is dominated by PE-Shifts which
do not benefit from the optimization. If we enable both optimizations, runtime
decreases by about 35%. A system with both optimizations presents more oppor-
tunities to reduce the number of instruction bits broadcast and clearly benefits
more than a system with any one of the optimizations.

7.3.3 Sensitivity to Register Width. Increasing the width of the register
file increases the work done within a node per instruction. It also reduces the
number of registers available to the programmer (since the total storage on the
node is assumed to be fixed at 32 bits). To avoid having a very small register file,
we only examine having 1-bit or 2-bit wide registers. Increasing the width of the
register file requires time multiplexing of a 1-bit ALU or the use of a 2-bit wide
ALU. We measure system performance for both cases. We plot the normalized
running times for matrix multiplication and TEA in Figure 13. We see that, in
both cases, 2-bit wide registers reduce program running time. In addition to
reducing running time, 2-bit wide registers also reduce the number of nodes

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 23

Fig. 13. Sensitivity to register width.

Fig. 14. Sensitivity to execution and communication latencies.

required to create a 32-bit PE by 88% (from 34 down to 18). The reduction in
running time occurs for a 2-bit wide ALU as well as for the reuse of a 1-bit wide
ALU.

7.3.4 Sensitivity to Compute and Communication Latencies. We measure
the effect of increasing the latency of the control/compute logic of the node. So
far, we have assumed that all activity within a node takes exactly one time
unit. We use matrix multiplication and TEA to evaluate the effect of increasing
the latency of the control/compute logic block as well as the communication
latency between the compute logic and transceivers. We plot the normalized
running time for matrix multiply and TEA for varying latencies in Figure 14(a)
and Figure 14(b), respectively. For both benchmarks, we observe that system
performance is fairly insensitive to increased latencies less than 4 time quanta.
When the total latency of the two logic blocks is greater than the latency of a
bit transfer, we see a significant drop in performance as the latencies of all
instructions increase.

7.3.5 Impact of Instruction Buffer Size. The instruction buffer stores in-
structions before the node is ready to execute them. It also enables the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

24 • J. Patwardhan et al.

Fig. 15. Effect of instruction buffer size.

instruction broadcast mechanism to propagate instructions down the broad-
cast tree. Increasing the size of the instruction buffer typically improves per-
formance since it allows increased overlap of communication and computation.
However, it can cause increased contention on the bandwidth constrained links,
leading to a loss in performance. In addition, increasing instruction buffer size
introduces additional complexity into the node. In Figure 15, we plot the nor-
malized running time of matrix multiplication(64 × 64) and TEA as we vary
the number of entries in the instruction buffer from 1 to 16 (with instruction
reuse optimizations enabled). For TEA, adding instruction buffer entries im-
proves performance but results in diminishing gains beyond four instruction
buffer entries. For matrix multiplication, we actually see an increase in running
time beyond one entry due to increased network contention. We use a single en-
try instruction buffer as a trade-off between node complexity and performance
improvement over a node design without the instruction buffer.

7.3.6 Effect of Increasing Operating Speed. The results presented in the
previous section assumed a conservative value of 1 nanosecond for the time unit.
Recent measurements of carbon nanotubes indicate that it may be possible to
operate devices based on nanotubes at very high frequencies (∼1Terahertz)
[Burke 2004; Rosenblatt et al. 2005]. In Figure 16, we show the run time for
the matrix multiply for two matrix sizes (N = 128, N = 512) for different time
unit values. We also show the running time for the Pentium 4 running at 3GHz
as a point of comparison. The figure shows that if SOSA could operate with
lower values for the time unit, it would achieve runtimes closer to the Pentium
4 for smaller matrix sizes (N = 128, with a time unit of ∼100ps).

7.3.7 Sensitivity Summary. In our sensitivity analysis, we find that
SOSA’s performance is not very sensitive to compute and internal communi-
cation latencies as long as these latencies are greater than internode commu-
nication latencies. We find that increasing the size of the instruction buffer can
improve performance but results in increased node complexity. SOSA’s perfor-
mance improves if we use wider registers, which also leads to a reduction in the

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 25

Fig. 16. Effect of operating speed.

