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Abstract—Self-timed rings are oscillators in which several
events can evolve evenly-spaced in time thanks to analog effects
inherent to the ring stage structure. One of their interesting
features is that they provide precise high-speed multiphase
signals. This paper presents a true random number generator
that exploits the jitter of events propagating in a self-timed ring
with a high entropy. Designs implemented in Altera Cyclone III
and Xilinx Virtex 5 devices provide high quality random bit
sequences passing FIPS 140-1 and NIST SP 800-22 statistical
tests at a high bit rate.

I. INTRODUCTION

Random Number Generators (RNG) are basic blocks of

cryptographic systems. They are used in many cryptographic

primitives to generate confidential keys, challenges, padding

values, to authentify protocols and even in coutermeasures

against attacks. They need therefore to fulfill very strict

security requirements because a weak RNG can jeopardize the

whole cryptographic system security. Ideal RNGs are mathe-

matical constructs that generate independent and uniformly

distributed random numbers. Real-world RNGs are classified

into Deterministic (DRNG) and True Random Numbers Gen-

erators (TRNG). DRNGs are based on complex deterministic

algorithms and cryptographic functions such that their output

cannot be predicted easily in a reasonable amount of time.

DRNGs usually provide high bit rate data sequences that pass

the standard statistical tests. However, they only guarantee

practical security and do not allow a proved assessment of

security. If its algorithm is known, the output of a DRNG

can be theoretically predicted. Even when the algorithm is not

known, but some of the generator output sequences have been

recorded, its behavior during the recorded sequence can be

used in future attacks. On the other hand, TRNGs usually rely

on physical random processes to generate random bit streams.

Their bit rate is limited by the spectrum of the underlying

physical process and by the entropy extraction technique. But

contrarily to DRNGs, TRNGs allow a mathematical assess-

ment of the security: a precise modeling of the random process

and the entropy extraction enable to compute the lower bound

of entropy per output bit. If the minimal entropy per output

bit approaches 1, then the TRNG is not manipulable and it

can be assimilated to an ideal RNG.

TRNGs use physical random processes to generate random

bits. Although physical random processes such as radioactive

decay and thermal agitation are not exploitable directly in

electronic devices, one of their consequences is the random

noise present in all electronic signals. Due to this noise, the

significant instants of a digital signal vary from their ideal

position in time. This phenomenon, called the jitter, can be

exploited to generate random numbers thanks to its random

properties. RAND Corp. exploited the random jitter in the

fifties for generating the well-known random numbers tables

used worldwide by the cryptographic community back then

[1]. Then, Fairfield et. al. were the first to propose a TRNG

embedded in dedicated hardware [2]. In their design, often

refered to as ”Coupled-oscillators TRNG”, a low frequency

jittery signal samples a high frequency jittery signal to gener-

ate random numbers. Since then, the principle of sampling a

jittery signal to generate random numbers have been widely re-

used and enhanced by the cryptographic community. Authors

of [3] use the tracking jitter of a PLL (Phase Locked Loop)

to generate provably random bits at a high bit rate. In [4],

Golic et. al. propose a hybrid RNG where a jittery oscillator

randomly samples the output of Galois and Fibonacci rings.

Sunar et. al. proposed a global approach for ring oscillator

based TRNGs [5]. Their design combines the jitter issued

from several inverter ring oscillators to enhance the entropy

harvesting.

This paper presents a novel TRNG using the jitter of events

propagating in a self-timed ring to generate random numbers at

a high bit-rate. First, Section 2 defines the jitter and explains

how to generate random numbers using it. Then Section 3

presents the self-timed ring based true random number genera-

tor (STRNG), its architecture and working principle. Sections

4 and 5 detail the self-timed ring architecture and temporal

behavior. Section 6 describes two designs implemented in

Xilinx Virtex 5 and Altera Cyclone III FPGAs and provides

jitter measurement results for each implementation. Section

7 evaluates the STRNG using the FIPS and NIST standard

statistical tests. Finally, Section 8 concludes the paper.

