
Southern Illinois University Carbondale
OpenSIUC

Publications Department of Computer Science

3-2009

A Self-Organizing Map and its Modeling for
Discovering Malignant Network Traffic
Chet Langin
Southern Illinois University Carbondale

Hongbo Zhou
Southern Illinois University Carbondale

Shahram Rahimi
Southern Illinois University Carbondale, rahimi@cs.siu.edu

Bidyut Gupta
Southern Illinois University Carbondale

Mehdi Zargham
Southern Illinois University Carbondale

See next page for additional authors

Follow this and additional works at: http://opensiuc.lib.siu.edu/cs_pubs
Published in Langin, C., Zhou, H., Rahimi, S., Zargham, M., & Gupta, B. (2009). A self-organizing
map and its modeling for discovering malignant network traffic. IEEE Symposium on
Computational Intelligence in Cyber Security, 2009. CICS '09, 122-129. doi: 10.1109/
CICYBS.2009.4925099 ©2009 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional purposes or for creating
new collective works for resale or redistribution to servers or lists, or to reuse any copyrighted
component of this work in other works must be obtained from the IEEE. This material is presented
to ensure timely dissemination of scholarly and technical work. Copyright and all rights therein are
retained by authors or by other copyright holders. All persons copying this information are expected
to adhere to the terms and constraints invoked by each author's copyright. In most cases, these works
may not be reposted without the explicit permission of the copyright holder.

This Article is brought to you for free and open access by the Department of Computer Science at OpenSIUC. It has been accepted for inclusion in
Publications by an authorized administrator of OpenSIUC. For more information, please contact opensiuc@lib.siu.edu.

Recommended Citation
Langin, Chet, Zhou, Hongbo, Rahimi, Shahram, Gupta, Bidyut, Zargham, Mehdi and Sayeh, Mohammad R. "A Self-Organizing Map
and its Modeling for Discovering Malignant Network Traffic." (Mar 2009).

http://opensiuc.lib.siu.edu?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
http://opensiuc.lib.siu.edu/cs_pubs?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:opensiuc@lib.siu.edu

Authors
Chet Langin, Hongbo Zhou, Shahram Rahimi, Bidyut Gupta, Mehdi Zargham, and Mohammad R. Sayeh

This article is available at OpenSIUC: http://opensiuc.lib.siu.edu/cs_pubs/12

http://opensiuc.lib.siu.edu/cs_pubs/12?utm_source=opensiuc.lib.siu.edu%2Fcs_pubs%2F12&utm_medium=PDF&utm_campaign=PDFCoverPages

A Self-Organizing Map and its Modeling
for Discovering Malignant Network Traffic

Chet Langin, Hongbo Zhou, Shahram Rahimi,
Bidyut Gupta, and Mehdi Zargham

Dept. of Computer Science
Southern Illinois University
Carbondale, Illinois USA

Mohammad R. Sayeh
Dept. of Electrical and Computer Engineering

Southern Illinois University
Carbondale, Illinois USA

Abstract—Model-based intrusion detection and knowledge dis-
covery are combined to cluster and classify P2P botnet traffic
and other malignant network activity by using a Self-Organizing
Map (SOM) self-trained on denied Internet firewall log entries.
The SOM analyzed new firewall log entries in a case study
to classify similar network activity, and discovered previously
unknown local P2P bot traffic and other security issues.

I. INTRODUCTION

Armies of infected computers in homes, schools, and
workplaces are being used in warfare and criminal activities
unbeknownst to their owners. One such army, for example, was
used in a coordinated Denial of Service (DoS) attack in cyber
warfare with the strength to disable the network of Estonia
in 2007[1], [2]. These armies are also widely used to mass
produce spam e-mail in fraudulent schemes to defraud their
victims.

These armies are called botnets with each infected computer
called a bot (short for robot.) Bots take their orders from
bot masters via command and control (C&C) centers using
various protocols, such as Internet Relay Chat (IRC) and Peer-
to-Peer (P2P). Estimates of the numbers and sizes of botnets
vary, but one study, for example[3], discovered 3,290 unique
IRC botnets with 700,700 distinct IP addresses. P2P botnets
are more problematic because they encrypt their traffic, and
their distributed system makes it difficult to trace and find
the C&C. Botnets are particularly insidious because they can
accomplish whatever code their malicious master is capable
and imaginative enough to deliver to them. It is clear that
botnets have become the most serious security threat on the
Internet[4].

P2P botnets are a recent phenomenon. Cooke, et al, [5]
mentioned them in 2005 under the heading Botnets of Tomor-
row. Grizzard, et al,[6] presented a case study in 2007 of a
P2P botnet. Their work is good for historical and descriptive
information. Dagon, et al,[7] presented a taxonomy of botnet
structures in 2008 which is a good resource for further study
in this area.

Cyber defense needs new Computational Intelligence (CI)
techniques because traditional methods of intrusion detection
are being foiled by P2P botnets. Denning[8] provided the
seminal intrusion detection system (IDS) model in 1986, which
led to the labeling of two main types of intrusion detection,

apparently first mentioned together as such by Kumar in
1994[9], and referred together by many papers since then:
misuse and anomaly detection. Misuse detection uses rules
written by security experts to detect known characteristics of
malicious network traffic by typically looking at protocols,
flags, ports, strings in packets and other available network
information. Anomaly detection involves examining normal
use and then reporting what is abnormal.

