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Abstract— This paper presents a novel Vision-based Nonlin-
ear Model Predictive Control (NMPC) scheme for an under-
actuated underwater robotic vehicle. In this scheme, the control
loop does not close periodically, but instead a self-triggering
framework decides when to provide the next control update. Be-
tween two consecutive triggering instants, the control sequence
computed by the NMPC is applied to the system in an open-
loop fashion, i.e, no state measurements are required during
that period. This results to a significant smaller number of
requested measurements from the vision system, as well as less
frequent computations of the control law, reducing in that way
the processing time and the energy consumption. The image
constraints (i.e preserving the target inside the camera’s field
of view), the external disturbances induced by currents and
waves, as well as the vehicle’s kinematic constraints due to
under-actuation, are being considered during the control design.
The closed-loop system has analytically guaranteed stability and
convergence properties, while the performance of the proposed
control scheme is experimentally verified using a small under-
actuated underwater vehicle in a test tank.

I. INTRODUCTION

Visual Servo Control has been extensively used in the past

for the autonomous operation of underwater robotic vehicles.

Complex missions such as ship hull inspection, surveillance

of underwater facilities (e.g oil platforms) and handling of

underwater equipment (e.g control panels, valves) require de-

tailed and continuous visual feedback which can be obtained

from either monocular or stereo vision systems.

In a standard underwater vehicle configuration, the camera

is directly mounted on the robot (eye-in-hand camera system)

and the control error can be in general formulated in three

different ways: (i) Position-Based Visual Servoing (PBVS),

where the visual features extracted from the image are used

to estimate the 3D pose of the robot wrt the target; (ii) Image-

Based Visual Servoing (IBVS), where the control inputs are

determined directly on the 2D image plane based on the

error of the image features between the current and desired

images, and (iii) Hybrid Visual Servoing, where 3D PBVS

is combined with 2D IBVS [1],[2]. The motion control of an
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Fig. 1: Problem Statement: Navigation and stabilization of the
vehicle wrt a visual target while maintain target inside camera’s
optical field.

underwater vehicle is generally a highly nonlinear problem.

Moreover, real applications (e.g inspection and surveillance

tasks) impose constraints on the inputs and the states of the

vehicle (i.e visual and/or kinematic constraints). Nonlinear

Model Predictive controllers can efficiently handle nonlinear-

ities and constraints simultaneously [3] . However, as NMPC

schemes constitute in solving a constrained Optimal Control

Problem (OCP) at each instant, they are considered to be

computationally demanding. This motivates the event-based

design framework of the predictive controllers in order to

compute the control law only when is needed. The event-

based formulation of control tasks is a quite recent develop-

ment that can lead to the alleviation of energy consumption

as well as to the improvement of the requirements of the

computational resources. Under this formulation the decision

for the control update is based on a certain condition of

the state of the system which can lead not only to a more

flexible aperiodic sampling but can also guarantee to preserve

necessary properties of the system such as stability and

convergence, [4]. More specifically, in the case of self-

triggered control only the latest state measurement needs to

be known for determining the next triggering instant. Some

relevant results for the self-triggered set-up can be found in

[5],[6], [7].

In this paper, a Self-triggered Position Based Visual Servo

NMPC scheme for the motion control of an under-actuated

underwater vehicle is presented. The purpose of this work

is to navigate and stabilize the vehicle towards a visual

target by using the proposed control framework and assuring

that the target will always remain inside the camera’s field

of view (Fig. 1). The filed of view (FOV) constraints are

handled by the explicit formulation of the visual constraints

inside the NMPC framework. The main contribution of this

work relies in the design of a framework that will provide

aperiodic control sequences that lead to stable closed-loop

responses and of a mechanism that will decide when these



Fig. 2: Differential Drive Robot. Red color indicates no actuation
availability, while green color indicates actuation availability along
body frame axes.

control updates should occur. This results to the reduction

of the computational effort and the energy consumption

which are of utmost importance especially in the case

of Autonomous Underwater Vehicles (AUVs) where lean

computational algorithms and low energy consumption are

required. Some preliminary results on the self-triggered MPC

for nonholonomic systems are given in [8].

