
A Self-Stabilizing Distributed Algorithm for Minimal Total
Domination in an Arbitrary System Graph �

Wayne Goddard, Stephen T. Hedetniemi David P. Jacobs and Pradip K Srimani
Department of Computer Science

Clemson University
Clemson, SC 29634-0974

Abstract

In a graph � � �����, a set � � � is said to be to-
tal dominating if every � � � is adjacent to some mem-
ber of �. When the graph represents a communication net-
work, a total dominating set corresponds to a collection of
servers having a certain desirable backup property, namely,
that every server is adjacent to some other server. Self-
stabilization, introduced by Dijkstra [1, 2], is the most in-
clusive approach to fault tolerance in distributed systems
[3, 4]. We propose a new self-stabilizing distributed algo-
rithm for finding a minimal total dominating set in an arbi-
trary graph. We also show how the basic ideas behind the
proposed protocol can be generalized to solve other related
problems.

1 Introduction

In a distributed system, each node has a set of local vari-
ables whose contents specify the local state of the node.
The state of the entire system, called its global state, is the
union of the local states of all the nodes. Each node has
only a partial view of the global state, and this depends on
the connectivity of the system and the propagation delay of
different messages. Yet, the objective in a distributed sys-
tem is to arrive at a desirable global final state, or legitimate
state. One goal of a distributed system is to function cor-
rectly, i.e., the global state should remain legitimate in the
presence of faults (transient). Often, malfunctions or per-
turbations bring the system to some illegitimate state, and it
is desirable that the system be automatically brought back
to a legitimate state. Self-stabilization, introduced by Dijk-
stra [1, 2], is the most inclusive approach to fault tolerance
in distributed systems [3, 4]; it brings the system back to a

�This work has been supported by NSF grant # ANI-0073409 and NSF
grant # ANI-0218495

legitimate state, starting from any illegitimate state (caused
by any transient fault), without any intervention by an exter-
nal agent. In a self-stabilizing algorithm, each node main-
tains its local variables, and can make decisions based on
the knowledge of its neighbors’ states.

In a self-stabilizing algorithm, a node changes its local
state by making a move (a change of local state). The algo-
rithm is a set of rules of the form “if ���� then �”, where
���� is a predicate and � is a move. A node � becomes
privileged if ���� is true. When a node becomes privileged,
it may execute the corresponding move. We assume a se-
rial model in which no two nodes move simultaneously. A
central daemon selects, among all privileged nodes, the next
node to move. If two or more nodes are privileged, one can-
not predict which node will move next. Multiple protocols
exist [5, 6, 7] that provide such a scheduler. Our algorithms
can easily be combined with any of these protocols to work
under different schedulers as well.

A distributed system can be modeled with an undirected
graph � � �����, where � is a set of 	 nodes and � is a
set of
 edges. If � � � , then����, its open neighborhood,
denotes the set of nodes to which � is adjacent, and � ��� �
���� � ��� denotes its closed neighborhood. Every node
� � ���� is called a neighbor of node �. Throughout this
paper we assume � is connected and 	  �.

Recall that � � � is a dominating set [8, 9] if������ ��
� for every � � � � �. In the Turing machine model,
the problem of finding a dominating set of minimum size
is NP-hard [10], but finding minimal dominating sets is
straightforward and can be done in linear-time. In the
self-stabilizing model, several linear-time and polynomial-
time algorithms for finding minimal dominating sets appear
in [11, 12]. A set � � � is a total dominating set if
���� � � �� � for every � � � . If a dominating set in
a communication network represents a set of nodes neces-
sary to provide an acceptable level of service, then a to-
tal dominating set represents a similar set of servers with
the added capability that each server is adjacent to at least

1

psriman
Proceedings of the 8th IPDPS Workshop Formal Methods for Parallel Programming: Theory and Applications, Nice, France, April 22-26, 2003



one other server. In this way, each server has a backup re-
source. Should its capability as a server be compromised, it
can obtain backup from another server with a minimum de-
lay. Thus total dominating sets are more fault tolerant than
dominating sets. It has been shown [10] that the problem of
computing a total dominating set of minimum size is NP-
hard; no self-stabizing algorithm exists to compute either
the minimal total dominating sets or a minimal dominating
set of minimum cardinality.