Misuse detection is insufficient for P2P botnets because
it requires advance knowledge of specific characteristics of
malicious software in order to create rules that look for traffic
containing these characteristics. These rules were helpful when
infected computers used Internet Relay Chat (IRC) for com-
munications. However, the use of encrypted Peer-to-Peer (P2P)
networks for communications has thwarted misuse detection
because of the encrypted packets and also because analysis of
distributed P2P communications needs to be more than packet
analysis between two IP addresses at a time.

Anomaly detection is insufficient for P2P botnets because
it requires training on a pure network, but there is no way
to guarantee that a live network is pure at any given time,
so anomaly detection will classify existing malicious traffic
as being normal. Also, much of the P2P malicious network
traffic cannot be distinguished from normal network traffic. A
constantly changing network such as at a university generates
more anomalies than can be investigated, so many of which
are false positives that they can jeopardize the integrity of
network security staff if too many of them are taken seriously.

See Lazarevic, et al,[10] for an extensive survey of intrusion
detection in general as of 2005. However, they do not mention
bots or botnets. The 2008 doctoral dissertation of Zanero[11]
provides an excellent discussion of Self-Organizing Maps
(SOM) and other unsupervised learning algorithms for intru-
sion detection. However, it does not mention bots or botnets.

This paper proposes using model-based intrusion detection
combined with Soft Computing (SC) knowledge discovery.
Model-based intrusion detection is a third method (in addition
to misuse and anomaly detection) which has been mentioned
less often in the literature. Previous models have used tran-
sition analysis to look for intrusions. Knowledge discovery
by SC should become a new method of intrusion detection
because it can look for currently unknown characteristics of

978-1-4244-2769-7/09/$25.00 ©2009 IEEE

TABLE I
SOM TRENDS IN INTRUSION DETECTION

Consistently Used Solid Trend Tried Recently

Anomaly detection Hierarchical maps Labeling

Network data Temporal methods

Hexagonal maps Dynamic subset selection

U-Matrix Growing maps

Hybrid/SC

P2P botnets and other types of malicious network traffic.
Soft Computing (SC) is an appropriate form of Computa-

tional Intelligence (CI) for knowledge discovery of malicious
traffic because the data is voluminous and incomplete, and
SC has tolerance for imprecision and uncertainty, employing
methods of reasoning that are approximate rather than exact.
SC was formalized as a discipline by Zadeh with the concept
and formation of the Berkeley Initiative in Soft Computing
(BISC) beginning in 1990[12].

This paper reports that Self-Organizing Maps (SOM), a
type of SC, clustered network traffic of feral P2P botnets,
then successfully classified new P2P botnet traffic, discovering
previously unknown bot infected computers. SOM is a type of
Artificial Neural Networks (ANN) described by McCullough
in 1943[13]. Over 4,000 scientific papers have been written on
SOM, which is a mature method of clustering, visualization,
and producing abstractions. Examples of SOM use include
preprocessing of optic patterns, acoustic preprocessing, pro-
cess and machine monitoring, diagnosis of speech voicing,
transcription of continuous speech, texture analysis, contextual
maps, organization of large document files, robot-arm control,
telecommunications, and estimating. This paper provides the
SOM parameters used, but please see [14] for how these
parameters are applied in the SOM, and for further information
on uses of SOM.

Next, in Section II, is related work. Then, Section III
describes the model. Section IV relates the methodology in
using this model. Section V gives a case study, and Section
VI is the conclusion.

II. RELATED WORK

Much of SOM research has been conducted on standard data
and these papers have been grouped together in this report. The
remainder of this section is grouped into four parts: 1) SOM
which used independent data; 2) SOM which used standard-
ized data; 3) botnets; and 4) model-based intrusion detection.
Table I summarizes the main SOM methods mentioned in the
more recent reports below.

A. SOM Research with Independent Data

Fox,et al,[16] proposed using SOM for anomaly detection
in 1990. They trained a prototype SOM with model parameter
data consisting of CPU utilization, paging activity, mailer
activity, disk accesses, memory utilization, average session
time, number of users, absentee jobs, reads of help files, failed

logins, and multiple logins. Then they tested the SOM with a
simulated virus attack, and it worked as expected.

Another prototype anomaly detection SOM was proposed
in 1998 by Hoglund and Hatonen[17]. They used a hexagonal
map with the nodes darkened to indicate the distances between
them, a method called a U-matrix, making it easier to visualize
user behavior.

Girardin and Brodbeck[18] used SOM for visualization of
firewall logs in 1998. They used a rectangular map and divided
each node into four parts which were color and pattern coded
to depict characteristics of each node. They also displayed a
map which showed the dominant characteristic of each cell.
He compared SOM visulazations with parallel coordinates and
spring layouts.

Rhodes, et al,[19] used multiple two-dimensional SOMs for
anomaly detection of tcpdump data in 2000. The network data
was collected locally and successfully tested with two different
exploits the authors perpetrated against their own server.

Copeland and Garcia[20] used SOM in 2001 to break the
64 possible values for the TCP flag field into four groups as
a part of a larger Soft Computing (SC) intrusion detection
system. The four groups were SYNs, SYN/ACKs, ACKs, and
all other flag combinations.