Experimental results of this kind of event-based formula-

tions are scarce in the literature,[9], [10], and to the best of

our knowledge this event-based set-up has never been used

before to control a real underwater vehicle.The performance

of our proposed control scheme is experimentally verified

using a small under-actuated underwater vehicle. The experi-

mental results are quite satisfying as the vehicle’s state vector

converges to a bounded set around the desired position and

the triggering instants are significantly reduced with respect

to (wrt) the traditional time-triggered case. The remainder of

the paper is organized as follows: In Section II, the modeling

of the underwater vehicle with the imposed constraints and

uncertainties, the vision-based state estimation of the vehicle,

as well as the whole problem statement are presented.

Section III accommodates the robust stability analysis for the

NMPC scheme which leads to the self-triggered framework.

Section IV, illustrates the efficiency of the proposed approach

through a set of experimental results. Finally, Section V

concludes the paper.

II. PROBLEM FORMULATION

A. Mathematical Modeling

Generally an underwater vehicle is considered as a 6

DOF free body with position and Euler angle vector x =
[x y z φ θ ψ]T . The body velocities vector is defined as

v = [u υ w p q r]T where the components are surge, sway,

heave, roll, pitch and yaw respectively (Fig.2). The general

form of the kinematic equations of an underwater vehicle is

given [11]:

ẋ = J(x)v (1)

where: J(x) is the Jacobian matrix transforming the veloci-

ties from the body-fixed to earth-fixed frame. The vehicle

used in this work is a 3 DOF VideoRay Pro ROV. It is

equipped with three thrusters, which are effective only in

surge, heave and yaw motion (Fig.2), meaning that the

vehicle is under-actuated along the sway axis. The angles

φ, θ and angular velocities p and q are negligible and we

can consider them to be equal to zero. Due to the above

assumption and the relative low speed of the vehicle, we

only consider the kinematic model of the vehicle, which in

its discrete-time form is formulated as follows [11]:

xk+1 = f(xk, Vk) + g(xk, vk) ⇒
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where x = [χk, yk, zk, ψk]
⊤ denotes the state vector at the

time-step k which includes the position and orientation of

the vehicle wrt the target frame G. The control input of the

system is Vk = [uk, wk, rk]
⊤ and dt denotes the sampling

period. In [12], it was proven that for any vehicle described

by (2), for any bounded control input [uk, rk] the velocity

about the sway direction vk can be seen as a bounded

perturbation with upper bound ||vk|| ≤ v̄ that vanishes at

the point x = 0. Consequently, this point is an equilibrium

of the kinematic system of (2). Note that throughout this

paper the notation ( ·̄ ) will denote the upper bound for each

of the variables. Therefore we consider the system:

xk+1 = f(xk, Vk) ⇒
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As the nominal kinematic system of the underwater vehi-

cle. The function g(·) is considered as a bounded inner

disturbance of the system that vanishes at the origin. Also,

g(xk, vk) ∈ Γ ⊂ R
4 with Γ to be a compact set, such that:

||g(xk, vk)|| ≤ γ̄ with γ̄ , v̄dt (4)

The robot moves under the influence of an irrotational current

which behaves as an external disturbance. The current has

components wrt the χ, y and z axes, denoted by δχ, δy and δz
respectively. Also it has a slowly-varying velocity δc which is

upper bounded by ||δck || ≤ δ̄c and it has direction β in χ−y
plane and α in z axes, wrt the global frame, see Fig.3. In

particular we set δk = [δ(χ/k), δ(y/k), δ(z/k), 0]
⊤ ∈ ∆ ⊂ R

4

with ∆ to be a compact set, where:

δ(χ/k) , δck · cosβ · sinα · dt

δ(y/k) , δck · sinβ · sinα · dt

δ(z/k) , δck · cosα · dt (5)

