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The aim of this study is to shorten the breathhold and diastolic acquisition window in
cardiac magnetic resonance fingerprinting (MRF) for simultaneous T1, T2, and proton
spin density (M0) mapping to improve scan efficiency and reduce motion artifacts.
To this end, a novel reconstruction was developed that combines low-rank subspace
modeling with a deep image prior, termed DIP-MRF. A system of neural networks is used
to generate spatial basis images and quantitative tissue property maps, with training
performed using only the undersampled k-space measurements from the current scan.
This approach avoids difficulties with obtaining in vivo MRF training data, as training
is performed de novo for each acquisition. Calculation of the forward model during
training is accelerated by using GRAPPA operator gridding to shift spiral k-space data
to Cartesian grid points, and by using a neural network to rapidly generate fingerprints
in place of a Bloch equation simulation. DIP-MRF was evaluated in simulations and at
1.5 T in a standardized phantom, 18 healthy subjects, and 10 patients with suspected
cardiomyopathy. In addition to conventional mapping, two cardiac MRF sequences were
acquired, one with a 15-heartbeat(HB) breathhold and 254 ms acquisition window,
and one with a 5HB breathhold and 150 ms acquisition window. In simulations, DIP-
MRF yielded decreased nRMSE compared to dictionary matching and a sparse and
locally low rank (SLLR-MRF) reconstruction. Strong correlation (R2 > 0.999) with T1 and
T2 reference values was observed in the phantom using the 5HB/150 ms scan with
DIP-MRF. DIP-MRF provided better suppression of noise and aliasing artifacts in vivo,
especially for the 5HB/150 ms scan, and lower intersubject and intrasubject variability
compared to dictionary matching and SLLR-MRF. Furthermore, it yielded a better
agreement between myocardial T1 and T2 from 15HB/254 ms and 5HB/150 ms MRF
scans, with a bias of −9 ms for T1 and 2 ms for T2. In summary, this study introduces an
extension of the deep image prior framework for cardiac MRF tissue property mapping,
which does not require pre-training with in vivo scans, and has the potential to reduce
motion artifacts by enabling a shortened breathhold and acquisition window.

Keywords: deep learning, deep image prior, cardiovascular imaging, low rank, multiparametric magnetic
resonance imaging (MRI), magnetic resonance fingerprinting (MRF), T1 mapping, T2 mapping
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INTRODUCTION

Cardiac magnetic resonance (CMR) T1 and T2 mapping are
useful for the detection of pathological changes in myocardial
tissue, including acute (1) and chronic inflammation (2, 3),
edema (4, 5), amyloid deposition (6), fatty infiltration (7),
and infarct (8). Multiparametric methods have recently been
developed to efficiently measure multiple tissue properties during
one scan (9–12). Cardiac magnetic resonance fingerprinting
(MRF) is one such technique that uses a time-varying pulse
sequence to encode several properties in magnetization signal
evolutions over time (13, 14). A time series of highly
undersampled images is acquired, typically with a single
image frame collected per repetition time (TR). Quantitative
maps are obtained using pattern recognition, where the signal
evolution (or “fingerprint”) measured at each voxel is matched
to a dictionary of fingerprints simulated for different tissue
property values.

While simultaneous T1, T2, and proton spin density (M0)
mapping using cardiac MRF has been demonstrated in healthy
subjects (15) and cardiomyopathy patients (16), respiratory
and cardiac motion present significant challenges, even when
breathholding and electrocardiogram (ECG) triggering are
employed. The highly accelerated non-Cartesian sampling used
in cardiac MRF introduces noise-like artifacts in the measured
fingerprints, and thus many image frames are collected to enable
accurate pattern recognition using the corrupted signals. Several
previous studies employed a relatively long breathhold of 15
heartbeats and diastolic acquisition window of approximately
250 ms as a result (15). However, this sequence may be susceptible
to motion if patients have difficulty holding their breath or have
elevated heart rates. While retrospective motion correction can
be used (17), an alternative strategy is to shorten the breathhold
and acquisition window to avoid the need for such corrections.

Shortening the MRF acquisition will result in fewer time
points in each fingerprint, which can impede accurate pattern
recognition. Several classes of reconstruction methods have
been developed to accelerate MRF scans, including model-
based reconstructions (18, 19), low-rank subspace techniques
(20–22), and deep learning (23). Deep learning methods have
gained particular interest for their excellent denoising capabilities
and fast computation times. While some MRF deep learning
reconstructions operate on single-voxel fingerprints (23, 24),
others use the fingerprints from many voxels within a spatial
neighborhood to estimate the tissue properties at a target voxel
(25), and thus can leverage both spatial and temporal correlations
in the MRF data to reduce noise and k-space undersampling
artifacts. Such a method was recently demonstrated for MRF
in the brain, where a convolutional neural network (CNN)
reconstruction enabled a 4-fold reduction in scan time compared
to conventional dictionary matching (25) and allowed for high-
resolution (submillimeter) mapping (26).

However, CNN reconstructions typically require training
using in vivo datasets, which presents a challenge for cardiac
MRF. It is difficult to collect ground truth tissue property maps
in the heart due physiological motion, as a scan time of several
minutes would be needed to obtain fully-sampled MRF data.

Furthermore, because the MRF scan is prospectively triggered,
the fingerprints depend on the subject’s cardiac rhythm (14), and
thus many datasets from subjects with different cardiac rhythms
(including fast or irregular rhythms commonly seen in patients)
would potentially be needed for training.

Recently, a deep image prior (DIP) technique was proposed
for image processing tasks that does not require pre-training
with ground truth datasets (27). Taking image denoising as
an example, a randomly initialized CNN learns to generate a
denoised image by minimizing the mean squared error loss
compared to a noise-corrupted image, with no requirements for
additional training data. The network architecture is typically
based on a u-net (28) and is designed so that lower spatial
frequencies are recovered before higher spatial frequencies (29).
Therefore, the network learns to generate natural images before
recovering higher frequency noise, so that training with early
stopping avoids overfitting to the noisy image. When applied to
inverse problems in medical imaging, a mathematical model of
the image acquisition can be incorporated in the loss function,
which has been applied to computed tomography (30), positron
emission tomography (31), and diffusion MRI (32).

This study introduces a self-supervised deep learning
reconstruction for cardiac MRF T1, T2, and M0 mapping for
the purpose of mitigating noise, reducing k-space undersampling
artifacts, and enabling a shortened acquisition to reduce motion
artifacts. The proposed method, termed DIP-MRF, combines
low-rank MRF subspace modeling with the denoising capabilities
of a deep image prior. A system of convolutional (u-net)
and fully-connected networks is used to generate spatial basis
images (i.e., images in a low-dimensional subspace derived from
the MRF signal evolutions) and quantitative maps, without
dictionary matching and without pre-training using in vivo data.
For each MRF acquisition, training is performed de novo using
only the undersampled k-space measurements from the current
scan by incorporating a mathematical model of the cardiac MRF
data acquisition in the loss function. DIP-MRF is shown to reduce
noise and undersampling artifacts compared to conventional
dictionary matching and low-rank subspace reconstructions.
Furthermore, DIP-MRF is leveraged to shorten the breathhold
duration from 15 to 5 heartbeats and diastolic acquisition window
from 250 to 150 ms, with results shown in healthy subjects
and cardiomyopathy patients, which has the potential to reduce
motion artifacts.