In this paper we are interested in minimal total domi-
nating sets. We present a detreministic self-stabilizing al-
gorithm for finding such sets. It is to be noted that the
proposed algorithm uses distinct node IDs. We also show
how the proposed algorithm also generalizes to other related
problems.

2 Self-Stabilizing Total Domination Algo-
rithm

Our algorithm requires that every node have a unique ID.
We will sometimes use � interchangeably to denote a node,
and the node’s ID. We assume there is a total ordering on
the IDs.

In our algorithm, each node � has two variables: a pointer
���� (which may be null) and a booean flag ����. If ���� � �
then we say that � points to �. At any given time, we will
denote with � the current set of nodes � with ���� � true .

Definition 1 For a node �, we define 
��� as its neighbor
having the smallest ID.

Definition 2 We define the pointer expression ���� as fol-
lows:

���� �

��
�

��� if ���� �� � �
� if ���� �� � ���
	��� if 	���� ��	 
 ��

Note that the value ���� can be computed by � (i.e., it
uses only local information).

Definition 3 We define the boolean condition ���� to be true
if and only if some neighbor of � points to it.

The algorithm consists of one rule shown in Figure 1.
Thus, a node � is privileged if ���� �� ���� or ���� �� ����. If
it executes, then it sets ���� � ���� and ���� � ����.

Lemma 1 If Algorithm 1 stabilizes, then � is a minimal
total dominating set.

Proof: First, we claim that � is a total dominating set.
For suppose, by contradiction, that some node � is not to-
tally dominated (that is, has no neighbor in �). Then
���� � � � �. Since the system is stable, ���� � ���� �

if ����� �� ����� or ����� �� �����
then set ���� � ���� and ���� � ����

Figure 1. Algorithm 1: Minimal Total Dominat-
ing Set()


���, and 
��� �� �. But this implies ��
���� � ����
and ��
���� � �����, and so node 
��� is privileged, a
contradiction. Thus � is a total dominating set.

Next, we claim that � is minimal. For suppose there is
some � � � for which � � ��� is a total dominating set.
Since � � �, or ���� � t���, there is some vertex � � ����
for which ���� � �. But since ���� � ����, node � must be
a unique neighbor of � with membership in �. Thus the
removal of � will leave � undominated. �

We say that node � invites node � if, at some time �, node
� has no neighbor in � and then executes the rule, causing
���� � 
��� � �. For a node to join �, it must either be
pointed to from an initial erroneous state or be invited.

We now show our algorithm stabilizes. Observe that if
� remains the same, then every node can execute at most
once (to correct its pointer). So it suffices to show that �
changes at most a finite number of times.

Definition 4 We say a move is an in-move if it causes ����
to become true, thereby causing a node � to enter �.

Lemma 2 Let � be a node and suppose that between time �
and ��, there is no in-move by any node �  �. Then during
this time interval node � can make at most two in-moves.

Proof: The first in-move made by � may have been be-
cause a neighboring node happened to initially point to �.
The second in-move made by � must be by invitation. So
suppose � is invited by node �. Then � is the smallest node
in �’s neighborhood, since
��� � �, and at the time of invi-
tation, all other nodes in �’s neighborhood are out of�. By
our assumption, their membership status does not change,
so � remains pointing to � throughout, and so � remains in
� for the remaining duration of the time interval. �

Theorem 1 Algorithm 1 always stabilizes, and finds a min-
imal total dominating set.