Fig. 17. TEA/XTEA; Graceful degradation of throughput with increasing node defect rate.

number of nodes required to form a PE. However, due to node size limitations,
there is a trade-off between wider registers and number of registers available.
We also find that SOSA can benefit from running at faster speeds, limiting
PE lengths and the instruction reuse mechanisms. Next, we evaluate a critical
aspect of SOSA’s design: its ability to tolerate defective nodes.

7.4 Defect Tolerance

The ability to tolerate defects is one of the primary features of SOSA. To test
the defect tolerance and to measure the effect of defects on performance, we run
a number of experiments varying the node defect rate. First, we examine the
effect of defects on the throughput of a system configured into multiple cells. If
we keep the total system area constant (100mm2), as node defect rates increase,
we are able to configure fewer cells, resulting in reduced throughput. Figure 17
plots the throughput for TEA and XTEA as node defect rates increase from 0%

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

26 • J. Patwardhan et al.

Fig. 18. Matrix multiplication: effect of defects on runtime.

to 30%, revealing a graceful degradation in performance. The connectivity of the
random network of nodes is severely affected by node defect rates greater than
30%. This results in network partitions with insufficient functioning nodes in
each partition to configure a 64 PE cell.

For single cell applications, the entire system must be over-provisioned to
ensure that a sufficient number of PEs can be configured. Thus defects indi-
rectly impact performance by reducing network connectivity and bandwidth.
In all experiments, SOSA has 30% more nodes (24,000 total nodes) than the
minimum needed for a 32 × 32 matrix multiply. Figure 18 shows the running
time for 32 × 32 matrix multiplication as we increase the number of defective
nodes from 0% to 20%. We see that the running time increases by about 8%
(compared to a case with no defects), primarily because the average length of
PEs increases. We do not present results for the other workloads since they are
qualitatively similar. If the system cannot configure sufficient PEs, the prob-
lem could potentially be divided into parts that can be solved with the available
PEs. Such partitioning, if possible, is beyond the scope of this work. Though the
defect tolerance capabilities of the RPF algorithm have been demonstrated be-
fore, our experiments show that the ability to tolerate high defect rates incurs
only a small performance penalty (∼8% for N = 32, 32-bit PEs), a characteristic
of increasing importance for future systems.

7.5 Result Summary

The results in this section show that a system built using a random network of
simple nodes can outperform a Pentium 4 (P4) and an ideal superscalar proces-
sor (I-SS), despite severe bandwidth limitation and operating devices at a lower
switching speed. A scaled up version of the system can outperform an ideal 16-
way CMP. The results also highlight SOSA’s flexibility in configuring indepen-
dent cells to improve system utilization and throughput. SOSA provides higher
throughput than the P4 and I-SS while using the same area. Coupled with the
ability to tolerate a significant defect rate, SOSA shows potential for harnessing
the higher device densities that emerging technologies promise to deliver.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 27

8. LIMITATIONS AND FUTURE WORK

Our performance evaluation reinforces the common knowledge that a high com-
putation to communication ratio is critical for achieving good performance, par-
ticularly on SOSA, due to its low bandwidth and high communication latencies.
SOSA is likely to achieve good performance on pipelined implementations of
programs that require high throughput or programs that require little inter-
PE communication, nearest neighbor communication, or regular and unidi-
rectional dataflow. In contrast, SOSA is unlikely to achieve good performance
for programs that require all-to-all communication because of the logical ring
topology and limited network bandwidth. Although SOSA achieves good perfor-
mance on most of the workloads we studied, it is not a general purpose archi-
tecture (as clearly demonstrated by the performance of sort). SOSA is unlikely
to be able to match the performance of conventional processors on most gen-
eral purpose workloads. SOSA is also limited by lack of hardware support for
floating point operations. We have software implementations of floating point
operations, but performance is limited by the use of predicated instructions to
handle control dependencies between different parts of the operations.

