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A Self-Paced and Calibration-Less SSVEP-Based
Brain–Computer Interface Speller

Hubert Cecotti

Abstract—A brain–computer interface (BCI) is a communica-
tion system based on neural activity. Its goal is to provide a new
output channel for the brain that requires voluntary control. We
propose a new self-paced BCI speller based on the detection of
steady-state visual evoked potential (SSVEP). The speller does not
require any training from the user or from the signal processing
part. The system is ready once the subject is prepared. The speller
introduces a selection based on a decision tree and an undo com-
mand for correcting eventual errors. It was tested on eight healthy
subjects who had no prior experience with the application. The
average accuracy and information transfer rate are 92.25% and
37.62 bits per minute, which is translated in the speller with an av-
erage speed of 5.51 letters per minute.

Index Terms—Brain–computer interface (BCI), electro-
encephalogram (EEG), signal processing, speller, steady-state
visual evoked potential (SSVEP).

I. INTRODUCTION

A BRAIN–COMPUTER interface (BCI) is a system that
allows people to communicate through direct neural ac-

tivity measurements [1]–[3]. BCIs are the most useful for per-
sons with severe disabilities, who are unable to communicate
through any classical ways [4]–[6]. Although BCIs are mostly
dedicated to disabled people, they could be efficiently used by
healthy persons as a combination and complement with other
interfaces [7], [8]. For these applications, BCIs may challenge
other classical communication devices; they must be reliable,
fast and provide efficient solutions.

Although current BCIs can leave the stage of laboratory
demonstrators to real applications, many improvements are
possible. Among them, the signal processing part can be im-
proved by using advanced classification and machine learning
techniques [9]–[12]. Second, the user can improve his perfor-
mance by finding appropriate ways to adapt its behavior to
the system or to some feedbacks [13]–[15]. For improving the
performance, the system has to be trained in relation to the
user or he has to spend some times with the application to use
it efficiently. In both approaches, the performance increase is
related to some calibration process or adaptation from the user.

The time spent with the application before its mastery can be
an obstacle for extending the number of persons who would be
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willing to use (and buy) a BCI. New software must be quickly
accessible to the potential user. The learning curve of a new
application must be as fast as possible when the BCI has an
entertainment purpose or challenge an existing communication
control. For people who can only communicate with a BCI, a
slow learning curve can be tolerated.

One other aspect to improve is the operating protocol. The
user must have the total control of the system. In synchronous
BCIs, the timing of operation is not determined by the user,
but by the BCI. In asynchronous BCIs, the user can control the
timing of communication. The terminology in the BCI field is
not always consistent. Let us consider the “no control” state,
which translates no intentional control. This state corresponds
to when the user does not want to produce any command. This
feature is relevant for BCIs that should be always available for
disabled people. BCI systems that are continuously available to
the user and support the “no control” state are called self-paced
BCI. Asynchronous BCIs can be interpreted as BCIs with a “no
control” state whereas synchronous BCIs do not support a “no
control” state.

In this paper, we propose a new self-paced noninvasive BCI.
The brain activity is recorded via EEG techniques. Such tech-
niques have several advantages for extending the use of BCIs:
the high time resolution, the portability, and relatively inexpen-
sive equipments. The proposed BCI is based on steady-state vi-
sual evoked potentials (SSVEP). We therefore consider the re-
sponse of the user attention to an oscillating visual stimulus.
When a person looks at one particular oscillating light, his brain
response can provide a way for creating a BCI. Usually, the
stimuli that are used for inducing SSVEP responses are flick-
ering lights at different frequencies. When an object flickers at
a frequency , then a response occurs in the visual cortex at the
frequency of the stimulus and its higher harmonics [16]. Thus,
different frequencies can involve different responses, which can
be assigned to different commands. The SSVEP responses are
described as reliable in the literature [17]–[19].

Visual evoked potentials based BCIs are described as more
accessible than other BCI systems. They possess several advan-
tages like a high information transfer rate (ITR) and little user
training. However, SSVEP-based BCIs are not considered as in-
dependent BCIs as the generation of the visual evoked potentials
depends on the gaze control via extraocular muscles and partic-
ular nerves. For this type of BCI, the only requirement is the
possibility to control the eye movements. These BCIs are also
often criticized for the annoying visual stimuli. We propose a
new speller, which tries to fuse the visual stimuli and the appli-
cation in one single and homogeneous way.

