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Abstract: Multiport interferometers based on integrated

beamsplitter meshes have recently captured interest as a

platform for many emerging technologies. In this paper, we

present a novel architecture for multiport interferometers

based on the sine–cosine fractal decomposition of a uni-

tary matrix. Our architecture is unique in that it is self-

similar, enabling the construction of modular multi-chiplet

devices. Due to this modularity, our design enjoys improved

resilience to hardware imperfections as compared to con-

ventionalmultiport interferometers. Additionally, the struc-

ture of our circuit enables systematic truncation, which is

key in reducing the hardware footprint of the chip as well

as compute time in training optical neural networks, while

maintaining full connectivity. Numerical simulations show

that truncation of these meshes gives robust performance

even under large fabrication errors. This design is a step

forward in the construction of large-scale programmable

photonics, removing a major hurdle in scaling up to practi-

cal machine learning and quantum computing applications.
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1 Introduction

Photonic integrated circuits (PICs) have recently captured

interest as a promising time- and energy-efficient platform

for classical and quantum optical information processing.

They have been used to accelerate tasks in signal processing

[1–5], machine learning [6, 7], optimization [8], and quan-

tum simulation [9–13]. Scaling these systems up in order

to tackle real-world problems requires careful attention to

issues such as the effect of analog component imperfections

on performance, and the scaling of chip area with system

size.

For instance, it has been shown that the test accuracy

of optical neural networks (ONNs) based onMach–Zehnder

Interferometer (MZI) meshes [6] drops rapidly as soon

as the constituent beamsplitters deviate from 50 to

50 splitting ratio by a couple of percent [14]. A variety of

error-correction techniques have been proposed for the

MZI-based platform—global optimization [15–20], local

correction [21, 22], self-configuration [23–26], and hardware

augmentation [27–29]. The behavior of many of these

techniques can be better understood by considering an

important insight derived in Ref. [21]—MZIs with imperfect

beamsplitters implement only a subset of all the 2 × 2

unitary matrices that a perfect MZI can implement. This

fact explains the observed imperfection-induced reduction

in ONN performance since circuits composed of imperfect

MZIs implement fewer functions than those with perfect

MZIs [6, 14].

We show in this paper that the extent of reduction

of the expressivity of a faulty MZI mesh depends strongly

on its geometry and that a careful choice of mesh geom-

etry can significantly soften the negative impact of hard-

ware errors. We do so by introducing a novel self-similar

MZI-mesh architecture based on the recursive sine–cosine

unitary decomposition of Polcari [30] and demonstrating

that it is more robust to MZI errors than the conventional

Reck (triangular) [31] and Clements (rectangular) [32]mesh
geometries. The recursive sine–cosine decomposition [30]

is a generalization of the standard FFT decomposition
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of Fourier transform matrices [33] to arbitrary unitary

matrices. We shall refer to MZI meshes constructed using

this decomposition as sine–cosine fractal (SCF)meshes. Like

the FFT mesh [34, 35], the SCF mesh has a recursive, self-

similar structure; the FFTmesh can in fact be obtained from

the SCF mesh by the mere pruning (omission) of certain

columns of MZIs.

While SCF meshes have greater error robustness than

other architectures,they can also be systematically shrunk

in size for use in machine learning applications. In analogy

with pruning in conventional neural networks [36, 37], we

introduce a systematic mesh pruning scheme that inter-

polates between the simple FFT and the full sine–cosine

fractal, and numerically demonstrate that ONNs composed

of pruned meshes still achieve excellent performance at

benchmark learning tasks.

The paper is organized as follows: Section 2 introduces

and discusses the sine–cosine fractal architecture. Section 3

contains analytical and numerical results on the expressiv-

ity of SCF meshes in the presence of beamsplitter errors.

Section 4 reports the performance of ONNs constructed

from both complete and pruned SCF meshes, and Section 5

concludes the paper with a further discussion of the scope

and impact of our work.

2 The sine–cosine fractal

architecture

In order to construct a photonic circuit that implements

a given unitary matrix U , one first decomposes U into a

product of 2 × 2 unitary matrices and diagonal phase shifts.