Proof: It suffices to show that every node makes only a
finite number of in-moves. By Lemma 2, node 	, which
has largest ID, makes at most two in-moves. During each
of the three time intervals, when node 	 is not making an
in-move, using Lemma 2 again, node 	 � � makes at most
two in-moves. It is easy to show this argument can be re-
peated, showing that each node can make only finitely many
in-moves during the intervals in which larger nodes are in-
active. �

2



if ����� �� ����� or ����� �� �����
then set ���� � ���� and ���� � ����

Figure 2. Algorithm 2: Minimal Extended
Dominating Set()

3 Minimal Extended Domination

We now show how the basic ideas of the previous section
can be generalized to obtain algorithms for other domina-
tion problems. A dominating set is a set in which, for all
�,

	� ��� ��	 
 ��

and a total dominating set satisfies

	���� ��	 
 ��

Assume now that for each node � � � , the set � ���
represents some fixed subset of its closed neighborhood
� ���. Assume further that each node has a target integer
����  	� ���	, indicating how many elements of � ��� are
required to dominate �. Note that in the case of total dom-
ination � ��� is precisely ���� and ���� is uniformly one.
Given these assumptions we seek a minimal set� in which,
for all �,

	� ��� ��	 
 ����� (1)

Now, for the algorithm, each node has a set of pointers,
denoted ����, whose cardinality is bounded by ����; we al-
low ���� to contain �. Each node also has a boolean flag
����. As before, ���� should be true if and only if some
node points to �, and also as before,� will denote the set of
nodes with true flags at any point in time.

At a given time, assume 	� � � ���	 � �  ����. Then
since ����  	� ���	, there are at least ���� � � members in
� ��� � �. Let �� denote the unique set of those ���� �
� nodes in � ��� � � having smallest ID’s. Note this set
depends on �.

We define a set of pointers���� as follows.

���� �

�
�� � � ���� ��� if 	� ��� ��	 � �  ����
� if 	� ��� ��	  �����

As before, we define the boolean condition ���� to be
true if and only if some neighbor of � points to it. The al-
gorithm consists of one rule shown in Algorithm 2. Thus,
a node � is privileged if ���� �� ���� or ���� �� ����. If it
executes, then it sets ���� � ���� and ���� � ����. It is
easy to see that Algorithm 2 reduces to Algorithm 1 when
� ��� � ���� and ���� � � for all �.

Lemma 3 If Algorithm 2 stabilizes then� is a minimal set
satisfying (1).

Proof: We claim that � satisfies (1). By contradiction sup-
pose that for some �, 	� � � ���	 � ����. Then �� �� �,
and so there is some neighbor � � ����, � �� �. But ���� is
true and ���� is false, a contradiction. We now claim � is
minimal as well. For every node � � �, there is some node
� that points to it. Since ���� � ����, and since ���� �� �,
we must have 	� �����	 � �  ����. Thus, the removal of
� from� will leave 	� � � ���	 � ����. �

Again, we use the terminology that node � invites node �
(with � � � allowed) if at some time 	��� ���	 � � � ����,
� ���, � executes a move. For a node to join�, it must be
pointed to from an initial state or be invited.

Theorem 2 Algorithm 2 always stabilizes, and finds a min-
imal extended dominating set.

Proof: In light of Lemma 3 we need only show stabiliza-
tion. As before, observe that if � remains the same, then
every node can make at most one move (to correct its point-
ers). So it suffices to show that � changes at most a finite
number of times. In particular, it suffices to show that if dur-
ing the time interval from � to ��, ���� remains unchanged
for all nodes �  �, then during this interval node � can
make at most two in-moves. If � is never invited during this
interval, then once � leaves �, it cannot rejoin. So suppose
that during this interval � is invited by node �, allowing �
to make an in-move. Once � enters � it must remain there
if � continues pointing at it. And this is ensured, provided
	��� ���	  ���� throughout. Suppose at the time of invi-
tation, 	� �� ���	 � �. Nodes having ID’s larger than � do
not move during this period, but the smaller nodes can. At
the time of invitation, � is among the ������ smallest nodes
in � �����. Even if all nodes smaller than � were to enter
�, we would still have 	� � � ���	  ����. It follows that
� will remain pointing to � throughout, and � will remain in
�. Hence, ���� can make at most two in-moves during this
interval. �

4 Conclusion

We have propsed a self-stabilizing distributed algorithm
to maintain a minimal total domination set in a distributed
system graph; we have also shown how the ideas behind
the algorithm are powerful enough to design self stabilizing
algorithm for more complicated minimal extended dominat-
ing sets in a graph. We briefly discuss how the ideas can be
further generalized.

