
A Self-stabilizing and Local

Delaunay Graph Construction�

Riko Jacob1, Stephan Ritscher1, Christian Scheideler2, and Stefan Schmid2

1 Institut für Informatik, Technische Universität München, D-85748 Garching,
Germany

jacob@in.tum.de, ritsches@in.tum.de
2 Department of Computer Science, University of Paderborn, D-33102 Paderborn,

Germany
scheideler@upb.de, schmiste@mail.upb.de

Abstract. This paper studies the construction of self-stabilizing topolo-
gies for distributed systems. While recent research has focused on chain
topologies where nodes need to be linearized with respect to their iden-
tifiers, we go a step further and explore a natural 2-dimensional gener-
alization. In particular, we present a local self-stabilizing algorithm that
constructs a Delaunay graph from any initial connected topology and in
a distributed manner. This algorithm terminates in time O(n3) in the
worst-case. We believe that such self-stabilizing Delaunay networks have
interesting applications and give insights into the necessary geometric
reasoning that is required for higher-dimensional linearization problems.

1 Introduction

Open distributed systems such as peer-to-peer systems are often highly dynamic
in the sense that nodes join and leave continuously. In addition to these natural
membership changes, a system is sometimes under attack, e.g., a botnet may
block entire network fractions by a denial-of-service attack. For these reasons,
there is a considerable scientific interest in robust and “self-healing” topologies
that can be maintained in a distributed manner even under high churn.

An important concept to build robust networks is topological self-stabilization:
A self-stabilizing network can provably recover from any connected state, that
is, eventually the network always returns to a desirable (to be specified) state.
Despite its relevance, topological self-stabilization is a relatively new area and
today, we still know only very little about the design of self-stabilizing algorithms.
In particular, while much existing literature focuses on eventual stabilization, the
required convergence times are still not well understood.

Recently, progress was made in the area of graph linearization where nodes
need to be arranged in a chain network which respects the node identifiers. In
this paper, we go one step further and explore the 2-dimensional case. We as-
sume nodes are distributed in the Euclidean plane and are arbitrarily connected.
� Research supported by the DFG project SCHE 1592/1-1. Due to space constraints,

many proofs and simulation results are only presented in the technical report [9].

Y. Dong, D.-Z. Du, and O. Ibarra (Eds.): ISAAC 2009, LNCS 5878, pp. 771–780, 2009.
c© Springer-Verlag Berlin Heidelberg 2009

772 R. Jacob et al.

A natural 2-dimensional analogon of linearization is the Delaunay graph, whose
edge set includes all nearest neighbor connections between node pairs. Delaunay
graphs are an important graph family in various CS domains, from computa-
tional geometry to wireless networking. This is due to their desirable properties
such as locality, sparseness or planarity. We find that while insights from graph
linearization are useful for self-stabilizing Delaunay graphs as well, the construc-
tion and analysis is more involved, requiring a deeper geometric reasoning.

1.1 Related Work

Researchers in the field of self-stabilization study algorithms that provably con-
verge to a desirable system state from any initial configuration. In the seminal
work by E.W. Dijkstra in 1974 [4], the problem of self-stabilization in a token
ring is examined. Subsequently, many aspects of distributed systems have been
explored from a self-stabilization point of view, including communication proto-
cols, graph theory problems, termination detection, clock synchronization, and
fault containment. Also general techniques for self-stabilization have been con-
sidered: In [1], Awerbuch and Varghese showed that every local algorithm can
be made self-stabilizing if all nodes keep a log of the state transitions until the
current state.

However, much of this work is not applicable to scenarios where faults in-
clude changes in the topology (e.g., see [6] for an early work on topological
self-stabilization): A single fault may require the involvement of all nodes in the
system and is hence expensive to repair. To reduce this overhead, researchers
have started to study so-called superstabilizing protocols [5]. Topological self-
stabilization is still in its infancy. Often, recovery algorithms do not work gen-
erally but only from certain degenerate network states (see, e.g., the technical
report of the Chord network). A notable recent exception is [8] which describes
a truly self-stabilizing algorithm for skip graphs. Unfortunately, however, skip
graphs do not maintain locality in the sense that nodes which are close in the
metric space are also close with respect to the hop distance, and therefore cannot
be used in our context.