The paper is organized as follows. The speller is described in
the second section. The third section deals with the experimental
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Fig. 1. Speller GUI. Example of the screen sequence for the selection of the letters “A,” “B,” or “C.”

Fig. 2. Tree of the letters selection. (��� : � � ����� ��, ��� : � � ��	

 ��, ��� : � � ��	�� ��).

protocol. The results are presented and discussed in the last two
sections.

II. SYSTEM OVERVIEW

The BCI presented thereafter is a speller that possesses sev-
eral features: it is self-paced, it requires no training from the
user, no calibration (no training from the signal processing part).
The visual stimuli provoking event-related potentials are dis-
played on an LCD screen. They are fully integrated to the graph-
ical user interface (GUI). This speller is therefore ready to work
once the subject is prepared. The system is composed of two
main parts: the GUI and the signal processing part, i.e., how the
EEG signal is translated or not into a command in the speller.
The speller allows writing 27 characters: the 26 Latin charac-
ters [A...Z] and “_” for separating the words. The SSVEP-based
speller GUI is presented in Fig. 1.

A. Speller Commands

The selection of a letter is based on five main BCI commands,
i.e., five flickering boxes.

• Three commands are dedicated to the navigation. We note
, , and these three commands. They

correspond to the three boxes that contain all the possible
letters in Fig. 1. For writing a letter, the user has to pro-
duce three commands. This number of command is fixed
and independent of the letter. Fig. 2 displays the decision
tree of selections and the succession of commands that are
necessary for spelling one letter.

• One command is considered for canceling the previous
one. Like for any current application, the “undo” command
must be present for enabling easily a fast correction from

the user. Indeed, an error can come from the user directly
or indirectly. First, it can be due to a lack of attention, to
the disrespect of what should be written. Second, the user
wants to produce one command but the signal processing
part provides the wrong command. In this case, the error
is not voluntary and must be corrected easily. At any mo-
ment, the user is able to cancel the previous command with
only one. This command aims at minimizing the cost of a
mistake during spelling tasks. We note the com-
mand for canceling the previous action or going up in the
decision tree.

• One command is dedicated to the deletion of the last
written character. At any moment, the user is able to sup-
press the last character of the text with only one command.
We note the delete action. It is possible to delete
the letter that was just written with but if the user
does not correct it immediately, it is impossible to correct
it without the command.

After each command, an animation is displayed to signal to
the user that a command has been produced. During this anima-
tion, every box stops to flicker. This short break of the flickering
boxes lasts 1 s and it has two purposes. First, it gives to the user a
visual feedback that a command was produced. The user cannot
be aware of a misclassification if he is still watching one other
flickering box. Second, the short break of the flickering boxes
might improve the user comfort.

For , , and , the animation suggests that
once one command is produced, the two other boxes of the menu
disappear and the remaining box is split into three new boxes
that move to the initial positions of the three previous choices.
The goal of these animations is to smooth the gaze of the user.
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The person can continuously focus on one particular letter and
follow this letter while browsing in the decision tree, without
any strong gaze shift to follow the new position of the boxes. For

and , the size of the box decreases for 0.5 s then it
goes back to its initial size for 0.5 s. Although the impact of these
animations is not evaluated in this study, they may contribute
to the user comfort. It is important for the user to know in an
efficient way when a command has been produced, wanted or
not, while focusing on a flickering box.

B. Graphical Interface Features

Most of the SSVEP-BCI applications separate the visual
stimuli from the application. Indeed, contrary to a P300-Speller
[20], [21], where the user selects what he is looking at, BCIs
based on SSVEP use the visual stimuli as a mean to navigate in
one other interface or to control some devices [22], [23]. Some
recent SSVEP-BCI studies have incorporated the visual stimuli
in the application, like for video games [13], [24]. However,
in these studies the use of flickering checker boxes can be an
obstacle to fully integrate the stimuli in the GUI.

In the proposed speller, we merge the target and the visual
stimuli like in the P300-Speller paradigm: “what you see is what
you select.” Besides, the letters in the flickering boxes do not
flicker (the letters are always black). The user can focus on a
letter, which does not flicker. Only the surrounding area of the
center of attention is flickering. This feature might also decrease
the annoying aspect of the flickering lights.

As depicted in Fig. 2, the inclusion of the letters in the visual
stimuli is a mean to increase the size of the flickering boxes. As
the GUI is embedded in the visual stimuli, there is no need to
present an external layout of the speller like in [25]. This place
is therefore saved to increase the size of the boxes, which is a
natural way to improve the SSVEP response detection.