In signed domination, we require that the members of �
be in the majority of every closed neighborhood. An assign-
ment � � � � ���� �� is a signed dominating function if,
for every � � � , the sum of the values in � ��� is positive.

3



Equivalently, � is signed dominating if a strict majority of
the values in every closed neighborhood are positive. The
function � is minimal if the function � � obtained by reduc-
ing the value at any positive node, is never signed dominat-
ing. It is easy to see that minimal signed dominating func-
tions correspond to certain minimal extended dominating
sets. In particular, � � ���� �� is a minimal signed dom-
inating function if and only if the set � � ��	���� � ��
is a minimal extended dominating set in which for all �,

� ��� � � ��� and ���� �
�
�� ����

�

�
� �.

One may extend these ideas even further to weighted
domination. Here each node � has an allowable range of
values �	� �� � � � � ����� (in the previous section ���� was uni-
formly 1) and is assigned a weight ���. Each node also has
a target ���� for the sum

�
��� ���  ���. We want a minimal

assignment of values that satisfy the constraints. A primi-
tive way to achieve this is to provide each node with ����
flags each with separate ID. It is more efficient though to
provide each node with a counter!��� limited to the range
and an array of weights " ��� that counts how many times
the node points to each neighbor. We omit the details.

This extension handles other forms of graph domination
such as weak, strong and optional domination [8, 9]. It can
also be altered to allow a node to have weights in a range
�������� � � � � ����� and so handle minus domination.

References

[1] E. W. Dijkstra. Self-stabilizing systems in spite of
distributed control. Communications of the ACM,
17(11):643–644, November 1974.

[2] E. W. Dijkstra. A belated proof of self-stabilization.
Distributed Computing, 1(1):5–6, 1986.

[3] G. Tel. Introduction to Distributed Algorithms. Cam-
bridge University Press, 1994.

[4] H. Attiya and J. Welch. Distributed Computing: Fun-
damentals, Simulations and Advanced Topics. Mc-
Grah Hill, 1998.

[5] G Antonoiu and PK Srimani. Mutual exclusion be-
tween neighboring nodes in an arbitrary system graph
tree that stabilizes using read/write atomicity. In Euro-
Par’99 Parallel Processing, Proceedings LNCS:1685,
pages 823–830, 1999.

[6] J Beauquier, AK Datta, M Gradinariu, and F Magni-
ette. Self-stabilizing local mutual exclusion and dae-
mon refinement. In DISC00 Distributed Computing
14th International Symposium, Springer LNCS:1914,
pages 223–237, 2000.

[7] M Nesterenko and A Arora. Stabilization-preserving
atomicity refinement. In DISC99 Distributed
Computing 13th International Symposium, Springer
LNCS:1693, pages 254–268, 1999.

[8] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater. Fun-
damentals of Domination in Graphs. Marcel Dekker,
1998.

[9] T.W. Haynes, S.T. Hedetniemi, and P.J. Slater, edi-
tors. Domination in Graphs: Advanced Topics. Marcel
Dekker, 1998.

[10] M. R. Garey and M. R. Johnson. Computers and In-
tractability. Freeman, New York, 1979.

[11] S Ghosh, A Gupta, and MH Karaata SV Pemmaraju.
Self-stabilizing dynamic programming algorithms on
trees. In Proceedings of the Second Workshop on Self-
Stabilizing Systems, pages 11.1–11.15, 1995.

[12] S. M. Hedetniemi, S. T. Hedetniemi, D. P. Jacobs, and
P. K. Srimani. Self-stabilizing algorithms for minimal
dominating sets. To appear in Computer Mathematics
& Applications, 2002.

4