There are a number of avenues for further research. We plan to extend SOSA
to speed up floating point operations, exploit multiple anchors to increase sys-
tem I/O bandwidth, and to handle transient faults through redundant execu-
tion or by extending PEs to perform simple checksum/parity computations. We
are also looking at extending the software tool chain to explore compiler opti-
mizations. Other open research areas include modifications to the configuration
mechanism to exploit unused links in order to improve I/O bandwidth, configur-
ing nodes for specific functionality (e.g., floating point or storage), using SOSA
as an add-on to a conventional core in order to improve performance on data par-
allel workloads, and creating hybrid cores that mix CMOS and self-assembled
devices.

As self-assembly technology matures, some of the severe fabrication limita-
tions may be removed. The performance of I-SOSA provides an upper bound
of SOSA performance, assuming a time quantum of 1ns. However, with fewer
fabrication limitations, it might be possible to achieve better performance by
revisiting design decisions that trade-off performance for reduced design com-
plexity. For example, if we can manufacture larger nodes, it might be possible
to fit a full PE in one node or to build more complex transceivers to achieve
better network connectivity [Patwardhan et al. 2006]. As emerging device tech-
nologies improve, it may be possible to operate them at higher speeds (causing
a potential increase in power consumption). It is important to note that while
we assume DNA-based self-assembly as the fabrication process, SOSA is appli-
cable to any manufacturing technique that results in high defect rates and a
loss of precise control during parts of the fabrication process.

9. RELATED WORK

There is a large body of research on building computing systems with simi-
lar goals, which differs primarily in the granularity of the basic computational
blocks used to form the system. SOSA must use very simple computational

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

28 • J. Patwardhan et al.

nodes due to fabrication constraints. In this section, we focus on closely related
work applicable to emerging technologies. The decoupled array multiproces-
sor (DAMP) [Dwyer et al. 2004] and the nanoscale active network architec-
ture (NANA) [Patwardhan et al. 2006] use DNA-based self-assembly of nano-
electronic devices. The DAMP exploits data parallelism, but it is not capable
of efficient data exchange between processing elements, limiting it to embar-
rassingly parallel problems. SOSA uses more sophisticated self-organization
and achieves better performance than NANA since it has lower communication
overhead, better node utilization, and uses a single node type.

Researchers have developed FPGA-based reconfigurable architectures
[Culbertson et al. 1996; Heath et al. 1998; Goldstein and Budiu 2001] that
extract a system-level defect map and use this external map to configure the
system, while isolating defective regions. The key difference is that SOSA con-
figures higher-level logic blocks (nodes as opposed to gates in an FPGA) and
does not require an external defect map. This is critical since we have little
information about the physical network topology. Researchers have proposed
various voting and redundancy schemes to deal with defects, including triple
modular redundancy (TMR) [Lyons and Vanderkulk 1962], N-modular redun-
dancy [von Neumann et al. 1956], NAND multiplexing and hot/cold sparing
[DeHon 2003] (particularly in the context of molecular electronic systems). The
defect-tolerance scheme used in this article does not rely on redundant compu-
tation but isolates defective regions in the system. There has been extensive
research on designing and building vector [Espasa et al. 2002; Ciricescu et al.
2003] and SIMD machines [Tucker and Robertson 1988; Ujval et al. 2002, in-
cluding the Cell processor [Hofstee 2005]. The Cell processor has eight SIMD
cores that can be programmed independently unlike the PEs in SOSA. The
primary difference between SOSA and past work is our focus on overcoming
the challenges imposed by the fabrication technology and the need to tolerate
defects.