C. Frequency Selection

One issue to address is the optimal selection of the best fre-
quencies for obtaining the best responses. This question has
been largely discussed in the literature and it can depend on
the subject [19], [26]. However, it is actually possible to get
an SSVEP response with a large number of frequencies, from
1 to 100 Hz, with resonance peaks at 10, 20, 40, and 80 Hz
[27]. Nevertheless, the best responses are obtained for stimula-
tion frequencies between 5 and 20 Hz [28]. In addition, the de-
vice that renders the visual stimuli must be taken into account.
As the speller is displayed on a common LCD screen, the re-
fresh rate of this screen (60 Hz) is one parameter to take into ac-
count for choosing the frequencies of the flickering boxes. The
choice of the frequency selection is first constrained by the ver-
tical refresh rate. The frequencies to select are also determined
by the number of commands and the frequency band to obtain
SSVEP responses that can be detected easily. The five frequen-
cies are selected in a narrow frequency band to avoid external
effects, which could be related to other brain activity. If there are
some disturbances in the signal, the effect will occur in every ex-
pected SSVEP response. The frequencies are chosen between
6.666 and 8.571 Hz. Table I presents the frequency to detect
for each command and the structure of the oscillating signal.
The structure denotes the signal pulse shape of one period of

TABLE I
FREQUENCY SET

the stimulus signal. 1/0 denotes the colors black/white respec-
tively that is rendered in one frame (one image displayed on the
screen). As the refresh rate constraint is an obstacle for choosing
five frequencies in a narrow frequency band, the signal structure
for and is a composition of the structure of the
other frequencies. These signal structures are assigned to the vi-
sual stimuli of and ; these two commands should
not be often produced. Indeed, if one person does make no mis-
take in what s/he intends to spell, then and are
not used.

D. Signal Processing

In this multiclass classification problem, we consider
classes where each class corresponds to an SSVEP response,
i.e., a particular visual frequency. We consider a visual stimu-
lation with a flicker-frequency of Hz. We use the following
analytical description for the signal as the voltage between
the electrode and a reference electrode at time

(1)

where is the number of considered harmonics.
The signal is decomposed into two parts: the response and the

noise. The first part corresponds to the evoked SSVEP response
signal, which is composed of a number of sinusoids with fre-
quencies in relation to the stimulus frequency and a number of

harmonic frequencies. Each sinusoid is defined by its ampli-
tude and its phase . The second part is dedicated to
the noise. It can come from the environment and its effect on the
subject, natural physical disturbance like other brain processes,
breathing artifacts\cdots

The online detection of an SSVEP response on an EEG signal
requires a time segment for the signal analysis. We consider
a time segment of samples of the signals, with a sampling
frequency of Hz

(2)

where contains the EEG signal for
the electrode in one time segment. The SSVEP information
matrix is of size .

For electrodes, the signal is defined as

(3)

where contains the sampled EEG signals
from all the electrodes. contains all the amplitudes for all the
expected sinusoids for all electrode signals.

The signals from the electrodes shall be combined for ex-
tracting discriminant features from the signal. We define a
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channel as a linear combination of the signals measured by dif-
ferent electrodes. These combinations can be in fact interpreted
as spatial filters. A vector of channel data is denoted by . Its
purpose is to enhance the information contained in the EEG
while reducing the nuisance signals. A channel is defined by

(4)

We note the set of channels by

(5)

Several channels can be created by using several sets of
weights. The channel creation is an essential step toward the
enhancement of the relevant signal [16], [29], [30]. In this work,
we consider a generative approach based on the principal com-
ponent analysis (PCA), which is described in [19]. It does not
require any training or calibration step. The method assumes
for each frequency that it is the right frequency to detect and
removes the noise considering this hypothesis. It can generate
a frequency power estimation of any frequency. Thus, channels
are set in relation to hypotheses of the expected frequency to
observe. First, the technique removes any potential discriminant
components from all electrode signals, by projecting them onto
the orthogonal complement of the formal model of the signal

(6)

PCA is applied on , and the eigenvectors will correspond to
. Its purpose is to have an optimal combination of the elec-

trode signals, which cancel as much of the nuisance signals as
possible. This method allows the combination of a fixed number
of electrodes that minimize the nuisance signals. Once the chan-
nels are created, the power of the expected frequencies and their
harmonics are calculated for each channel. For each frequency,
the evaluation of the SSVEP response is defined by

(7)

where is the SSVEP information matrix of the frequency
, and is the th channel. is the number of channels equal

to the number of electrodes and is the number of considered
harmonics. is equivalent to using only the frequency of
the visual stimulus. For the classification in the experiments, we
set .