Lee[21] tested a SOM 2001 and reported that the visual-
ization was attractive, but that the clustering was poor, and
that the presentation of novel inputs after training produces
unpredictable results.

Techniques including Hidden Markov Modeling (HMM)
and a hexagonal SOM were used by Cho in 2002[22] on
audit data produced by Sun’s Basic Security Model (BSM).
The SOM was used to preprocess and reduce the data size for
the HMM. Cho also used the SOM for visualization with the
darkness indicating distances between the nodes. Fuzzy Logic
(FL) fused the HMM results in this SC setup.

Hoglund, et al,[23] used SOM for host-based anomaly de-
tection in 2002. They noted that the anomalies are interesting
for the system administrator, but did not demonstrate that the
anomalies produced conclusive results of abuse or intrusions.

Lichodzijewski, et al,[24] introduced a two-level hierar-
chical SOM for host-based intrusion detection using session
information in 2002. The first level of the hierarchy had
three maps with each one summarizing one of these features:
location, user, and connection type. The second level of the
hierarchy combines the results from the first level. They
represented time in the data either explicitly or with a moving
window. They tested this SOM with a data set with patterns
that exhibited potentially suspicious behavior. They concluded
that the moving window approach was better than the explicit
method at detecting the anomalies.

Ramadas, et al,[25] used SOM for network anomaly de-
tection in 2003 with a vector consisting of these six fields for
DNS and HTTP traffic: interactivity, average size of questions,
average size of answers, question-answer idle time, answer-
question idle time, and duration. The authors generated a
BIND exploit which was successfully detected as an anomaly
by the SOM. They generated anomalous HTTP traffic which

was also detected by the SOM.
Tauriainen[26] classified P2P software with SOM in 2005.

The vector included the number of packets sent, the frequency
of the transmissions, and the total amount of data transmitted.

A hexagonal SOM was used by Vokoros, et al,[27] in 2006
for user anomaly detection. A six-field vector was used with
these fields: user activity times, user login hosts, user foreign
hosts, command set, CPU usage, and memory usage. The
system was simulated on a server with an average of 32 users,
and a feature map was created, but details were not given on
how intrusions were tested.

B. SOM Research with Standardized Data

A standardized data set for intrusion detection was devel-
oped in 1998 by the United States Department of Defense
Advanced Research Project Agency (DARPA) consisting of
approximately 5 million connections of training data and 2
million connections of test data[28]. The KDD-99 (apparently
for 1999) dataset is based on the 1998 DARPA initiative[29].
Numerous papers have reported research on this data, and the
ones related to SOM are mentioned below.

Lichodzijewski, et al,[28] tested the data with an incremen-
tal hierarchical SOM in 2002. They used a six-field vector
labeled as being basic TCP information: duration, protocol,
service, flag, destination bytes, and source bytes. The SOM
had two layers each of two dimensions: The first layer had a
map for each of the six basic TCP features; and, the second
layer combined the outputs from the first layer. Time was
handled with a fixed temporal horizon. Shading was used to
indicate distances between nodes in the second-layer map.
They found that attacks were synonymous with Nodes 32 and
33 being the Best Matching Units.

Kayacik, et al,[29] in 2003 used a six-field vector consisting
of protocol, service, status, duration, destination bytes, and
source bytes. A three-layer hexadecimal SOM was used. Layer
1 had one map for each of the nine features. These nodes
were labeled and combined in Layer 2. Layer 3 contained
only nodes which won for both attack and normal behaviors.
The conclusion was that this system provided competitive
performance.

Depren, et al,[30] combined a SOM for anomaly detection
with a decision tree for misuse detection for a hybrid system.
A Decision Support System (DSS) was used to interpret the
anomaly and misuse detection results. The SOM used these
six fields in the vector: Duration, protocol, service, connection
status, bytes sent to destination, and bytes sent to host. They
concluded that the hybrid system was better than the individual
misuse and anomaly detection systems.

Sarasamma, et al,[31] used a three-layer SOM with a neigh-
berhood parameter of zero (winner take all). It was a flexible
system where the types of vectors and numbers of nodes were
tunable. Layer 1 detected certain kinds of intrusions. If there
were no positive matches, then the data was sent to Layer 2,
which detected other types of intrusions, and so on to Layer
3. The detection rate was high for some types of intrusions,
but there were also some false positives.

Wetmore, et al,[32] used Dynamic Subset Selection (DSS)
in a SOM to reduce the training time. They reported a
significant speedup without loss of accuray.

Kayacik and Zincir-Heywood[33] used SOM to create a
hexagonal U-matrix attack map for forensic analysis. They
proposed a simple method for labeling nodes which takes into
account the top five Best Matching Units (BMUs) for each
feature and the number of times each node is a BMU.

Yeloglu, et al,[34] used a growing recurrent hierarchical
SOM on the data in 2007. Training of this model starts with
only one neuron and new neurons are added until the desired
accuracy is reached. Neurons can also be pruned. The recurrent
aspect of this SOM is to represent temporal qualities of the
data. The SOM had three layers. The first layer had a map for
each of six basic TCP features. The second layer combined
these features, and the third layer was built from second-layer
nodes which were BMUs for multiple classes of vectors. They
concluded that this SOM was competitive with other methods.