MATERIALS AND METHODS

Previous work has shown that an MRF dictionary, denoted by
D ∈ Cp × t , where p is the number of parameter combinations
and t is the number of time points, can be compressed along
time using a truncated singular value decomposition (SVD) that
retains only the first k singular values (33). The temporal basis
functions are denoted by Vk ∈ Ct × k, which is matrix whose
columns contain the first k right singular vectors. A compressed
dictionary, denoted by Dk ∈ Cp × k, can be obtained according
to Dk = DVk. Similarly, if x ∈ Cn × t denotes a time series
of MRF images with n voxels, then multiplication by Vk yields
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a set of spatial basis images in this low-dimensional subspace,
denoted by xk = xVk, where xk ∈ Cn × k. Multiplying the
spatial basis images by the complex conjugate V∗k will yield
a low-rank approximation to the original MRF image series,
x ≈ xkV∗k . Low-rank subspace reconstructions for MRF have
been proposed that iteratively remove noise and undersampling
artifacts from the spatial basis images, sometimes with additional
regularization terms using spatial sparsity and/or locally low rank
regularization, before matching to the compressed dictionary to
obtain quantitative maps (21, 22, 34, 35).

This study extends the deep image prior framework using
a low-rank cardiac MRF signal model. An overview of the
DIP-MRF reconstruction pipeline is shown in Figure 1.
A convolutional u-net generates spatial basis images, which are
input to a fully-connected network that outputs quantitative
maps, neither of which require pre-training with in vivo data.
Rather, the networks are trained in a self-supervised manner to
enforce consistency with the undersampled k-space data from a
single scan by incorporating the MRF forward encoding model
in the loss function. The forward model includes (1) simulation
of a time series of MRF images from the tissue property maps,
(2) projection of images onto the low-dimensional subspace, (3)
coil sensitivity encoding, and (4) spiral k-space undersampling.
Calculation of the forward model is accelerated by (1) a pre-
trained neural network that rapidly outputs fingerprints instead
of using a more time-consuming Bloch equation simulation
(36), and (2) preprocessing the spiral MRF k-space data with
GRAPPA operator gridding (GROG) to obtain data in Cartesian
k-space (37). The following sections will describe the DIP-MRF
pipeline in more detail.

Pre-trained Fingerprint Generator
Network
Calculating the forward model requires repeated simulations of
MRF signal evolutions at every iteration. To reduce computation
time, this step is performed using a neural network called the
Fingerprint Generator Network (FGN), which rapidly outputs
signal evolutions for arbitrary T1, T2, and cardiac rhythm timings
(Figure 2A) and has been described previously (36). The network
is fully-connected with two hidden layers and 300 nodes per layer.
The input consists of a T1 value, a T2 value, and the subject’s
cardiac rhythm timings (specifically, a vector of RR interval
times) recorded by the ECG during the scan. The output is a
vector of length 2t containing interleaved real and imaginary
parts of the fingerprint. The FGN is the only neural network
component in the DIP-MRF pipeline that requires pre-training.
The pre-training is performed only one time using fingerprints
produced by a Bloch equation simulation for different T1, T2,
and cardiac rhythm timings, after which the same network can be
applied to any subsequent scan regardless of the subject’s cardiac
rhythm. Supplementary Figure 1 gives additional details about
pre-training the FGN.

Low-Rank Signal Approximation
Although DIP-MRF does not use pattern recognition, a
dictionary of fingerprints is calculated temporarily in order to

derive the temporal basis functions Vk (33). The FGN is used to
output a dictionary of approximately 23,000 fingerprints with T1
between 50–3,000 ms and T2 between 5–1,000 ms, which takes
30 ms on a GPU. Next, the SVD of the dictionary is calculated
(taking approximately 1 s), and the temporal basis functions are
obtained from the first k right singular vectors (Figure 2B). This
study uses a rank of k = 5, which retains more than 99.9% of the
energy compared to the uncompressed fingerprints.

GRAPPA Operator Gridding
Preprocessing and Coil Sensitivity
Estimation
The forward model calculation requires repeated iterations
between image and k-space domains. To avoid time-consuming
operations using the non-uniform fast Fourier Transform
(NUFFT) (38), the MRF spiral k-space data are preprocessed
using GROG, a parallel imaging technique that shifts non-
Cartesian k-space data to unmeasured Cartesian locations using
GRAPPA weight matrices (37). The weight matrices for unit
shifts along kx and ky are calibrated using a fully-sampled
dataset; this dataset is obtained by taking the temporal average
of the multicoil MRF k-space data, gridding a time-averaged
image using the NUFFT, and performing an FFT to obtain
multicoil Cartesian k-space data. The central 48 × 48 region
of the Cartesian k-space is used for GROG calibration. Coil
sensitivity maps are estimated from the time-averaged multicoil
images using the adaptive combination method (39). The GROG
density compensation function, denoted by W, is obtained
by counting the number of spiral k-space points that are
shifted to each Cartesian coordinate. After calibration, the
GROG weights are applied to shift undersampled spiral MRF
k-space data onto a Cartesian grid, and each time frame
of the resulting Cartesian k-space dataset is multiplied by
W. A binary mask, denoted by Pi, is stored that indicates
the sampled (acquired) points on the Cartesian grid at
each time index i.

Neural Network Architectures
A convolutional u-net, which is not pre-trained, is used to
output the MRF spatial basis images. This network will be
called the image reconstruction network (IRN) and is shown
in Figure 3. Inspired by the original DIP publication (27),
the input is a tensor denoted by z ∈ Rny × nx × d of uniform
random numbers between −0.1 and 0.1, where ny and nx are
the spatial dimensions in voxels, and d is a tunable parameter
defining the number of feature channels in the first layer of
the network. This study uses d = 32 to be consistent with
the original DIP work, but this parameter was not found to
have much impact on the reconstruction. The IRN performs
a series of 2D convolutions followed by batch normalization,
leaky ReLU activation, and an optional dropout layer. The data
pass through five downsampling and upsampling paths with
multiple skip connections. Downsampling is implemented using
convolution with a 2 × 2 stride, and upsampling is performed
using nearest neighbor interpolation followed by convolution.
The network output has size ny × nx × 2k, where the channel
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FIGURE 1 | Overview of the DIP-MRF reconstruction. A system of neural networks outputs spatial basis images and T1, T2, and M0 maps, with no additional in vivo
training data needed beyond the undersampled k-space data from the current scan. (A) The image reconstruction network (IRN) is a convolutional u-net that outputs
a set of k spatial basis images. The input is a tensor of random numbers that remains fixed throughout training. Training is performed in a self-supervised manner by
simulating the cardiac MRF forward encoding model. This step includes multiplication by coil sensitivity maps, fast Fourier transformation (FFT), projection of k-space
data from the low-dimensional subspace to the time domain, and multiplication by spiral undersampling masks. The resulting k-space data are compared to the
acquired k-space measurements, after density compensation, at the sampled locations using a mean squared error loss function (Loss 1), and IRN is updated using
backpropagation. (B) A fully-connected network, referred to as the Parameter Estimation Network (PEN), uses the spatial basis images to output tissue property
maps. Specifically, it outputs T1, T2, and a complex-valued M0 scaling term. The T1 map, T2 map, and cardiac rhythm timings (RR intervals) from the ECG are input
to the fingerprint generator network, which is a pre-trained fully-connected network that can be thought of as an efficient Bloch equation simulator that rapidly
outputs cardiac MRF signal evolutions (fingerprints). The simulated fingerprints at all voxels are multiplied by the complex M0 map to yield a time series of images.
The images are projected onto the low-dimensional subspace and compared to the spatial basis images that were output by the IRN using a mean squared error
loss function, and the PEN is updated using backpropagation (Loss 2). Note that the IRN and PEN are trained in parallel.

dimension contains the interleaved real and imaginary parts of
the k spatial basis images.

