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A self-sustaining serpentinization 
mega-engine feeds the fougerite 
nanoengines implicated in the 
emergence of guided metabolism
Michael J. Russell *

Dipartimento di Chimica, Università degli Studi di Torino, Torino, Italy

The demonstration by Ivan Barnes et al. that the serpentinization of fresh Alpine-
type ultramafic rocks results in the exhalation of hot alkaline fluids is foundational 
to the submarine alkaline vent theory (AVT) for life’s emergence to its ‘improbable’ 
thermodynamic state. In AVT, such alkaline fluids ≤ 150°C, bearing H2 > CH4 > HS−—
generated and driven convectively by a serpentinizing exothermic mega-engine 
operating in the ultramafic crust—exhale into the iron-rich, CO2> > > NO3

−-
bearing Hadean ocean to result in hydrothermal precipitate mounds comprising 
macromolecular ferroferric-carbonate oxyhydroxide and minor sulfide. As the 
nanocrystalline minerals fougerite/green rust and mackinawite (FeS), they compose 
the spontaneously precipitated inorganic membranes that keep the highly 
contrasting solutions apart, thereby maintaining redox and pH disequilibria. They 
do so in the form of fine chimneys and chemical gardens. The same disequilibria 
drive the reduction of CO2 to  HCOO− or CO, and the oxidation of CH4 to a methyl 
group—the two products reacting to form acetate in a sequence antedating 
the ‘energy-producing’ acetyl coenzyme-A pathway. Fougerite is a 2D-layered 
mineral in which the hydrous interlayers themselves harbor 2D solutions, in effect 
constricted to ~ 1D by preferentially directed electron hopping/tunneling, and 
proton Gröthuss ‘bucket-brigading’ when subject to charge. As a redox-driven 
nanoengine or peristaltic pump, fougerite forces the ordered reduction of nitrate 
to ammonium, the amination of pyruvate and oxalate to alanine and glycine, and 
their condensation to short peptides. In turn, these peptides have the flexibility to 
sequester the founding inorganic iron oxyhydroxide, sulfide, and pyrophosphate 
clusters, to produce metal- and phosphate-dosed organic films and cells. As the 
feed to the hydrothermal mound fails, the only equivalent sustenance on offer to 
the first autotrophs is the still mildly serpentinizing upper crust beneath. While the 
conditions here are very much less bountiful, they do offer the similar feed and 
disequilibria the survivors are accustomed to. Sometime during this transition, 
a replicating non-ribosomal guidance system is discovered to provide the rules 
to take on the incrementally changing surroundings. The details of how these 
replicating apparatuses emerged are the hard problem, but by doing so the 
progenote archaea and bacteria could begin to colonize what would become 
the deep biosphere. Indeed, that the anaerobic nitrate-respiring methanotrophic 
archaea and the deep-branching Acetothermia presently comprise a portion of 
that microbiome occupying serpentinizing rocks offers circumstantial support for 
this notion. However, the inescapable, if jarring conclusion is drawn that, absent 
fougerite/green rust, there would be no structured channelway to life.
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1. The submarine alkaline vent theory

The three founding facts underpinning the submarine “alkaline 
vent theory” for the emergence of life are:

 1. Barnes and O’Neil’s (1969) conclusion that: “convecting 
seawater at < 200°C would have serpentinized the crust, 
becoming alkaline by this process of hydrolysis, much as today, 
hot springs involving ground-water circulating in ophiolite, 
have a pH of between 11.5 and 12″;

 2. Dudley Foster’s iconic photograph of the acidic ~ 380°C Black 
Smoker hydrothermal chimney with polychaete and tube 
worms on the East Pacific Rise (Ballard and Grassle, 1979; 
Spiess et al., 1980);

 3. The smaller scale hydrothermal chimneys, chemical garden 
spires, and microbialites discovered in the ~ 340 million year 
old ore deposits in Ireland, inspired by the “Black Smoker” 
reports (Larter et al., 1981; Russell, 1996).

Jack Corliss et al. had calculated, on the basis of geochemical 
studies of basalts from the Mid-Atlantic Ridge and from the silica 
and magnesium chemistry of warm springs exhaling from the 
Galapagos submarine ridge, that 300°C metal-bearing hot springs 
should be found at ocean floor spreading centers (Corliss, 1971; 
Corliss et  al., 1979). The discovery of acidic Black Smokers 
teaming with life met these predictions and led Corliss, John 
Baross and Sarah Hoffman to formulate a “hydrothermal origin-
of-life hypothesis.” Rejected from Nature and Science, they 
resorted to the “grey literature” to present their manuscript 
(Corliss et al., 1980, 1981; Baross and Hoffman, 1985; Levitt, 
2023). As reported in Corliss et  al. (1980), the hypothesis 
maintains that “Submarine hydrothermal systems provide all of 
the conditions necessary for the abiotic synthesis of organic 
compounds, polymers, and simple cell-like organisms. The 
continuous flow of circulating fluids in a hydrothermal system 
provides the thermal and chemical gradients which create the 
variation in conditions necessary for the successive reactions to 
take place. Other models for the origin of life fail to fulfill one or 
more of these requirements.”

This “anaerobic chemoautotrophic” hypothesis riled those who 
had accultured to the Oparin–Haldane–Urey–Miller dogma of 
how life originated (Lahav, 1985; cf., Lane et al., 2010). Indeed, 
Stanley Miller himself, with his colleague Jeffrey Bada, took to 
print in 1988, opining “The high temperatures in the vents would 
not allow synthesis of organic compounds, but would decompose 
them, unless the exposure time at vent temperatures was short… 
Even if the essential organic molecules were available in the hot 
hydrothermal waters, the subsequent steps of polymerization and 
the conversion of these polymers into the first organisms would 
not occur as the vent waters were quenched to the colder 
temperatures of the primitive oceans” (Miller and Bada, 1988). 
Their criticism prompted a response, in which it was argued from 
the discovery of fossil chimneys at Silvermines and the Tynagh 
base-metal ore deposit in Ireland (Larter et al., 1981; Boyce et al., 
1983; Banks, 1985) that “similar, less extreme environments are 
known and could have provided suitable sources of chemical 
energy and nutrients as well as stable ‘culture chambers’” (Russell 
et al., 1988).

However, a reading of Ivan Barne’s studies and our field studies on 
Alpine-type ultramafic rocks in Southern Europe and Turkey (e.g., 
Fallick et  al., 1991) led us to propose a substitution of the acidic 
hydrothermal spring models responsible for Black Smokers and 
exhalative orebodies, with a serpentinization-driven alkaline 
hydrothermal model that more appropriately explained the sources of 
fuel to feed life’s ‘origin’ (Russell et al., 1989). Further development of 
the model had the alkaline hydrothermal solutions precipitating iron 
sulfide bubbles on contact with “the mildly oxidized, acidic and iron-
bearing Hadean ocean water” (Russell et al., 1993). While this model 
could demonstrate the analogy with CO2-based autotrophic 
metabolism—more fundamental was its explanation of the otherwise 
enigmatic origin of Peter Mitchell’s proton motive force (PMF). How 
life could have invented the PMF had been a puzzle, so a key insight 
of AVT was that no invention of the ‘force’ was necessary—the PMF 
had been there from the beginning, freely developed from one aspect 
of the initial conditions, i.e., as a proton gradient imposed across 
mineral precipitate membranes—itself a result of the acidulous ocean 
interfacing the alkaline hydrothermal fluid as it exhales from the 
Hadean ocean floor (Mitchell, 1961; Russell et al., 1994; Figure 1).

Competing with AVT, though assuming only acidic conditions, is 
Günter Wächtershäuser’s theory that the origin of life involves the 
reduction of copious volcanic CO2 through the reductive acetyl 
coenzyme-A pathway to acetate (Wächtershäuser, 1988)—the pathway 
that is now broadly, but not universally, accepted for this role (Huber 
and Wächtershäuser, 1997; Peretó et al., 1999; Martin and Russell, 
2003, 2007; Say and Fuchs, 2010; Martin, 2020; Boyd et al., 2023). That 
life was first engaged in the reduction of oceanic CO2 through the 
acetyl coenzyme-A pathway was incorporated in AVT and expressed 
in the (grossly) oversimplified empirical Equation 1 (Russell and 
Martin, 2004)

 2CO HSCoA 4H CH COSCoA 3H O2 2 3 2+ + → +  (1)