10. CONCLUSIONS

With the expected rise in defect rates as device sizes shrink, defect tolerance
will be a critical requirement for future system architectures. These increasing
defect rates will contribute directly to the exponentially increasing cost of top-
down manufacturing. The use of bottom-up techniques like self-assembly will
help lower costs but may also result in higher defect rates and a loss of precise
control over the manufacturing process. This makes it imperative for architects
to develop defect-tolerant architectures in order to exploit the full potential of
future nanoscale devices. This article presents SOSA, a self-organizing SIMD
architecture built from a random network of simple computational nodes. De-
spite high defect rates, low bandwidth, and lack of underlying physical struc-
ture, we show that, for data parallel workloads, SOSA is able to perform better
than conventional superscalar processors, while operating at a lower speed
and consuming much less power. A scaled version of SOSA can perform bet-
ter than an ideal 16-way CMP. As the underlying technology matures, SOSA’s
performance can be further improved as fabrication limitations are removed.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 29

for i=1 to N

 for j=1 to N

 for k=1 to N

 C[i][j]=C[i][j]+A[i][j]*B[j][k];

 End

 End

End

Fig. 19. Matrix multiplication pseudocode.

B30 B31 B32 B33

A03

A13

A23

A33

Matrix A

Row Layout

A01 A02

A10 A11 A12

A20 A21 A22

A30 A31 A32

A00

Matrix B
Column Layout

B10

B20

B01

B11

B21

B02

B12

B22

B03

B13

B23

B00

Processing

Elements

A33

B33

A32

B23

A31

B13

A30

B03

A23

B32

A22

B22

A21

B12

A20

B02

A13

B31

A12

B21

A11

B11

A10

B01

A03

B30

A02

B20

A01

B10

A00

B00

(32-bit data, 34 nodes each)

Fig. 20. Matrix layout.

While SOSA does not solve all problems encountered with self-assembled ar-
chitectures, it is a step towards realizing defect-tolerant computing systems
built using emerging technologies that may provide inexpensive terascale
integration.

APPENDIX

PROGRAMMING SOSA—MATRIX MULTIPLICATION

We now provide a brief overview of programming SOSA. We use matrix mul-
tiplication as a running example and demonstrate how various optimizations
can be applied to improve performance. We begin with the N3 algorithm for
multiplying two N × N matrices A and B, shown in Figure 19.

Since SOSA does not include memory that is addressable from within the
PEs, we assume that data is distributed among the PEs. We choose a simple
data layout, each PE holds one element each of the input matrices (depicted
in Figure 20, for two 4 × 4 matrices). We divide the algorithm into four parts,
each of which is repeated N times. The first part computes the N3 products, the
second part accumulates sums to create elements of the result, the third part
moves data within the PEs to set up the next iteration, and the fourth part

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

30 • J. Patwardhan et al.

; Initialize before Multiply

CPREG R4,R2 ; Copy R4->R2

CPREG R3,R1 ; Copy R3->R1

CLEAR R5 ; Clear R5

; Multiply (Loop Dw times) (Dw: Data Width)

SHIFTLM R1 ; Shift LSB to MSB (multiply by 2)

PSHIFTML R2,R5 ; Shift MSB to LSB, LSB to pred.reg R5

PRADD R5,R1,R5 ; if predicate is set, R5=R5+R1

CLEAR R6 ; Clear R6

; Accumulate partial products

;---Repeat N times---

ADD R6,R6,R5 ; Accumulate partial sum

CPREG R6,R5 ; Copy R6 to R5

SHIFTMLPE R5 ; Send accumulated sum to previous PE

; Align rows of matrix A for next set of multiplies

;(Repeat (Dw+2)*N times)

SHIFTMLPE R4 ; Move A ’N’ PEs to the left

; Move Result

CPREG R8,R9 ; if R8==1, this PE holds the first

 ; element of a row/column, move this to R9

PSHIFTML R9,R6 ; Move that bit into the predicate register R6

PRCPREG R6,R7 ; if predicate set, copy R6->R7

SHIFTMLPE R7 ; Move R7 one PE to the left (*(Dw+2))

Fig. 21. Matrix multiply assembly code—no optimizations.

moves each newly computed element of the result to its final location. Since
SOSA does not have a native multiplication instruction, the first part is not
trivial and is implemented using a shift-add algorithm.