II. FROM JITTER TO RANDOM NUMBERS

Jitter is a phenomenon proper to any electronic circuit

involving a switching digital signal. It refers to the short-



term variations of a digital signal’s significant instants from

their ideal positions in time. Jitter is a consequence of several

phenomena: thermal noise, shot noise, power supply noise,

environmental fluctuations, etc. Jitter can be used to generate

random numbers as long as its source exhibits sufficiently

random properties. In fact, for randomness generation purpose,

two types of noise sources are the most important: local Gaus-

sian sources and global deterministic sources. Local Gaussian

noise sources generate a random noise at the transistor level

and are not influenced by external perturbations. They lead

to Gaussian timing distributions (propagation delay of an

inverter, oscillation period of a ring oscillator etc). This is

actually a direct consequence of the central limit theorem:

the distribution function of the sum of mutually independent

random variables is well-approximated by a normal density

function. A frequency analysis of the local random noise

underlines various sub-classifications with respect to the noise

frequency. The flat-band white noise represents the random

unbiased uncorrelated noise source that is the most suitable

for randomness generation. It comes mostly from thermal

noise, i.e. the random movements of the current carriers, for

example across a PN junction or at the collector or drain of

a transistor. Another kind of noise, the 1

F
noise (also known

as the Flicker noise) is exploitable, but correlated due to its

frequency dependence. This frequency dependence is much

more notable for the 1

F 2 Brownian noise, making it hardly

usable for randomness generation. Global deterministic noise

sources refer to the non-random noise sources which affect

equally each component of a circuit, as for example: power

supply noise, environmental fluctuations (temperature, electro-

magnetic emanations ...). These noise sources are dangerous

and unwanted in TRNG design for many reasons. They can

be predicted and manipulated providing a back door for cryp-

tographic attacks. They can also dominate the local random

sources making their measurement difficult.

Fig. 1. Entropy harvesting using a jittery signal and a reference clock scheme

One way to generate random bits using a jittery clock

is to sample this clock at its edges. Considering a signal

edge arrival time as a random variable, let’s define the jitter

boundaries as the time interval around the mean arrival time

of a signal edge that bounds 99% of this random variable

draws. If the sampling happens between the jitter boundaries

as shown in Fig. 1, the obtained sample has a random value.

While the principle is relatively simple, its realization is not

straightforward because these jitter boundaries are often very

small compared to the oscillation period (usually less than

1%). The design has to meet precise timing requirements

(picosecond order) so that the sampling happens between the

jitter boundaries. It also needs to synchronize the sampling

clock and the jittery clock to prevent the sampling signal from

drifting out of the jitter boundaries.

To circumvent these issues, Sunar proposed to combine the

outputs of several identical inverter ring oscillators using a

XOR function [5]. The corresponding architecture is shown

in Fig. 2. His objective was to fill an oscillation period of

the resulting signal ψ with events. If the time lapse between

two successive events is sufficiently short compared to the

jitter boundaries, then sampling this signal ψ at any time

would provide a random bit. Even if the relative phases of

the oscillators (and thus the elapsed time between successive

events) are not controlled, the idea is that, statistically, if

enough ring oscillators are used, acceptable filling rates can

be achieved with high probabilities. From a model standing

point, the oscillation period is divided into N equally matched

time intervals called urns equal to or shorter than the jitter

boundaries of one ring output. The mean timings of events

are supposed to be selected randomly because no assumption

is made on the initial relative phases of the ring oscillators. The

number of needed oscillators to fill each of the N urns with

at least one event is computed using a probabilistic model:

the number of uniformly random selections of N urns such

that all urns are selected at least once can be approximated by

N log(N).

Fig. 2. Architecture of the core of the TRNG presented in [5]

The idea proposed by Sunar is certainly a major contribution

to the jitter-based TRNGs theory. Nonetheless, the proposed

design have been also one of the most commented by the

cryptographic community. Authors of [6] remark that the

generator relies mostly on the pseudo-randomness which is

introduced by the phase drift between the oscillators. They

demonstrate this fact using digital simulations: they show that

the combined signal issued from 18 ring oscillators having

slight frequency differences passes FIPS and NIST statistical

tests without incorporating jitter in their simulations. Another

important issue concerns the mutual dependence of rings.

In fact, a full independence of rings implemented in the

same single logic device is a theoretical construct that is not

generally achieved in real devices. Authors of [6] show that

up to 25% of a set of 118 ring oscillators can be mutually

locked in an Altera Cyclone III device. If the rings are not

fully independent, their mutual phases cannot be uniformly

distributed, which causes a lack of entropy at the output of

the TRNG.



In the following, we describe an easy way to uniformly

fill the time domain with events using one self-timed ring

oscillator where several events evolve evenly-spaced in time.