For the detection and classification of the SSVEP responses,
we do not restrict the classification to the frequencies to de-
tect. Some other frequencies are also considered for improving
the robustness of the decision [31]. Four other frequencies
are added: 6.862, 7.279, 7.750, and 8.285 Hz. Each frequency
is chosen between two frequencies to detect. Therefore, we
consider nine different frequency powers for the classification,

, (6.67, 7.50, 8.57, 7.06, and 8.00 Hz for the commands;
6.86, 7.28, 7.75, and 8.29 Hz for improving the reliability).

Fig. 3. Electrode placement at the back of the head.

The frequency power of each class is normalized into a prob-
ability by a softmax function, is the probability to detect the
frequency ,

(8)

where is set to 0.25. In the speller, the detection probability
of the SSVEP response is given under each flickering box. This
information is just useful for the experimenter.

The frequency corresponding to the highest probability is se-
lected. The command corresponding to the frequency is pro-
duced if and only if the highest probability is superior to a fixed
threshold (in the experiments it is 0.5) and if the frequency be-
longs to the frequency set of the commands. The threshold and

were set based on prior tests where the author was the system
user

(9)

III. EXPERIMENTS

A. Material

The conducted experiments are based on a noninvasive BCI
that uses sensors with contact on the surface of the scalp via
eight standard EEG electrodes. The location of the electrodes is
the left and right earlobes for ground and reference, respectively.
Six electrodes , , , , , are dedicated to
the input features [32]. The location of these electrodes is pre-
sented in Fig. 3, which represents the back of the head. The im-
pedances below 10 were achieved by using an abrasive elec-
trode gel. The EEG data were acquired with an amplifier from
g.tec, the sampling frequency was 128 Hz. During the EEG ac-
quisition, an analog bandpass filter between 2 and 30 Hz, and a
notch filter around 50 Hz (main frequency in Europe) were ap-
plied directly in the amplifier. For the software, an LCD screen
with the resolution of 1680 1050 pixels and a refresh rate of
60 Hz was used. The luminance is about 180.0 with an
estimated contrast of 280:1. Each flickering box is represented
on 25.55 , equivalent to a luminance of about 0.46 cd. The
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speller is developed in C++ uses DirectX 9 and its ID3DXSprite
interface for displaying the flickering boxes and the animations.
The subjects were sitting on a comfortable chair in front of the
laptop.

B. Subjects

Eight healthy subjects participated in this study. They were
all volunteers, unpaid, and belong to the same age group: the
average age is 30 years, with a standard deviation of 3.66. Only
one female subject was present (Subject 2). Subjects 3, 6, and 8
need vision correction and wore their glasses. Each subject has
a previous SSVEP-BCI experience. They are not BCI-naive and
are aware of the principle of an SSVEP-BCI system. However,
they are all naive of the speller software and the visual stimuli
frequencies.

C. Protocol

Before using the BCI, each subject was verbally informed
about how the speller works. The experiment was composed
of several sessions. In each session, the user had to write one
of the following words: BCI, BRAIN, CERVEAU, SSVEP,
BRAIN_COMPUTER_INTERFACE, the first name of the
subject and one word chosen by the subject. There are therefore
seven sessions for each subject. Between two sessions, a pause
of 5 min is given to the subject to recover from eventual visual
fatigue and to increase the relevance of the results over time.
Each word has to be written completely and without any mis-
takes: and are present to correct eventual errors.
In the best case, with no error, and should never
be used. As the number of commands for writing one letter
is fixed: three commands, the number of optimal commands
is known for each session. The minimal number of trials per
session is .

D. Parameters

Several parameters must be set for an SSVEP-based BCI.
One of the most important parameters is the size of the segment
length considered for producing a command, as it influences the
speed of the system. The choice of its length is not easy. On one
hand it is easier to detect an SSVEP response in a long time
segment: it assures a high accuracy of the command detection.
On the other hand, extending the time for the detection slows
down the BCI. In [22], the control lag in an SSVEP-BCI was
estimated to 1–5 s. In [13], Martinez et al. consider a sliding
time window of 4 s. In [33], an average time of 3.4 s, 4.87 s,
and 5.58 s are needed for the selection of a command for three
subjects. In the presented speller, the time window considered
for the signal analysis is 2 s, with an idle time of 2 s between
two consecutive commands. It assures the possibility to produce
a command relatively quickly.