C. Bots and Botnets

Wang, et al,[15] proposed a hybrid P2P botnet in 2007 with
two classes of bots: client and servent. A client bot is one
which is not accessible from the Internet, typically because it
has a dynamic IP address, a private IP address, or because it is
behind a firewall. The label servent is a P2P term derived from
the words server and client. A servent bot is both a server and
a client and has a static IP addresss which is accessible from
the Internet.

Wang, et al, proposed a honeypot as a way to detect P2P
botnets. However, honeypots are not feasible at all organiza-
tions because of issues concerning risk, ethics, legalities, and
resources. They also proposed attempting to detect outgoing
contacts to the botnet sensor. However, these outgoing contacts
can be accomplished in any number of insipid ways which are
indistinguishable from normal Internet traffic.

D. Model-Based Intrusion Detection

Only a few papers have been written on model-based
intrusion detection.

Kemmerer [35] proposed a network intrusion detection
model in 1997 which he called Network State Transition Anal-
ysis Tool (NSTAT) and which was based on earlier host-based
models. He noted that IDS did not take into consideration two
or more users working together to execute a penetration!

Cho and Park[36] proposed a Hidden Markov Model
(HMM) model in 2003 to improve intrusion detection per-
formance by only considering the privilege transition flows
based on the domain knowledge of attacks.

More recently, in 2007, Zhou, et al,[37] noted the massive
number of simple alerts of low-level security-related events
for signature-based (rule-based) IDS, and proposed a formal
model utilizing the concept of capability to implement an
alert correlator for complex multistage intrusions, expanding
an earlier requires/provides model.

None of these previously published network models are
appropriate for P2P botnets because there are no observable

state transitions, privilege transitions, or alert correlations to
consider.

III. MODEL

A full explanation of the model is given in this section, but
the model is similar to the P2P botnet description by Wang,
et al,[15], mentioned in the previous section, with these three
distinctions: the model adds denied inbound Internet traffic
as a method to discover malignant network traffic; descriptive
details are left out which pertain to a P2P botnet but which are
unnecessary to understanding the model; and, what is referred
to as a sensor is labeled differently, as described below.

Two variations of the model are explained in this section:
a specfic version of the model for P2P botnets, and a general
version of the model that also includes other network security
problems. The specific version of the model is described first,
followed immediately by the general version of the model.

A. P2P Botnet Version of the Model

The P2P botnet version of the model is that a computer
on the local network, behind a border firewall, gets infected
with a P2P bot, notifies the bot master’s command and control
(C&C), and receives commands on what to do next. The
computer can get infected many ways, including by the user
responding to spam e-mail, clicking on a malicious web site,
and downloading a trojan horse in the guise of music, a movie,
or a program, such as a game.

Fig. 1 illustrates the local computer contacting the C&C,
which can be done any number of insipid ways such as
accessing an unpublicized web page on a benign-appearing
web site provided by the bot master for this purpose. Step 1
shows this initial contact going through the firewall without
logging because it appears to be normal Internet traffic. Even
if it were logged, it could not be distinguished from millions
of other packets of routine traffic. The recipient of Step
1 forwards the IP address of the newly infected computer
through the Internet cloud in Step 2 to the C&C, further
disguising the path to the bot master. In Step 3, the C&C
provides reports to the bot master. This initial contact is labeled
as occuring at time = t.

Wang, et al,[15] refer to the recipient in Step 1 as a sensor,
however, it does more in the P2P botnet version of the model
than sense—it is the designated receiver of the initial contact
information of a newly infected computer. The general version
of the model, however, does use the term sensor as described
in Section III.B.

The local computer is not a honeypot set up to entrap
the bot master, but, rather, is a computer which is infected
unbeknownst to anyone associated with the local network,
and which makes the initial contact to the bot master’s C&C
in secret. An IDS does not detect this because there is
no information in the network traffic to match given rules.
Anomaly detection does not catch this because it appears to
be normal Internet traffic.

The situation remains dormant until the bot master decides
to use the local computer, as illustrated in Fig. 2. The bot

master’s response is labeled as occuring at time = t + y in
order to emphasize that this happens when the bot master is
ready, and that y could be days later. The encrypted command
from the bot master could be, for example, to download and
execute certain programming code. This code could be to send
spam, DoS an IP address or network, or to do anything else
which the bot master is imaginative and capable enough to
program.

Step 1 is when the bot master communicates with his
or her C&C, which could be from 1 to x computers for
redundancy and coverage. Step 2 shows the C&C sending
orders through the P2P network. This P2P network can include
other computers infected with bots if these computers are not
protected with properly configured firewalls.

Step 3 illustrates the P2P botnet attempting to contact the
local computer. Experience shows that these contacts can come
from over 40,000 unique source IP addresses on the Internet.
However, since the local firewall is properly configured, and
these sessions originate outside of the local network, this traffic
is denied and logged. Step 4 shows the logs going to a log
server for analysis. The local computer may or may not even
be connected to the network at this time.