A fully-connected network, which also is not pre-trained,
outputs quantitative T1, T2, and M0 maps from the spatial
basis images. This network will be called the parameter
estimation network (PEN) and is shown in Figure 4. The
PEN has two hidden layers with 300 nodes per layer. Before
being input to the network, the spatial basis images are
vectorized to have size

(
nynx

)
×

(
2k
)
, where the second

(channel) dimension contains interleaved real and imaginary
signal intensities. The network output has one channel for
each tissue property. As in previous MRF studies (13, 14),
M0 is modeled as a complex-valued scaling factor between
the measured and simulated fingerprints, so the output has
four channels for T1, T2, and the real and imaginary parts of
M0.

Self-Supervised Training
The IRN and PEN networks are trained de novo for each
reconstruction in a self-supervised manner (Figure 1). Both
networks are initialized with random weights and biases.
Additionally, the input (z) to the IRN is initialized with random
numbers and remains fixed throughout training. Both networks
are trained in parallel using a loss function with two terms, one
for updating each network. First, letting θIRN denote the network

parameters of the IRN, the spatial basis images generated by the
IRN can be written as,

xk = θIRN (z) (1)

The spatial basis images are multiplied by coil sensitivity maps
(S), transformed to k-space by performing an FFT, and multiplied
by V∗k to yield time series data. To reduce memory requirements,
a subset of time frames is selected as mini-batch at this point.
In practice, this is implemented by using V∗i,k instead of Vk,
where V∗i,k denotes the ith column vector from V∗k (note that
multiplication by V∗i,k projects data from the subspace to the time
domain and extracts only the ith time frame). The k-space data
for time frame i are multiplied by the spiral undersampling mask
for the corresponding time frame (Pi) and by the GROG density
compensation function (W). The estimated multicoil k-space
data for time frame i, denoted by ỹi, can be written as,

ỹi = WPi
(
(FSxk)V∗i,k

)
(2)

The first loss term is calculated as the mean squared error
between ỹi and the acquired multicoil k-space measurements
after density compensation, denoted by yi, at the sampled
locations, and the IRN is updated using backpropagation.

min
θIRN

∑∣∣∣∣yi−ỹi∣∣∣∣22 (3)
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FIGURE 2 | Schematic of the fingerprint generator network (FGN) and derivation of the low-dimensional subspace. (A) The FGN is a fully-connected network with
two hidden layers. The input consists of a T1 value, T2 value, and vector of RR interval times (RR1, RR2, . . ., RRHB−1) recorded by the ECG, where RRi denotes the
elapsed time (in milliseconds) between the end of the acquisition window in heartbeat i and the beginning of the acquisition window in heartbeat i + 1, and HB is the
total number of heartbeats in the scan. The output is a vector of length 2t, where t is the number of repetition times (i.e., number of time points), which contains the
interleaved real and imaginary parts of an MRF fingerprint. (B) The FGN is used to calculate a dictionary of fingerprints for different T1 and T2 combinations specific
for the patient’s cardiac rhythm timings (left panel). The SVD of the dictionary is calculated in order to derive the low-rank approximation used in the DIP-MRF forward
model calculation (right panel).

The PEN is updated in parallel using a second loss term.
The T1 and T2 maps output by the PEN, along with the
subject’s RR interval times from the ECG, are input to the FGN
to yield simulated fingerprints at each voxel location. These
fingerprints are multiplied by the complex-valued M0 map to
obtain a time series of images that are projected onto the subspace
by multiplication with Vk. Letting θPEN and θFGN denote the
network parameters of the PEN and FGN, respectively, the
second loss term is calculated as the mean squared error between
the resulting images and the spatial basis images output by the
IRN:

min
θPEN

∑
||xk − (M0θFGN (T1,T2,RR))Vk||

2
2 (4)

For all experiments, training was performed for 30,000
iterations using an Adam optimizer with learning rate 0.001. DIP-
MRF was implemented in Tensorflow (v2.8) with Keras on a
GPU (NVIDIA Tesla v100 16GB). A mini-batch size of 32 image
frames was used to calculate the loss for the IRN.

Cardiac Magnetic Resonance
Fingerprinting Acquisition Parameters
Data were collected using a fast imaging with steady state
precession (FISP) cardiac MRF sequence with a 15-heartbeat

(HB) breathhold and 254 ms ECG-triggered diastolic acquisition
(15, 40). Variable flip angles (4–25◦) and a constant TR/TE of
5.4/1.4 ms were employed. A total of 705 undersampled images
were collected (one image per TR) with 47 images acquired
every heartbeat. Magnetization preparation pulses were applied
before the acquisition window in each heartbeat according to the
following schedule, which repeated three times during the scan:
HB1—inversion (21 ms), HB2—no preparation, HB3—T2 prep
(30 ms), HB4—T2 prep (50 ms), HB5—T2 prep (80 ms).

In addition, shortened MRF acquisitions were investigated
having a five-heartbeat breathhold and progressively shorter
acquisition windows. These were based on the same sequence
structure, with the only difference being that the flip angle pattern
within each heartbeat was truncated to fit within the desired scan
window. An example of a flip angle series for a shortened scan
is shown in Supplementary Figure 2. All data were acquired
using a 48-fold undersampled spiral k-space trajectory (41) with
a readout duration of 3.4 ms, matrix size of 192 × 192, field-of-
view (FOV) of 300 × 300 mm2, and golden angle rotation of the
trajectory every TR (42).

Simulation Experiments
Simulations were performed to investigate the feasibility of
shortening the breathhold and diastolic scan window in cardiac
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FIGURE 3 | Schematic of the image reconstruction network (IRN), which outputs MRF spatial basis images. The input, z, is a tensor of uniformly distributed random
numbers between −0.1 and 0.1 that remains fixed while training the network. The network is a u-net that performs a series of 2D convolutions. It has five
downsampling and upsampling paths with multiple shortcut connections. The network outputs the MRF spatial basis images—i.e., images in a low-dimensional
subspace of rank k that was derived from a dictionary of simulated signal evolutions, as described in Figure 2. The number of 2D filters is listed above each
convolutional layer (indicated by the blue rectangles).