In order to shed light onto the fundamental principles enabling provable topo-
logical self-stabilization, researchers have started to examine the most simple
networks such as line or ring graphs (e.g., [3, 7]). Our paper goes one step
further and initiates the study of self-stabilizing constructions of 2-dimensional
graphs. As a case study, we consider the important family of Delaunay graphs.
We assume nodes have (x, y) coordinates and are distributed in the Euclidean
plane. As Delaunay graphs include all nearest neighbor edges, our algorithms
also involve a kind of 2-dimensional linearization. However, it turns out that the
problem is more involved, and the reasoning requires geometric techniques. Still
we are able to prove a O(n3) convergence time in the worst-case.

1.2 Our Contributions

This paper presents the first self-stabilizing algorithm to build a Delaunay graph
from any weakly connected network. Our algorithm is local in the sense that

A Self-stabilizing and Local Delaunay Graph Construction 773

nodes are only allowed to communicate with their topological neighbors. Besides
correctness, we are able to derive a O(n3) worst-case bound on the convergence
time (i.e., number of communication rounds). We believe that this result has in-
teresting implications, and that our geometric reasoning can give general insights
into the design of higher-dimensional “nearest-neighbor graphs” respecting the
closeness of nodes in a self-stabilizing manner. If the initial network contains the
Delaunay graph, the convergence time is at most n rounds.

Compared to the trivial strategy to obtain a complete graph in O(log n)
rounds in a first phase and then compute the Delaunay graph “locally” at each
node in a second phase, our algorithm provides several advantages. First of all,
it is not necessary to distinguish between different execution phases: Each node
will perform updates according to the same set of rules at any time; only like
this, the algorithm is truly self-stabilizing. Furthermore, our algorithm can deal
efficiently with small topology changes: If only a small number of nodes joins or
leaves, the topology is repaired locally; a complete re-computation is not needed.
Finally the simulations show that the maximal degree and the total number of
edges remain rather small in general. This keeps the resource requirements at
each node small.

2 Model and Preliminaries

This section first introduces some notations and definitions from geometry.
Subsequently, the Delaunay graph is introduced together with some important
properties. In this paper, we will consider non-degenerate cases only, that is, we
assume that no two nodes are at the same location, no three points are on a line,
and no four points are on a circle.

2.1 Geometry

We consider the 2-dimensional Euclidean space R2. The scalar product is written
as 〈·, ·〉 and the Euclidean norm (the distance from the origin) is given by ‖x‖ =√〈x, x〉. We make use of the following notation. Let B(x, r) denote the disk (or
ball) with center x ∈ R2 and radius r ∈ R, i.e., B(x, r) := {y ∈ R2 : ‖x−y‖ ≤ r}.
Note that the border explicitly belongs to the ball in our model, and hence, a
point y ∈ B(x, r) may lie on the border. C(x, y) := B(1

2 (x + y), 1
2‖x − y‖) is

the disk between x, y ∈ R2. Similarly, C(x, y, z) := B(c, r) with r = ‖x − c‖ =
‖y − c‖ = ‖z − c‖ is the disk defined by non-collinear x, y, z ∈ R2. For a vector
x �= 0 we define 0 �= ⊥x ∈ R2 to be the perpendicular, i.e., 〈x,⊥x〉 = 0. Note
that ⊥x is unique up to constant factors.

By ∠xzy we denote the area spanned by the vectors x and y attached to z,
i.e., the area that can be expressed as a linear combination of the vectors x and y
with non-negative factors. In particular, ∠xzy = ∠yzx. If a node u is contained
in this area, we write u ∈ ∠xzy.