The proposed method allows to precisely control the relative

phase of the events. Locking phenomena cannot take effect

because only one ring oscillator is used.

III. SELF-TIMED RING BASED TRUE RANDOM NUMBER

GENERATOR

Self-timed rings are oscillators where several events can

evolve without colliding thanks to a handshake request and

acknowledgment protocol. Under certain conditions, they can

provide events which are evenly-spaced in time and distributed

over half an oscillation period of one ring stage output.

A self-timed ring provides L jittery synchronized signals

(Ci)1≤i≤L having the same period T and a constant mean

phase difference between them △ϕ = T/2L as shown in

Fig. 3. A clock signal clk samples each ring stage output using

a flip-flop. (si)1≤i≤L, the obtained signals, are then combined

using a XOR function. ψ is the resulting combined signal.

ψ = s1 ⊕ s2 ⊕ ...⊕ sL

Fig. 3. Chronogram of the self-timed ring outputs

The entropy extraction principle is illustrated in Fig. 3.

Since each signal Ci is sampled with the same reference

clock clk, for any sampling instant t, there exists j such that

|t − tj | ≤ △ϕ
2

, where tj is the switching time of the signal

Cj . If the jitter boundaries are larger than the phase difference

△ϕ, the signal Cj is sampled in its jitter boundaries as shown

in Fig. 3. The resulting sample sj has then a random value,

and hence the output of the XOR gate is also random. The

entropy of the output bit at the signal ψ is at least equal to the

entropy of the sample sj . The higher is the jitter magnitude

and the lower is the phase difference △ϕ, the higher is the

entropy of the sample sj and at the output of the TRNG.

Figure 4 shows the architecture of the STRNG (Self-timed

ring based True Random Number Generator). The self-timed

ring provides the jittery signals which are evenly-spaced in

time. The output signals are re-indexed according to their mean

arrival time (Ci and Ci−1 are not adjacent stages). Sections

4 and 5 detail the architecture and behavior of the self-timed

ring. The entropy extractor consists of two elements: the flip-

flops which sample the output signals of the self-timed ring

using a reference clock clk, and the XOR tree which realizes

the XOR operation between the sampled outputs of the self-

timed ring.

Fig. 4. STRNG core architecture

Although the theoretical concept proposed here does not

require a jittery sampling clock, in practical designs, the jitter

of the sampling clock enhances the entropy at the output of

the TRNG. However, we do not take it into account while

sizing the design (i.e. choosing the phase resolution of the

self-timed ring according to its jitter magnitude). This way no

assumption or constraint is made on the sampling clock (worst

case scenario).

The proposed architecture suggests the potential for

metastability in the flip-flop outputs. The higher is the sam-

pling clock frequency, the higher is the probability that a flip-

flop output does not resolve to a fully driven value between

two successive samplings. Although this phenomenon is not

discussed in the paper, previous works suggest that it can be

exploited to harvest more entropy from noise ([8]), especially

if these not fully driven outputs are resampled at the output

of the XOR tree. However, this matter should be deeply

investigated in our upcoming works.

Finally, it can be noted that the design presented in [5]

relies on a probabilistic assumption: if enough ring oscillators

are used, it is possible to achieve acceptable filling rates of

the combined signal. On the contrary, in this design, the self-

timed ring allows to precisely adjust the mean elapsed time

between successive events. This time lapse can be set as short

as needed, it can be thus adjusted to the jitter magnitude of a

self-timed ring stage.

IV. SELF-TIMED RING OSCILLATOR

Self-Timed Rings (STR) are ripple FIFOs (First In First

Out memories) that have been closed to form a ring. These

ripple FIFOs feature an asynchronous handshaking protocol to

organize the data transfer across the structure. When closed,

the FIFO retains the handshaking mechanism that ensures

data ordering, but exhibits properties which are interesting for

providing high precision timing signals.



Fig. 5. Architecture of a self-timed ring

The self-timed ring structure is depicted in Fig. 5. It

corresponds to a ripple FIFO as proposed by I. E. Sutherland

in [7], which has been closed to form a ring of L stages.