But more recently, we have argued for an alternative whereby the 
disequilibria across a ferrous–ferric oxyhydroxide membrane—with 
FeS now as a subordinate—are several and the potentials significantly 
greater, namely, the ‘denitrifying methanotrophic acetogenic pathway’ 
(DnMAP; Ducluzeau et al., 2009; Nitschke and Russell, 2013). This 
suggestion arises: (1) in consideration of methane emanations 
accompanying H2 in some serpentinizing systems—an overlooked 
otherwise ‘wasted’ fuel and source of organic carbon (Kelley, 1996); 
(2) the ‘energetic’ requirement for an electron acceptor with a higher 
potential than CO2 to order protometabolism (Russell and Hall, 1997; 
Nitschke and Russell, 2013); (3) in choosing the methanotrophic 
route, the steep uphill ‘free’ energy climb to the highly unstable formyl 
intermediate in the classic acetyl coenzyme-A pathway is avoided 
(Maden, 2000; Stojanowic and Hedderich, 2004); (4) to provide a 
source of ammonium, which otherwise is lacking (Nitschke and 
Russell, 2013); (5) and the ungainliness of the classic pathway’s two 
‘legs’, i.e., the disproportionate numbers of the reductive steps 
involved, one to reduce CO2 to CO or formate, as against six to reduce 
it to a reactive methyl sulfide entity, is replaced by the more 
symmetrical, less complicated ‘CO2-reducing and denitrifying 
methanotrophic pathways’ that converge to acetyl coenzyme-A 
(DNitAP; Nitschke and Russell, 2013). This pathway is also highly 
simplified to
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Apart from the addition of methane, this alternative takes into 

account the disequilibria focused at a submarine alkaline vent as 
outlined in Russell and Hall (1997): the natural proton motive force 
and a ‘respiratory’ redox mechanism with electrons (some of them 
bifurcated) that H2, via 2H•, provides, processing through a green rust 
(fougerite) nanoengine as electrons are conducted to high potential 
electron acceptors, e.g., nitrate (Nitschke and Russell, 2012, 2013; 
Barge et al., 2015a; Russell and Nitschke, 2017; Wong et al., 2017; 
Buessecker et al. 2022; Nitschke et al., 2022). We reiterate that this 
reductive mechanism also accounts for the required on-site source of 
ammonium for amino and nucleic acid synthesis, otherwise far from 
obvious (Barge et al., 2019).

Yet, a further change to AVT was the adoption of the term 
‘emergence’, as we  came to understand that the conventional 
‘origin of life’ was an idiom devoid of evolutionary connotation 

(Russell et al., 1993)—this from the readings of Prigogine and 
Stengers’ (1984) book “Order out of Chaos” and Wicken’s (1987) 
volume “Evolution, Thermodynamics and Information.” Indeed, 
contemplating life’s ‘emergence’ forced a more serious 
consideration of the role of serpentinization in life’s onset 
(Russell et al., 2013).

In the present theoretical contribution, life’s emergence is traced 
from serpentinization to its fledging as a dynamic system that 
dramatically reduces entropy (thus substantially increasing the rate at 
which the driving disequilibria produce entropy). We conclude that 
the first proto-metabolic steps take place in the natural chemical 
garden spires that developed at a submarine alkaline hydrothermal 
vent sometime in the ~ 500 million year span of the Hadean era. 
Exothermic serpentinization is the mega-engine operating within the 
ultramafic oceanic crust that works to drive alkaline hydrothermal 
convective systems bearing H2 > CH4 fuels to exhale into the then 
carbonic, phosphate, nitrate, NO, and N2O as well as metal complex-, 
and proton-bearing acidulous ocean—the disequilibria resulting in 
autotrophic metabolisms involving quinone-dependent NO reductase 
and membrane-bound N2O reductase—supporting a primitive 

FIGURE 1

Initial conditions responsible for the emergence of life (EoL) according to the alkaline vent theory (AVT; Russell et al., 2013). Mantle-derived volcanic 
emanations (> 700°C) and high temperature acidic hot springs (~410°C) inject CO2, P4O10, some N2O, and the transition elements directly through the 
Hadean ocean floor into the cool carbonic Hadean ocean (Yamagata et al., 1991; Javoy and Pineau, 1991; Macleod et al., 1994; Kasting and Siefert 
2001; Wong et al., 2017; Mandon et al., 2019; Ueda and Shibuya, 2021; Brady et al., 2022; Buessecker et al., 2022; Heays et al., 2022; Nishizawa, 2022; 
Tatzel et al., 2022). At the ocean bottom, and diffusing laterally and upward, these volatiles and ions remain as saturated or supersaturated until 
meeting with alkaline hydrothermal solutions (at ≤ 130°C) produced by the serpentinization engine (Barnes and O’Neil, 1969; Russell et al. 1989; 
Branscomb and Russell, 2018; Shibuya and Takai., 2022). Fougerite, along with subordinate amorphous silica, greenalite, and subsidiary mackinawite 
spontaneously precipitate at the interface between the alkaline solution and the ocean solvent (Russell, 2018; Tosca et al., 2016, 2019; Borrego-
Sánchez et al., 2022). These inorganic barriers maintain the pH and redox disequilibria that drive the emergence of life (EoL; Russell and Hall, 1997), so 
focusing the electrochemical disequilibria as native electrons, cations, anions, and dissolved gasses across the fougerite exteriors of the mound. Thus, 
these nanocrysts, assisted by the electron-conducting mackinawite, are forced into acting as nanoengines to resolve the disequilibria and thereby 
bring embryonic life into being (Arrhenius, 2003; Mielke et al., 2010; Nitschke and Russell, 2012, 2013; Barge et al., 2015a; Halevy et al. 2017; Russell 
and Nitschke, 2017; Wong et al., 2017; Yamamoto et al., 2017, 2022; Kitadai et al., 2018; Duval et al. 2019; Ooka et al., 2019; Hudson et al., 2020; 
Nitschke et al., 2022; Buessecker et al. 2022). [NB., The electron acceptors and the H+ shown to be dissolved in the ocean are constantly delivered by 
the venturi effect to the outer barrier of the mound (Russell and Hall, 1997)]. Redrawn from Branscomb et al. (2017). An extensive aureole of the same 
minerals surround this and other vents, now altered to banded iron formation (BIF; Konhauser et al., 2007; Pons et al., 2011; Mloszewska et al., 2012). 
Not to scale. The serpentinite photograph was generously provided by Laura Barge.

(2)
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aerobic respiration (Ducluzeau et al., 2009, 2014; Nitschke and Russell, 
2013; Russell et al., 2013; Brady et al., 2022; Buessecker et al., 2022; 
Farr et al., 2022).

This is where the structural and ionic complexity of the 2D green 
rust mineral fougerite (~Fe2+

4Fe3+
2(OH)12CO3.3H2O) moves to center 

stage in AVT. Initially precipitated as white rust (amakinite) under 
alkaline conditions, the oxidation by water to fougerite—with the 
concomitant evolution of H2—is rapid (Trolard et  al., 2022; 
Helmbrecht et al., 2022). Though more ordered, i.e., of lower entropy 
than those of the contributing solutes, amakinite/fougerite 
precipitation is entropy-driven (Van Santen, 1984). The structure of 
fougerite (formerly green rust) is complex but not “pre-designed,” i.e., 
its growth is not algorithmic, it is merely self-ordered and requires no 
prescription (cf. Arrhenius, 2003; Abel and Trevors, 2006). It is the 
only macromolecular entity known to us with the chemical and 
physical flexibility and potential to respond to disequilibria at the vent. 
Thus, we propose that it has the wherewithal to act as the nanoengine 
to impel life into being. The iron sulfides mackinawite (FeS) and 
greigite (Fe3S4)—as subordinate components of the hydrothermal 
chimneys and spires—still hold vital support roles in their ‘free energy’ 
converting capacities and as conductors and semiconductors in AVT 
(Nitschke and Russell, 2009; Vasiliadou et  al., 2019; Hudson 
et al., 2020).

2. Serpentinization—life’s mother 
engine

The casting of exothermic serpentinization of ocean crust as a 
disequilibria- (“free energy”-) converting mega-engine (Russell et al., 
2013) is based on an extensive literature (Barnes and O’Neil, 1969; 
Barnes et al., 1978; Neal and Stanger, 1983, 1984; Fallick et al., 1991; 
Kelley et al., 2001; Lowell and Rona, 2002; Russell and Arndt, 2005; 
Mielke et al., 2010; Paukert et al., 2012; Russell et al., 2013; Branscomb 
and Russell, 2018). Inspiration was rooted in the physics of materials, 
as considered by Cottrell (1979), whereby mechanical stress is 
converted through feedbacks, as in an engine, into physical and 
chemical disequilibria such as to result in “living things,” themselves 
engines. How might we see such engines developing in the early Earth?

With Hadean days so short, the moon so close, and the Earth’s 
mantle so soft, the mafic to ultramafic oceanic crust suffers pulses of 
incessant cracking, jointing, faulting, and brecciation that allow the 
invasion and gravitation of cool ocean water to depth (Miller et al., 
2016; Heller et al., 2021; Tatzel et al., 2022). Once cracks form in a 
tensile stress regime near the surface, feedback ensures that smaller 
stresses are required to keep them ratcheting down through the 
crust as exothermic cracking engines (Cottrell, 1979; Lowell and 
Rona, 2002). Furthermore, the hydrostatic pressure so imposed 
increases the effective stress, though only after the crack has 
propagated at the nanoscale, feeding back to further cracking while 
the elasticity at the tip is converted to ‘free energy’—a counter-
intuitive realization (Cottrell, 1979). Such an autocatalytic feedback 
is further augmented by the hydrostatic pressure imposed on the 
mafic to ultramafic wallrock by the ocean waters gravitating to 
depth—a pressure that increases both the effective tensile and 
related sheer stresses (Cathles, 1990; Russell and Skauli, 1991). These 
couplings eventuate in the cracks reaching brittle-to-ductile 
transition zones in ultramafic rocks estimated from the hydrogen 

isotope work of Proskurowski et al. (2006) to bottom out at ~ 150°C, 
corresponding to an eventual maximum crustal depth of around 
8–10 km (Macleod et al., 1994). This self-ordering and self-healing 
process continues until much of the upper crust is hydrated and 
carbonated, causing a lowering of density (≳ 2.6 g cm−3) compared 
to the antecedent unaltered ultramafic crust (3.3 g cm−3), through 
expansion allowed for by crustal extension and/or domal uplift in 
processes leading to further cracking (Fujioka et  al., 2002; Pons 
et al., 2011).