It is easy to show that ||δk|| ≤ δ̄, with δ̄ = δ̄c ·dt. Taking into

consideration the aforementioned disturbances that affect the

vehicle, we are now ready to model the perturbed system as

follows:
xk+1 = f(xk, Vk) + ωk (6)

with ωk = g(xk, vk) + δk ∈ Ω ⊂ R
4 as the result of adding

the inner and external disturbances of the system. Ω is a

compact set such that Ω = ∆ ⊕ Γ, where “⊕” denotes the

Minkowski addition of two sets. Since the sets ∆ and Γ are

compact, it yields that Ω is also a compact set, bounded by



||ωk|| ≤ ω̄ with ω̄ , δ̄ + γ̄.

The robot is equipped by a vision system that includes

a pinhole camera with limited angles of view a and b for

χ − y and χ − z plane respectively, see Fig.3. The FOV

Fig. 3: Modeling of the state constraints (8a)-(8c) imposed by the
sensor system and modeling of the external disturbance (5).

constraints of the system can be described as: [−yT , yT ] ⊆
[fχy/1, fχy/2] and [−zT , zT ] ⊆ [fχz/1, fχz/2], where 2yT
and 2zT are the width and height of the target respectively.

Also [fχy/1, fχy/2] and [fχz/1, fχz/2] are the camera’s field-

of-view on χ−y and χ−z plane respectively. Moreover, the

vehicle should not exceed the maximum distance Rmax at

which the target is visible and recognizable to the vision sys-

tem. These requirements are captured by the state constraint

set X of the system, given by:

xk ∈ X ⊂ R
4 (7)

which is formed by the following constraints:

−y + χ tan(ψ −
a

2
)− yT ≥ 0, y − χ tan(ψ +

a

2
)− yT ≥ 0

(8a)

−z − χ tan(
b

2
)− zT ≥ 0, z − χ tan(

b

2
)− zT ≥ 0 (8b)

R
2
max−χ

2 − y
2 ≥ 0 (8c)

Furthermore, the control constraint set Vset is assumed to

be compact and is given by:

Vk , [uk, wk, rk] ∈ Vset ⊆ R
3 (9)

The constraints of the input are of the form |u| ≤ ū , |w| ≤ w̄
and |r| ≤ r̄, therefore we get ‖Vk‖ ≤ V̄ where V̄ = (ū2 +
w̄2 + r̄2)

1

2 and V̄ , ū, w̄, r̄ ∈ R≥0. It can be shown that the

nominal system (3) is Lipschitz continuous with Lipschitz

constant 0 < Lf <∞. More specifically,

Lemma 1: The nominal model (3), subject to constraints

(8a)-(8c) and (9), is locally Lipschitz in x for all x ∈ X ,

with a Lipschitz constant Lf , (max{8, 8(ūdt)2}+ 1)
1

2 .

B. Control Design and Objective

The goal is to control the actual system (6) subject to the

state constraints of (8a)-(8c) and the control constraints (9),

to a desired compact set that includes the desired state xd ,

[χd, yd, zd, ψd]
T ∈ X . A predictive controller is employed in

order to achieve this task. With the NMPC law the state of the

system is proven to converge to the desired set. The design of

the ISS predictive controller for system (6) is presented next.

The NMPC consists in solving an Optimal Control Problem

(OCP) wrt a control sequence Vf (k), for a prediction horizon

N . The OCP of the NMPC is given as follows:

min
Vf (k)

JN (xk, Vf (k)) = (10a)

min
Vf (k)

N−1
∑

j=0

F (x̂(k + j|k), V (k + j|k)) + E(x̂(k +N |K))

subject to

x̂(k + j|k) ∈ Xj , ∀j = 1, . . . , N − 1, (10b)

V (k + j|k) ∈ Vset, ∀j = 0, . . . , N − 1, (10c)

x̂(k +N |k) ∈ Ef (10d)