MZIs are used to implement the 2 × 2 unitary matrices in

the hardware; the transfer function of an MZI with two

phase-shifters 𝜃, 𝜙 (Figure 1(a)) is given by:

T(𝜃, 𝜙) = 1

2

[
1 i

i 1

][
ei𝜃 0

0 1

][
1 i

i 1

][
ei𝜙 0

0 1

]

= iei𝜃∕2

[
ei𝜙 sin(𝜃∕2) cos(𝜃∕2)
ei𝜙 cos(𝜃∕2) − sin(𝜃∕2)

]
(1)

The arrangement of MZIs in the circuit, that is, the geom-

etry of the MZI mesh, determines the order of appearance

of the corresponding 2 × 2 unitaries in the decomposition.

Figure 1(a) depicts a mesh that implements an 8 × 8 matrix

via the Clements decomposition [32]. The Reck [31] and bal-
anced binary tree [38] are other important decompositions

that have been used to construct unitary meshes.

This paper proposes a new mesh architecture based

on the sine–cosine decomposition, a block diagonalization

θ

ψ

=

=

(a)

φ

(b) (c)U11 U12

U21 U22 s = 1 2 1 1 14 2

Step 1 Step 2

Figure 1: Illustration of optical mesh designs. (a) 8 × 8 Clementsmesh.
(b) First step of the block decomposition of the mesh. This results in 4 × 4

quadrants. (c) Further decomposition of the quadrants, which results in

the SCF mesh.

of unitary matrices, which on an N × N matrix U consists

of partitioning U into four N∕2 × N∕2 blocks and perform-
ing the singular value decomposition (SVD) on each block.

The unitarity of U imposes special constraints that force

the blocks to share singular vectors. Polcari [30] shows

that the block-wise SVD of U yields:

U =
[
U12 0

0 U22

][
D11 D12

D21 D22

][
U11 0

0 U21

]
(2)

where U11,U12,U21,U22 are unitary matrices and

D11,D12,D21,D22 are diagonalmatrices encoding the singular

vectors and values, respectively. Unitarity constrains the Dij

to take the following form:[
D11 D12

D21 D22

]
= ieiΘ∕2

[
eiΦ sin(Θ∕2) cos(Θ∕2)
eiΦ cos(Θ∕2) − sin(Θ∕2)

]
(3)

with (Θ,Φ) representing diagonal matrices that encode

phase shifts. Figure 1(b) depicts Eq. (2) graphically for the

8 × 8 case—the 4 × 4 unitary matrices Uij are implemented

by Clements meshes while the diagonal matrices Dij are

implemented by MZIs in the center that couple the four

unitary blocks. One can actually go further and perform

the block-wise SVD again on each of the Uij sub-blocks to

obtain the mesh of Figure 1(c); the 2 × 2 unitaries obtained

from the 4 × 4 unitaries are now directly implemented by
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MZIs. Because of its self-similar structure, we denote this

geometry the sine–cosine fractal (SCF) mesh. In the general

case, an SCF mesh can be constructed from any radix-2

(N = 2n) matrix: one recursively performs blockwise SVDs

on each unitary matrix of size greater than 2 until the full

decomposition consists only of 2 × 2 matrices that connect

different modes.

Like the Clements and other conventional architec-

tures, the SCF mesh has a depth that scales as O(N), has

N2 degrees of freedom, and is universal, i.e. it can repre-

sent the entire unitary group. However, the SCF mesh also

possesses tunable crossings that couple non-neighboring

waveguides (Figure 1(c)), i.e. crossings of stride s > 1, inter-

leaved between conventional crossings with s = 1. This is in

contrast to conventional architectures, where all MZIs have

unit stride.

3 Error correction and matrix

fidelity

The long-stride crossings give the SCF mesh greater robust-

ness to hardware imperfections. To see how, consider the

problem of realizing a target at high fidelity on imperfect

hardware. As mentioned previously, MZI meshes with per-

fect beamsplitters can implement any unitary matrix; the

introduction of faults, however, reduces the expressivity of

the mesh and consequently the fraction of matrices that are

implementable drops below unity. In this section, we show

that sine–cosine fractal meshes can perfectly implement a

greater fraction of random matrices than Clements meshes

can for the same beamsplitter error level.