The exhaust from the serpentinizing system—as heat and 
solutes—is discharged in convective hydrothermal alkaline updrafts 
buffered to a pH of 10–11 units guided by approximately vertical 
fractures in a process that lasts a minimum of 30,000 years (~ 1021 
nanoseconds; Früh-Green et al., 2003). The tectonic, thermal, and 
chemical disequilibria are resolved through hydrothermal convection 
to result in a hydrothermal fluid—initially carbonic ocean water—by 
being reduced to H2 and short carboxylic acids and sparse methane 
(Früh-Green et al., 2003; Proskurowski et al., 2006; Ludwig et al., 2011; 
Tutolo et al. 2020; White et al., 2020; Albers et al., 2021; Figure 1; 
Equation. 3):

 ( )
augite0.25 1.5 0.25 2 6

serpen

2

3 t2 5 2 3 4 in4
2

2

ite

{12Ca Mg Fe Si O 16H O
6Mg Si O OH 12SiO Fe O

3Ca 6OH H

}
{ }

+ −

+

+ →

+ +

+ + + ↑

 (3)

Tidal and seismic pumping are additional inputs to the workings 
of this complex engine (Sibson et al., 1975; Davis and Becker, 1999; 
Glasby and Kasahara, 2001).

Spasmodic charges of methane, as well as of formate and acetate, 
are also recorded, both by a direct analysis and in laboratory 
experiments (Shock, 1992; Windman et al., 2007; White et al., 2020). 
However, it may be that much of the methane is derived through 
leaching from that generated in the lower crust and entrained in the 
same solutions (Shock, 1992; White et al., 2020). This thermal and 
chemical waste from serpentinization is now transported to the ocean 
floor in a hydrothermal solution that finds itself well out of thermal 
and electrochemical equilibrium with its new host, the iron-rich 
carbonic ocean water from which it first derives (Figure  1). 
Furthermore, the immediate effect of the meeting of the two 
contrasting solutions is the spontaneous precipitation of iron 
oxyhydroxides accompanied by silica and minor iron sulfides (Barge 
et  al., 2015a,b, 2020; Helmbrecht et  al., 2022). A portion of the 
precipitates makes up the hydrothermal chimneys and spires, while 
entrained flocs escape from this, and other alkaline springs, to disperse 
and lithify to banded iron formations comparable to those in Isua in 
the early Archean of western Greenland and in the Hadean 
Nuvvuagittuq greenstone belt in Canada (Appel, 1980; Papineau et al., 
2011; Pons et al., 2011; Mloszewska et al., 2012; Halevy et al., 2017; 
Tosca et al., 2019; Bindeman and O'Neil, 2022).

The membranes precipitated at the hydrothermal mound have 
the effect of frustrating the release of the pent-up disequilibria, until 
a weakness can be  found to guide interaction of the contrasting 
fluids. In the case of serpentinization and convection—the mega-
engines just described—this was via chance cracks in the crust. 
However, at the nanoscale, the dissipative system finds a way to 
partial relaxation by the forced exploitation of nanochannels prized 
from hydrous cleavage cracks constituting fougerite interlayers 
(Figure 2). Furthermore, the redox- and pH-active nanochannels 
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within the interlayers might impose a vectorial two-way ordering—a 
primitive guidance system—along the reductive and oxidative 
synthetic steps of the denitrifying methanotrophic acetogenic 
pathway toward an incomplete reverse tricarboxylic acid cycle (TCA) 
(Hartman, 1975; Wander et al., 2007; Nitschke and Russell, 2013; cf., 
Gatenby and Frieden, 2017; Figure 2).

Thus, a way is open, even at the nanoscale for a specialized 
dissipative (entropy-generating metabolizing) engine to materialize in 
obeyance to the Universe’s predilection to ‘produce’ ever more 
disorder in its blind bid to continue its relaxation, independent of 
scale, from its initial excruciating disequilibrium at the origin of 
space–time (Nitschke and Russell, 2010; Russell et  al., 2013; 
Carroll, 2016).

3. Life is, and was at its emergence, a 
disequilibria-converting 
macromolecular nanoengine

The series of orderly convection engines governed by physical 
transitions in the body of our planet, brought to a head by the 
serpentinization cracking engine, ultimately results in a long-lasting 
flow of reduced alkaline fluids into a highly contrasting relatively 
oxidized and mildly acidic Hadean seawater. Furthermore, the 
interactions of two solutions at the spontaneously precipitated 
membrane provide just the electrochemical disequilibria required to 
drive entropy-reducing metabolic pathways and reproductive cycles 
(Hitchcock and Lovelock, 1967; Russell and Hall, 1997; Russell and 
Arndt, 2005; Nitschke et al., 2022). However to bring these factors into 
play, disequilibria-converting engines are again required. Yet, the 
building components for construction are necessarily restricted to any 
inorganic materials at hand. Of course, at every step, engines must 

locally disproportionate entropy in such a ratio as to ensure its 
decrease in the driving of anabolic metabolism by an overall larger 
increase in entropy. This is achieved by the transportation of 
uncooperative molecules as waste from the partially open 
protometabolizing system.

Glaringly obvious is the requirement for the coupled hydrolysis of 
adenosine triphosphate, ATP, in present-day life—and thereby the need 
for its synthesis (Whicher et al., 2018; Pinna et al., 2022). To achieve 
such biosynthesis, Mitchell (1961) showed a pH gradient—a proton 
motive force—to be capable of driving the condensation of adenosine 
diphosphate (ADP) and inorganic phosphate (Pi) to adenine 
triphosphate (ATP) via the complex enzyme ATP synthetase situated in 
life’s membranes. Thus, Mitchell apparently dispensed with the long-
favored view that a ‘high energy’ intermediate molecule was responsible, 
calling his process ‘chemiosmosis’. However, Boyer (1997) first made 
mechanical sense of Mitchell’s finding, demonstrating that ATP 
synthetase is actually a rotating nanoengine involving ‘binding-change’ 
and gated escapement mechanisms driven by the proton gradient. In 
life, protons are delivered by the machinations of complex 1 and the like 
(Hedderich, 2004; Kaila, 2021). Boyer mapped out the stages the ATP 
synthetase rotatory enzyme took to complete the cycle, realizations now 
fundamental to an understanding of how life works and indicating how 
some, albeit simpler engine must have worked from the very beginning 
(Boyer, 1979, 1997; Astumian, 2012; Astumian et al., 2016; Anashkin, 
et al., 2021). For reasons of pedagogy, Yoshida et al. (2001) compare the 
ATPase to a Wankel engine, while Carter (2020) likens the binding 
change and reciprocally coupled gating mechanism to escapements in 
the workings of a mechanical clock.

Important though ATP is, clearly ATP synthetase itself is much 
too complicated to have been available at life’s onset. Indeed, the 
discovery by Baltscheffsky et al. (1966) that inorganic pyrophosphate 
(PPi), situated in the membrane, can act as ‘energy donor’ in an 

FIGURE 2

Fougerite modeled as a ready-made multifunctional motor enzyme/pump precursor set in the inorganic membrane, wherein it reduces nitrate drawn 
from the ocean (curved blue arrow to the left) to aminogen or ammonium, or nitrite to NO, N2O, and N2, vectored from ‘left’ to ‘right’ within the 
hydrate galleries (Hansen et al., 2001; Génin et al., 2005, 2006; Trolard et al., 2007, 2022; Trolard and Bourrié, 2012; Gerbois et al., 2014; Russell, 2018; 
Duval et al., 2019, 2020). At the same time and in theory, methane would be converted to a methyl group by NO (Kampschreur et al., 2011; Nitschke 
and Russell, 2013). Barge et al. (2019, 2020) show that in the same circumstances, pyruvate can be aminated to alanine and oxalate to glycine. 
Hydrazine is another speculative product (Duval et al., 2020). Note that an anion-binding pocket forms by the oxidation of the opposed iron molecules 
as they are confronted with nitrate which is thereby reduced (Nitschke and Russell, 2013). However, transmission (‘escape’) of a product to the interior 
is only permitted (ungated) when the nitrite is itself reduced to neutral NO and can be driven by the ionic gradients further into the interlayer. Note too 
that the flows (and counterflows) are vectorial, controlled by electron hopping rates (Wander et al., 2007). There is an expectation that short peptides 
will be produced within the interlayers (Muñoz-Santiburcio and Marx, 2017; Erastova et al., 2017; Grégoire et al., 2018; Holden et al. 2022) and partially 
extruded into the spire’s interior. Further H2 and organic molecules can be released to the hydrothermal flow by delamination and/or diagenetic 
alteration of fougerite to magnetite at depth in the mound (Asimakidou et al., 2020; Farr et al., 2022). The upward-directed arrows to the right signify 
the alkaline hydrothermal updraft, and the smaller arrows either side of the fougerite representing the inorganic membrane denote the direction of 
electron and proton flow. Not to scale.
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electron-transport phosphorylation system introduced the hypothesis 
that a proton pyrophosphatase (H+-PPase) was a precursor to the ATP 
(Russell et  al. 1994; Baltscheffsky et  al., 1999). These reversible 
vacuolar pyrophosphatases are stochastic nanopumps (Lin et al., 2012, 
Li et al., 2016), in which a highly restricted number of water molecules 
within the axial region have the effect of dampening the flow of 
protons or cations. The protons make their way one-by-one through 
the gating mechanism, either inward or outward, depending on the 
ambient disequilibria (Branscomb and Russell, 2013, 2019; Scholz-
Starke et al., 2019; Astumian et al., 2020).