Where Ef is the terminal set and F and E are the running

and terminal cost function, respectively. The vector x̂(k +
j|k) denotes the predicted state of the nominal system (3)

at sampling time k + j with j ∈ Z≥0. The predicted state

is based on the measurement of the state xk of the actual

system at sampling time k, while applying a sequence of

control inputs {Vk, . . . , Vk+j−1}. Thus:

x̂(k + j|k) = f(x̂(k + j − 1|k), Vk+j−1)

It holds that x̂(k|k) = xk. Furthermore, the following

preliminary result can be obtained:

Lemma 2: The difference between the actual state xk+j

at the time-step k+j and the predicted state x̂(k+j|k) at the

same time-step, under the same control sequence, is upper

bounded by:

||xk+j − x̂(k + j|k)|| ≤

j−1
∑

i=0

(Lf )
i
w̄ (11)

In Lemma 2, the difference between the actual state

trajectory of system (6) and the predicted state trajectory of

the nominal system is obtained. To address this divergence,

we used a restricted constraint set Xj ⊆ X instead of state

constraint set X into (10b) (see [13] and [14] for more

details). Let the cost function F (·), as well as the terminal

cost E(·), to both be of quadratic form, i.e., F (x̂, V ) =
x̂⊤Qx̂ + V ⊤RV and E(x̂) = x̂⊤Px̂, respectively, with P ,

Q and R being positive definite matrices. Particulary we

define Q = diag{q1, q2, q3, q4}, R = diag{r1, r2, r3} and

P = diag{p1, p2, p3, p4}. For the running cost function F ,

it is easy to show that F (0, 0) = 0,

Lemma 3: For the cost function F (x, V ) it holds that:

F (x, V ) ≥ min(q1, q2, q3, q4, r1, r2, r3)||x||
2 (12)

The state and input constrained sets are bounded, therefor it

can be derived:

Lemma 4: The cost function F (x, V ) is Lipschitz contin-

uous in X × Vset, with a Lipschitz constant:

LF = 2(R2
max + z2max + (

π

2
)2)

1

2σmax(Q) (13)

Where σmax(Q) is the largest singular value of matrix Q
and zmax = Rmax · tan(b2 ) is the maximum feasible value

along z-axes.

In order to assert that the NMPC strategy results in a robust

stabilizing controller, some stability conditions are stated as

follows:



Assumption 1: For the nominal system (3), there is an

admissible positively invariant set E ⊂ X such that the

terminal region Ef ⊂ E . Where E = {x ∈ X : ||x|| ≤ ε0}
and ε0 being a positive parameter.

Assumption 2: We assume that in the terminal set Ef ,

there is a local stabilizing controller Vk = h(xk) ∈ Vset for

all x ∈ E , and an associated Lyapunov function E such that

E(f(xk, h(xk)))−E(xk)+F (xk, h(xk)) ≤ 0 for all x ∈ E .

Assumption 3: The associated Lyapunov function for the

terminal region is Lipschitz in E , with Lipschitz constant

LE = 2ε0σmax(P ) for all x ∈ E .

Assumption 4: Inside the set E we have E(x) =
xTPx ≤ αε, where αε = max{p1, p2, p3, p4}ε

2
0 > 0.

Assuming that E = {x ∈ X(N−1) : h(x) ∈ Vset} and

taking a positive parameter αεf such that αεf ∈ (0, αε), we

assume that the terminal set Ef = {x ∈ R
3 : E(x) ≤ αεf}

is such that ∀x ∈ E , f(x, h(x)) ∈ Ef .