IV. RESULTS

Each subject could complete all the requested tasks without
any problem. Table II presents for each subject the number of
commands (# Com.), the total time (in minute) to complete
every task, the accuracy of the BCI commands (in %), the av-
erage information transfer rate over the sessions [ITR, in bits
per minute (bpm)], and the average number of letter per second.

TABLE II
RESULTS FOR EACH SUBJECT

The accuracy of the commands was calculated in relation to the
best command to produce over time, to complete the requested
tasks. The ITR, first introduced by Shannon and Weaver [34],
is commonly used for measuring communication, control sys-
tems, and BCI [1]. The ITR is defined by

(10)

(11)

where is the probability to detect correctly a command,
is the number of commands ( ), and (in minutes) is
the time needed to produce commands. The best per-
formance is obtained by Subject 5, with an average accuracy of
97.45% and an ITR of 47.18 bpm. The average accuracy and
ITR over all subjects is 92.25% and 37.62 bpm, respectively.
With a perfect accuracy, the maximum possible ITR is 69.66
bpm, ( ). Each subject is SSVEP-BCI
literate and can correctly use the speller without any training.
These results highlight the speller efficiency.

Table III presents the average time (in seconds) and the
number of produced commands for each of the five commands
when they correspond to a right classification, i.e., when the
produced command is expected by the user. This time take
into account 1 s of animation where the boxes stop to flicker
and the time that the user needs to think about what is the next
action to do for writing a word. Therefore, the time presented
in Table III considers all the real time aspect of a BCI appli-
cation. The minimum average time for producing a command
is obtained with Subject 5 with 2.75 s. The average time over
every subject is 3.44 s. The number of produced commands for

and is not high, as these commands are only
used for correcting mistakes. As expected, the average time
needed to produce and is higher than for the
other commands, which are based on a simple structure of the
visual stimuli [35].

V. DISCUSSION

BCI can work; it has been proven many times over this decade
[3]. One of the current challenges to address is the use of BCIs
beyond simple demonstration purposes: in a real environment
and without the help of any expert for tuning the system. Such
BCI shall be asynchronous/self-paced. The evaluation of such
BCIs is one of the main directions for improving pragmatically
BCIs. While BCIs are naturally expected to become faster and
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TABLE III
AVERAGE TIME NEEDED FOR PRODUCING EACH COMMAND

more reliable, they still must be user friendly, and propose an
operating mode that allows them to be used outside a labora-
tory. For a BCI user, like a patient, his primary goal is not to
send bits to a computer. The patient wants to communicate with
the real world thanks to external devices or software; the inner
notion ofBCI limits the communication scope to the computer
stage. The real BCI meaning is indeed brain–real world inter-
face, which can be translated for instance by the speller speed.

The BCI constraints the user interfaces with a restricted
number of possible commands. For one application, like a
speller, several solutions are possible and they depend on the
particular brain response to detect. BCI spellers are mostly
based on the P300 paradigm that is not self-paced. A P300
speller GUI consists in displaying a matrix composed
by letters, usually . Contrary to the P300 paradigm,
where each cell of the matrix can correspond directly to a
letter, the low number of commands in an SSVEP-BCI or in an
imagery based BCI involves a particular strategy for creating
the graphical user interface. For motor imagery based BCI,
Blankertz et al. proposed a speller called hex-o-spell that uses
only two mental states [36]. The typing speed of the hex-o-spell
is between 2.3 and 5 letters/min for one subject and between
4.6 and 7.6 letters/min for a second subject. For the proposed
SSVEP speller, the average speed over eight subjects is 5.51
letters/min, with Subject 5 going up to 7.34 letters/min.

The BCI and the application that must be controlled are often
considered as two separate parts. When it is possible to separate
the visual stimuli from the application, the choice of LEDs for
the visual stimuli may be more judicious as the frequencies can
be chosen and LEDs can provide a higher intensity of the lights
[35]. As BCIs must take into account the ergonomic aspect of
the application, some commands shall be present like “undo” or
“delete character,” as described in this study. These commands
are not a confession of failure: a perfect accuracy over time is
hard to achieve. Besides, the user may produce some involuntary
mistakes. The GUI with LCD screens has a cost: the frequency
choice is limited and the intensity of the lights can be inferior to
a device based on LEDs. However, new LCD monitors with a
refresh rate of 120 Hz can provide a wider choice of frequencies.