However, PPi has strong competitors as a phosphorylating agent, 
e.g., acetyl phosphate [AcP]. Acetyl phosphate itself is readily 
generated from thioacetate and disodium phosphate under alkaline 
conditions (Heinen and Lauwers 1996; Huber and Wächtershäuser, 
1997; Whicher et al., 2018). AcP is especially attractive as a precursor 
candidate of ATP (Pinna et al., 2022). Furthermore, Whicher et al. 
(2018) demonstrate the phosphorylation of ribose to ribose-5-
phosphate and the phosphorylation of ADP to ATP also under 
alkaline conditions—the only nucleoside diphosphate to be  thus 
phosphorylated—so explaining the primacy of ATP in bioenergetics 
(Pinna et al., 2022). Given that Wang et al. (2019) produce PPi from 
AcP and Pi, but not from 2Pi across an Fe-rich membrane in a 
microfluidic rig, would leave AcP as, perhaps, the major phosphate 
player in early metabolism. However, there are still other compounds 
such as the linear oligophosphates, glycolaldehyde phosphate 
(Arrhenius et al., 1993; Pitsch et al., 1995; Krishnamurthy et al., 1999), 
and the cyclic trimetaphosphate (TMP) shown by Etaix and Orgel 
(1978) to be  capable of phosphorylating nucleosides in water—a 
discovery transferred into the 2D interlayers of the double-layer 
oxyhydroxides (DLHs; Yamanaka, 1988; Kuma et al., 1989; Yamagata 
et al., 1997; Kolb et al., 1997). Kolb et al. (1997), using TMP, induce 
phosphorylation of the glycolate ion in the interlayers of DLHs to 
glycolophosphate and diphosphate at a rate which is independent of 
the external concentration of glycolate ion in the range of 1–100 mM 
as measured—a remarkable and highly significant finding as we shall 
see. The phosphorylation can be followed by measuring the height of 
the interlayer; the initially absorbed hydroxyl height measures 
0.29 nm, the glycolate replacement is 0.49 nm, and the 
trimetaphosphate (TMP) on its own is 0.68 nm, while adding TMP to 
glycolate to produce glycolophosphate plus the diphosphate generates 
a height of only 0.64 nm (Adam and Delbrück, 1968; Kolb et al., 1997).

Distinct from, and additional to the pyrophosphatase argument, and 
following Wächtershäuser (1990) and Peretó et  al. (1999), the direct 
reduction of carbon dioxide via the reductive acetyl coenzyme-A pathway 
was next considered, though in terms of an inorganic FeS membrane 
rather than through the pyrite reaction (Russell and Martin, 2004). 
Branscomb and Russell (2013) modeled such a reduction involving the 
hydrogenation of CO2 dissolved in, and sourced from, the most ancient 
ocean, combined with that ambient proton force in a membrane 
comprising iron monosulfide and fougerite. Several authors calculate that 
the proton motive force summing to 2 pH units or more (equivalent to 
~ 120 + mV) will facilitate the reduction of CO2 in alkaline waters (Russell 
and Hall, 1997; Schoepp-Cothenet et al., 2013; Sojo et al., 2016). Since 
then, and following Vasiliadou et al. (2019), Reuben Hudson and his 
coworkers have tested the latter hypothesis which is of direct relevance to 
the AVT using a microfluidic technique involving an iron sulfide 
membrane, duly demonstrating the requirement for “proticity” in such a 
reduction (Hudson et al., 2020). Whether fougerite, lightly dosed with 

sulfide, could achieve a similar result awaits experimental testing. 
However, fougerite’s propensity to enforce redox reactions as well as its 
ability to interconvert redox and pH gradients is now well known (Hansen 
et al., 2001; Génin et al., 2005, 2006; Figure 2). Left hanging is fougerite’s 
possible role as a precellular inorganic non-ribosomal peptide synthetase 
(Bernhardt, 2019).

4. The fougerite nanoengine and the 
drive to metabolism

Our realization that prebiotic chemistry could not explain the 
extreme reduction of entropy involved in the emergence of life focused 
attention on the ferroferric DLH, green rust—now named by its 
discoverer, Fabienne Trolard, ‘fougerite’ (Trolard et  al., 2007). 
Arrhenius (1984, 2003) and Arrhenius et al. (1997) were the first to see 
the benefits of considering green rust/fougerite (and comparable 
non-redox but positively charged DLHs) in this precellular context, 
owing to, (1) its premetamorphic abundance in Archaean banded iron 
formations (Arrhenius et  al., 1997; Halevy et  al., 2017), (2) its 
propensity to selectively absorb anions where, in the 2D interlayers, the 
effective concentrations are increased up to a million-fold (Delbrück, 
1970; Arrhenius et al., 1993; Pitsch et al., 1995), (3) its “structures”; 
capable of dynamic agency while limiting degrees of freedom (Pitsch 
et al., 1995; Kolb et al., 1997), (4) its potential, sited within and as a 
membrane separating two strongly contrasting solutions, to respond 
to environmental perturbations for the sake of continued growth, cf., 
Mitchell, 1959), and (5) such arrangements might provide the 
governance required for the emergence of ordered reproduction 
(Popov, 1999; Arrhenius, 2003; Greenwell and Coveney, 2006; Galimov, 
2014; Endres, 2017; Branscomb et al., 2017; Cartwright and Russell, 
2019; Gribov et al., 2021). We might add the speculation, derived from 
other DLHs, that its variable pattern of cations could affect the 
configuration of any nucleic acids produced in the system, eventually 
resulting in a functional polymeric sequence of nucleic acids to govern 
the established metabolisms (Erastova et al., 2017; Grégoire et al., 2018).

That fougerite is conformationally flexible and responds reversibly 
and interactively to environmental pH and redox conditions as Génin 
et al. (2005, 2006), Ruby et al. (2010) demonstrate also supports the 
hypothesis that fougerite is the precursor to the ‘free energy’/
disequilibria-converting enzymes involved in conformational cycling 
(Nitschke et al., 2022; Equation 4):
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+ +

+ ⇔

+
 

 (4)

a view warranted in consideration of the remarkable experiments of 
Hansen et al. who demonstrate the power of fougerite to effect the ready 
reduction of nitrate to ammonia—a process involving the addition of 
eight separate electrons to the initial nitrate as fougerite is reduced to 
magnetite (Hansen et  al., 1996; Génin et  al. 2008; Russell, 2018; 
Asimakidou et al., 2020). Moreover using similar conditions, Gerbois 
et al. (2014) demonstrate the reduction of nitrite to NO, N2O, and N2. 
These capabilities demonstrate an enzyme-like agency of fougerite in 
out-of-equilibrium geochemical systems—engineering conversions not 
only comparable to the nitrate and nitrite reductases, but also 
comparable to the enzymes such as methane monooxygenase, 
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aminotransferase (transaminase), and acetyl phosphatase, an inorganic 
phosphoesterase, and, perhaps, a non-ribosomal peptide synthetase 
(Russell, 2018; Barge et  al. 2019; Bernhardt, 2019; Branscomb and 
Russell, 2019; Duval et al., 2019; Huang, 2019, 2022; Wang et al., 2019).

An accompanying nickel-bearing iron sulfide mineral, 
mackinawite, is also planar conducting and can act as a hydrogenase 
(H2 → 2ē), ferredoxin, carbon-monoxide dehydrogenase, and acetyl 
coenzyme-A synthase (Hudson et al., 2020). Together, these are the 
conversions required to make the first ordered steps to autogenic life 
fed by H2, CO2, CH4, HNO3

−, HNO2
−, NO, and PO4

3− with an ambient 
steep proton gradient (Russell and Martin, 2004; Schoepp-Cothenet 
et al., 2013). Experiments grounded in the submarine alkaline vent 
model for life’s emergence have largely demonstrated that these 
conversions—this “sucking of order” from the environment 
(Schrödinger, 1944)—had the capacity to get autotrophic (self-
ordering, self-sufficient, self-sustaining, though not self-referencing) 
metabolism started (Russell et al., 2003; Nitschke et al., 2022).