Figure 21 shows the first version of the primary matrix multiply loop. There
are four components as stated earlier: multiply, accumulate, align data, move
result. The largest fraction of running time is spent in the first two parts of the
algorithm, and we focus on optimizing these parts. The primary optimizations
applied to the third and fourth part include the reuse of microinstructions where
possible.

To optimize the accumulate operation, we observe that in each iteration,
we want to accumulate N products into a single sum. However, we can exploit
matrix sizes that are a power of two to optimize this accumulation step. We
replace the N add iterations by log(N) iterations, and, in every kth iteration,
we move the sum 2k PEs before performing the accumulate. This is depicted in
Figure 22 for N = 16. It reduces the number of iterations but does not reduce
the amount of data that must be communicated. Note that we perform some
extra ADD instructions on data elements that do not contribute to the final
result. We show the final accumulate code in Figure 23.

We use loop unrolling to optimize the multiplication and maximize our use of
the register file within each node. If we use 1-bit wide registers, we can unroll
the multiply loop 16 times and perform only two iterations of shift-add. In each
unrolled iteration, we create a shifted version of the multiplicand and generate
predicate bits using the multiplier. We use a predicated add to control whether
the shifted multiplicand gets added depending on the predicate bit created by

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 31

P0 P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 P11 P12 P13 P14 P15

P0+ P2+ P4+ P6+ P8+ P10+ P12+ P14+

P12++P8++++4P++0P

P0+++ P8+++

Sum

Iteration 1

Iteration 2

Iteration 3

Iteration 4

Fig. 22. Logarithmic accumulate.

; Accumulate partial products

;---Repeat log2(N) times---

ADD R6,R6,R5 ; Accumulate partial sum

CPREG R6,R5 ; Copy R6 to R5

SHIFTMLPE R5 ; For iteration i, repeat (Dw+2)*i*2 times

; End Repeat

Fig. 23. Logarithmic accumulate—assembly code.

the multiplier. The loop unrolling allows us to reuse microinstructions which
helps reduce instruction execution time.

ACKNOWLEDGMENTS

We thank the anonymous reviewers and members of TROIKA for comments
and suggestions that improved this work.

REFERENCES

ABELSON, H., ALLEN, D., COORE, D., HANSON, C., HOMSY, G., KNIGHT, T. F., NAGPAL, R., RAUCH, E., SUSSMAN,
G. J., AND WEISS, R. 2000. Amorphous computing. Comm. ACM 43, 5, 74–82.

AUSTIN, T., LARSON, E., AND ERNST, D. 2002. SimpleScalar: An infrastructure for computer system
modeling. IEEE Computer 35, 2, 59–67.

BACHTOLD, A., HADLEY, P., NAKANISHI, T., AND DEKKER, C. 2001. Logic circuits with carbon nanotube
transistors. Science 294, 1317–1320.

BURKE, P. J. 2004. Carbon nanotube devices for GHz to THz applications. (SPIE) 5593, 52–61.
CIRICESCU, S., ESSICK, R., LUCAS, B., MAY, P., MOAT, K., NORRIS, J., SCHUETTE, M., AND SAIDI, A.

2003. The reconfigurable streaming vector processor (RSVP). In Proceedings of the 36th An-

nual IEEE/ACM International Symposium on Microarchitecture, 141–150.
CULBERTSON, W. B., AMERSON, R., CARTER, R. J., KUEKES, P., AND SNIDER, G. 1996. The teramac custom

computer: Extending the limits with defect tolerance. In Proceedings of the IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems. 2–10.
DALAL, Y. K. AND METCALFE, R. M. 1978. Reverse path forwarding of broadcast packets. Commu.

ACM 21, 12, 1040–1048.
DEHON, A. 2003. Array-based architecture for PET-based nanoscale electronics. IEEE Trans.

Nanotech. 2, 1, 23–32.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

32 • J. Patwardhan et al.