Each stage is composed of a Muller gate and an inverter. For

the stage i, Fi is the forward input, Ri the reverse input,

and Ci is the output. Fig. 6 shows the ring stage structure

and its truth table. The forward input value is written to the

output if the forward and reverse input values are different,

otherwise previous output is maintained. The micropipeline

stages communicate using a two-phase handshake protocol as

described in [7]. In the first phase, a ring stage i sends a request

signal via its output Ci, signaling to the next stage i+ 1 that

data to be processed is available. In the second phase, the stage

i+1 latches the data and sends an acknowledge signal to the

previous stage i via its output Ci+1 signifying that the data

have been consumed. The same event at Ci+1 serves also as a

request signal from the stage i+1 to the stage i+2. Each 2-

phase request and acknowledgment signifies an event transfer

between interconnected stages. This way, data can propagate

in the ring without colliding thanks to the handshake protocol.

The tokens and bubbles concept is derived from the 2-phase

communication protocol described bellow:

• Stage i contains a bubble if its output Ci is equal to the

output of the previous stage Ci−1: Ci = Ci−1

• Stage i contains a token if its output Ci is different from

the output of the previous stage Ci−1: Ci 6= Ci−1

Fig. 6. Ring stage structure and truth table

A stage that contains a token is a stage which is currently

processing an event, while a stage that contains a bubble is

a free stage that is ready to process an event. Knowing the

stage truth table and the token and bubbles concept described

above, a token propagates from the stage i to the stage i+ 1
if and only if the next stage i + 1 contains a bubble. In the

same time, a bubble propagates from the stage i + 1 to the

previous stage i if and only if the previous stage i contains a

token. The condition for a token to propagate from stage i to

stage i+ 1 is expressed as follows:

Ci 6= Ci−1 and Ci = Ci+1

This way, tokens (or events) propagate in the ring as long as

there is at least one bubble and an even number of tokens in the

ring. In practice, the number of tokens NT and the number of

bubbles NB are chosen during the ring initialization by setting

the initial values of the ring stage outputs.

Independently of the initial disposition of tokens and bub-

bles in the ring, experiments on self-timed rings show that

after a transient state, events in the ring reorganize themselves

in time as the ring achieves a steady state. This steady state

exhibits two oscillation modes depicted in Fig. 7: an evenly-

spaced and a burst propagation mode. The evenly-spaced

mode occurs when the events spread evenly all-around the

ring and propagate with a constant spacing. The burst mode

occurs when the events get together to form a cluster that

propagates around the ring. Both these oscillation modes are

stable and depend on the static parameters of the self-timed

ring (e.g. the propagation delays of each ring stage). It can

be noted that digital simulations do not predict these two

behaviors: events propagate in a disordered manner depending

on the static propagation delays and their initial disposition

without necessarily clustering or spreading around the ring.

In fact, digital simulations do not take into account two

analog phenomena that determine the temporal behavior of

the self-timed ring: the Charlie and drafting effects. Temporal

behavior of self-timed rings have been widely studied in the

past ([9], [10] and [11]), the following section briefly describes

it and presents the features which are exploited in the STRNG

principle.

Fig. 7. Burst and evenly-spaced propagation modes in a self-timed ring

V. TEMPORAL BEHAVIOR OF SELF-TIMED RINGS

One of the major issues with ripple FIFOs was to study the

loss of performances due to data clustering behaviors. Ebergen

et. al. were the first to use Charlie diagrams as a tool for a

better understanding of data movement in ripple FIFOs [12].

Charlie diagrams are used to predict the timing behavior of a

Muller gate as a function of the separation time between the

events that drive this gate. Winstanley et. al. carry on the study

by closing the FIFO [9] and introducing another analog effect

that helps understanding the movement of tokens (called the

drafting effect).

A. The Charlie and Drafting Effects

The Charlie and drafting effect are both analog phenomena

which are inherent to the self-timed ring stage structure. The



Charlie effect describes the impact of the separation time

between input events on a Muller gate delay: the closer are the

arrival times of inputs, the longer is this propagation delay. The

drafting effect describes the impact of the elapsed time from

the last output commutation on the stage propagation delay:

the shorter is this time, the shorter is the stage propagation

delay. In [9], Winstanley et. al. implemented an experimental

circuit where the Charlie and drafting effects can be controlled

within the design. They highlighted how those effects affect

the event propagation across the ring: the Charlie effect fa-

vorizes the evenly-spaced propagation mode while the drafting

effect favorizes the burst propagation mode. Intuitively, the

Charlie effect causes two close events to push away from

each other due to the increased delay experienced by a ring

stage when driven by two events separated with a short time

lapse. The evenly-spaced propagation happens when the events

keep pushing from each other until they spread-out evenly

across the ring. The time lapses that separate successive events

converge to one final value corresponding to the working

point of a steady regime. Contrarily, the drafting effect causes

two close events to gather together because of the reduced

propagation delay of a ring stage when it switches at a higher

rate. The final state of the self-timed ring (evenly-spaced or

burst) and moreover, the working point of the evenly-spaced

mode depend on the following parameters of the design:

• The Charlie and drafting effects which depend on the ring

stage implementation and the used technology

• The propagation delays of a ring stage Dff and Drr as

represented in Fig. 6, or more precisely, their ratio
Dff

Drr

• The ring occupancy, i.e. the ratio NT

NB
where NT is the

number of tokens and NB the number of bubbles

Thus, for a fixed design, the final state of a self-timed ring

depends only on its initial occupancy. The evenly-spaced mode

is achieved for a range of values of NT

NB
around

Dff

Drr
. It is

automatically achieved when [11]:

NT

NB

≃ Dff

Drr

(1)

In practice, the higher is the Charlie effect magnitude, the

larger is the interval of NT

NB
around

Dff

Drr
where the ring

achieves the evenly-spaced propagation mode. For example,

a 64-stage self-timed ring in Altera Cyclone III with
Dff

Drr
≃ 1

exhibits the evenly-spaced mode for NT varying between

22 and 42 (NB = 64 − NT ). While the same 64-stage

configuration in Xilinx Virtex 5 achieves the evenly-spaced

mode for NT between 28 and 38 (which suggests a stronger

Charlie effect in the Cyclone III implementation).

B. Frequency

The frequency of a self-timed ring is a function of its

occupancy. Figure 8 shows the frequency curve of an L-stage

self-timed ring as a function of the number of initialized

events. Nmin and Nmax correspond to the limit where the

events start to bunch. N0 corresponds to the point described by

Equation 1. This point also separates the curve into two regions

(not necessarily symmetrical depending on Dff and Drr): the

token-limited region where NT

NB
<

Dff

Drr
and the bubble-limited

region where NT

NB
>

Dff

Drr
. In the token-limited region, the

frequency increases with the number of events as it could be

expected intuitively. The maximal frequency is achieved when

Equation 1 is satisfied. Then the frequency starts dropping with

the number of events in the bubble-limited region. This is due

to the fact that events have to wait for the acknowledgment

signals since most stages are already processing events. This

reduces the operating frequency of the ring.

Fig. 8. Theoretical frequency curve of an L-stage self-timed ring as a function
of the ring occupancy

C. Phase Distribution

In [10], Fairbanks describes design methods for using self-

timed rings as generators of signals with high timing precision.

Contrary to inverter ring oscillators, self-timed rings allow

phase resolutions which are fractions of the propagation delay

of one ring stage because several events evolve simultaneously

in the ring. Each event propagating in a self-timed ring stage

inverts its output. If N events spread evenly in the ring (across

its structure), then each stage exhibits a N
L

× 180o phase

difference with its predecessor. Therefore, the phase difference

between 2 stages which are n stages apart is [10]:

ϕn = n× N

L
× 180o (2)

According to Equation (2), if the number of stages is a

multiple of the number of events, some stages may exhibit

the same absolute phase. But if the number of events and the

number of stages are co-prime, the self-timed ring exhibits as

many different equidistant phases as the number of stages. For

example, a 9-stage self-timed ring with 4 tokens and 5 bubbles

exhibits 9 different equidistant phases. An 18-stage self-timed

ring with 8 tokens and 10 bubbles also exhibits 9 different

equidistant phases since the ratio 8

10
can be reduced to 4

5
. A

self-timed ring where NT = NB and Dff = Drr exhibits 4

different equidistant phases no matter the number of stages.

If T is the oscillation period of a self-timed ring where the

number of events and the number of stages are co-prime, its

phase resolution expressed in the time domain is as follows:

△ϕ =
T

2L
(3)



On the other hand, the oscillation period in a self-timed ring

does not depend directly on the number of stages as it does

in inverter ring oscillators, but it is a function of the ring

occupancy (the ratio of the number of events to the number

of stages N
L

). This means that it is possible to enhance the

phase resolution △ϕ without modifying the ring frequency by

increasing L while keeping the same ratio N
L

. Subsequently,

the phase resolution of a self-timed ring can theoretically be set

as finely as needed. Elissati et. al. demonstrate the efficiency

of the method in [13] by implementing several designs where

they measure phase resolutions of the order of picoseconds.