Having some similar properties to enzymes, these minerals or 
their macromolecular precursors should give us a better understanding 
of biological phenomena (Smith, 1986; Branscomb and Russell, 2019). 
Indeed, the jarring conclusion is forced that only these two minerals 
together can execute most of the disequilibria conversions required by 
the first ordered steps to autogenic life fed by H2, CO2, CH4, HNO3

−, 
HNO2

−, NO, and PO4
3− with an ambient steep proton gradient (Barge 

et al. 2019; Hudson et al., 2020). In this view, the rates of synthesis 
would be governed independently of variations and fluctuations in 
chemical concentrations and pressure through the viscosity of water 
‘trapped’ in the confined spaces of the interlayers, which 
consequentially severely restrict the degrees of freedom of the system 
(Kolb et al., 1997; Astumian, 2007; Muñoz-Santiburcio and Marx, 
2017; Branscomb and Russell, 2019). Furthermore, although fougerite 
is a 2D mineral, motions within the interlayers would be generally 
restricted to 1D as the 0.56-nm iron-to-iron hopping rate to next-
nearest neighbors is ~ 1010 s−1 at standard temperature and pressure 
(STP), 3 orders of magnitude faster than those of the other two 
symmetry-unique hops, thus imposing vectorial flow, as in modern 
cells, but through the ‘green rust’ interlayers (Wander et al. 2007). This 
electron tunneling activity would tend to pull the more laggardly 
protons in single file in the hydrous interlayers by the Grötthuss 
mechanism (Muñoz-Santiburcio and Marx, 2017).

5. Chemical garden setting

Fougerite, acting as the first nanoengine driving emergent 
metabolism, has to be  mounted and secured in the inorganic 
membrane such as to cater for, and feed, order-for-order exchanges 
while concomitantly allowing for an entropy increase via waste 
disposal. In an attempt to resolve how this might turn out to be, 
we  return to consider the natural chemical garden membranes 
comprising this ferroferric-carbonate DLH and subordinate iron 
sulfides, further buttressed, perhaps, by silica and/or greenalite 
(Mielke et al., 2011; Russell et al., 2013; McMahon, 2019; Tosca et al., 
2019; Barge et al., 2020, 2015a; Rasmussen et al. 2021). These are the 
minerals comprising the Hadean to Archaean banded iron formations 
(Halevy et al., 2017; Tosca et al., 2019), which are presumed to be the 
overspill of hydrothermal exhalations (Russell, 1975; Pons et al., 2011; 
Mloszewska et al., 2012).

As usually understood, crystal-hydrate gardens are self-ordered 
structures driven by the osmotic flow of the external alkaline water 
across a spontaneously precipitated semipermeable barrier (inorganic 
membrane) drawn inward by the high concentrations of a hydrous acidic 
salt as it dissolves in its water of crystallization (Leduc, 1911; Cartwright 
et al., 2002; Barge et al. 2012, 2015b). Growth is generally limited to tens 
of minutes to a few hours by the initial crystal’s mass as a result of the 
time taken to approach equalization of the ionic (and thereby the 
hydrostatic) pressures as inhibited by water stiction (Ding et al., 2016). 
Perret (1960) suggests that the spontaneous occurrence of expanding 
systems in a non-living environment such as a chemical garden might 
mark the first step toward the evolution of living organisms. However, in 
the case of the hydrothermal gardens, the expansion would mostly be the 
result of injection of alkaline into an ambient acidulous solution rather 
than osmosis (Russell et al., 1989, 1994; Russell, Hall, 1997; Mielke et al., 
2011; Barge et  al., 2015a). The chemical garden-like spires would 
continue to develop incrementally as the internal fluid perforates or 
breaks through, mostly at the top where the membrane is the thinnest, 
and reacts with the ambient fluid to produce a further segment (Barge 
et al., 2015b). The flow in this case is not osmotic, but ‘chemiosmotic’, 
where the inward transmission of individual protons via the Gröthuss 
mechanism (Muñoz-Santiburcio and Marx, 2017) is ~ 6 orders of 
magnitude faster than the outward velocity of hydroxyl ions as calculated 
for iron monosulfide membranes in the microfluidic experiments of 
Vasiliadou et al. (2019).

Extrapolation from similar microfluidic experiments involving 
chemical garden-like membranes comprising fougerite, as well as 
subsidiary mackinawite nanocrysts, is expected to reduce these 
external protons to hydrogen, and reduce carbonate to carbon 
monoxide and carboxylic acids; nitrate and nitrite to nitric oxide and 
ammonium; and furthermore, that the ammonium ion would 
aminate the carboxylic ions to the ‘short’ amino acids such as glycine, 
alanine, aspartate, serine, ornithine, and lysine (Hafenbradl et al., 
1995; Huber and Wächtershäuser, 1998; Grégoire et al., 2016; Barge 
et al., 2019). Furthermore, there is some evidence to suggest that such 
amino acids would condense to short peptides within the confines of 
the interlayers of the fougerite and other DLHs where most of the 
water is not free, but is bound to the interior walls or even on their 
outer surfaces (Huber and Wächtershäuser, 1998; Rode, 1999; Huber 
et al., 2003; Grégoire et al., 2016, 2018; Erastova et al., 2017; Muñoz-
Santiburcio and Marx, 2017; Branscomb and Russell, 2019; Rimola 
et al., 2022). In broad support of this view, Holden et al. (2022) show, 
using the electrospray mass spectrometry, that a substantial reduction 
in water activity does drive the condensation of glycine and alanine 
to dipeptide and, in droplet fusion reactions, protonated tri- and 
tetra-glycines. Additions of single glycines thereafter produced Gly6, 
an introduction to a peptide ‘world’ (Holden et al. 2022). Moreover, 
Boigenzahn and Yin (2022) demonstrate the condensation of 
glycylglycine to oligoglycines driven by trimetaphosphate at low 
water activities (cf. Yamagata et al., 1997).

6. A peptide world sequestering 
inorganic anions with improvement in 
reproduction

The formation of peptide isomers on the microsecond timescale 
within the interlayers on fougerite could further support the potential 
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role of confined-volume systems in abiogenesis. That is, by membrane, 
cell-wall, and biofilm-like structures built from materials generated on 
site rather than from random organic molecules supposedly delivered 
haphazardly to the mound from Fischer–Tropsch reactions and the 
like, generated remotely at depth in the crust (Muñoz-Santiburcio and 
Marx, 2017; Holden et al., 2022; Römling, 2022). The addition of 
amino acids and short peptides to the inorganic membranes renders 
the chemical gardens significantly more durable (Russell et al. 1994; 
McGlynn et al. 2012; Barge et al., 2019; Hooks et al., 2020; Flores et al., 
2021; Borrego-Sánchez et al., 2022). Moreover, as so generated, the 
backbone amides in short peptides would prove irresistible to 
inorganic ions and complexes through hydrogen bonding in the 
membrane—sequestering them to make enzyme-like structures such 
as hydrogenase and ferredoxin analogs (Nitschke and Russell 2013; 
Nitschke et al. 2022). Furthermore, being attractive to each other, they 
can produce robust peptide membranes involving the same ions—the 
beginning of the organic takeover (Zhang et al., 1993; Milner-White 
and Russell, 2005, 2008, 2011; Maury, 2009; Bianchi et  al., 2012; 
Zhang, 2012; Kandemir et al., 2016).

Baranov et al. (2016) note that flexible linear peptides would have 
more structural uses and functions than cyclic molecules in the first 
stages of life. Moreover, Popov (1999) emphasizes that the peptide 
folding itself is a nonlinear non-equilibrium thermodynamic process. 
Intriguingly, H+-PPases boast of a phosphate-binding site, a protein 
loop (P-loop) homologous with that of ATPases, that sequesters 
phosphate. And just such a peptide has since been assembled in the 
laboratory from a mixture of simple amino acids rich in glycine, 
whereby its flexible backbone is shown to cosset and sequester 
phosphate with two of the three main chain NH groups comprising 
the glycine-rich peptide backbone, that is, through hydrogen bonds to 
the phosphate ion which thereby bridges it to take the concave form 
(Milner-White and Russell, 2008; Bianchi et al., 2012).

The discoveries that both bacteria and archaea have prion-like 
domains allow the consideration of prions being pre-LUCA (Prusiner, 
1998; Zajkowski et al., 2021). It is notable that uncoded peptides are 
self-recognizing and tend to arrange themselves as parallel 𝛼-sheets 
that can spontaneously convert into the more stable and insoluble 
amyloid 𝛽-sheet by plane flipping (Armen et al., 2004; Milner-White 
et al., 2006; Hayward and Milner-White, 2008, 2021; Milner-White, 
2019). Such self-propagating and temperature-resistant sheets are 
much stronger than lipids and have the potential to act at the 
emergence of life in such roles as cell membrane/cell walls and biofilm 
analogs (Kosolapova et  al., 2020). Furthermore, comprising 
membranes their backbones can sequester metals and phosphate 
without reliance on the side-chain order (Zhang et al., 1993; Milner-
White and Russell, 2005; Childers et al., 2009, 2010; Maury, 2009; 
Greenwald and Riek, 2010; Li et  al., 2010; Goodwin et  al., 2012; 
Milner-White, 2019). Other short peptides that do involve side chains 
have shown similar or superior mastery over metal-ion chelation and, 
thereby, agency (Aithal et al., 2023; Timm et al. 2023).