3.1 Distribution of mesh phase-shifts for
Haar-randommatrices

A specific setting of phase shifts (𝜃, 𝜙) is required to make

a mesh implement a given target unitary matrix. Draw-

ing the target matrix from the Haar (uniform) distribu-

tion [39] induces a distribution P(𝜃) over the phase-shifts.

Russell et al. [40] show that the phase-shift distribution

of the nth MZI (according to any indexing scheme) in

either the Reck or Clements meshes is given by Pn(𝜃) =
kn sin(𝜃∕2) cos(𝜃∕2)2kn−1, where kn ∈ {1,… ,N − 1}, called
the rank of the nth MZI, is a function of the physical posi-

tion of the MZI within the mesh. There are (N − k) MZIs of

rank k [40]. For larger meshes, the rank of an average MZI

increases, and this results in P(𝜃), which is an average of

the Pn(𝜃) over all the MZIs, clustering around the cross state

𝜃 = 0 (top row of Figure 2). The phase shift distribution for

both the Clements and Reckmeshes are identical, with P(𝜃)
clustering near 𝜃 = 0 [40].

However, unlike the Reck and Clements meshes, the

SCF mesh is configured from a top–down block decompo-

sition of the matrix. For a given matrix U , sampled over

the Haar measure, the singular-vector matrices Uij, (i, j) ∈
{1, 2} in Eq. (2) are also Haar-random and independent of

Figure 2: Distribution of crossing angles for the Clements, Reck and SCF meshes as a function of mesh size and stride, respectively. The crossing
angles of the Clementsmesh and the Reckmesh increasingly clusters near 𝜃 = 0 for larger meshes. Crossing angles for the SCF mesh become

increasingly uniformly distributed as the stride increases.
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each other. As a result, the distribution Pn(𝜃) depends only

on the stride sn of the nth MZI, not on its location in the

mesh. The bottom row of Figure 2 shows the distribution of

angles for MZIs of stride s = 1, 4, 32 for mesh size N = 64.

The majority of MZIs have unit stride and Pn(𝜃) ∝ sin(𝜃). As

the stride increases, this distribution begins to resemble a

uniform distribution. We find that Pn(𝜃) for stride sn can be

fit well by the normalized finite Fourier series of a constant

given by:

Pn(𝜃) ≈
1

2
sn∑
q=1

(2q− 1)−2

sn∑
q=1

sin
(
(2q− 1)𝜃

)
2q− 1

(4)

3.2 Error in implementing Haar-random
matrices in the presence of MZI errors

The deviations from 50:50 of the two constituent beamsplit-

ters of fabricated MZIs are captured by the phase angles

(𝛼, 𝛽). These splitter errors perturb the MZI transfer matrix

as follows:

T′(𝜃′, 𝜙′, 𝛼, 𝛽) =
⎡⎢⎢⎢⎣
cos

(
𝜋

4
+𝛽

)
i sin

(
𝜋

4
+𝛽

)
i sin

(
𝜋

4
+𝛽

)
cos

(
𝜋

4
+𝛽

) ⎤⎥⎥⎥⎦
[
ei𝜃

′
0

0 1

]

×
⎡⎢⎢⎢⎣
cos

(
𝜋

4
+𝛼

)
i sin

(
𝜋

4
+𝛼

)
i sin

(
𝜋

4
+𝛼

)
cos

(
𝜋

4
+𝛼

) ⎤⎥⎥⎥⎦
[
ei𝜙

′
0

0 1

]

(5)

Bandyopadhyay et al. [21] show that it is always possible to

choose phase-shifts 𝜃′, 𝜙′ for a faulty MZI with errors (𝛼, 𝛽)

such that it implements the transfer matrix of an ideal MZI

T(𝜃, 𝜙) as long as:

2|𝛼 + 𝛽|
⏟⏟⏟

𝜃min

≤ 𝜃 ≤ 𝜋 − 2|𝛼 − 𝛽|
⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟

𝜃max

(6)

If 𝜃 is outside this range, the faulty MZI cannot exactly

emulate the ideal MZI and the faulty mesh transfer function

deviates from that of the ideal mesh which implements

the target matrix. Alternate approaches to correct for these

errors have been proposed in refs. [15, 27, 29, 41].