This paper makes use of the following simple geometric facts. For two general
points a, b ∈ R2, due to the triangle inequality, we have that ‖a+b‖ ≤ ‖a‖+‖b‖.

774 R. Jacob et al.

Moreover, ‖a+ b‖ = ‖a‖+ ‖b‖ ⇔ ∃t ≥ 0 : a = t · b. Pythagoras’ law says that for
any a, b ∈ R2 with 〈a, b〉 = 0, it holds that ‖a + b‖2 = ‖a‖2 + ‖b‖2. If we know
two points on the border of a disk, then their midpoint must be on a specific
straight line. Formally, let u, v, x ∈ R2. Then ‖u − x‖ = ‖v − x‖ if and only if
x = 1

2 (u + v) + t(u − v) for some t ∈ R. For the Euclidean norm, it holds for
C = C(u, v) for u, v ∈ R2 that w ∈ C and ‖w − u‖ ≥ ‖v − u‖ imply w = v.

For some proofs we want to choose a disk C̃ contained in a bigger disk C with
at least two points on the border of C̃. We can make the following observations.

Fact 2.1. Let C = B(x, r) be a disk with u, v ∈ C and u �= v. Then there is a
disk C̃ = B(x̃, r̃) ⊆ C with ‖u − x̃‖ = ‖v − x̃‖ = r̃.

For the opposite direction, given a set of points, we need a disk containing all of
them, with at least three on the border.

Fact 2.2. Let V ⊂ R2 be a finite set of points, not all of them collinear. Then
there are three different, not collinear points u, v, w ∈ V with C(u, v, w) ⊃ V .

2.2 Delaunay Graphs

We consider graphs with an embedding into R2. Let V ⊂ R2 be a finite set and
E ⊂ (

V
2

)
, then G = (V, E) is called undirected embedded graph with nodes V

and edges E. Let n = |V | be the cardinality of V . We define NG(u) = {v ∈ V :
{u, v} ∈ E} as the neighbors of u. Moreover, let NG(u) = NG(u) ∪ {u} denote
the neighbors of u including u.

Usually we speak of a directed graph G = (V, E) with E ⊂ V 2. Then a directed
edge from u to v is denoted by (u, v), the undirected edge {u, v} represents the
two directed edges (u, v) and (v, u) and NG(u) = {v ∈ V : (u, v) ∈ E}. NG(u) is
defined analogously. Note that any undirected graph can be seen as a directed
graph with this interpretation of undirected edges. This will be done implicitly
throughout the paper. A directed graph is called strongly connected, if for every
pair (u, v) of nodes u, v ∈ V there is a directed path from u to v. A direct
graph is weakly connected, if the graph obtained by replacing all directed edges
by undirected edges is connected.

Armed with these definitions, we can now define the Delaunay graph.

Definition 2.3 (Delaunay Graph). The Delaunay Graph

GD(V) = (V, ED(V))

of the vertices V is an undirected embedded graph defined by {u, v} ∈ ED(V) ⇔
u �= v ∧ ∃C = B(x, r) : C ∩ V = {u, v} i.e., u and v are connected, if and only
if there is a disk containing only these two points of V .

Recall that we will consider non-degenerate cases, that is, we assume there is
no disk B(x, r) with four different points x1, . . . , x4 ∈ V on its border, i.e.
∀B(x, r) : |V ∩ {y ∈ R2 : ‖x − y‖ = r}| ≤ 3. It is easy to see that the Delaunay
graph on a given node set always includes the convex hull edges.