Of course, the popular view is that lipids constituted the first 
organic membranes but there is no theoretical or experimental 
evidence to suggest how they would be produced in the protometabolic 
system autotrophically at plausible rates and temperature. What use 
would they have beyond acting, as they do today, as membrane fillers 
and lubricants? After all, in contrast to lipids, peptides and amyloids 
are, (i) interactively cooperative with other ions, (ii) stronger as in 
their involvement in a web-like role in cell walls, strong enough even 

to contain turgor pressures (Kandler and König, 1998; Desvaux et al., 
2006), (iii) can be seen to have roles extending to the enzyme structure, 
proteins, and cofactors, (iv) as well as much of the membrane, and (v) 
as prions they seemingly offer autonomous and ‘intentional 
exploration’ of space and time for similar disequilibria (Chernoff, 
2004; Lupi et al., 2006; Maury, 2009; Coca et al., 2021; Jheeta et al., 
2021; Zajkowski et al., 2021).

Under alkaline vent conditions, amyloid peptides and amyloid 
fibrils would be expected to exude from the interlayers to produce 
organic molecular webs adhering to the spire’s inner walls as metal-
dosed organic films (Takahashi and Mihara, 2004; Larsen et al. 2007; 
Römling, 2022; Figure 3). Subject to entrainment in the hydrothermal 
updrafts, some of this amalgam is likely to spall off in the general 
direction of flow, eventually crowding and necking to form offspring 
capable of interacting and sharing the peptide film (Milner-White and 
Russell, 2005; Larsen et al. 2007; Greenwald and Riek, 2010; Greenwald 
et al., 2018; Römling, 2022). Yet, it is admitted that this speculation 
falls well short of how prions in membrane or cell-wall microbes could 
segue to a peptide–nucleotide world governing metabolic pathways 
and the reverse Krebs cycle (Gallardo and Rodhe, 1997; Schumann 
and Huntrieser, 2007; Carey et al. 2016; Weiss et al. 2016; Bromberg 
et al., 2022; Harrison et al., 2022; Lane, 2022; Palmeira et al., 2022). 
For this, we are forced to consider the emergence of an albeit imperfect 
genetic governance to get life into its historical and present role.

FIGURE 3

(A) Sketch of chemical garden spires comprising ferroferric 
oxyhydroxide and minor iron sulfide that spontaneously precipitate 
and continue to grow through injection at alkaline/acidic interfaces 
(Barge et al., 2015a, b; Helmbrecht et al., 2022; Akbari and Palsson, 
2022b; see Figure 1). Short peptides produced in the fougerite 
interlayers are presumed to be gradient-driven vectorially through 
the fougerite nanocrysts from outside to the spire’s inner surface 
where they are hypothesized to form metal-dosed organic films 
signified here by brown color (cf., Oda and Fukuyoshi, 2015; 
Römling, 2022). Within certain limits of externally applied 
disequilibria, the fougerite or similar DLHs act like an enzyme, in that 
organic production rates remain constant in spite of fluctuations in 
supply (Pitsch et al., 1995; Hansen et al., 1996; Kolb et al., 1997; 
Branscomb et al., 2017). Continuation of the process leads to spalling 
and entrainment and eventual crowding at the growing spire’s tip 
where necking-off produces organic/inorganic cells that gravitate to 
depth in a geode (also brown; Russell and Martin, 2004): (B) natural 
chemical garden sulfide bubbles by comparison in the 340 Ma 
Tynagh orebody (Russell and Hall, 1997).
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Furthermore, Abel and Trevors (2006) provide a cogent 
argument against the assumption that the complexification of 
peptide- and prion-assisted metabolisms is enough to initiate 
vertical evolution without the insertion of a rule-based 
physicochemical program. In other words, we have to face up to the 
introduction of a material program, which makes life distinct in 
being able to defend itself by exerting an autonomous choice, if 
surprised by external alterations beyond itself (Kordium, 2021). This 
is in contrast to ALL other simple self-ordering phenomena driven 
by the many varieties of known disequilibria (Russell et al., 2013; 
Ramstead et al., 2019).

However, there is at present no clearcut path from a putative 
fougerite–mackinawite–peptide reproducing system to a nucleotide-
based replicative one.

7. Genome programming—from 
ordering to organization

Noting the main dilemma in the origin-of-life research, Freeman 
Dyson famously suggests that life must have originated twice “with 
two separate kinds of creatures, one kind capable of metabolism 
without exact replication and the other kind capable of replication 
without metabolism” (Dyson, 1986). Metabolism’s creature seems to 
emerge through the synthesis and reproduction of amino acids and 
even peptides but has nowhere to go, while the replication creature is 
supposedly born whole in an age of information, yet cannot find the 
wherewithal to ‘be’. These two creatures each have their champions 
and the regrettable outcome is the erection of an intellectual wall built 
between the ‘computing replicationists/geneticists’ and the ‘engineers 
of metabolism’. What to do?

The ‘metabolists’ do need to find geologically informed ways to 
synthesize the nucleotides indispensable to making a code. The ball 
is in our court. Just how information was introduced early into the 
engines of metabolism is the ‘hard problem of life’ (Walker and 
Davies, 2017; Wong and Prabhu, 2023). From a crystallographic 
perspective, we might start with the size and shape, recalling Erwin 
Schrödinger’s classification of the gene as an aperiodic crystal 
(Schrödinger 1944). Moreover 2 years later, Linus Pauling (1946) 
promulgated his views on the importance of complementarity of 
molecular shape as determinants of their interactions (Pauling, 
1946), originally considered as the “lock and key” requirement for 
molecular interactions (Fischer, 1894) and the “side chain theory” of 
Ehrlich (1901). These articles set the scene for the self-assembly 
hypotheses of: (1) Dounce’s (1953) nucleic acid template hypothesis, 
whereby the ribonucleic acids synthesized on the gene templates 
would, in turn, become templates for protein synthesis, (2) Gamow’s 
(1954 and Gamow and Yčas, 1955) double coding hypothesis, in 
which “amino acid residues in proteins are selected by independent 
triplets of nucleotides,” and (3) Nirenberg and Leder’s (1964) 
“affinity method.”

Woese et al. (1966) picked up on these ideas, framing the issue in 
terms of “whether or not amino acid-oligonucleotide steric 
interactions play or have played a role in determining these 
assignments, and if so, to what extent?” Their resounding and 
“essentially unavoidable conclusion” is that “codon assignments 
manifest an underlying codon-amino acid pairing”; a conclusion still 
resonating today (Woese et al., 1966; Russell et al., 2003; Yarus et al., 

2005, 2009; Yarus, 2021; Harrison et al. 2022). Moreover, it leads to 
Massimo Di Giulio’s (2008) hypothesis of an extension of the 
coevolution theory for the origin of the genetic code.

While these theories have been widely entertained, experimental 
exploration is limited. One notable success is due to Mellersh and 
Wilkinson (2000) who demonstrated, for example, how “polyadenylic 
acid immobilized on silica gel stereoselectively binds L-lysine from 
dilute aqueous solution”… and so facilitates “subsequent amide bond 
formation” (Russell et al., 2003). At the same time, Levy and Ellington 
(2003) expand upon their ideas regarding peptide-templated nucleic 
acid ligations. Mike Yarus (2017) confirms these affinities by 
demonstrating that the RNA–amino-acid interface logically relates 
triplets to the side chains of particular amino acids, concluding that 
“peptides may have been produced directly on an instructive amino 
acid binding RNA” (Yarus, 2017). We should also note the possibility 
that, given the degeneracy in the genetic code, the progenitors of the 
earliest genetic code were codons with four bases (or more)—the 
tessera codes of Baranov et al. (2009) and Gonzalez et al. (2012, 2019). 
Yarus (2011) also sees a way of “getting past the RNA world”—a world 
that never was according to Yockey (1995), Kurland (2010), and Wills 
and Carter (2018).

Wächtershäuser (1990), Martin and Russell (2007), and Harrison 
and Lane (2018) have made attempts at a “progression” but it might 
be argued, to use Stanley Miller’s apothegm, that these erections are 
nothing more than “paper chemistry” (Hagmann, 2002, but see 
Polanyi (1962, p. 165) for a thoughtful defense of such ‘speculations’). 
Abel and Trevors (2006) attempt to discipline the “metabolists,” by 
pointing out that, absent a program, metabolic cycling is doomed to 
docile repetition as long as their particular driving disequilibria last, 
as per the laws of chemistry and physics. To animate metabolism and 
make it reflexive, we cannot expect complexification per se to answer 
the conundrum (Abel, 2011). The workings of life have to 
be  understood in terms of their entirety and as Abel (2011) 
emphasizes, work itself “entails more than spontaneous phase 
transitions.” Once metabolism’s disequilibria-converting engines are 
up and running, to allow the system as a whole to progress and evolve 
they all must be algorithmically directed, and continually replaced 
(Trixler, 2021). Moreover, to last, any product stemming from the 
alkaline mound has to have its use as a component part of each 
metabolic engine; has to pay its way or be discarded (Branscomb et al., 
2017). There seems nothing for it but to seek a non-ribosomal peptide 
synthetase that includes nucleotides in its structure (Kleinkauf and 
von Döhren, 1996; von Döhren et  al., 1999; Fischbach and 
Walsh, 2006).