For a given target unitary U , we quantify the devi-

ation of the faulty mesh using the Frobenius norm  =‖ΔU‖∕√N which computes the average relative error per

matrix element. This quantity is then averaged over both the

choice of target unitary (from the Haar distribution), and

the distribution of MZI splitter errors, which are assumed

to be independent Gaussians (𝛼, 𝛽 ∼  (0, 𝜎)). In the case

of correlated errors, the effect of most correlations vanishes

over the Haar measure as proven in Ref. [24].

In the absence of error-correction techniques, all the

MZIs of the ideal mesh are implemented incorrectly by

the corresponding MZIs in the faulty mesh and the error

Frobenius norm 0 (for both Clements and SCF meshes)

has been shown [24] to scale linearly with the MZI error

𝜎 as 0 =
√
2N𝜎. When one uses the error-correction tech-

niques of Refs. [21, 24, 25], only the MZIs in the ideal mesh

that do not satisfy Eq. (6) are implemented incorrectly by

the corresponding MZIs in the faulty mesh—only those

MZIs contribute to the error Frobenius norm. Using n to

denote the MZI location in the mesh as before, the average

“corrected” error, c (assuming uncorrelated errors, see [27,

Supp. Sec. 1]), is computed by integrating over the probabil-

ity that each MZI does not satisfy Eq. (6):

(c)
2 = 1

2N

∑
n

⎡⎢⎢⎢⎣
𝜃min

∫
0

Pn(𝜃) (𝜃 − 𝜃min)
2 d𝜃

+
𝜋

∫
𝜃max

Pn(𝜃) (𝜃 − 𝜃max)
2 d𝜃

⎤⎥⎥⎥⎦ (7)

Eq. (7) indicates that the effectiveness of error-correction,

measured by c, is strongly dependent on the distribution

Pn(𝜃). For the Clementsmesh, Ref. [24] proves that  (clem)
c =√

2

3
N𝜎2, which is a quadratic improvement over 0.

Since the integral is over angles close to either 𝜃 = 0

or 𝜃 = 𝜋, the two terms in Eq. (7) are estimated for the

sine–cosine fractalmesh by Taylor-expanding Eq. (4) to first

order about 𝜃 = 0, 𝜋, respectively. The result is:


(scf)
c

= 4

𝜋

√
N log2(N)𝜎

2. (8)

The ratio of corrected errors for both meshes is:


(clem)
c


(scf)
c

=
√

𝜋2

24

N

log2(N)
(9)

which is greater than 1 for all but very small N .

We performed numerical experiments on meshes

up to size N = 1024 to validate the above expressions

(Figure 3). The observed uncorrected error 0 of both

meshes (Figure 3(a)) scales as 𝜎 while error-correction on

both meshes improves this scaling to 𝜎2. For meshes of size

256 × 256, error correction shows over an order of mag-

nitude improvement in matrix error Frobenius norm over

the uncorrected case when 𝜎 ≤ 0.01, with the Sine–Cosine

Fractal mesh performing better than the Clements mesh.

Figure 3(b) illustrates the distribution of post-correction
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(a)

(b)

Figure 3: Comparision of matrix error scaling for the SCF and Clements

meshes. (a) Scaling of matrix error with process variation 𝜎. (b) Scaling of

matrix error with mesh size, showing the advantage of the SCF mesh over

the Clementsmesh for larger mesh sizes.

error Frobenius norm as a function of mesh size N for a

fixed 𝜎 = 0.02 (which is a typical value for directional cou-

plers under wafer-scale process variation). While the fac-

tor
√

N

log2(N)
is modest for small meshes (N < 64), it clearly

opens up a significant accuracy gap in Figure 3(b) in the

large scale regime (N > 1024).

3.3 Fraction of Haar-randommatrices those
are exactly realizable in the presence of
MZI errors

The fraction of the unitary group U(N) that can be real-

ized by an imperfect mesh is equal to the probability that,

under theHaarmeasure [40], all target splitting angles 𝜃 are

realizable. For convenience, we derive a quantity called the

coverage, cov(N) [24], from this probability:

cov(N) =
∏
n

(
1− Pn(𝜃<𝜃min)− Pn(𝜃>𝜃max)

)
≈ exp

(
−
∑
n

[
Pn(𝜃<𝜃min)+ Pn(𝜃>𝜃max)

])
(10)

For a Clements mesh, Ref. [24] proves that cov(clem)(N) =
exp

(
−N3𝜎2

3

)
. Like the matrix error in the previous subsec-

tion, the coverage of an SCF mesh is computed using Taylor

series expansions. The result is:

cov(scf)(N) = exp

(
−8N2 log2(N)

𝜋2
𝜎2

)
(11)

which is greater than cov(clem)(N) for the same 𝜎 for all but

very small N .