C. Problem Statement

The solution of the OCP (10a)-(10d) at a time-step k
provides an optimal control sequence V ∗(·). The classic

framework of the MPC consists in applying to the system

only the first control vector, i.e., V ∗(k|k) and to discard all

the remaining elements of the sequence. At the next time-step

k + 1, new state measurements are received and the whole

procedure is repeated again. This is iteratively repeated until

the system has reached to the desired terminal set. However,

the self-triggering framework suggests that a portion of the

computed control sequence may be applied to the system and

not only the first vector. Suppose a triggering instant ki. The

control sequence that is applied to the plant is of the form

{V ∗(ki|ki), V
∗(ki + 1|ki), . . . V

∗(ki + di|ki)} (14)

for all di ∈ [0, ki+1 − ki], where ki+1 is the next triggering

instant. During the time interval [ki, ki+1) the control law

is applied to the plant in an open-loop fashion i.e., no state

measurements from the system are received. A question that

naturally arises is how large this time interval can be? Notice,

though, the smallest time interval is obviously 1, that is if

ki+1 = ki + 1 and that the largest time interval is N −
1. The self-triggered strategy that will be presented later in

this paper, answers to this question and provides sufficient

conditions for finding the recalculation periods, or in other

words sufficient conditions for triggering the computation of

the NMPC law. This leads us to the statement of the problem

treated in this paper:

Problem Statement 1: Consider the system (6) that is sub-

ject to constraints (7) and (9). The objective is (i) to design

a feedback control law provided by (10a)-(10d) such that the

system (6) converges to the terminal constraint set and (ii)
to find a mechanism to decide when the next control update

should be.

III. STABILITY ANALYSIS OF SELF-TRIGGERING NMPC

FRAMEWORK

It can be proven that the closed-loop scheme (6)-(14) is

ISS wrt the disturbances, [15]. Moreover, through the ISS

analysis it is possible to reach to a self-triggering mechanism

which provides the triggering instants. The proof of the sta-

bility of a system under the NMPC consists in guaranteeing

(i) the feasibility property and (ii) the convergence property

of the closed-loop system.

We begin by showing that initial feasibility implies feasi-

bility afterwards. Consider two successive triggering events

ki and ki+1. A feasible control sequence Ṽ (k+j|k+m), for

time steps m = 0, . . . , N − 1, based on the optimal solution

at the time-step k − 1, is given by:

Ṽ (k + j|k +m) = (15)
{

V ∗(k + j|k − 1) for j = m, . . . , N − 2
h(x̂(k + j|k +m)) for j = N − 1, . . . N +m− 1

From the feasibility of the initial sequence at time-step k−1
and with the help of Assumption 2, it follows that for m =
0, . . . N − 1 we have Ṽ (k + j|k + m) ∈ Vset. It could be

proven that x̂(k+N |k+m) ∈ Ef for all m = 0, . . . , N −1.

The state convergence of the perturbed system to a desired

terminal set is going to be shown in the sequel. A proper

value function must be shown to be decreasing in order to

prove stability of the closed-loop system. The optimal cost

will be used as a natural Lyapunov function candidate for

the stability analysis.

At the time-step k − 1, the optimal cost is denoted as

J∗(k − 1), which is evaluated under the optimal control

sequence. Analogously, the optimal cost at a time-step k+m
with m ∈ [0, N − 1] is denoted as J∗(k + m). Now let

J̃N (k+m) to denote the “feasible” cost, evaluated from the

control sequence (15). This “feasible” cost will help us to

obtain the difference J∗(k+m)−J∗(k−1). In particular the

difference between the feasible sequence at time-step k + j
and the optimal cost at time k − 1 using (15) is given by:

∆Jm = J̃N (k +m)− J∗
N (k − 1) =

≤

(

LE · (Lf )
(N−(m+1)) + LF ·

N−(m+2)
∑

i=0

(Lf )
i

)

w̄

−

m−1
∑

i=−1

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k + i|k − 1)||

(16)

The optimality of the solution yields

J∗
N (k +m)− J∗

N (k − 1) ≤ J̃N (k +m)− J∗
N (k − 1)

(17)

The Lyapunov function J∗(·) has been proven to be decreas-

ing, thus the closed-loop system converges to a compact set

Ef , where it is ultimately bounded, due to Assumption 4.