Attempts to assail this conceptual wall have been less than 
successful. However, just this year some ‘cracks’ have appeared on the 
metabolist-cum-chemical side. The Nick Lane–Stuart Harrison group 
at the Department of Genetics, Evolution and Environment, 
University College London, look to how randomly synthesized 
nuclear monomers could become involved in the very basis of 
metabolism—namely, as nucleotide catalysts in CO2 hydrogenation 
and in amination of carboxylates to amino acids (Harrison et al. 2022; 
Palmeira et  al., 2022; Pinna et  al. 2022). This forward-looking 
approach can explain why ATP is universally conserved across life 
(Pinna et al., 2022). Moreover on this side, in a series of experiments, 
Joseph Moran’s group at the Institut de Science et d’Ingénierie 
Supramoléculaires, Strasbourg, France, demonstrates the likely 
networks followed by the earliest non-enzymatic metabolic pathways, 
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for example, metal-ion transaminations (Mayer et  al., 2021), the 
centrality of iron in catabolic as well as anabolic processes 
(Muchowska et al., 2019, 2020), and the abiotic conversion of aspartate 
to orotate and further reactions to produce all three of the pyrimidine 
nucleobases in water at 60°C catalyzed by a variety of metal ions along 
with an oxidant (Yi et al., 2022). Furthermore, Müller et al. (2022) 
explore ‘palaeochemistry’ in their search for a plausible scenario of an 
RNA–peptide world, while Akbari and Palsson (2022a) formulate how 
metabolic homeostasis and cellular growth might arise in the acetyl 
coenzyme-A pathway and the reductive TCA cycle, and Helmbrecht 
et al. (2022) demonstrate the accumulation of RNA in amakinite/
fougerite chemical gardens.

How much of this might progress in the precellular DLH world? 
Pitsch et al. (1995) demonstrate how a weakly alkaline 20 μM solution 
of glycolaldehyde phosphate can, once absorbed within M2+/M3+ 
oxyhydroxide interlayers of green rust, be transformed to hexose- and 
pentose-phosphates—the latter structurally related to the sugar 
phosphate units in RNA. Moreover, Krishnamurthy et  al. (1996) 
demonstrate that the ‘alternative’ nucleic acid pyranosyl ribose-2,4-
phosphate, the near-planar sugar phosphate structure formed in 
similar conditions, is a nucleic acid with exceptional base-pairing 
properties (Eschenmoser, 1994). Krishnamurthy et al. (1996) show 
that, on introducing formaldehyde and glyceraldehyde phosphate 
into the DLH interlayer, 40% of the product consists of 
pyranosyl ribose.

Perhaps, the secret of “The First Cell,” the title of Azra Raza’s book, 
which refers to the first cancer cell in an oncology case, is also the 
secret of the very first cell (Raza, 2019; Marshall, 2021; see Szent-
Györgyi, 1968). According to Bernhardt and Patrick (2014), genetic 
code evolution started with the incorporation of glycine, followed by 
other small hydrophilic amino acids. Certainly, once the genetic code 
is sophisticated to the extent of being able to take on surprises and 
make choices and generate novel information (Marshall, 2021), there 
can be a rush to infest the entire hydrothermal mound. And life is 
ready for its diaspora. While relatively slow to colonize the ocean crust 
at first, as an entropy generator able to pick up any stray leftovers from 
other disequilibria generating systems, life takes over the surfaces on, 
and within, our planet eventuating in photosynthesis (Russell and 
Arndt, 2005; Figure 4).

8. The taproot and first branch of the 
evolutionary tree

In the present AVT, life is rooted in methanotrophic 
acetogenic microbes respiring nitrate (Nitschke and Russell, 
2013). The taproot itself is grounded in fougerite, which sees to 
the harnessing of ambient H2, CH4, and CO2 driven by the natural 
proton motive force and respiration of oxidized nitrogen entities 
(Barnes and O’Neil, 1969; Neal and Stanger, 1983; Ducluzeau 
et al., 2009, 2014). Once this system is up and running at the 
outer margins of the submarine alkaline hydrothermal mound, 
its requirements are, nevertheless, highly constricting. The 
evolutionary breakout (‘break in’) comes with metabolism’s 
discovery of how to survive on the much reduced free energy 
from readily available H2 and CO2 within the mound itself. 
We speculate that Christian Schöne et al.’s (2022) exciting finding 

of the facile conversion of an archaeal methanogen to a carbon-
monoxide-dependent acetogen through the removal of cellular 
function could be  read as an indication of how “reverse 
methanotrophy” segued to an acetogenesis, perhaps related to the 
differentiation of the progenote into the archaea and bacteria 
(Russell and Nitschke, 2017; cf., Lyu et al., 2022). This admittedly 
contentious suggestion sees a parallel in human society having to 
burn hydrocarbons while ‘waiting for nuclear fusion(s)’.

9. Escape from the mound and the 
founding of the deep biosphere in 
serpentinizing ocean crust

Entrainment of the earliest microbes in a hydrothermal effluent 
to the ocean would lead to their immediate starvation. Thus, it is 
surmised that the only survivors are those who are caught up in an 
involuntary and random growth and expansion in a downward front 
to inaugurate the deep biosphere (Pedersen, 1993; Parkes et al., 1994; 
Parkes and Wellsbury, 2004; Russell and Arndt, 2005; Glasby, 2006; 
Schrenk et al., 2013). In such conditions, the ‘law of natural rejection’ 
would see all but the most efficient cells or cellular cooperatives 
die-off.

In the oceanic crust itself, these survivors would have missed 
the profusion of the mound and been drastically thinned out and 
stripped of non-essential genes (Fones et al., 2019, 2021). Fones 
et al. (2021) make the cogent argument that the absence of CO2 
in this new environment drives the adaptation of methanogens 
to generate their own. Discrete ocean downdrafts are another 
source of CO2. Yet, the remaining feedstocks, while restricted, are 
otherwise not so different in the serpentinizing throat and 
ultramafic surrounds, perhaps also supplying the electron-
donating H2, CH4, HCOO−, CO, and CH3COO− (Windman et al., 
2007; White et al., 2020). The latter four entities also supply the 
substrate carbon (White et  al. 2020). Such alkaline fluids are 
known to support microbial nitrate and nitrite bacterial reduction 
(Albina et al., 2021).

Colman et  al. (2022) offer a window into the effect of such 
conditions in their exhaustive study of the Semail ophiolite. Not only 
are reproduction rates much diminished but genetic diversity too is 
“streamlined” for survival (Colman et  al., 2022). Furthermore, 
syntrophy, gene swapping both within and across domains, and the 
sharing of nutrients keep the microbiome operating (Wolin, 1982; 
Russell and Arndt, 2005; Tiago and Veríssimo, 2013; Kohl et al., 
2016; Brazelton et  al. 2017; Suzuki et  al., 2017, 2018; Colman 
et al. 2022).

Extrapolating across the 4 billion years since life’s onset, we gauge 
from Colman et al. (2022) that the autotrophic acetogenic analogs 
comparable to what they term type II Acetothermia would survive 
displacement from the mound into the hyperalkaline waters in 
equilibrium with incipient serpentinization. These types of 
Acetothermia employ an archaeal-like carbon-monoxide 
dehydrogenase and ferredoxin-based complexes to achieve 
acetogenesis. Moreover, they have the capacity for respiratory growth 
using nitrate (Youssef et  al., 2019). Other bacteria revealed by 
metagenomics are the sulfate-reducing bacteria (Brazelton et al., 2017; 
Rempfert et al., 2017; Templeton et al., 2021).

https://doi.org/10.3389/fmicb.2023.1145915
https://www.frontiersin.org/journals/microbiology
https://www.frontiersin.org


Russell 10.3389/fmicb.2023.1145915

Frontiers in Microbiology 11 frontiersin.org

Although apparently missing from the Semail ophiolite, 
sequences of an anaerobic Methanotroph group  1 (ANME-1) 
have been identified in the serpentinization-driven alkaline 
Cabeço de Vide aquifer in Portugal, and unclassified anaerobic 
methanotrophic euryarchaeota (ANME) MAG are recorded from 
Lost City (Tiago and Veríssimo, 2013; Nothaft et  al., 2021). 
However, suggestions that these findings provide an inkling of 
support for the methanotrophy-first speculation of Nitschke and 
Russell (2013) are put on hold by the likelihood of the present-day 
“contamination from surface waters” (Merkel et al., 2013; Postec 
et al., 2015; Trutschel et al., 2022).

10. The submarine alkaline vent theory 
put to the test

Experiments on, and analyses of, AVT look to an evolutionary tree 
with its deepest roots in cosmogenesis—yet reaches upward and along 
the lowest branches of the acetyl coenzyme-A and an incomplete 
reverse TCA cycle (Nitschke and Russell, 2010; Russell et al., 2013; 
Carroll, 2016).

Findings and some predictions of AVT are that:

 1. A natural proton disequilibria measuring between 2 to 5 pH 
units imposed across an FeS membrane separating a hydrogen-
bearing alkaline solution from a carbonic ocean drives the 
hydrogenation of the CO2 to formate/CO (Russell and Hall, 
1997; Branscomb and Russell, 2013; Vasiliadou et al., 2019) is 
verified (Hudson et al., 2020), although most of the iron in the 

membrane is now argued to be in fougerite/green rust rather 
than in FeS (Russell et al., 2013).