A Self-stabilizing and Local Delaunay Graph Construction 775

2.3 Properties

We can give several equivalent formulations of Definition 2.3 that will be useful
in our analysis. In a Delaunay graph, two nodes u and v are connected if and
only if either they are the only two nodes in the disk C(u, v), or if there exists
a third node w such that u, v, and w are the only three nodes in C(u, v, w). [2]
Lemma 2.4. Let G = (V, ED(V)) be a Delaunay graph. Then

{u, v} ∈ ED(V) ⇔ u �= v ∧ (C(u, v) ∩ V = {u, v} ∨
∨∃w ∈ V \ {u, v} : C(u, v, w) ∩ V = {u, v, w})

The following lemma states that in a Delaunay graph, for each pair of non-
adjacent nodes, there must be a “close” neighboring node.
Lemma 2.5. Let G = (V, ED(V)) be a Delaunay graph and {u, v} /∈ ED(V).
Then every disk C = B(x, r) containing u and v must contain at least one
neighbor w ∈ NG(u) with ‖w − x‖ < r.
We need some properties about restrictions of Delaunay graphs to a subset of
nodes U ⊂ V . It is easy to see, that the restriction of the Delaunay graph of V
to U is contained in the Delaunay graph on U :
Lemma 2.6

U ⊂ V ⇒ ED(U) ⊃ ED(V) ∩ (U × U).

Proof. Let {u, v} be an edge in ED(V) ∩ (U × U). Then by Definition 2.3 there
is a disk C = B(x, r) such that C ∩ V = {u, v}. Since U ⊂ V , C ∩ U = {u, v}
and thus {u, v} ∈ ED(U). ��
Combining this lemma with the previous one, additional insights can be gained.
Let us pick U such that is contains the neighbors NG(u) of a node u. Then u has
the same neighbors in the Delaunay graph on U as in the original Delaunay graph.

Lemma 2.7. Let G = (V, ED(V)) be a Delaunay graph, u ∈ V and NG(u) ⊂
U ⊂ V . Then NGD(U)(u) = NG(u).

Proof. NGD(U)(u) ⊃ NG(u) is clear by Lemma 2.6. Now let {u, v} ∈ (U ×
U) \ ED(V). So, by Lemma 2.5, in each disc C = B(x, r) containing v, w there
is a neighbor w of u (i.e. w ∈ NG(u) ⊂ U). Thus, by Definition 2.3, {u, v}
/∈ ED(U). ��
The next, important characterization of Delaunay graphs also argues about edges
that are not Delaunay. If and only if two nodes u and v are not connected, there
must exist two neighbors x and y of u, such that the disk C(u, v, x) contains
only y, and x and y lie on different sides of the line connecting u and v.
Lemma 2.8. Let G = (V, ED(V)) be a Delaunay graph. Then

{u, v} /∈ ED(V) ⇔ ∃x, y ∈ V \ {u, v} : C(u, v, x) ∩ V ⊃ {u, v, x, y} ∧
∧〈x − u,⊥(v − u)〉 · 〈y − u,⊥(v − u)〉 ≤ 0

That is, x and y must be on different sides of the line connecting u and v. One
can even choose x, y ∈ NG(u).

776 R. Jacob et al.

We will later need the existence of special edges in Delaunay graphs. First, we
observe that a Delaunay node is always connected to the closest node, that is,
the Delaunay graph contains the nearest neighbor graph. The following lemma
follows directly from the observation that, for two closest neighbors u, v ∈ V ,
C(u, v) ∩ V = {u, v}.
Lemma 2.9. Let G = (V, ED(V)) be a Delaunay graph and u ∈ V . Then u is
connected to the node v ∈ V \ {u} with minimal Euclidean distance to u.

Another important property of Delaunay graphs is that they are connected.

Lemma 2.10. Every Delaunay graph G = (V, ED(V)) is connected. [12]

Moreover, it can be shown that these graphs have a planar embedding.

Lemma 2.11. Every Delaunay graph G = (V, ED(V)) is planar. [2]

2.4 Local Algorithms and Self-stabilization

The main objective of this paper is to devise a distributed algorithm—essentially
a simple set of rules—which is run by every node all the time. Independently
from the initial, weakly connected topology (nodes can be connected to any other
nodes from all over the metric space), a self-stabilizing algorithm is required to
eventually terminate with a correct Delaunay graph as defined in Definition 2.3.
During the execution of this algorithm, each node will add or remove edges to
other nodes using local interactions only. In order to evaluate the algorithm’s
performance, a synchronous model is investigated (similarly to [11]) where time
is divided into rounds. In a round, each node is allowed to perform an update of
its neighborhood, that is, remove existing edges and connect to other nodes. We
study the time complexity of the algorithm and measure the number of rounds
(in the worst-case) until a Delaunay graph is formed and the algorithm stops.