FIGURE 4 | Schematic of the parameter estimation network (PEN), which estimates quantitative maps from the spatial basis images. Before being input to the
network, the spatial basis images are first vectorized to have size nynx (the batch dimension) by 2k (the channel dimension), where the channel dimension contains
interleaved real and imaginary signal intensities from the k spatial basis images, and ny and nx are the spatial dimensions (number of voxels). The network has two
hidden layers with 300 nodes per layer. The output has four channels corresponding to T1, T2, and the real and imaginary parts of the M0 scaling term.

MRF. In addition to the scan with a 15HB breathhold and
254 ms acquisition window (705 total TRs), scans with a 5HB
breathhold and acquisition windows of 254 ms (235 total TRs),

200 ms (185 total TRs), 150 ms (140 total TRs), 100 ms (95
total TRs), and 50 ms (45 total TRs) were simulated. The MRF
data acquisition was simulated, including Bloch equation signal
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simulation, coil sensitivity encoding with 8-channel sensitivity
maps, and spiral k-space undersampling using the NUFFT.
Complex Gaussian noise was added to the k-space data having
a standard deviation of 0.1% of the maximum amplitude of
the direct current (DC) signal. For each sequence variant, maps
were reconstructed in three ways. In the first method (direct
matching), one undersampled image was gridded every TR
using the NUFFT, followed by dot product matching with a
dictionary generated by a Bloch equation simulation to obtain
T1, T2, and M0 maps (13). In the second method (SLLR-
MRF), a sparse and locally low rank MRF reconstruction was
performed (34), which yielded a set of k = 5 spatial basis
images that were matched to an SVD-compressed dictionary.
Locally low rank regularization with an 8 × 8 patch size and
l1-wavelet regularization were used with regularization weights
of λLLR = 0.02 and λwav = 0.005 relative to the maximum
intensity in the basis images. The reconstruction was solved
using non-linear conjugate gradient descent with 25 iterations.
The third method (DIP-MRF) consisted of GROG preprocessing
followed by the DIP-MRF reconstruction. The reconstructions
were compared using the normalized root mean square error
(nRMSE) relative to the ground truth T1 and T2 maps, computed
over all non-background voxels (i.e., all voxels where the ground
truth M0 was non-zero).

A second set of simulations evaluated the robustness of DIP-
MRF to noise. For the sequence with a 5HB breathhold and
150 ms acquisition window, complex Gaussian noise was added
to the k-space data having standard deviations (σN) of 0, 0.1, 0.2,
and 0.3% relative to the maximum amplitude of the DC signal.
Maps were reconstructed using direct matching, SLLR-MRF, and
DIP-MRF and compared in terms of nRMSE.

A third set of simulations assessed the impact of applying
dropout during training (43). For the sequence with a 5HB
breathhold and 150 ms acquisition window, the DIP-MRF
reconstruction was repeated where different levels of dropout
(0, 10, and 20%) were applied after each convolutional
layer when training the IRN, and the maps were compared
in terms of nRMSE.

Phantom Experiments
Experiments were performed using the ISMRM/NIST MRI
system phantom (44) on a 1.5T scanner (MAGNETOM Sola,
Siemens Healthineers, Erlangen, Germany). An 8 mm slice
was planned through the T2 layer of the phantom, which has
14 spheres spanning a range of physiological relaxation times
with T1 90–2,230 ms and T2 10–750 ms. An artificial heart
rate of 60 bpm was simulated on the scanner. Data were
collected using two cardiac MRF sequences: a sequence with
a 15HB breathhold and 254 ms acquisition window and a
sequence with a 5HB breathhold and 150 ms acquisition window.
Maps were reconstructed using direct matching, SLLR-MRF, and
DIP-MRF. Data were also acquired with conventional cardiac
mapping sequences using Siemens MyoMaps software (45). T1
maps were collected with 5(3)3 modified look-locker inversion
recovery (MOLLI) (46), and T2 maps were collected using
a 1(3)1(3)1 T2-prepared balanced steady state free precession
(bSSFP) sequence with T2 prep times of 0, 25, and 55 ms (5).

Conventional cardiac mapping scans used GRAPPA with an
acceleration factor of 2 and 24 autocalibration lines, 6/8 partial
Fourier, a flip angle of 35◦, and a scan window of 209 ms.
All scans were collected with a matrix size of 192 × 192
and 300 mm2 FOV. Reference T1 values were measured using
an inversion recovery spin echo sequence with TR = 10 s,
TE = 12 ms, and inversion times of 21, 100, 200, 400, 800, and
1,600 ms. Reference T2 values were measured with a single-
echo spin echo sequence with TR = 10 s and echo times of
10, 20, 40, 60, 100, 150, and 200 ms. Mean relaxation times
were measured within each vial and compared to reference
values using linear regression and Bland-Altman analyses (47).
T2 values above 200 ms were excluded from analysis because
the cardiac MRF sequence was not designed for that regime,
considering that the longest T2 prep time was 80 ms (for
completeness, measurements in all 14 vials are reported in the
Supplementary Material).

Scans in Healthy Subjects and Patients
Eighteen healthy subjects were scanned at 1.5T after obtaining
written informed consent in this IRB-approved, HIPAA-
compliant study. All scans were performed during an end-
expiratory breathhold at a mid-ventricular slice position. MOLLI
and T2-prep bSSFP mapping were performed in all subjects.
Data were also acquired using 15HB/254 ms and 5HB/150 ms
cardiac MRF acquisitions, and maps were reconstructed using
direct matching, SLLR-MRF, and DIP-MRF. To study the effects
of training with dropout and to determine the optimal dropout
percentage, the DIP-MRF reconstruction was repeated in three
subjects with 0, 5, 10, 20, and 30% dropout applied after each
convolutional layer when training the IRN. Unless otherwise
states, the DIP-MRF reconstruction used dropout levels of
10 and 20% for the 15HB/254 ms and 5HB/150 ms MRF
acquisitions, respectively.

In addition, data were collected in ten patients referred for
a clinical CMR exam due to suspected cardiomyopathy. Native
T1 and T2 maps were collected using the same protocol as in
healthy subjects. Post-contrast T1 and T2 maps were acquired
15–25 min after IV injection of 0.2 mmol/kg body weight
gadoteridol (ProHance, Bracco Diagnostics Inc., Princeton,
NJ, United States). While post-contrast MRF scans (both
15HB/254 ms and 5HB/150 ms versions) were performed in
all patients, post-contrast MOLLI and T2-prep bSSFP sequences
were only collected in nine and three patients, respectively.

In vivo data were analyzed by manually segmenting the maps
according to American Heart Association (AHA) guidelines
(48). The mean and standard deviation for T1 and T2 were
measured within each AHA segment and over all voxels in
the myocardium. Similarly, T1 and T2 values were measured
within the left (LV) and right ventricular (RV) blood pools after
manual segmentation, taking care to avoid trabeculations and
papillary muscles. Intersubject variability was quantified as the
standard deviation of the mean T1 or T2 values over all subjects.
Intrasubject variability was quantified by measuring the standard
deviation in T1 or T2 for each subject and then calculating the
mean over all subjects. T1 and T2 measurements using different
reconstruction methods within the same subject were compared
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using a within-subjects ANOVA test with a Bonferroni post-
hoc test for multiple comparisons, with p < 0.05 indicating
statistical significance, as well as Bland-Altman plots. T1 and
T2 measurements between healthy subjects and patients were
compared using a two-sample t-test.