 2. An expectation of AVT is that methane derived from the lower 
mantle and entrained in the alkaline hydrothermal fluid will 
oxidize to a methyl group within green rust (Nitschke and 
Russell, 2013), itself (re)oxidized by NO and nitrate provided 
through …

 3. appreciable volcanic and hurricane cloud-to-cloud lightning, 
bolide impacts, and photochemistry from the CO2 + N2 
atmosphere dissolved in the ocean as CO2, NO3

−, and NO2
− 

(Mancinelli and McKay, 1988; Gallardo and Rodhe, 1997; 
Kasting and Siefert, 2001; Ducluzeau et al., 2009; Wong et al., 
2017; Navarro-González et al., 2019).

 4. Although conclusion 3 is challenged by Ranjan et al. (2019), the 
view that the nitrogen oxides were present in the Earth’s early 
atmosphere and that their derivatives also invaded the ocean is 
now strongly reinforced by Buessecker et  al. (2022) who 
suggest green rust to be responsible for carrying NO to depth 
bound as nitrosyl (and see Heays et  al., 2022; 
Nishizawa, 2022) …

 5. in turn supporting the denitrifying methanotrophic 
acetogenesis hypothesis as the first pathway to life, predating 
the more demanding acetyl coenzyme-A pathway (Nitschke 
and Russell, 2013; Russell and Nitschke, 2017) …

 6. and that the amination of pyruvate and oxalate to alanine and 
glycine which can be accomplished via fougerite (Nitschke and 
Russell 2013) is verified by Barge et al. (2019, 2020) …

 7. while the condensation of amino acids to peptides within the 
2D interlayers of peptides has support from Muñoz-Santiburcio 

FIGURE 4

Emergence of the deep biosphere. Autotrophic life emerges and rapidly infects a hydrothermal alkaline mound (Figure 1) and differentiates 
interdependently into the precursors of the bacteria and archaea, grows by expansion downward and laterally into the surrounding sediments and 
serpentinizing ocean crust, thus initiating the deep biosphere, a hypothesis now broadly supported by recent research (Fones et al., 2019, 2021; Boyd 
et al., 2020; Berkemer and McGlynn, 2020; Leong et al., 2021; Colman et al., 2022). Numbers 1–3 relate to life’s emergence, while 4 marks the 
supposed point of differentiation of the archaea and the bacteria. Roman numerals V–VI mark evolutionary stages of the archaea, and number 5 shows 
the stages of evolution of the bacteria in the deep biosphere (redrawn from Russell and Arndt, 2005).
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and Marx (2017), Erastova et al. (2017), Grégoire et al. (2016, 
2018), and Holden et al. (2022).

 8. Fougerite interlayers are capable of dampening externally 
imposed disequilibria to produce an enzyme-like flux-
force linearity to interactants (Branscomb and Russell, 
2019), …

 9. although indications of binding, binding-change, and 
disequilibria-conversion mechanisms (Russell, 2018) await 
experimentation using the operando X-ray absorption 
spectroscopy and allied techniques (Fracchia et al., 2018).

 10. That the deep biosphere—initially the serpentinizing Hadean 
ocean crust—is first populated with respiring denitrifying 
methanotrophic archaea and acetogenic bacteria from their 
point of ‘origin’ (the progenote) in a submarine alkaline 
hydrothermal mound (Russell and Arndt, 2005; Nitschke and 
Russell, 2013; Ménez, 2020) is supported by circumstantial 
evidence; e.g., the bacterium Acetothermia is capable of 
respiration with nitrate (Fones et al., 2019, 2021; Youssef et al., 
2019; Boyd et al., 2020; Colman et al., 2022) and an archaeon 
methanotroph, cf. ANME-1 (Tiago and Veríssimo, 2013; 
Brazelton et al., 2017). We might imagine these progenotes 
happening upon new locations with high concentrations of 
dissolved ions and gases, carried there passively by 
percolating solutions.

11. Conclusion

The production of alkaline hydrothermal waters through the 
serpentinization of mafic to ultramafic rocks, as introduced by Ivan 
Barnes et al., underpins AVT (Barnes and O’Neil, 1969; Barnes et al., 
1972; Russell et al., 1989; Macleod et al., 1994). These authors also 
figure in the description of the Lost City vents discovered in 2000 
(Kelley et al., 2001). The serpentinizing system that produces such 
alkaline submarine emissions has, through a reading of Cottrell 
(1979), since been described in terms of a disequilibria- (‘free-
energy’-) converting cracking engine (Russell et al., 2013). While 
AVT originally assumed a sulfide mound to be  generated at the 
spring-to-ocean interface, it became apparent that the double-layer 
oxyhydroxide green rust (fougerite) would be the major ferroferric 
precipitate along with some sulfide and Mg-rich clays and silica 
(Russell and Hall, 1997; Russell and Arndt, 2005). Because of its 
physicochemical flexibility, this macromolecular 2D mineral could 
also be considered the necessary nanoengine/protomotor enzyme—
in this case to convert the disequilibria between H2 + OH− + CH4 and 
CO2 + NO3

− + H+ to the rudiments of the denitrifying methanotrophic 
acetyl coenzyme-A pathway—the interlayers acting as precursor 
metabolic channels toward further downstream organic synthesis 
(Nitschke and Russell, 2013; cf. Srere, 1987).

The current AVT for life’s emergence has it that fougerite-rich 
hydrothermal electrochemical gardens (fine chimney stalks and 
spires) mark the precellular stage [Russell et  al., 2005, 2013 
(Figure 3B); Barge et al., 2015b; Chin et al., 2020; Nitschke et al., 2022 
(Figure 3)]. We imagine a well-ordered convective alkaline updraft 
feeding reductants to the also well-ordered macromolecular fougerite 
comprising the growing spires and chimneys, which in turn allows a 

well-ordered infiltration and vectorial flow of protons and anions 
from the ocean directed through the interlayers (Borrego-Sánchez 
et al., 2022). The result is an effusing tangle of organic molecules 
probably dominated by peptides to coat the inner wall of the spires 
(Akbari and Palsson, 2022b; Römling, 2022). Portions of this organic 
film spall off and are entrained in the flow, along with other organic 
molecules released by delamination and/or by diagenetic alteration 
to magnetite at depth in the mound. Some of this organic material 
may be  ‘attracted’ to form cellular structures that are capable of 
sensing and responding to oscillations and fluctuations in supply and 
perhaps prove eventually to be  self-sustaining, and, on the 
development of emerging genetic algorithms, would be able to make 
choices and generate novel information and rapidly infect the mound 
(Cain, 1949; Marshall, 2021).

Thus, beginning with the insights of Ivan Barnes et al., we argue that:

 1. Serpentinization is the inescapable response of the Hadean 
Earth’s ultramafic crust to the circulation of ocean water. 
Moreover, it is equally inescapable that the preorganized 
macromolecule fougerite is a prerequisite for the dissipation of 
the disequilibria resulting from the return of serpentinite’s 
effluent to its original source, the Hadean carbonic ocean 
(Tatzel et al., 2022).

 2. Just as cracks in the Hadean ocean floor are a prerequisite for 
priming serpentinization, so do aqueous interlayers within 
redox/pH-sensitive fougerite nanocrysts acquiesce to the forceful 
vectorial invasions from either flank of the precipitate membrane 
of pent-up ions, charged and uncharged fuels and oxidants, 
eventuating in protometabolisms (Nitschke and Russell, 2013).

 3. However while fougerite may be considered to provide simple 
messages to govern a product, it is presumed that prion-like 
offspring may offer seemingly autonomous and ‘intentional 
exploration’ of space and time for similar disequilibria 
(Maury, 2009).

 4. However, a second chapter on life’s emergence awaits an 
understanding of the paths from the earliest coherent 
pregenetic governing algorithms of life to the emergence of the 
“modern synthesis”—both barely written introductions to the 
subsequent well-versed chapters of life’s unitingly diversifying 
Gaian commonwealth where “everything is everywhere 
(though the environment selects)” (Baas Becking, 1931, 1934; 
Quispel, 1998; Abel and Trevors, 2006; Igamberdiev, 2021); 
pace (Martiny et al. 2006).

An understanding of how life both emerges and thrives requires 
the use of stochastic or trajectory thermodynamics—equilibrium 
thermodynamics is absolutely inappropriate for the task (Astumian, 
2018, 2020; Bartlett and Beckett, 2019; Branscomb Russell, 2019; 
Horowitz and Gingrich, 2020; Feng et al., 2021; Ueltzhöffer et al., 
2021). Furthermore, of course, experiments are required to test the 
hypothesis that self-sustaining hydrothermal ‘electro-chemical 
gardens’ comprising the minerals fougerite and mackinawite as 
nanoengines and nanoengine mountings are up to the task of 
engendering the earliest steps of life (Figures  2, 3). Thereafter, 
computer modeling and artificial intelligence beckon as ways of 
further resolving sequences of life’s emergence (Ugliengo, 2019; 
Hassabis and Revell, 2021).
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