3 Self-stabilizing Algorithm

This section presents our algorithm ALG. During the execution of ALG, all
nodes continuously calculate a Delaunay graph on their neighbors, that is, each
node u computes the Delaunay graph on the node set N(u)—a triangulation
consisting of circular edges (“convex hull”) and radial edges. In the following, we
will call the considered node the active node and the calculated Delaunay graph
its so-called local Delaunay graph. Here active is not referring to an calculation
order but emphasizes the local role of the computing node for its local Delaunay
graph. Note that the local Delaunay graph of a node u, denoted by GL(G, u) =
(NG(u), ED(NG(u)), also contains edges that are not incident to u, but connect
neighbors of u.

The construction of the local Delaunay graph GL(G, u) is reminiscent of the
1-localized Delaunay graph LDEL(1)(NG(u)) introduced by Li et al. [10]. The
major difference is that [10] assumes an underlying unit disk graph to define the

A Self-stabilizing and Local Delaunay Graph Construction 777

neighbors of a node whereas in our construction the current approximation of
the Delaunay graph is used (which can be arbitrarily bad initially).

Informally, the active node keeps edges to neighbors in the local Delaunay
graph, and forms edges among them in a circular order around it. All other
nodes are deferred to some Delaunay neighbor of the active node. The Delaunay
update G̃ = (V, Ẽ) of G is the union of these update edges for all nodes in G.
Due to the division into rounds, the updates are well-defined and the actions of
different nodes in the same round do not interfere.

Definition 3.1 (Stable and Temporary Edges). Stable edges are undirected
and are currently—from a local point of view—consistent with the Delaunay
properties. Temporary edges on the other hand are directed and will appear, be
forwarded, and disappear again (i.e., become stable) during the execution of our
algorithm.

We are now ready to formally define the Delaunay update:

Definition 3.2 (Delaunay Update). Let G = (V, E) be a directed graph.

• The local Delaunay graph of u is GL(G, u) = (NG(u), ED(NG(u)).
• Each node u selects the following edges ES(G, u) from ED(NG(u)), which

will be kept for the next round:

ES(G, u) = Estable(G, u) ∪ Etemp(G, u)

where Rule I:

Estable = {{u, v} : v ∈ NGL(G,u)(u)}
(undirected edges from u to its neighbors in GL(u))

∪ {{v, w} : v, w ∈ NGL(G,u)(u)∧
�x ∈ NGL(G,u)(u) : x ∈ ∠vuw

}

(undirected circular edges between u’s neighbors)

and Rule II:

Etemp(G, u) =
{
(v, w) : v ∈ NGL(G,u)(u), w ∈ NG(u) \ NGL(G,u)(u)∧
∀x ∈ NGL(G,u)(u) : ‖x − w‖ ≥ ‖v − w‖}

(directed edges from u’s non-neighbors to neighbors)

Rule II keeps directed edges between a node’s neighbor and a non-neighbor
if there is no closer neighbor to the non-neighbor (a nearest connection
strategy).

• Then the Delaunay update is G̃ = (V, Ẽ) with

Ẽ =
⋃

u∈V

ES(G, u),

the graph that arises when all nodes have chosen their new neighbors for the
next round.

778 R. Jacob et al.

Observe that ALG follows a nearest neighbor strategy in the sense that tem-
porary circular edges are only allowed from closest neighbors to non-neighbors
of the active node. Moreover, an important property of our algorithm is that
temporary edges are forwarded to closer nodes. We will say the edge (u, v) is
passed to node w, if (u, v) is replaced by (w, v); the node pointed to remains the
same.

4 Analysis

We start with two fundamental properties of the Delaunay updates.