The number of basic BCI commands in an SSVEP-BCI is a
critical choice. With a high number of commands, it is possible
to directly assign one BCI command to one main action of the
application [33], [37]. With less commands, a strategy has to

be found for combining the basic commands. While the use of
few commands can be a drawback, it is interesting to mention
that it is easier to select several times the same command in a
row. As the sequence of commands corresponds to the same
visual stimulus, there is no lag due to gaze shifting. For instance,
the user has to focus on the same target for three commands
for writing the letter “A.” This observation could be taken into
account for changing the order of the letters in the decision tree:
the letters with a high probability, like “E,” could be written by
using three times the same command.

The proposed speller does not consider parameters based on
the user. The speller requires no training from the user, no par-
ticular calibration for setting thresholds. Only two variables are
fixed for the classification: the threshold and the softmax pa-
rameters. While they can be set in relation to the user, the pa-
rameters were chosen before the experiments and still provided
good results for each subject. The choice of personalized pa-
rameters is a natural way for improving the performance. How-
ever, such procedure can be a drawback for healthy people. The
gain given by the personalization of the BCI shall be weighed
with the required time needed to improve the performance. The
speller without calibration is one step toward plug’n’play BCIs
as once the user is “plugged,” the speller is ready to work. Al-
though it is possible to use directly and efficiently a BCI from
the software point of view, the time for preparing a user is still
important and depends on the user, the hardware devices, the
type of electrode and the gel.

VI. CONCLUSION

A new self-paced SSVEP-based speller has been presented.
It does not require a calibration procedure. It allows writing
letters at an average speed of 5.51 letters per minute (with a
choice between 27 characters). The obtained performance is
promising for its use with disabled people. The proposed speller
can be easily transformed for other applications like for robotic
or domotic controls. Further works will deal with improving the
GUI for extending the possible number of letters and to include
knowledge about the vocabulary for creating an optimized de-
cision tree in relation to the language of the user.

REFERENCES

[1] J. R. Wolpaw, N. Birbaumer, D. J. McFarland, G. Pfurtscheller, and T.
M. Vaughan, “Brain-computer interfaces for communication and con-
trol,” Clin. Neurophysiol., vol. 113, pp. 767–791, 2002.



CECOTTI: A SELF-PACED AND CALIBRATION-LESS SSVEP-BASED BRAIN–COMPUTER INTERFACE SPELLER 133

[2] T. J. Sejnowski, G. Dornhege, J. d. R. Millán, T. Hinterberger, D. J.
McFarland, and K.-R. Müller, Toward Brain-Computer Interfacing
(Neural Information Processing). Cambridge, MA: MIT Press,
2007.

[3] B. Z. Allison, E. W. Wolpaw, and J. R. Wolpaw, “Brain-computer in-
terface systems: Progress and prospects,” Expert Rev. Med. Devices,
vol. 4, no. 4, pp. 463–474, 2007.

[4] N. Birbaumer, “Breaking the silence: Brain-computer-interfaces (BCI)
for communication and motor control,” Psychophysiology, vol. 43, pp.
517–532, 2006.

[5] T. M. Vaughan, D. J. McFarland, G. Schalk, W. A. Sarnacki, D. J.
Krusienski, E. W. Sellers, and J. R. Wolpaw, “The wadsworth BCI
research and development program: At home with BCI,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 229–233, Jun. 2006.

[6] F. Nijboer, E. W. Sellers, J. Mellinger, M. A. Jordan, T. Matuz, A.
Furdea, S. Halder, U. Mochty, D. J. Krusienski, T. M. Vaughan, J.
Wolpaw, N. Birbaumer, and A. Kübler, “A P300-based brain-computer
interface for people with amyotrophic lateral sclerosis,” Clin. Neuro-
physiol., vol. 119, no. 8, pp. 1909–1916, 2008.

[7] D. Friedman, R. Leeb, L. Dikovsky, M. Reiner, G. Pfurtscheller, and
M. Slater, “Controlling a virtual body by thought in a highly-immersive
virtual environment – A case study in using a brain-computer interface
in a virtual-reality cave-like system,” in Proc. 2nd Int. Conf. Comput.
Graphics Theory Appl., 2007, pp. 83–90.