D. Jitter

As explained before, self-timed rings are able to auto-

regulate timings between the events when locked in the steady

regime. One major consequence of this feature is that they

deliver a low jitter issued mainly from the local Gaussian noise

sources. To understand this fact, let’s consider an inverter ring

oscillator where one event propagates freely around the ring.

This event experiences variations in its significant timings due

to noise each time it crosses a ring stage. Since the event

propagation is unconstrained, this timing variation is transmit-

ted to the next stage and accumulates as the event propagates

in the ring. Jitter measurements show that the period jitter

of an inverter ring oscillators (which refers to the standard

deviation of a population of measured oscillation periods)

increases with the number of ring stages [14]. On the contrary,

an event propagating in a self-timed ring progressively loses

the carried jitter timing variation: its significant timings are

self-regulated as the separation time between successive events

converges to the working point of the steady regime and its

value does not depend on dynamic parameters such as noise in

the circuit. Jitter measurements show that the period jitter of

a self-timed ring does not increase with the number of stages

[14]. Moreover, the jitter measured at the output of a self-timed

ring is of the same order of magnitude than the measured

jitter of one single ring stage. This suggests that the jitter

generated locally in each ring stage does not propagate to the

other stages as it does in inverter ring oscillators. On the other

hand, global deterministic jitter affects each event in the same

manner. Subsequently, these deterministic timing variations

are strongly attenuated when we consider the separation time

between successive events. In conclusion, the jitter measured

at the output of a self-timed ring stage is mostly composed of

the random local jitter that originates from the concerned ring

stage.

VI. STRNG DESIGN AND MEASUREMENTS IN VIRTEX

XILINX 5 AND ALTERA CYCLONE III FPGAS

The STRNG principle relies on the setup of the self-timed

ring phase resolution according to the measured jitter mag-

nitude. This section details the STRNG implementation and

design constraints. It also provides jitter and phase resolution

measurements for different self-timed ring configurations in

Altera Cyclone III and Xilinx Virtex 5 FPGAs.

A. STRNG Implementation and design constraints

Muller gates are basic elements in asynchronous circuit

design. They can be implemented in FPGAs using Look-

Up-Tables (LUTs). Each self-timed ring stage (Muller gate

+ inverter) can be implemented using one LUT. At least 4

inputs are required: 2 inputs are used for the forward and

reverse inputs, 1 input is used to SET or RESET the stage,

and one input serves as the feedback-loop which is necessary

for maintaining the state value. SET and RESET allow to set

the initial number of tokens in the ring. We implemented two

kinds of self-timed ring stages: some cells with SET and other

cells with RESET. When connecting the stages and closing

the loop, one common INIT signal initializes the ring with

the correct number of tokens. The internal logic function of

a self-timed ring stage is realized using one LUT function

generator as shown in Table I (both Altera Cyclone III and

Xilinx Virtex 5 feature 4-input 1-output function generators).

I0 corresponds to the INIT input, I1 and I2 are the forward

and reverse inputs (F and R in Fig. 6) and I3 is the feedback

input connected to the output S (which refers to the output C

of the self-timed ring).

I0 I1 I2 I3 S

0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 1
1 - - - 0

TABLE I
SELF-TIMED RING STAGE WITH RESET DESCRIPTION USING A 4-INPUT

1-OUTPUT FUNCTION GENERATOR (LUT)

Although the self-timed ring can support propagation delay

disparities between its stages, if one delay is much longer than

the others, the ring can exhibit a bottleneck: events gather at

the input of this ring stage and cannot be distributed evenly

in time. The self-timed ring frequency is then limited by

this long propagation delay. To avoid bottleneck effects, it is

recommended to choose a placement topology that guarantees

balanced delays between the ring stages. In particular, a

topology with a long feedback loop should be avoided. Fig. 9

illustrates an example of a ring topology that limits bottleneck

effects in Altera Cyclone III.