DWYER, C., GUTHOLD, M., FALVO, M., WASHBURN, S., SUPERFINE, R., AND ERIE, D. 2002. DNA func-
tionalized single-walled carbon nanotubes. Nanotech. 13, 601–604.

DWYER, C., CHEUNG, M., AND SORIN, D. J. 2004. Semi-empirical SPICE models for carbon nanotube
FET logic. In Proceedings of the IEEE Conference on Nanotech., 386–388.

DWYER, C., POULTON, J., TAYLOR, R. M., AND VICCI, L. 2004. DNA self-assembled parallel computer
architectures. Nanotech. 15, 1688–1694.

DWYER, C., PARK, S. H., LABEAN, T. H., AND LEBECK, A. R. 2005. The design and fabrication of a
fully addressable 8-tile DNA lattice. Annual Conference on Foundations of Nanoscience: Self-

Assembled Architectures and Devices, 187–191.
ESPASA, R., ARDANAZ, F., EMER, J., FELIX, S., GAGO, J., GRAMUNT, R., HERNANDEZ, I., JUAN, T., LOWNEY,

G., MATTINA, M., AND SEZNEC, A. 2002. Tarantula: A vector extension to the alpha architecture.
In Proceedings of the 29th Annual International Symposium on Computer Architecture, 281–
292.

GOLDSTEIN, S. C. AND BUDIU, M. 2001. NanoFabrics: Spatial computing using molecular electronics.
In Proceedings of the 28th Annual International Symposium on Computer Architecture (ISCA),
178–191.

HEATH, J. R., KUEKES, P. J., SNIDER, G. S., AND WILLIAMS, R. S. 1998. A Defect-tolerant computer
architecture: Opportunities for nanotechnology. Science 280, 1716–1721.

HOFSTEE, H. P. 2005. Power efficient processor architecture and the cell processor. In Proceedings

of the 11th International Symposium on High-Performance Computer Architecture (HPCA), 258–
262.

HUANG, Y., DUAN, X., CUI, Y., LAUHON, L. J., KIM, K.-H., AND LIEBER, C. M. 2001. Logic gates and
computation from assembled nanowire building blocks. Science 294, 1313–1317.

INTANAGONWIWAT, C., GOVINDAN, R., AND ESTRIN, D. 2000. Directed diffusion: A scalable and robust
communication paradigm for sensor networks. In Proceedings of the 6th Annual International

Conference on Mobile Computing and Networking, 56–67.
ITRS. 2005. International Technology Roadmap for Semiconductors.
KNUTH, D. E. 1973. The Art of Computer Programming. Addison-Wesley.
LINES. A. 2004. Asynchronous interconnect for synchronous SoC design. IEEE Micro 24, 1, 32–41.
LYONS, R. E. AND VANDERKULK, W. 1962. The use of triple-modular redundancy to improve computer

reliability. IBM J., 200–209.
MAI, K., PAASKE, T., JAYASENA, N., HO, R., DALLY, W. J., AND HOROWITZ, M. 2000. Smart memories: A

modular reconfigurable architecture. In Proceedings of the 27th Annual International Symposium

on Computer Architecture, 161–171.
NEEDHAM, R. AND WHEELER, D. 1997. TEA extensions. Tech. Rep., University of Cambridge,

Cambridge, UK.
PARK, S. H., PISTOL, C., AHN, S. J., REIF, J. H., LEBECK, A. R., DWYER, C., AND LABEAN, T. H. 2006.

Finite-size, fully-addressable DNA tile lattices formed by hierarchical assembly procedures.
Angewandte Chemie 45, 735–739.