Without the P2P botnet version of the model, virtually all
of the incoming denied Internet traffic appears to be noisy and
random, especially if the local network has many thousands of
computers, all behind a firewall, and none of which are known
to be bot infected. However, the model warns that some of
the denied Internet traffic may point to a previously unknown
locally infected computer, even though the P2P botnet traffic
does not even reach this computer. The general version of the
model is described next.

B. General Version of the Model

The general version of the model can be used to discover
other types of network security problems, in addition to P2P
botnets, as illustrated in Fig. 3. Part a illustrates a malignant
IP address on the local network giving off a putrid network
scent to the the Internet. This could be something as simple as
transmitting a software banner indicating a vulnerable version
of a program, or more complex such as backlash to a spoofed
IP address that is not even assigned to a computer.

The putrid scent is picked up by a sensor. Compare this to
the recipient in the P2P botnet version of the model. In the first
case, a newly infected bot is notifying a botnet’s designated
receiver; in the present case, a sensor notices a malignant IP
address, which may not even be assigned to a computer.

The outgoing putrid scent imitates normal network traffic
to anomaly detectors and does not fit any misuse detection
rules, so it either is not logged, or else the log entry cannot
be distiguished from normal firewall logs.

Information about the putrid scent could make its way into
a P2P botnet as a computer ripe for attack, it might be posted
on a cracker’s web site as a good target, or it might be spread
and labeled by other means.

Fig 3.b illustrates probes and/or attacks directed back to-
wards the malignant IP address. This network traffic is blocked

Bot
Master

Log
Server

Newly
Infected

1 3
2Fi

re
w

al
l

C&C

Time = t

In
te

rn
et

 C
lo

udRecipient

Fig. 1. This figure illustrates a newly infected computer contacting the botnet in the P2P botnet version of the model. See Section III.A for a detailed
description.

Infected Bot
Master

Log
Server

Fi
re

w
al

l

C&C

C&C

C&C

1

2

1

P2P

P2P

P2P

P2P

40,000+

Logs

2

x

Time = t + y

12
3

4

Fig. 2. This figure illustrates the bot master issuing a command in the P2P botnet version of the model. See Section III.A for a detailed description.

and logged because the sessions originated outside of the local
network. Once again, the local IP address with a security
problem can be discovered by network traffic which is not
even on the local network. In this case, there might not even
be a computer assigned to the local IP address. The next
section provides a methodology on how to take advantage of
this model.

IV. METHODOLOGY

The methodology for the P2P botnet version of the model is
the same as for the general version of the model: The goal for
both is to cluster and classify the firewall log data in order to
discover new unknown bots and other network security issues.
The model provides privacy by using non-local network data
and by abstracting this data in a SOM. The clustering steps
will be shown first, followed immediately by the classifying
steps. Here are the clustering steps for both versions of the
model.

1) Begin with the firewall log entries in a text file, such as
in a file created from syslog, for a 24-hour time period.

2) Create an entries table in a database, such as in MySQL,
with these columns to store and manipulate the data:
keyID, date, time, protocol, source ip, source port,
dest ip, and dest port.

Log
Server

Log
Server

Fi
re

w
al

l

In
te

rn
et

 C
lo

ud

Fi
re

w
al

l

In
te

rn
et

 C
lo

ud

a)

b)

1

2

Putrid

Putrid

40,000+
Logs

Time = t

Time = t + y
Malicious

Malicious

Malicious

Sensor

Fig. 3. This figure illustrates the general version of the Model. See Section
III.B for detailed information.

a) The keyID is a unique number to identify each
entry to assist in administering the database.

b) The date is the date of each firewall log entry.
c) The time is the time of each firewall log entry.
d) The protocol is the protocol used for each entry of

denied network traffic.
e) The source ip is the external IP address attempting

to access the local network for each entry.
f) The source port is the external source port for each

entry.
g) The dest ip is the destination IP address on the

local network for each entry.
h) The dest port is the destination port on the local

network for each entry.

3) Write and run a script to read and parse the external
denied firewall log entries from the text file and insert
them into the database.

4) Create a matrix table in the database with these
columns: keyID, dest ip, total count, source count,
port count, low port, high port, icmp count, tcp count,
and udp count.

a) The keyID is a unique identifier for each table row
to assist in administering the database.

b) The dest ip is the destination IP on the local
network to which the remaining data in this table
row applies.

c) The total count is the total number of firewall log
entries for the destination IP address in this table
row.

d) The source count is the total number of unique
external source IP addresses in the log entries for
the destination IP address in this table row.

e) The port count is the total number of unique des-
tination ports in the log entries for the destination
IP address in this table row.

f) The low port is the lowest destination port in the
entries for the destination IP address in this table
row.

g) The high port is the highest destination port in the
entries for the destination IP address in this table
row.

h) The icmp count is the total number of ICMP
protocol log entries for the destination IP address
in this table row.

i) The tcp count is the total number of TCP protocol
log entries for the destination IP address in this
table row.

j) The UDP count is the total number of UDP pro-
tocol log entries for the destination IP address in
this table row.

5) Preprocess the data by writing database queries to sum-
marize information for each destination IP address from
the entries table to the matrix table.

6) Write a query to save the data from the ma-
trix table to a matrix text file, one table row per

line, with each line being a vector, using these
fields: total count, source count, port count, low port,
high port, icmp count, tcp count, and udp count. This
matrix text file is the training data.