RESULTS

Simulation Experiments
Figure 5A shows simulation results using MRF sequences with
different breathhold and acquisition window lengths. In all cases,
the nRMSE was highest with direct matching and lowest with
DIP-MRF, and this difference was more pronounced for shorter
sequence lengths. As the breathhold and acquisition window
were shortened, nRMSE increased for direct matching and SLLR-
MRF but remained consistently low for DIP-MRF. For the
15HB/254 ms sequence, the nRMSE was (T1 6.5%, T2 11.2%)
for direct matching, (T1 2.9%, T2 4.3%) for SLLR-MRF, and (T1
1.4%, T2 0.7%) for DIP-MRF. For the 5HB/150 ms sequence, the
nRMSE was (T1 13.4%, T2 20.2%) for direct matching, (T1 6.4%,
T2 9.1%) for SLLR-MRF, and (T1 1.2%, T2 0.8%) for DIP-MRF.
Supplementary Figure 3 shows examples of T1, T2, and M0 maps
from the simulation study.

Figure 5B plots the nRMSE for the 5HB/150 ms sequence
as the k-space data were corrupted with different amounts of
complex Gaussian noise. The nRMSE was highest with direct
matching and lowest with DIP-MRF at all noise levels. At the
highest noise level tested (σN = 0.3% of the DC signal), the
nRMSE was (T1 14.9%, T2 22.5%) for direct matching, (T1 10.0%,
T2 14.6%) for SLLR-MRF, and (T1 1.5%, T2 0.9%) for DIP-MRF.

Supplementary Figure 4 demonstrates the importance of
applying dropout in DIP-MRF, with simulation results shown
for the 5HB/150 ms sequence. Without dropout, the nRMSE
reached a minimum (T1 1.7%, T2 1.0%) after approximately
5,000 iterations. The nRMSE increased gradually with further
training due to overfitting to noise and undersampling artifacts,
reaching (T1 2.2%, T2 1.4%) after 30,000 iterations. Using
dropout improved the reconstruction accuracy, as the minimum
nRMSE was lower compared to the 0% dropout case, and it
reduced overfitting, allowing the network to be trained for longer
without causing the nRMSE to increase. For example, with 20%
dropout, the nRMSE reached a minimum of (T1 1.5%, T2 0.8%)
after 12,000 iterations and only increased slightly to (T1 1.7%, T2
1.0%) after 30,000 iterations.

Phantom Experiments
Bland-Altman plots showing the agreement between
15HB/254 ms MRF, 5HB/150 ms MRF, and conventional
mapping sequences relative to reference values are shown in
Figure 6; linear regression plots of the same data are shown in
Supplementary Figure 5, and T2 measurements in all 14 vials
(including vials with T2 > 200 ms) are given in Supplementary
Figures 6, 7. There were no significant differences in T1 or
T2 relative to reference values for all MRF methods. Using
DIP-MRF, the bias and 95% limits of agreement (LoA) for T1
were 4 ms (−45, 52)ms for the 15HB/254 ms sequence and

−5 ms (−61, 51) ms for the 5HB/150 ms sequence; for T2, they
were −0.9 ms (−5.5, 3.7) ms for the 15HB/254 ms sequence and
0.2 ms (−3.1, 3.4) ms for the 5HB/150 ms sequence. In general,
DIP-MRF yielded narrower limits of agreement compared to
direct matching and SLLR-MRF. MOLLI slightly underestimated
T1 with a bias of −39 ms and 95% LoA of (−86, 8) ms. T2-prep
bSSFP overestimated T2 with a bias of 35.6 ms and 95% LoA of
(−45.9, 117.2) ms. This overestimation was larger for vials with
short T2 values below approximately 100 ms, which is apparent
on the linear regression plots (Supplementary Figure 5). The
correlation coefficients were similar among all reconstructions
for the 15HB/254 ms MRF sequence, with all R2 > 0.998. For
the 5HB/150 ms sequence, the correlation was slightly higher
for DIP-MRF (R2 = 0.999 for T1, R2 = 1.000 for T2) compared
to direct matching (R2 = 0.998 for T1, R2 = 0.995 for T2) and
SLLR-MRF (R2 = 0.998 for T1, R2 = 0.999 for T2).

Scans in Healthy Subjects
Representative maps in a healthy subject using 15HB/254 ms
MRF, 5HB/150 ms MRF, and conventional mapping sequences
are shown in Figure 7. Additional examples are provided in
Supplementary Figures 8–10. Some noise enhancement was
observed with direct matching for the 15HB/254 ms MRF
sequence, with better map quality using SLLR-MRF and DIP-
MRF reconstructions. The improvement using DIP-MRF was
especially pronounced for the 5HB/150 ms sequence; direct
matching led to severe noise enhancement and aliasing artifacts,
SLLR-MRF provided only moderate noise suppression, and
DIP-MRF gave the best suppression of noise and aliasing
artifacts while preserving high resolution details, such as the
papillary muscles.

Figure 8 shows examples of spatial basis images from DIP-
MRF compared to those from conventional NUFFT gridding
and SLLR-MRF. Noise enhancement was observed with NUFFT
gridding, especially for the 4th and 5th basis images, which was
partially reduced using SLLR-MRF, with DIP-MR yielding the
best image quality.

Figure 9 demonstrates the effect of training DIP-MRF with
different levels of dropout, akin to the simulation results in
Supplementary Figure 4. From a visual inspection of the maps,
the dropout level that yielded the best noise suppression while
preserving high resolution details was 10% for the 15HB/254 ms
sequence and 20% for the 5HB/150 ms sequence, when the
number of training iterations was fixed at 30,000. Noise
enhancement and residual aliasing artifacts were observed at
lower dropout levels, whereas overly smoothed maps with loss
of fine resolution details were seen at higher dropout levels.
Results in two additional subjects are shown in Supplementary
Figures 11, 12.

Boxplots summarizing the average relaxation times over all
subjects in the myocardial septum are shown in Figure 10. T1
values reported as mean ± standard deviation were: MOLLI
(1,006 ± 28 ms); 15HB/254 ms MRF with direct matching
(1,043 ± 36 ms), SLLR-MRF (1,064 ± 42 ms), and DIP-MRF
(1,044 ± 33 ms); and 5HB/254 ms MRF with direct matching
(1,065 ± 53 ms), SLLR-MRF (1,072 ± 39 ms), and DIP-MRF
(1,035 ± 32 ms). T2 values were: T2-prep bSSFP (47.7 ± 1.6 ms);
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FIGURE 5 | Simulation results in the MRXCAT phantom comparing the deep image prior (DIP-MRF) to direct matching and a low-rank subspace reconstruction
(SLLR-MRF). (A) nRMSE plots of the T1 and T2 maps are shown for different cardiac MRF sequence lengths. Results are shown for MRF with a 15-heartbeat
breathhold and 254 ms diastolic acquisition window, as well as shortened scans with a 5-heartbeat breathhold and successively shorter acquisition windows of 254,
200, 150, 100, and 50 ms. (B) nRMSE plots of the T1 and T2 maps are shown for the 5HB/150 ms MRF scan, where different amounts of random Gaussian noise
having standard deviation σN (expressed as a percentage of the maximum DC signal level) were added to the simulated k-space data.