For a given number of stages and according to Equation 3,

the lower is the oscillation period of the self-timed ring, the

better is its phase resolution. As shown in Fig. 8, the maximum

frequency of the self-timed ring is achieved when the ratio NT

NB

is as near as possible to
Dff

Drr
. The ratio NT

NB
needs also to be

irreducible to obtain as many different phases as the number

of ring stages. Considering the placement topologies in both

Virtex 5 and Cyclone III, the majority of ring stages have

equivalent forward and reverse propagation delays:

Dffmean

Drrmean

≃ 1 (4)



Fig. 9. Example of a self-timed ring (STR) topology for a 63-stage STR in
Altera Cyclone III device (each Altera Logic Array Block -LAB- contains 16
logic cells consisting of a LUT and a flip-flop)

This is also verified by the fact that the interval of tokens that

achieve the evenly-spaced mode is centered around NT ≃ L
2

.

In this case, one simple strategy is to choose first L odd,

then NT = L+1

2
and NB = L−1

2
= NT − 1. Thus, if L > 2

, L+1

2
and L−1

2
are relatively prime. Moreover, if L is high

enough, L+1

L−1
≃ 1, this way the frequency is maintained at

its maximum while increasing the number of ring stages and

enhancing the phase resolution of the self-timed ring.

In order to guarantee a correct phase distribution at the flip-

flop inputs, connections between all self-timed ring stages and

corresponding flip-flops must remain the same. Fortunately,

the majority of recent FPGAs (including Xilinx Virtex 5 and

Altera Cyclone III) feature a hard-wired connexion between

LUTs and flip-flops that can be successfully used in the

STRNG design.

Finally, the XOR tree is implemented using 4-input LUTs

in Altera Cyclone III and 6-input LUTs in Xilinx Virtex 5.

B. Phase resolution and jitter measurements

1) Measuring the jitter: One main assumption of the

STRNG principle is the presence of an uncorrelated, unbiased

random jitter issued from the white noise. This can be obtained

in practice in digital circuits because of the unavoidable

thermal noise (due to random movements of the current

carriers). One major issue however is to precisely measure this

jitter magnitude independently from additional noise sources

in order to correctly set the phase resolution of the self-timed

ring. Fortunately, due to the high frequencies of self-timed

rings (≃ 400 MHz in FPGAs, a few GHz in ASICs), Flicker

and Brownian noises can be neglected. Nonetheless, a few

precautions must be taken when realizing this measurement:

• The surrounding logic (i.e. the flip-flops and XOR tree)

should not operate during measurements in order to limit

any deterministic effects that could result from its oper-

ation. This allows to measure the minimal (unavoidable)

jitter present at the output of the self-timed ring

• Linear voltage regulators should be used in order to

reduce the power supply noise

• Low Voltage Differential Signaling (LVDS) outputs in

conjunction with differential oscilloscope probes should

be used in order to reduce the impact of slow input/output

circuitry and parasitic effects of the output

The period standard deviation (σperiod) is obtained by ac-

quiring a significant number of successive oscillation periods.

According to [14], the jitter magnitude of a self-timed ring

stage can be estimated using the following equation:

σ ≃ σperiod√
2

(5)

2) Estimating the phase resolution: The phase resolution is

computed by measuring the mean oscillation period and using

Equation 3. However, contrarily to the jitter measurement, the

whole design must be operating in this case. In fact, the flip-

flops and XOR tree connected to the ring stages cause its

frequency to drop (the phase resolution can therefore be worse

than expected). It is thus more cautious to measure the phase

resolution in this case.

3) Results: Frequency and jitter were measured using a

wide band digital oscilloscope LeCroy Wavepro 735 ZI. We

used the LVDS (Low Voltage Differential Signaling) interface

of the device and an active differential probe with a 4 GHz

bandwidth. First, we implemented different configurations

of the self-timed ring in both devices and measured their

oscillation period and period jitter. The standard deviation of

the propagation delay of one self-timed ring stage is computed

using Equation 5 and the phase resolution of the self-timed

ring is computed using Equation 3. Figure 10 shows the period

distribution of a 127-stage self-timed ring with 64 tokens in

both Altera Cyclone III and Xilinx Virtex 5. As it can be

seen, both configurations exhibit a Gaussian jitter profile. Table

II gives the measured oscillation period (T ), the computed

phase resolution using Equation 3 (△ϕ) and the measured

jitter magnitude (σ). L is the number of ring stages, N is

the number of initialized events. Measured jitter magnitude

values vary around 2ps in Altera Cyclone III and 2.5ps in

Xilinx Virtex 5.