7) Note which vectors in the matrix text file represent IP
addresses with computers infected with bots. (However,
the SOM trains itself without this information.)

8) Cluster the vectors in the the matrix text file with an
algorithm such as SOM.

9) Note which cluster or clusters contain the vectors for
the bots. Label these the bot clusters.

The bot clusters from above can now be used in classifying
new firewall log entries in order to discover new bots and
other network security issues. Write an automatated script to
run daily in order to determine which local IP addresses match
a bot cluster as determined above. However, not every destina-
tion IP address needs to be fully processed for classification—
only the ones with a threshold of log entries. Therefore, the
previous steps may be significantly modified to process much
of the data directly from the text file, bypassing some of the
database queries. Here are the classifying steps.

1) Begin with the firewall log entries in a text file, such as
in a file created from syslog, for a 24-hour time period.

2) Scan the log file and obtain the total count values of
external denied entries for each IP address on the local
network. (The local IP addresses will be destinations
in the log entries.) Since a match with a bot cluster
will require a high total count value, keep track of the
IP addresses whose total count values exceed a high
threshold.

3) Rescan the log file and save the entries of IP addresses
which meet the threshold value determined in the pre-
vious step into a new working file.

4) Scan the working file for each appropriate IP address to
determine the summary information and save this into a
vector text file.

5) Find the Best Matching Unit (BMU) for each vector in
the vector text file. If the BMU is a bot cluster, then
label the IP address for this vector as being a suspect.

6) Rescan the working file and load the entries for each
suspect into a database for further query analysis to
obtain detailed information such as port frequencies and
times.

7) Manually investigate further and follow up as appropri-
ate.

Although the new data is matched to bot clusters, other
types of network security issues may be discovered using this
method, as well. Since the training data is specific to the
local network environment and the exact firewall configuration
producing the logs, the SOM is not transferable to other
locations.

V. CASE STUDY

The above methodology was tested on data from the South-
ern Illinois University Class B network when it contained two

known P2P bots, later labeled Bot1 and Bot2. The testing
involved two stages: the clustering stage when the SOM trains
itself; and, the classifying stage when the SOM looks for new
bots. These stages are covered in the next two subsections.
A visual map was not pertinent to the results and so none is
provided.

A. The SOM Trains Itself (Clustering Stage)

Over 20 million firewall log entries were in the test data,
the bulk of which were logs of incoming traffic which was
denied by the border firewall. Approximately 60,000 of the
local IP addresses had entries. Since the data vector for each IP
address had eight fields, this gave an input matrix of virtually
8 x 60,000.

A one-dimensional 1,000-node ANN was used for the SOM
as a foundation for the research and this provided positive
results as explained below. Each node had a randomly created
eight-field vector to correspond to the vectors representing
the firewall log file entries. The node vectors were sorted
by total count in order to speed up the training with Node
0 having the lowest value and Node 999 having the highest
value. One thousand nodes gave an average of approximately
60 IP addresses per node, thus each node represented a cluster
of local IP addresses.

Due to the long anticipated self-training time of the SOM,
the code was able to save state and stop after each epoch.
The code also logged the average and greatest changes of the
nodes for each epoch in order to provide ongoing evidence
that the nodes were converging on the data.

Euclidean distance was used to measure multidimensional
distances and the SOM began with a neighborhood of all
1,000 nodes, which was systematically reduced down to a
neighborhood distance of 0. The initial learning rate factor
was set to approximately 1/60, 000, and this was gradually
changed to approximately 1/60. The training period was 180
Epochs, an unusually small amount for SOM training, but
monitoring indicated that the data was converging in an ac-
ceptable manner. The vectors for the IP addresses representing
Bot1 and Bot2 both had Node 996 as the BMU, and none of
the other IP address vectors had Node 996 as the BMU. The
SOM had thus isolated the IP addresses of the bots from the
other IP addresses into one bot cluster. This isolation occurred
early in the training and was maintained to the end. Therefore,
Node 996 would be the only cluster used to discover suspects.

B. The SOM Analyzes New Data (Classifying Stage)

An automated daily script examined new firewall log entries
and determined suspects as described earlier: Vectors were
created for IP addresses with enough log entries to surpass
the threshold, and the Best Matching Unit (BMU) was found
for each. If Node 996 was the BMU then the IP address for
that vector was labeled as being a suspect.

The SOM produced 18 suspects in 37 alerts in 96 days. Not
all of the suspects were available to be investigated. However,
some further information was obtained on the other seven
suspects.

Suspect01 probed other computers in a manner indicating
a malware infection after being discovered by the SOM.
Suspect01 was found to have both P2P software and multiple
infections, but the exact types of P2P software and infections
were not available.

The users of Suspect02 and Suspect03 stated that they were
using non-malicious P2P software.

There was no evidence that the IP address for Suspect04
was assigned to any computer. One possible explanation of
this could be that the traffic was backlash from a spoofed IP
address.

Suspect10 was an appliance which was using outdated
firmware and had a web interface which was vulnerable to
a cross-site scripting attack.

Suspect13 was corroborated a couple of hours later by
another detection method indicating it was infected with a
P2P bot. The data from Suspect13, existing before it could
be disabled, was detected by both the SOM and the other
detection method again the next day.