Patwardhan, J. P., Dwyer, C., Lebeck, A. R., and Sorin, D. J. 2004. Circuit and system archi-
tecture for DNA-guided self-assembly of nanoelectronics. Annual Conference on Foundations of

Nanoscience: Self-Assembled Architectures and Devices, 344–358.
PATWARDHAN, J. P., DWYER, C., LEBECK, A. R., AND SORIN, D. J. 2005. Evaluating the connectivity

of self-assembled networks of nanoscale processing elements. In Proceedings of the IEEE Inter-

national Workshop on Design and Test of Defect-Tolerant Nanoscale Architectures (NANOARCH

’05), 2.1–2.8.
PATWARDHAN, J. P., DWYER, C., AND LEBECK, A. R. 2006. Self-assembled networks: Control vs. com-

plexity. In Proceedings of the First International Conference on Nano-Networks (NANONETS).
PATWARDHAN, J. P., DWYER, C., AND LEBECK, A. R. 2006. Design and evaluation of fail-stop self-

assembled nanoscale processing elements. IEEE International Workshop on Design and Test of

Defect-Tolerant Nanoscale Architectures (NANOARCH ’06).
PATWARDHAN, J. P., DWYER, C., LEBECK, A. R., AND SORIN, D. J. 2006. NANA: A nano-scale active

network architecture. J. Emerg. Technol. Comput. Syst. 2, 1, 1–31.
PATWARDHAN, J. P., JOHRI, V., DWYER, C., AND LEBECK, A. R. 2006. A defect tolerant self-organizing

nanoscale SIMD architecture. In Proceedings of the 12th International Conference on Architec-

tural Support for Programming Languages and Operating Systems. 241–251.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

Self-Organizing Defect Tolerant SIMD Architecture • 33

ROBINSON, B. H. AND SEEMAN, N. C. 1987. The design of a biochip: A self-assembling molecular-
scale memory device. Protein Engin. 4, 1, 295–300.

ROSENBLATT, S., LIN, H., SAZONOVA, V. T. S., AND MCEUEN, P. L. 2005. Mixing at 50GHz using a
single-walled carbon nanotube transistor. Appl. Physics Lett. 87, 153111.

RUNNELS, L. W. AND SCARLATA, S. F. 1995. Theory and application of fluorescence homotransfer to
melittin oligomerization. Biophysics Journal 69, 4, 1569–1583.

SCHROEDER, M. D., BIRRELL, A. D., BURROWS, M., MURRAY, H., NEEDHAM, R. M., RODEHEFFER, T. L.,
SATTERTHWAITE, E. H., AND THACKER, C. P. 1991. Autonet: A high-speed, self-configuring local
area network using point to point links. IEEE J. Selec. Areas Comm. 9.

SKINNER, K., CARROL, R. L., DWYER, C., AND WASHBURN, S. 2005. Nanowire transistors, gate elec-
trodes, and their directed self-assembly. In Proceedings of the 72nd Southeastern Section of the

American Physical Society (SESAPS).
TUCKER, L. AND ROBERTSON, G. 1988. Architecture and applications of the connection machine.

IEEE Comput. 21, 26–38.
UJVAL, K., DALLY, W. J., RIXNER, S., OWENS, J. D., AND KHAILANY, B. 2002. The imagine stream

processor. In Proceedings of the IEEE International Conference on Computer Design, 282–288.
VON NEUMANN, J., SHANNON, C. E., AND MCCARTHY, J. 1956. Probabilistic logics and the synthesis

of reliable organisms from unreliable components. Automata Studies, 43–98.
WHEELER, D. AND NEEDHAM, R. 1994. TEA: A tiny encryption algorithm. Fast Software Encryption:

2nd International Workshop.
WINFREE, E., LIU, F., WENZLER, L. A., AND SEEMAN, N. C. 1998. Design and self-assembly of two-

dimensional DNA crystals. Nature 394, 539–544.
YAN, H., PARK, S. H., FINKELSTEIN, G., REIF, J. H., AND LABEAN, T. H. 2003. DNA templated self-

assembly of protein arrays and highly conductive nanowires. Science 301, 1882–1884.

Received November 2006; revised January 2007; accepted February 2007 by Sally McKee.

ACM Journal on Emerging Technologies in Computing Systems, Vol. 3, No. 2, Article 10, Publication date: July 2007.