15HB/254 ms MRF with direct matching (40.8 ± 3.0 ms),
SLLR-MRF (42.3 ± 3.0 ms), and DIP-MRF (41.3 ± 2.9 ms);
and 5HB/254 ms MRF with direct matching (46.1 ± 9.0 ms),
SLLR-MRF (44.5 ± 3.9 ms), and DIP-MRF (43. ± 3.8 ms). T1
was significantly higher with all MRF techniques compared to
MOLLI. T2 was significantly lower with all MRF techniques
compared to T2-prep bSSFP, except for the 5HB/150 ms sequence
with direct matching. A similar analysis of relaxation times in LV
and RV blood is given in Supplementary Figure 14.

The intersubject variability, quantified as the standard
deviation of the mean T1 or T2 over all subjects, was similar
among all reconstructions for the 15HB/254 ms MRF scan. For
the 5HB/150 ms scan, DIP-MRF yielded a lower intersubject
variability (32 ms for T1, 3.8 ms for T2) compared to direct
matching (53 ms for T1, 9.0 ms for T2) and SLLR-MRF (39 ms
for T1, 3.9 ms for T2), although still higher than conventional
mapping sequences (28 ms for T1, 1.5 ms for T2).

Bland-Altman plots comparing relaxation times measured
with 15HB/254 ms vs. 5HB/150 ms MRF scans are shown
in Figure 11 (note that a positive bias indicates higher
measurements using the 5HB/150 ms scan). Both scans yielded
good agreement in T1 when using the DIP-MRF reconstruction,
with a bias of −9 ms and 95% LoA (−56, 38) ms. Similar results
were seen with SLLR-MRF, having a bias of 8 ms and 95% LoA
(−41, 58) ms, while a larger bias (22 ms) and wider limits of
agreement of (−81, 206) ms were observed with direct matching.
DIP-MRF yielded the best agreement between T2 measurements

from the 15HB/254 ms and 5HB/150 ms scans, with a bias of
2.0 ms and 95% LoA (−1.9, 6.0) ms. SLLR-MRF had a similar
bias (2.1 ms) but wider limits of agreement of (−3.4, 7.7) ms.
Direct matching had the largest bias (5.3 ms) and widest limits
of agreement (−8.7, 19.4) ms.

Figures 12A,B show the spatial distribution of T1 and T2
within individual myocardial segments and over the entire
myocardium. Both 15HB/254 ms and 5HB/150 ms MRF scans
showed some regional variability in T1 and T2, with higher values
in the septum and lower values in the inferolateral segment.
A similar but less pronounced trend was seen with MOLLI but
not with T2-prepared bSSFP. Greater regional variability was seen
with direct matching compared to SLLR-MRF and DIP-MRF.

Figures 12C,D summarize the intrasubject variability for
T1 and T2, quantified as the mean of the standard deviations
over all subjects, shown within each myocardial segment and
over the entire myocardium. Compared to MOLLI (57 ms),
the intrasubject variability in T1 over the entire myocardium
was significantly higher using the 15HB/254 ms MRF sequence
with direct matching (94 ms); this variability was reduced
with SLLR-MRF (66 ms) and DIP-MRF (57 ms) and was not
significantly different from MOLLI. For the 5HB/150 ms MRF
sequence, the intrasubject variability was significantly higher
than MOLLI when using direct matching (160 ms) and SLLR-
MRF (86 ms); DIP-MRF yielded the lowest variability (61 ms)
with no significant difference relative to MOLLI. Compared to
T2-prep bSSFP (4.2 ms), the intrasubject variability in T2 over
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FIGURE 6 | Bland-Altman plots from the phantom study. Plots are shown for T1 comparing (A) MOLLI and cardiac MRF with (B) direct matching, (C) SLLR-MRF,
and (D) DIP-MRF reconstructions relative to gold standard measurements using an inversion recovery sequence. Similarly, plots are shown for T2 comparing
(E) T2-prepared bSSFP and cardiac MRF with (F) direct matching, (G) SLLR-MRF, and (H) DIP-MRF reconstructions relative to gold standard measurements using a
single-echo spin echo sequence. Results are shown for both 15HB/254 ms and 5HB/150 ms MRF sequences. The bias is indicated by a dotted line, and the 95%
limits of agreement (LoA) are indicated by the solid colors.

FIGURE 7 | Cardiac MRF T1, T2, and M0 maps from a healthy subject. Maps reconstructed using direct matching, SLLR-MRF, and DIP-MRF are shown for (A) the
15HB/254 ms MRF sequence and (B) the 5HB/150 ms MRF sequence. (C) Conventional MOLLI and T2-prepared bSSFP maps are shown for comparison. All maps
were cropped to a 100 × 100 region centered over the heart.
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FIGURE 8 | Cardiac MRF spatial basis images from a healthy subject. Spatial basis images from (A) the 15HB/254 ms MRF scan and (B) the 5HB/150 ms MRF
scan are shown, reconstructed using (top row) NUFFT gridding, (middle row) SLLR-MRF, and (bottom row) DIP-MRF. Noise enhancement was observed with NUFFT
gridding and to a lesser extent SLLR-MRF, while DIP-MRF yielded the best image quality. Although they tend to look similar, the contrasts of the spatial basis images
in panels (A,B) are not expected to be identical, as a different subspace (derived from the SVD of a dictionary of signal evolutions) is calculated separately for each
scan. All images were cropped to a 100 × 100 region centered over the heart.

the entire myocardium using the 15HB/254 ms MRF sequence
was significantly higher using direct matching (5.6 ms), non-
significantly lower using SLLR-MRF (3.9 ms), and significantly
lower using DIP-MRF (3.3 ms). For the 5HB/150 ms MRF
sequence, the intrasubject variability was significantly higher
than T2-prep using direct matching (19.1 ms) and SLLR-MRF
(7.1 ms); DIP-MRF yielded the lowest variability (4.1 ms) with
no significant difference relative to T2-prep bSSFP.

Patient Scans
Representative maps from a cardiomyopathy patient are shown
in Figure 13, with additional patient examples provided in
Supplementary Figures 15, 16. In both native and post-contrast
maps in patients, DIP-MRF yielded the best suppression of noise
and aliasing artifacts, especially for the shortened 5HB/150 ms
acquisition, where direct matching led to severe noise and
artifacts that were only moderately improved with the SLLR-
MRF reconstruction.