Lemma 4.1. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. Then Delaunay edges of G will also be in G̃, that is,

(u, v) ∈ E ∩ ED(V) ⇒ {u, v} ∈ Ẽ.

Proof. Since (u, v) ∈ E, u, v ∈ NG(u). By Lemma 2.6, {u, v} ∈ ED(NG(u)) and
by Definition 3.2, Rule I, {u, v} ∈ Ẽ. ��
Moreover, the following lemma claims that Delaunay updates maintain connec-
tivity.

Lemma 4.2. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. If G is (weakly or strongly) connected, then so is G̃.

Proof. It is enough to show, that for every neighbor w of u in G there is a
directed path from u to w in G̃. By Definition 3.2, we have to consider two
cases. If w ∈ NGL(G,u)(u), then (u, w) ∈ Ẽ is a path from u to w. Otherwise
(v, w) ∈ E for some v ∈ NGL(G,u)(u), since directed edges are forwarded between
nodes, while the pointed-to node remains the same. Thus (u, v) and (v, w) form
a path from u to w. ��
Note that Lemma 4.2 proves that all paths are maintained during updates.

4.1 Superfluous Edges

Lemma 4.1 implies that if every Delaunay edge will be created in some round, we
end up with a supergraph of GD(V). Assuming that this happened, this section
will show that all non-Delaunay edges will disappear after a few rounds, so that
we are left with just the Delaunay graph.

First we need that the circular connections of a node’s Delaunay neighbors
are Delaunay edges.

Lemma 4.3. Let G = (V, E) be a directed embedded graph with NG(u) ⊇
NGD(V)(u). Then

{{v, w} : v, w ∈ NGL(G,u)(u) ∧ �x ∈ NGL(G,u)(u) : x ∈ ∠vuw
} ⊆ ED(V).

A Self-stabilizing and Local Delaunay Graph Construction 779

The following helper lemma is crucial for our convergence analysis, as it shows
that non-Delaunay edges become shorter over time. The lemma takes into ac-
count that ALG follows a nearest neighbor strategy.

Lemma 4.4. Let G = (V, E) be a directed embedded graph with E ⊇ ED(V) and
G̃ = (V, Ẽ) its Delaunay update. Then for every non-Delaunay edge in G̃ there
is a strictly longer non-Delaunay edge in G, formally, (v, w) ∈ Ẽ \ ED(V) ⇒
∃(u, w) ∈ E \ ED(V) : ‖u − w‖ > ‖v − w‖.
We are now ready to prove that superfluous edges disappear quickly in at most
n rounds.

Lemma 4.5. Let G = (V, E) be a directed embedded graph with E ⊇ ED(V),
i.e., G is a supergraph of the Delaunay graph GD(V). Then ALG converges to
GD(V) in at most n rounds.

4.2 Fixpoint and Convergence

We will first show that there is no “dead end”, i.e., as long as we do not reach
the Delaunay graph, local updates will change the graph.

Lemma 4.6. Let V ⊂ R2 be a finite set of nodes in general positions. Then
the Delaunay graph G = GD(V) = (V, ED(V)) is the only weakly connected
stable graph on the nodes V , i.e., the only graph that equals its Delaunay update
G̃ = (V, Ẽ).

For the convergence proof we need a potential function.

Definition 4.7 (Potential φ). Let G = (V, E) be a directed embedded graph.
Then the potential φG(v) of a node v is defined as the number of nodes w ∈
V that are better approximations of the Delaunay neighbors than its current
neighbors. This means they would be neighbors of v in the local Delaunay graph
containing v, its neighbors and w. Formally

φG(v) = |{w ∈ V \ NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})}|.

The potential of the whole graph is φ(G) =
∑

v∈V φG(v).

We now observe that the potential φ(G) is monotone.

Lemma 4.8. Let G = (V, E) be a directed embedded graph and G̃ = (V, Ẽ) its
Delaunay update. Then φ(G) ≥ φ(G̃).

Combining all our insights, we can now prove our main result.