This coverage, however, expresses the ability of an

imperfect mesh to realize random matrices under the Haar

measure. It is often the case that such meshes will be used

to realize matrices that are very commonly used in quan-

tum computation, signal processing or machine learning. In

Figure 4(a), we compare the ability of the SCF and Clements
meshes to realize Hadamard matrices and discrete-Fourier

transform (DFT) matrices of size N = 128. These examples

confirm that many commonmatrices possess structure that

does not follow the statistics of Haar random unitaries. For

(a)

(b)

Figure 4: Realization of Hadamard and DFT matrices with Clements and

SCF meshes. (a) Post-correction error c for matrix size N = 128. (b) MZI

splitter angles 𝜃 for meshes of size N = 64 realizing Hadamard and DFT

matrices.
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the Hadamardmatrix, the Clements decomposition yields a
meshwhere 50%of allMZIs are programmed to the crossing

state 𝜃 = 0 (Figure 4(b)); as a result, the matrix fidelity is

much worse than for a typical Haar-random instance, and

scales as c ∝ 𝜎 as opposed to𝜎2. The SCFmesh, by contrast,

has a more uniform distribution of splitter angles, recov-

ering c ∝ 𝜎2 scaling with overall matrix errors about an

order of magnitude smaller.

For the DFT matrix, the situation is reversed. Here,

the Clements mesh shows a more uniform distribution of

angles, while the SCFmesh has a large number of MZIs with

extreme splitting ratios 𝜃 ∈ {0, 𝜋}. Therefore, the SCFmesh
achieves significantly worse matrix fidelity when straight-

forwardly implementing the DFT. The reason is connected

with the highly non-uniform distribution of block-singular

values (i.e.Dij in Eq. (3)) in the standard DFT.We can circum-

vent this problemusing the technique of port allocation [22].

A random permutation of the input and output ports yields

a more even distribution of singular values, which reduces

the number of MZIs with 𝜃 ∈ {0, 𝜋}. The resulting matrix
fidelity is comparable to that of the Clements mesh (green
curve in Figure 4(a), right).

4 Use in optical neural networks

In this section, we study the performance of an optical neu-

ral network (ONN) built from sine–cosine fractal meshes.

We also propose and evaluate a pruning scheme for these

meshes that allows areal footprint reduction while main-

taining test performance. The neural network configura-

tion is similar to those studied in Refs. [6, 14, 26]—each

neural net layer is implemented by an SCF mesh connected

to an electro-optic nonlinearity [42] (Figure 6(a)). All our

networks had two layers. Our simulations used the meshes
[43] package, and results are presented for the MNIST [44]

image classification task. The preprocessing of the images

involved low-pass filtering and was identical to the proce-

dure adopted in Refs. [21, 26]. The standard cross entropy

loss and the Adam optimizer were used for training.

ONNs trained with SCF meshes achieved accuracies

that matched the Clements mesh [21, 24] of ∼95%–96%
for small meshes (N = 64) and ∼97% for larger meshes

(N = 256). Next, we simulated the effect of MZI errors on

the trained SCF mesh neural net; Figure 6(b) shows the

median classification accuracy of 10 independently trained

networks as a function of splitter errors. SCF networks

of size N = 64 yielded ∼95% test accuracy while those of

size N = 256 reached ∼97%. The presence of MZI errors

rapidly degrades the performance of the network, with

accuracy dropping to below 90% with splitter variation as

low as ∼2%. The use of hardware error correction, how-
ever, extends this cutoff to greater than 12% even for big-

ger meshes, which is well above present-day process error

[45] and larger than the corresponding cutoff for Clements
meshes (which is 6% [21]).