Figure 14 shows one example of a patient scan where the
15HB breathhold and 254 ms acquisition window resulted in
motion artifacts. In this case, motion caused blurring of the
myocardial wall and an artifactual increase in septal relaxation
times due to partial volume effects between myocardium and
blood, with DIP-MRF yielding T1 1263 ± 48 ms and T2
55.8 ± 6.5 ms. To confirm the presence of motion, a sliding
window reconstruction was performed (window size = 48 TRs)
to visualize one image per heartbeat, shown in Supplementary
Figure 17. This analysis confirmed that the patient breathed
halfway during the scan, and residual cardiac motion was
apparent in the later heartbeats. Motion and partial volume
effects were reduced using the shorter 5HB breathhold and
150 ms acquisition window, leading to a sharper depiction of
the myocardial wall and lower septal relaxation times of T1
1130 ± 27 ms and T2 48.8 ± 4.1 ms (although T1 and T2
were still elevated compared to healthy subjects). Conventional

MOLLI and T2-prep bSSFP mapping values in this patient were
T1 = 1,122± 47 ms and T2 = 50.1± 4.1 ms.

Boxplots summarizing the distribution of native and post-
contrast relaxation times in the myocardial septum in patients
are shown in Figure 15. Using the DIP-MRF reconstruction,
both 15HB/254 ms MRF (1,079 ± 72 ms) and 5HB/150 ms
MRF (1,047 ± 46 ms) acquisitions yielded higher native T1
than MOLLI (1,033 ± 34 ms); this difference was statistically
significant for 5HB/150 ms DIP-MRF. Native T2 was non-
significantly lower with both 15HB/254 ms MRF (45.2 ± 5.8 ms)
and 5HB/150 ms MRF (45.7 ± 4.0 ms) compared to T2-prep
bSSFP (47.6 ± 3.9 ms). Patients had higher native T1 than
healthy subjects, but this trend was not significant for MOLLI,
15HB/254 ms MRF, or 5HB/150 ms MRF. Compared to healthy
subjects (45.2 ms), native T2 in patients was significantly lower
with 15HB/254 ms MRF (41.3 ms) and non-significantly lower
with 5HB/150 ms MRF (43.3 ms). No difference between patients
and healthy subjects was seen with T2-prep bSSFP (47.6 vs.
47.7 ms). There were no significant differences in post-contrast
T1 among MOLLI (417± 38), 15HB/254 ms MRF (409± 62 ms),
or 5HB/150 ms MRF (397± 51 ms). Post-contrast myocardial T2
was 37.9 ± 3.0 ms using 15HB/254 ms MRF and 38.7 ± 3.5 ms
using 5HB/150 ms MRF (Supplementary Figure 18). Post-
contrast T2 bSSFP data were only acquired in a subset of three
patients; a comparison of post-contrast T2 bSSFP and MRF in
these patients is provided in Supplementary Table 1. An analysis
of native and post-contrast relaxation times in LV and RV blood
in patients is given in Supplementary Figure 19.

DISCUSSION

This study introduced a self-supervised deep learning
reconstruction for cardiac MRF, called DIP-MRF, that
combines low-rank subspace modeling with the denoising
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FIGURE 9 | Maps from a healthy subject using DIP-MRF with different levels of dropout during training. The best dropout percentage was determined empirically to
be (A) 10% for the 15HB/254 ms MRF sequence and (B) 20% for the 5HB/150 ms MRF sequence. In all cases, the number of training iterations was fixed at
30,000. Using lower dropout led to increased noise and undersampling artifacts, while higher dropout led to overly smoothed maps with a loss of high-resolution
details. All maps were cropped to a 100 × 100 region centered over the heart.

capabilities of a deep image prior. DIP-MRF was shown to
reduce noise and aliasing artifacts in tissue property maps
compared to conventional dictionary matching and a low-rank
subspace reconstruction with spatial and locally low rank

constraints (SLLR-MRF). DIP-MRF was leveraged to shorten
the breathhold duration of cardiac MRF from 15 to 5 heartbeats
and the diastolic acquisition from 250 to 150 ms in vivo,
which can potentially reduce motion artifacts, especially for

Frontiers in Cardiovascular Medicine | www.frontiersin.org 12 June 2022 | Volume 9 | Article 928546

https://www.frontiersin.org/journals/cardiovascular-medicine
https://www.frontiersin.org/
https://www.frontiersin.org/journals/cardiovascular-medicine#articles


fcvm-09-928546 June 17, 2022 Time: 15:9 # 13

Hamilton Deep Image Prior Cardiac MRF

FIGURE 10 | Myocardial T1 and T2 in healthy subject in the left ventricular septum. The boxplots show the distribution of mean (A) T1 and (B) T2 values using
MOLLI and T2-prep bSSFP mapping sequences, as well as 15HB/254 ms and 5HB/150 ms MRF sequences with direct matching, SLLR-MRF, and DIP-MRF
reconstructions. The top of each box indicates the upper quartile, the bottom indicates the lower quartile, and the horizontal line through the middle shows the
median. The numbers above each plot indicate the mean ± standard deviation in milliseconds. Asterisks indicate a significant difference (p < 0.05) using a
within-subjects ANOVA test with a Bonferroni post-hoc test for multiple comparisons.

patients who have difficulty performing long breathholds or
who have elevated heart rates. By minimizing motion, the
shortened acquisition may also decrease partial volume artifacts
between myocardium and blood, leading to more accurate and
reproducible myocardial T1 and T2 measurements. This effect
was demonstrated in Figure 14, where motion resulted in an
artifactual increase in myocardial T1 and T2 with the longer

MRF scan that was mitigated by shortening the breathhold
and scan window.

In most deep learning reconstructions, a neural network
is pre-trained using a large number of reference images. For
MRF, such training data would consist of “ground truth” tissue
property maps (the network output) paired with a time series
of undersampled images or k-space measurements (the network
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FIGURE 11 | Bland-Altman plots comparing measurements from 15HB/254 ms MRF and 5HB/150 ms MRF scans with different reconstruction methods in healthy
subjects. Results are shown for T1 using (A) direct matching, (B) SLLR-MRF, and (C) DIP-MRF. Similar results for T2 are shown in panels (D-F). On each plot, the
bias is indicated by a dotted line, and the 95% limits of agreement are indicated by solid lines. Note that a positive bias indicates higher T1 or T2 measurements
using 5HB/150 ms MRF compared to 15HB/254 ms MRF.

FIGURE 12 | Bullseye plots showing the spatial distribution of T1 and T2 in different myocardial segments of a mid-ventricular slice in healthy subjects. (A) Mean T1

and (B) mean T2 values are shown for mid-ventricular AHA segments, with the value in the center of the bullseye indicating the average over the entire myocardium.
The spatial variability (standard deviations) for T1 and T2 within each segment and over the entire myocardium are shown in panels (C,D), respectively.

input). While it is possible to collect such training data in
stationary organs, like the brain, it is more challenging in the
heart due to physiological motion and the long scan times that

would be required to collect fully-sampled MRF data (on the
order of several minutes). Additionally, the fingerprints in cardiac
MRF are dependent on the subject’s cardiac rhythm because the
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FIGURE 13 | (A) Native and (B) post-contrast T1, T2, and M0 maps from a cardiomyopathy patient. Results are shown for conventional MOLLI and T2-prepared
bSSFP sequences, as well as 15HB/254 ms and 5HB/150 ms MRF sequences using direct matching, SLLR-MRF, and DIP-MRF reconstructions. All maps were
cropped to a 100 × 100 region centered over the heart.

scan uses prospective ECG triggering, so many datasets would
potentially be needed to ensure the network provides accurate
tissue property estimates independent of a patient’s cardiac
rhythm. DIP-MRF addresses these challenges by eliminating
the need for prior training. Instead, training is performed de
novo after each MRF acquisition, and the only requirements for
training data are the undersampled k-space measurements from
the current scan and the patient’s cardiac rhythm timings from
the ECG. The self-supervised training used in DIP-MRF ensures
that the reconstructed T1, T2, and M0 maps and spatial basis
images are consistent with the acquired k-space data and with

a mathematical model of the MRF signal generation and data
sampling process.