[8] C. Guger, G. Edlinger, W. Harkam, I. Niedermayer, and G.
Pfurtscheller, “How many people are able to operate an EEG-based
brain-computer interface (BCI)?,” IEEE Trans. Neural Syst Rehabil.
Eng., vol. 11, no. 2, pp. 145–147, Jun. 2003.

[9] A. Bashashati, M. Fatourechi, R. K. Ward, and G. E. Birch, “A survey
of signal processing algorithms in brain-computer interfaces based on
electrical brain signals,” J. Neural Eng., vol. 4, pp. 32–57, 2007.

[10] B. Blankertz, G. Curio, and K.-R. Müller, T. G. Diettrich, S. Becker,
and Z. Ghahramani, Eds., “Classifying single trial EEG: Towards brain
computer interfacing,” in Adv. Neural Inf. Process. Syst. (NIPS 01),
2002, vol. 14, pp. 157–164.

[11] F. Lotte, M. Congedo, A. Lecuyer, F. Lamarche, and B. Arnaldi, “A
review of classification algorithms for EEG-based brain-computer in-
terfaces,” J. Neural Eng., vol. 4, pp. R1–R13, 2007.

[12] K.-R. Müller, M. Tangermann, G. Dornhege, M. Krauledat, G. Curio,
and B. Blankertz, “Machine learning for real-time single-trial EEG-
analysis: From brain-computer interfacing to mental state monitoring,”
J. Neurosci. Methods, vol. 167, no. 1, pp. 82–90, 2008.

[13] P. Martinez, H. Bakardjian, and A. Cichocki, “Fully online multi-
command brain-computer interface with visual neurofeedback using
SSVEP paradigm,” Computat. Intell. Neurosci., 2007.

[14] D. J. McFarland, D. J. Krusienski, and J. R. Wolpaw, “Brain-computer
interface signal processing at the wadsworth center: Mu and sensori-
motor beta rhythms,” in Progress in Brain Research. New York: El-
sevier, 2006, vol. 159, ch. 26, pp. 411–419.

[15] M. M. Moore, “Real-world applications for brain-computer interface
technology,” IEEE Trans. Neural Syst. Rehabil. Eng., vol. 11, no. 2,
pp. 162–165, Jun. 2003.

[16] G. R. Müller-Putz, R. Scherer, C. Brauneis, and G. Pfurtscheller,
“Steady-state visual evoked potential (SSVEP)-based communication:
Impact of harmonic frequency components,” J. Neural Eng., vol. 2,
no. 1, pp. 123–130, 2005.

[17] H. Cecotti and A. Gräser, “Time delay neural network with Fourier
Transform for multiple channel detection of steady-state visual evoked
potential for brain-computer interfaces,” in Proc. Eur. Signal Process.
Conf., 2008.

[18] X. R. Gao, D. F. Xu, M. Cheng, and S. K. Gao, “A BCI based environ-
mental controller for the motion-disabled,” IEEE Trans. Rehabil. Eng.,
vol. 11, no. 2, pp. 137–140, Jun. 2003.

[19] O. Friman, I. Volosyak, and A. Gräser, “Multiple channel detection
of steady-state visual evoked potentials for brain-computer interfaces,”
IEEE Trans. Biomed. Eng., vol. 54, no. 4, pp. 742–750, Apr. 2007.

[20] E. Donchin, K. M. Spencer, and R. Wijesinghe, “Assessing the speed
of a p300-based brain-computer interface,” IEEE Trans. Neural Syst.
Rehab. Eng., vol. 8, no. 2, pp. 174–179, Jun. 2000.

[21] L. Farwell and E. Donchin, “Talking off the top of your head: Toward
a mental prosthesis utilizing event-related brain potentials,” Electroen-
cephalogr. Clin. Neurophysiol., vol. 70, pp. 510–523, 1988.

[22] L. J. Trejo, R. Rosipal, and B. Matthews, “Brain–computer interfaces
for 1-D and 2-D cursor control: Designs using volitional control of the
EEG spectrum or steady-state visual evoked potentials,” IEEE Trans.
Neural Syst. Rehabil. Eng., vol. 14, no. 2, pp. 225–229, Jun. 2006.

[23] D. Valbuena, M. Cyriacks, O. Friman, I. Volosyak, and A. Gräser,
“Brain-computer interface for high-level control of rehabilitation
robotic systems,” in Proc. 10th Int. Conf. Rehabil. Robot., 2007, pp.
619–625.