Suspect17 was a DHCP IP address used at a station to assist
incoming students in finding and cleaning malware off of their
computers and in setting up Windows firewalls, automated
patching, and anti-virus software. No computer was logged
in as using this IP address when the pertinent log entries were
recorded by the firewall.

No other P2P bots of the same type were detected on the
network by other means on days in which the SOM ran
an analysis. The SOM discoveries do not fall clearly into
true positive and false positive categories, but it is clear by
observation that the model and the SOM are validated in
discovering feral bots and other network security issues.

VI. CONCLUSION

This paper provides a model describing how external denied
firewall log entries can be used with clustering and classifying
knowledge discovery tools to discover internal P2P bots and
other local security problems. As far as we know, the case
study reports the first times that a self-trained Soft Computing
(SC) Computational Intelligence has discovered previously
unknown feral malicious software.

The model and SOM in this report have two advantages:
1) the knowledge discovery of intrusions and other malignant
network problems that is not available by other methods;
and, 2) the privacy afforded by the use of non-local network
data and the abstraction of the data in the SOM. It has two
disadvantages: 1) the resources required to self-train the SOM
and interpret the results; and, 2) the trained SOM is not
transferable to other locations.

SOM is viable as an intrusion detection procedure and other
researchers have provided many excellent SOM variations as
reported in Section II. The difference between their work and
the work in this paper is the combination of using the model
and SOM on external denied firewall log entries.

Direct comparison of the different methods used by other
researchers on the DARPA/KDD-99 standard data is not feasi-
ble because too many variations in the research are involved.

McHugh[38] wrote a critical analysis of research involving
the DARPA dataset in 2000 saying that it was flawed in many
respects, but was the only large-scale attempt at an objective
evaluation. Zanero[11] was more straightforward in 2008,
saying, the 1999 dataset is hopelessly outdated, both because
the protocols, applications and operating systems used are not
representative any more of network usage; and also because
the attack types are not representative of the modern threat
scenario.

Cyber defense needs new Computational Intelligence (CI)
techniques because traditional methods are being thwarted by
P2P botnets. A hexagonal SOM has been trained on the same
data as in this paper, is being analyzed, and will be reported
for comparison in the future. This area of research should
also continue by testing other types and variations of CI on
the model. Table 1 provides suggestions for future directions
using SOM.

REFERENCES

[1] J. Davis, “Hackers take down the most wired country in europe,” Wired,
vol. 15, no. 9, September 2007.

[2] J. Robb, “When bots attack,” Wired, vol. 15, no. 9, September, 2007
2007.

[3] J. Zhuge, T. Holz, S. Y. Han, J. Guo, and W. Zou, “Characterizing
the irc-based botnet phenomenon,” 2007. [Online]. Available:
http://honeyblog.org/junkyard/reports/botnet-china-TR.pdf

[4] W. Lee, C. Wang, and D. Dagon, Botnet Detection: Countering
the Largest Security Threat, ser. Advances in Information Security.
Springer, 2008.

[5] E. Cooke, F. Jahanian, and D. McPherson, “The zombie roundup:
Understanding, detecting, and disrupting botnets,” 2005 2005, steps to
Reducing Unwanted Traffic on the Internet Workshop (SRUTI ’05).

[6] J. B. Grizzard, V. Sharma, C. Nunnery, and B. B. Kang, “Peer-to-peer
botnets: Overview and case study,” 2007 2007, uSENIX Workshop on
Hot Topics in Understanding Botnets (HotBots ’07).

[7] D. Dagon, G. Gu, and C. Lee, “A taxonomy of botnet structures,” in
Botnet Detection: Countering the Largest Security Threat, ser. Advances
in Information Security, W. Lee, C. Wang, and D. Dagon, Eds. Springer,
2008, pp. 143–164.

[8] D. E. Denning, “An intrusion-detection model,” IEEE Transactions on
Software Engineering, vol. 13, no. 2, pp. 118–131, 1986.

[9] S. Kumar and E. Spafford, “An application of pattern matching in
intrusion detection,” Purdue University, Tech. Rep., 1994.

[10] A. Lazarevic, V. Kumar, and J. Srivastava, “Intrusion detection: A
survey,” in Managing Cyber Threats, V. Kumar, J. Srivastava, and
A. Lazarevic, Eds. Springer, 2005, pp. 19–78.

[11] S. Zanero, “Unsupervised learning algorithms for intrusion detection,”
Ph.D. dissertation, Politecnico di Milano, 2008.

[12] L. A. Zadeh, “History; bisc during 90’s,” 1994.
[13] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent

in nervous activity,” Bulletin of Mathematical Biophysics, vol. 5, pp.
115–133, 1943.

[14] T. Kohonen, Self-Organizing Maps, 3rd ed., ser. Springer Series in
Information Sciences. Berlin Heidelberg New York: Springer-Verlag,
2001, vol. 30.

[15] P. Wang, S. Sparks, and C. C. Zou, “An advanced peer-to-peer botnet,”
2007 2007, uSENIX Workshop on Hot Topics in Understanding Botnets
(HotBots ’07).

[16] K. L. Fox, R. R. Henning, and J. H. Reed, “A neural network approach
towards intrusion detection,” in 13th National Computer Security Con-
ference, 1990.