4.1 Weight pruning

The number of columns of MZIs with stride s is
N

2s
in the

Sine–Cosine Fractal mesh while the standard FFT mesh

contains a single column of each stride. We introduce a

pruning scheme that interpolates between these extremes

s = 1 2 1 4s = 1 2 4 s = 1 2 1 14

(a) (b) (c)

Figure 5: The SCF mesh at different stages of pruning constructed by interleaving strides from the largest successively to the smallest, from left to

right with the number of columns limited by
(

N

2s

)−1
: (a) A maximally pruned mesh, which is the standard FFT mesh, = 1.0. (b) = 1.5 (c) = 1.75.
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by introducing a fractal dimension ∈ [1, 2]—in a partially

pruned mesh, the number of columns of stride s is
(
N

2s

)−1
.

Setting  = 1 and  = 2 yields the FFT and SCF meshes,

respectively. Controlling  allows us to tune the number

of degrees of freedom and reduce the areal footprint of

the device while ensuring full connectivity. Figure 5 illus-

trates partially pruned 8 × 8 SCFmeshes for different values

of . The depth of the pruned network (approximated to

leading order in N) scales as
N−1

2−1−1 while the number of

MZIs is approximately
N

2(2−1)
. To construct a pruned mesh,

the column with the largest stride is chosen initially and is

interleaved with columns of the next smaller stride. Each

of these columns is then interleaved with the following

smaller stride from left to right until s = 1 is reached. When

the maximum number of columns is reached for a given

stride, the interleaving is terminated and the process is

continued with a column of the next smaller stride. This

ensures that no two consecutive columns have the same

stride since any such columns would collapse into a single

column.

Figure 6(c) illustrates the results of training networks

with pruned meshes of ideal MZIs for different . Increas-

ing (decreasing the amount of pruning, or increasing the

size of the network) increases the classification accuracy as

one would expect. Interestingly, a maximally pruned (that

is, a standard FFT) 64 × 64 2-layer ONN already achieves

95% accuracy, which is commensurate with the perfor-

mance of present-day DNN accelerators [46].

4.2 Lower bounds on SCF mesh performance

We performed error-aware “maximally faulty mesh” train-

ing [47] to obtain non-trivial (empirical) lower bounds on

the performance of SCF mesh ONNs with MZI errors as

large as 30%. For each error level 𝜎, we train an SCF mesh
ONN composed of MZIs that all have 𝛼 = 2𝜎 and 𝛽 = 0.

Ref. [47] shows that the resultant trained matrices of this

maximally faulty network can be exactly transferred to any

other SCFmeshONNwhileMZIs have errors−𝜎 ≤ 𝛼, 𝛽 ≤ 𝜎.

This implies that the test accuracy of the maximally faulty

SCF mesh ONN is a lower bound on the performance of

any SCF mesh ONN whose MZI errors are bounded by 𝜎.

Maximally faulty 2-layer SCF mesh ONNs of sizes 64 and

256 were trained for several values of MZI error level 𝜎

and fractal dimension ; the resultant test accuracies are

depicted in Figure 6(d) and (e). As expected, the 256 sized

ONNs perform better than the 64 sized ones. However, it

is particularly striking in the size 256 case that one can

prune the network up to  ∼ 1.1 and still lose only 1% in

Figure 6: Performance of optical neural networks (ONNs) constructed

using SCF meshes. (a) 2-Layer deep neural network architecture for

MNIST classification where the blocks U(0,1) represent unitary transforms

by the sine–cosine fractal mesh. (b) Simulated classification accuracy as a

function of mesh size (N = 64 and 256) and MZI error 𝜎. (c) Classification

accuracy as a function of degree of pruning ∈ [1, 2] and mesh size

(N = 16 and 64 and 256). (d) and (e) Classification accuracy as a function

of the degree of pruning and MZI error, trained on maximally faulty

mesh of size N = 64 and 256.

classification accuracy. The size 64 case allows less freedom

in pruning because it had a lower number of parameters to

begin with. The performance also seems to be a nearly con-

stant function of the MZI error. This investigation indicates

that one can aggressively prune very faulty ONNs but still

achieve excellent performance.
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5 Conclusions

This work presented a novel architecture for multiport

interferometers based on the sine–cosine decomposition

of unitary matrices. The proposed scheme is self-similar,

and therefore modular. As a result, this architecture is ideal

to construct multi-chiplet modules for large-scale devices

that are typically limited by device yield. We showed that

SCF meshes show improved scaling under error correction

when compared to conventional multiport interferometers.