One limitation of this work is the long computation time
of approximately 1.1 h, since training is performed de novo
for each scan. Nevertheless, this work used strategies to
accelerate the calculation of forward model during training.
The spiral k-space data were shifted onto a Cartesian grid
using GROG, which allowed use FFT rather than more time-
consuming NUFFT operations during training. Without GROG
pre-interpolation, the DIP-MRF reconstruction took 5.3 h. A pre-
trained Fingerprint Generator Network was also used in place of
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FIGURE 14 | Example of reduced motion artifacts using the shortened 5HB/150 ms MRF acquisition in a cardiomyopathy patient. (A) The myocardial septum (white
arrow) appeared blurred using the 15HB/254 ms MRF sequence due to failed breathholding and residual cardiac motion during the acquisition window. (B) Motion
artifacts were reduced with the shortened 5HB/150 ms MRF sequence. DIP-MRF yielded improved map quality with less noise compared to the direct matching and
SLLR-MRF. (C) MOLLI and T2-prepared bSSFP maps are shown for reference. All maps were cropped to a 100 × 100 region centered over the heart.

a Bloch equation simulation to rapidly generate fingerprints for
arbitrary T1, T2, and cardiac rhythm timings. The time needed
to simulate fingerprints at 1922 voxel locations (the matrix size
used for all datasets in this work) was over 8 min using a Bloch
simulation (compiled MATLAB Mex code running on 12 parallel
CPUs) compared to 30 ms using the Fingerprint Generator
Network on a GPU. Future work will explore ways to shorten
the computation time of DIP-MRF, possibly to several minutes or
less. Transfer learning may be one solution (49), where DIP-MRF
is pre-trained using some in vivo scans, and the reconstructed
maps are fine-tuned based on the acquired k-space data from
the current scan.

In the original DIP publication, early stopping was used
to avoid overfitting to noise, and the number of training
iterations was manually tuned for each application (27).
This study uses dropout to reduce overfitting (43), which
allowed the network to be trained for longer and placed less
dependence on manually tuning the number of iterations for
early stopping. Simulation results showed that dropout improved
the reconstruction accuracy and slowed the rate at which
overfitting occurred (Supplementary Figure 4). An in vivo
dataset was also reconstructed with different dropout levels, while
keeping the number of training iterations fixed at 30,000 for
simplicity, to empirically determine which settings yielded the
best map quality. It was found that the shortened 5HB/150 ms
MRF scan benefitted from higher dropout compared to the
15HB/254 ms scan (20 vs. 10% dropout).

In the absence of motion, the 15HB/254 ms and 5HB/150 ms
MRF sequences were expected to yield equivalent T1 and T2
measurements. However, large differences were observed using
the direct matching reconstruction, which was due to the noise
enhancement and aliasing artifacts in maps using the 5HB/150 ms

sequence, resulting in the wide limits of agreement in the Bland-
Altman plots in Figure 11. Similar discrepancies were seen with
SLLR-MRF to a lesser extent. Due to the improved quality of
the maps, DIP-MRF yielded the closest agreement in T1 and T2
measured by the 15HB/254 ms and 5HB/150 ms sequences. DIP-
MRF also yielded better precision in vivo compared to direct
matching and SLLR-MRF. For T1, the intrasubject variability
in healthy subjects was similar among MOLLI, 15HB/254 ms
DIP-MRF, and 5HB/150 ms DIP-MRF. For T2, the intrasubject
variability was lowest for 15HB/254 ms DIP-MRF, and similar
between T2-prep bSSFP and 5HB/150 ms DIP-MRF. DIP-MRF
also resulted in a lower intersubject variability for T1 and T2
compared to direct matching and SLLR-MRF.

Higher native T1 and lower native T2 were observed
using MRF compared to conventional mapping sequences,
which has been reported previously (50). MOLLI is known to
underestimate T1 (51), and T2-prep bSSFP has been reported
to overestimate T2 (52), which was observed in this study
in the phantom experiment (Figure 6 and Supplementary
Figures 5–7). The signal model in cardiac MRF accounts
for slice profile imperfections and inversion pulse efficiency,
which was shown to improve accuracy and lead to higher T1
measurements (50). Lower T2 values have been reported with
FISP-based MRF sequences compared to standard techniques
in other applications, which may be related to magnetization
transfer (53), intravoxel dephasing (54), and motion sensitivity
along the direction of the unbalanced gradient moment (i.e.,
slice direction).

Increased regional variability for T1 and to a lesser degree
T2 was observed with MRF, with higher relaxation times in the
septum and lower values in the inferolateral segment. Possible
explanations may include susceptibility effects (especially in
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FIGURE 15 | Relaxation times in the myocardial septum in cardiomyopathy patients. The boxplots summarize the (A) native T1, (B) native T2, and (C) post-contrast
T1 using conventional mapping sequences, as well as 15HB/254 ms MRF and 5HB/150 ms MRF with direct matching, SLLR-MRF, and DIP-MRF reconstructions.
The top of each box indicates the upper quartile, the bottom indicates the lower quartile, and the horizontal line through the middle shows the median. The numbers
above each plot indicate the mean ± standard deviation over all patients. Asterisks indicate a significant difference (p < 0.05) using a within-subjects ANOVA test
with a Bonferroni post-hoc test for multiple comparisons. Native mapping was performed in all ten patients. Post-contrast MRF was acquired in all ten patients, while
post-contrast MOLLI was only collected in nine patients.
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the inferolateral segment); partial volume artifacts between
myocardium and epicardial fat, which could be improved
with water-fat separation techniques like Dixon cardiac MRF
(55) or MRF with rosette k-space sampling (56); and B1

+

inhomogeneities, which could be addressed using B1
+ correction

(57, 58). Blood relaxation times were reported for completeness;
however, blood flow into and out of the 2D imaging plane is not
accounted for in the MRF signal simulation and likely affects the
blood T1 and T2 estimates. Interestingly, higher T1 was measured
in the LV compared to the RV with both MOLLI and cardiac
MRF. Higher T2 was measured in the LV with T2-prep bSSFP,
which has been reported previously (59), but slightly lower T2
was measured in the LV with cardiac MRF.

In summary, a DIP-MRF reconstruction that combines low-
rank subspace modeling with a deep image prior was shown to
reduce noise and aliasing artifacts in cardiac MRF T1, T2, and
M0 mapping, which does not require pre-training with in vivo
data. This method enables a shortened breathhold duration
and cardiac acquisition window in cardiac MRF, which has the
potential to improve scan efficiency and reduce motion artifacts.
Future work will explore extensions of DIP-MRF to motion-
resolved (cine) MRF (60, 61) and 3D cardiac MRF (62).
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