[17] A. Hoglund and K. Hatonen, “Computer network user behavior visual-
ization using self-organizing maps,” in ICANN, 1998, pp. 899–904.

[18] L. Girardin and D. Brodbeck, “A visual approach for monitoring logs,”
in 12th Systems Administration Conference (LISA ’98), Boston, 1998.

[19] B. C. Rhodes, J. A. Mahaffey, and J. D. Cannady, “Multiple self-
organizing maps for intrusion detection,” 2000 2000.

[20] J. A. Copeland and R. C. Garcia, “Real-time anomaly detection using
soft computing techniques,” in IEEE SoutheastCon 2001, 2001.

[21] H. Lee, “Training a neural-network based intrusion detector to recognize
novel attacks,” IEEE Transactions on Systems, Man, and Cybernetics,
Part A, vol. 31, pp. 294–299, 2001.

[22] S.-B. Cho, “Incorporating soft computing techniques into a probabilistic
intrusion detection system,” IEEE Trans. Systems Man Cybernet, vol. 32,
no. 2, p. 154, 2002.

[23] A. Hoglund, K. Hatonen, and A. Sorvari, “A computer host based
user anomaly detection system using the self organizing map,” in
International Joint Conference on Neural Networks, IEEE IJCNN, vol. 5,
2002, pp. 411–416.

[24] P. Lichodzijewski, A. N. Zincir-Heywood, and M. Heywood, “Host-
based intrusion detection using self-organizing maps,” 2002.

[25] M. Ramadas, S. Ostermann, and B. Tjaden, “Detecting anomalous net-
work traffic with self-organizing maps,” in Recent Advances in Intrusion
Detection, 6th International Symposium, RAID 2003, ser. Lecture Notes
in Computer Science, G. Vigna, E. Jonsson, and C. Kruegel, Eds., vol.
2820. Pittsburgh, PA, USA: Springer-Verlag, 2003, pp. 36–54.

[26] A. Tauriainen, A Self-learning System for P2P Traffic Classification.
Helsinki: Helsinki University of Technology, 2005.

[27] L. Vokorokos, A. Balaz, and M. Chovanec, “Intrusion detection system
using self organizing map,” Acta Electrotechnica et Informatica, vol. 6,
no. 1, p. 6, 2006.

[28] P. Lichodzijewski, A. N. Zincir-Heywood, and M. Heywood, “Dynamic
intrusion detection using self-organizing maps,” 2002.

[29] G. Kayacik, A. N. Zincir-Heywood, and M. I. Heywood, “On the capa-
bility of an som based intrusion detection system,” in IEEE International
Joint Conference on Neural Networks,, 2003, pp. 1808–1813.

[30] O. Depren, M. Topallar, E. Anarim, and M. Ciliz, “An intelligent
intrusion detection system (ids) for anomaly and misuse detection in
computer networks,” Expert Systems with Applications, vol. 29, no. 4,
pp. 713–722, 2005.

[31] S. T. Sarasamma, Q. Zhu, and J. Huff, “Hierarchical kohonenen net for
anomaly detection in network security,” IEEE Transactions on Systems,
Man, and Cybernetics–Part B: Cybernetics, vol. 35, no. 2, pp. 302–312,
2005.

[32] L. Wetmore, A. N. Zincir-Heywood, and M. Heywood, “Training
the sofm efficiently: An example from intrusion detection,” in IEEE
Internation Joing Conference on Neural Networks, IJCNN 2005, 2005,
pp. 1575–1580.

[33] H. G. Kayacik and A. N. Zincir-Heywood, “Using self-organizing maps
to build and attack map for forensic analysis,” in ACM International
Conference on Privacy, Security, and Trust (PST 2006), 2006, pp. 285–
293.

[34] O. Yeloglu, A. N. Zincir-Heywood, and M. Heywood, “Growing recur-
rent self organizing map,” in IEEE International Conference on System,
Man and Cybernetics (SMC 2007), 2007.

[35] R. A. Kemmerer, “Nstat: A model-based real-time network intrusion
detection system,” University of California-Santa Barbara, Tech. Rep.,
November 1997.

[36] S.-B. Cho and H.-J. Park, “Efficient anomaly detection by modeling
privilege flows with hidden markov model,” Computers and Security,
vol. 22, no. 1, pp. 45–55, 2003.

[37] J. Zhou, M. Heckman, B. Reynolds, A. Carlson, and M. Bishop,
“Modeling network intrusion detection alerts for correlation,” ACM
Transactions on Information and System Security (TISSEC), vol. 10,
no. 1, 2007.

[38] J. McHugh, “Testing intrusion detection systems: A critique of the 1998
and 1999 darpa intrusion detection system evaluations as performed
by lincoln laboratory,” ACM Transactions on Information and System
Security, vol. 3, no. 4, pp. 262–294, 2000.

	Southern Illinois University Carbondale
	OpenSIUC
	3-2009

	A Self-Organizing Map and its Modeling for Discovering Malignant Network Traffic
	Chet Langin
	Hongbo Zhou
	Shahram Rahimi
	Bidyut Gupta
	Mehdi Zargham
	See next page for additional authors
	Recommended Citation
	Authors