[24] E. C. Lalor, S. P. Kelly, C. Finucane, R. Burke, R. Smith, R. B. Reilly,
and G. McDarby, “Steady-state VEP-based brain-computer interface
control in an immersive 3d gaming environment,” EURASIP J. Appl.
Signal Process., vol. 19, pp. 3156–3164, 2006.

[25] H. Cecotti, I. Volosyak, and A. Gräser, “Evaluation of an SSVEP based
brain-computer interface on the command and application levels,” in
Proc. 4th IEEE EMBS Int. Conf. Neural Eng., 2009, pp. 474–477.

[26] G. R. Müller-Putz and G. Pfurtscheller, “Control of an electrical pros-
thesis with an SSVEP-based BCI,” IEEE Trans. Biomed. Eng., vol. 55,
no. 1, pp. 361–362, Jan. 2008.

[27] C. S. Herrmann, “Human EEG responses to 1–100 Hz flicker: Res-
onance phenomena in visual cortex and their potential correlation to
cognitive phenomena,” Exp. Brain. Res., vol. 137, pp. 346–353, 2001.

[28] M. Pastor, J. Artieda, J. Arbizu, M. Valencia, and J. Masdeu, “Human
cerebral activation during steady-state visual evoked response,” J. Neu-
rosci., vol. 23, no. 37, pp. 11 621–11 627, 2003.

[29] B. Blankertz, R. Tomioka, S. Lemm, M. Kawanabe, and K.-R. Müller,
“Optimizing spatial filters for robust EEG single-trial analysis,” IEEE
Signal Process. Mag., vol. 25, no. 1, pp. 41–56, Jan. 2008.

[30] G. Burkitt, R. Silberstein, P. Cadush, and A. Wood, “Steady-state visual
evoked potentials and travelling waves,” Clin. Neurophysiol., vol. 111,
no. 2, pp. 246–258, 2000.

[31] G. Müller-Putz, R. Scherer, C. Brunner, R. Leeb, and G. Pfurtscheller,
“Better than random: A closer look on BCI results,” Int. J. Bioelectro-
magnetism, vol. 10, no. 1, pp. 52–55, 2008.

[32] G. E. Chatrian, E. Lettich, and P. L. Nelson, “Ten percent electrode
system for topographic studies of spontaneous and evoked EEG ac-
tivity,” Am. J. EEG Technol., vol. 25, pp. 83–92, 1985.

[33] Y. Wang, R. Wang, X. Gao, B. Hong, and S. Gao, “A practical
VEP-based brain–computer interface,” IEEE Trans. Neural Syst.
Rehab Eng., vol. 14, no. 2, pp. 234–239, Jun. 2006.

[34] C. E. Shannon and W. Weaver, The Mathematical Theory of Commu-
nication. Urbana, IL: Univ. Illinois Press, 1964.

[35] Z. Wu, Y. Lai, D. Wu, and D. Yao, “Stimulator selection in SSVEP-
based BCI,” Int. J. Med. Eng. Phys., vol. 30, no. 8, pp. 1079–1088,
2008.

[36] B. Blankertz, G. Dornhege, M. Krauledat, M. Schröder, J. Williamson,
R. Murray-Smith, and K.-R. Müller, “The berlin brain-computer
interface presents the novel mental typewriter hex-o-spell,” in Proc.
3rd Int. Brain-Comput. Interface Workshop Training Course, 2006,
pp. 108–109.

[37] M. Cheng, X. R. Gao, S. K. Gao, and D. F. Xu, “Design and imple-
mentation of a brain-computer interface with high transfer rates,” IEEE
Trans. Biomed. Eng., vol. 49, no. 10, pp. 1181–1186, Oct. 2002.

Hubert Cecotti received the M.Sc. and Ph.D.
degrees in computer science from the Univer-
sity of Nancy, Nancy, France, in 2002 and 2005,
respectively.

In 2006 and 2007, he was a Lecturer in com-
puter science at the University Henri Poincaré
and ESIAL, Nancy, France. During 2008–2009,
he was a Research Scientist at the Institute of
Automation, Bremen University, Bremen, Germany,
where he has worked on EEG signal processing and
brain–computer interfacing on the European project

Brainrobot. His research interests include neural networks, multi-classifiers
systems, character recognition, and brain–computer interfaces.