Device L N T △ϕ σ

Altera Cyclone 3

63 32 2.07 ns 16.4 ps 2.1 ps
127 64 2.07 ns 8.2 ps 1.7 ps
255 128 2.08 ns 4.0 ps 1.7 ps
511 256 2.46 ns 2.4 ps 1.9 ps
1023 512 2.63 ns 1.3 ps 1.8 ps

Xilinx Virtex 5

63 32 3.44 ns 26.9 ps 2.7 ps
127 64 3.42 ns 13.5 ps 2.6 ps
255 128 3.72 ns 7.3 ps 2.8 ps
511 256 3.95 ns 3.9 ps 2.4 ps
1023 512 4.12 ns 2.0 ps 2.5 ps

TABLE II
OSCILLATION PERIOD (T ), PHASE RESOLUTION (△ϕ) AND JITTER PER

RING STAGE (σ) FOR DIFFERENT SELF-TIMED RING CONFIGURATIONS IN

ALTERA CYCLONE III AND XILINX VIRTEX 5

VII. STRNG STATISTICAL EVALUATION

For each self-timed ring configuration, we acquired 1.2

GBytes of data. In theory, the STRNG principle allows sam-

pling frequencies up to the self-timed ring frequency (a few



Fig. 10. Period distribution histogram of a 127-stage STR with 64 tokens:
(a) Altera Cyclone III (b) Xilinx Virtex 5

hundred Mhz). However, our USB transfer protocol limited

the output bit rate to 16 Mbit/s. In order to correctly evaluate

the entropy issued from the self-timed ring jitter, we used a

low-jitter 16 MHz quartz as a sampling clock. We applied

FIPS 140-1 statistical tests on 1000 sequences of 20000 bits

and NIST SP 800-22 statistical tests on 1000 sequences of 106

bits with a 0.01 confidence level. As it can be seen in Table

III, the TRNG output passes the FIPS and NIST tests starting

from L = 511 in Cyclone III (corresponding to △ϕ ≃ 0.7σ).

The design passes the FIPS tests in Virtex 5 starting from

L = 511 (△ϕ ≃ 0.8σ), but does not pass the NIST tests due

to a higher bias (the majority of tests pass except the frequency

test). This table also shows that the principle does not work

when the number of events and the number of stages are not

co-prime as expected from Equation (2) (when L = 128 and

N = 64 in the table).

Parity filter STR configuration Cyclone III Virtex 5

none

L N FIPS NIST FIPS NIST

63 32 55% FAIL 14% FAIL
127 64 98% FAIL 1% FAIL
128 64 0% FAIL 0% FAIL
255 128 100% FAIL 99% FAIL
511 256 100% PASS 100% FAIL

8th

order

63 32 100% FAIL 100% FAIL
127 64 100% PASS 100% FAIL
128 64 0% FAIL 0% FAIL
255 128 100% PASS 100% PASS
511 256 100% PASS 100% PASS

TABLE III
STATISTICAL EVALUATION OF THE STRNG USING NIST SP 800-22 AND

FIPS 140-1 STANDARD TEST SUITS

If necessary, the designer can reduce the TRNG core area

at the cost of a reduced bit rate by compressing successive

bits using a parity filter. An nth order parity filter regroups

n successive bits using a XOR function to provide one bit

at the filter output, thus enhancing the entropy per bit (and

reducing the bias), but dividing the bit rate by n. We used

an 8th order parity filter and increased the sampling clock

frequency to 120 MHz in order to maintain the output bit-rate

at 16 Mbit/s. As shown in Table III, the parity filter corrects

most bias problems in Virtex 5 and enhances the tests passing

rates in both devices. Using the 8th order parity filter, only

127 stages are needed to pass the statistical tests in Cyclone

III (255 stages in Virtex 5).

VIII. CONCLUSION

This paper presented a novel TRNG design that uses the

jitter of events propagating in a self-timed ring to generate

random bits at a high bit rate. The self-timed ring allows

to adjust the time lapse between two successive events as

short as needed by simply increasing its number of stages

and adjusting its number of events. This time lapse can be

thus adapted to the jitter magnitude which depends on the

selected technology and device. Therefore, the design allows

to extract entropy from the jitter even if its magnitude is

extremely low. Moreover, the designer can precisely tune the

architecture based on his security, throughput, cost and power

consumption requirements with a very low design effort.

Future works will include a detailed stochastic model of the

entropy extraction allowing to compute the lower bound of

entropy per output bit. This model will be used along with

experimental measurements for selecting the number of ring

stages in order to achieve a sufficient entropy per output bit

of the TRNG.
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