Finally, this design allows for systematic re-wiring of MZI

layers, which is an efficient way of reducing the areal foot-

print of the mesh while maintaining full connectivity.

The proposed design has multiple advantages over the

traditional architectures formultiport interferometers. Due

to the uniform distribution of coupling angles (which is in

contrast to conventional mesh architectures where crossing

angles are clustered around the cross state), error correc-

tion techniques are far more effective in the case of SCF

meshes. Truncated meshes used in ONNs can be trained to

perform on par with the performances of present-day DNN

accelerators. While the benefits of modularity and stronger

robustness to error are small for present-day mesh size,

the scaling gap of O(N) versus O(
√
N log2(N)) significantly

impacts the performance for larger meshes. This reduced

scaling with N implies that SCF meshes are more sensitive

to improvements in foundry process. Reducing 𝜎 by 2×
corresponds to a 4× increase in the maximum mesh size

for RECK and CLEMENTS owing to the O(N𝜎2) scaling; for the

butterfly fractal, the corresponding increase would be 16×.
A potential drawback of this scheme is the presence

of multiple large stride crossings with non-zero crosstalk.

The loss/crosstalk introduced by these crossings can bemin-

imized by the following methods that are enabled by the

modularity of the SCF architecture:

– Incomplete Decomposition: To minimize the number of

crossings, the block decomposition of the mesh can

be terminated such that the smallest block size Nblk >

2. Each block will then take the form of a standard

Clements geometry with no intra-block crossings.
– Out-of-plane Crossings: Inter-block crossings (s > 1

among arbitrary block sizes) can be implemented using

waveguide escalators and out-of-plane crossings. Cross-

ings of different stride can be fabricated into multiple

layers of the photonic circuit and can be connected

with inter-planar couplers. The structure of the SCF

mesh ensures that each spatial mode would travel

through the same number of inter-planar couplers,

which results in losses that are uniform. This would

only impact the power scaling of the output vector, and

not the matrix realized by the mesh. Recent work on

the construction of these couplers has shown losses

as low as 0.05 ± 0.02 dB or approximately 98.7% per

coupler [48]. Scaling up the input power by a factor

of 1∕0.987(N−2) (up to heating limitations posed by the
hardware) for a mesh of size N would allow us to

account for losses due to the couplers. Out-of-plane

crossings have also been shown to have much lower

crosstalk than in-plane crossings [49, 50]. Crosstalk on

the order of−50 dB for input powers of 1 mW has been

achieved in non-planar topologies, and can be fabri-

cated scalably for such an integrated photonic mesh

[51, 52]. Since the crosstalk due to induced fields would

decrease exponentially with increasing interplanar dis-

tance, it would be easily possible to further reduce

the crosstalk. In the case of a multi-chip module, each

chiplet will be connected by a set of waveguide cross-

ings with a large stride. These crossings can be fabri-

cated using present-day lithography and laser-writing

techniques in either polymer [53, 54] or glass [55, 56],

and could utilize “hockey-stick” escalator couplers to

reduce the alignment tolerances for each chiplet [57].

This suggests that there exists an optimal block or chiplet

size Nblk for multi-chip modules, which will have to be

determined by the trade-off between intra-block errors (that

favors small Nblk) and inter-block losses (that favors large

Nblk).

For practical use as energy efficient deep learning accel-

erators, nanophotonic circuits will need to be scaled to

reach the sub-fJ/MAC energy target. Present-day foundry

processes face immense difficulties in scaling conventional

multiport interferometers to the large size required to

achieve this energy efficiency target. Furthermore, these

meshes suffer unacceptably high errors  (clem)
c ≳ 0.2 even in

the presence of error correction [21, 24, 25]. This brings us to

the regime below the recommended 4–8 bits of precision

that is usually targeted for DNN accelerators [58–60]. The

modularity of the SCF mesh, and its improved tolerance

to error, open up the regime of large-scale programmable

photonics, making the SCF mesh frontrunning candidate

architecture for future systems.
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