Theorem 4.9. Let G = (V, E) be a directed embedded, weakly connected graph.
Then ALG requires at most O(n3) rounds (i.e. Delaunay updates) until the topol-
ogy converges to the Delaunay graph GD(V).

780 R. Jacob et al.

Proof. Consider the sequence of graphs G0 = G, G1, . . ., where Gi+1 is the
Delaunay update of Gi = (V, Ei). Due to Lemma 4.2 each graph in this sequence
is weakly connected. As soon as ED(V) ⊆ Ei, we know Gi+n = GD(V) from
Lemma 4.5. So we just have to consider the case ED(V) �⊆ Ei.

From Lemma 4.8 we know that the potential cannot increase. In particular,
it holds that once a node leaves the potential set

{w ∈ V \ NG(v) : {v, w} ∈ ED(NG(v) ∪ {w})},
it will never be member of the set again. Therefore, it remains to show that
after every at most n steps, the cardinality of the set decreases (by a positive
integer value): Since the potential is bounded by n · (n − 1) and the only graph
with potential 0 is the Delaunay graph, this gives the desired bound on the
convergence time.

Now assume for the case of contradiction that the potential set has the same
cardinality for more than n rounds. This implies that no new Delaunay edge
appeared during this time period. Since each temporary edge is forwarded no
more than n − 1 times, the topology must describe a Delaunay fixpoint in the
sense of Lemma 4.6. Since the graph is connected, it must be the Delaunay
graph. This contradiction proves the claim. ��

References

[1] Awerbuch, B., Varghese, G.: Distributed program checking: A paradigm for build-
ing self-stabilizing distributed protocols. In: Proc. FOCS, pp. 258–267 (1991)

[2] Berg, M.d., Cheong, O., Kreveld, M.v., Overmars, M.: Computational Geometry:
Algorithms and Applications. Springer-Verlag TELOS, Heidelberg (2008)

[3] Clouser, T., Nesterenko, M., Scheideler, C.: Tiara: A self-stabilizing deterministic
skip list. In: Proc. SSS (2008)

[4] Dijkstra, E.: Self-stabilization in spite of distributed control. Communications of
the ACM 17, 643–644 (1974)

[5] Dolev, S., Herman, T.: Superstabilizing protocols for dynamic distributed systems.
Chicago Journal of Theoretical Computer Science 4, 1–40 (1997)

[6] Gafni, E.M., Bertsekas, D.P.: Asymptotic optimality of shortest path routing al-
gorithms. IEEE Trans. Inf. Theor. 33(1), 83–90 (1987)

[7] Gall, D., Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: Brief an-
nouncement: On the time complexity of distributed topological self-stabilization.
In: Proc. SSS (2009)

[8] Jacob, R., Richa, A., Scheideler, C., Schmid, S., Täubig, H.: A distributed poly-
logarithmic time algorithm for self-stabilizing skip graphs. In: Proc. PODC (2009)

[9] Jacob, R., Ritscher, S., Scheideler, C., Schmid, S.: A self-stabilizing and local
delaunay graph construction. Tech. Report TR-TI-09-307, University of Paderborn
(2009)

[10] Li, X.-Y., Calinescu, G., Wan, P.-J.: Distributed construction of planar spanner
and routing for ad hoc wireless networks. In: Proc. INFOCOM (2002)

[11] Onus, M., Richa, A., Scheideler, C.: Linearization: Locally self-stabilizing sorting
in graphs. In: Proc. ALENEX (2007)

[12] Stojmenovic, I.: Handbook of Wireless Networks and Mobile Computing. Wiley,
Chichester (2002)

	A Self-stabilizing and Local Delaunay Graph Construction
	Introduction
	Related Work
	Our Contributions

	Model and Preliminaries
	Geometry
	Delaunay Graphs
	Properties
	Local Algorithms and Self-stabilization

	Self-stabilizing Algorithm
	Analysis
	Superfluous Edges
	Fixpoint and Convergence