A. The Self-triggered Framework

In this section the self-triggering mechanism is going

to be presented. Consider that at time-step ki an event is

triggered. The next control update time ki+1 is considered

to be unknown and should be found. In particular, the next

control update time ki+1 , ki + di should be such that

the closed-loop system does not loose any of its desired



properties. Thus, we still need the Lyapunov function J∗(·)
to be decreasing. Given (16) and (17), for a triggering instant

ki and a time-step di with di ∈ [1, N − 1] we get:

J
∗(ki+1)− J

∗(ki)

≤

(

LE · (Lf )
(N−di) + LF ·

N−(di+1)
∑

i=0

(Lf )
i

)

w̄ − LQ(di)

(18)

where:

LQ(di) =

i=di
∑

i=1

min(q1, q2, q3, q4, r1, r2, r3)||x̂(k+ i|k− 1)||

The time instant di should be such that:
(

LE · (Lf )
(N−di) + LF ·

i=N−(di+1)
∑

i=0

(Lf )
i

)

w̄ ≤ σ · LQ(di)

(19)

with 0 < σ < 1 and Plugging (19) to (18), we get:

J∗(ki+1)− J∗(ki) ≤ (σ − 1)LQ(di) (20)

This suggests that provided 0 < σ < 1, the convergence

property is still guaranteed. Thus, the next control update

time should be triggered when (19) is violated. The condition

(19) should be checked for each consecutive time-step, i.e.,

for di = 1, 2, . . . . The time-step that this condition does

no longer holds should be the next triggering instant ki+1.

Notice that the time-step ki+1 can be found beforehand at

time ki, i.e, this is a self-triggering mechanism. Moreover,

it should be pointed out that the term LQ(di) includes

only predictions of the nominal system that is forming a

predicted sequence and that can also be computed by forward

integration of (3) for time-steps di ∈ [1, N − 1].
Next we describe the self-triggering mechanism. At time

ki a control update is triggered and a control trajectory for

[ki, ki+N−1] is provided. The solution of (19) will provide

the next update time ki+1. During the time interval k ∈
[ki, ki+1) the control trajectory V ∗(ki + di|ki) is applied to

the plant in an open-loop fashion. Next, at time-step ki+1

the optimal control problem of the NMPC is solved again

using the current state measurement x(ki+1) as the initial

state. The controller follows this procedure until the system

converges to the terminal constraint set.

IV. EXPERIMENTS

The aim of this section is to show the efficacy of the

proposed self-triggered NMPC controller to perform a real

experiment. An attitude stabilization of an underwater vehi-

cle was performed in real-time. Notice that the water is a

significant source of disturbance in this experiment.

A. System Components

The ROV used is a 3-DOF (VideoRay PRO, VideoRay

LLC, Fig.2), equipped with three thrusters, a control unit, and

a CCD camera. The control unit is connected with a Personal

Computer (PC). The image dimensions are 640x480 pixels.

A target is located on an aluminium plate which is fixed

inside the tank. The system software is implemented using

the Robotics Operating System (ROS, http://www.ros.org).

The target detection and vehicle localization are shown in

Fig.4.

Fig. 4: Experimental setup. (a) The initial configuration. Vehicle’s
view (b) The desired pose of the vehicle. Vehicle’s view.

B. Experimental Results

The goal of the experiment is the attitude stabilization

of the vehicle at the desired position. The first experiment

using the classical (time triggering) NMPC, will be com-

pared to the second experiment where the Self-Triggering

NMPC proposed in this paper is used. The initial and

the desired position of the robot wrt the target frame is

[χin, yin, zin, ψin] = [−1.2, 0.45, 0.1, 0.401] and xd =
[χd, yd, zd, ψd]

⊤ = [−0.6, 0.0, 0.0, 0.0] respectively. The

sampling time of this experiment is equal to dt = 0.15 sec.

The maximum translational and angular velocity of the vehi-

cle in surge, heave and yaw direction are ū = 0.2m/sec, w̄ =
0.3m/sec and r̄ = 0.3rad/sec, respectively. The matrices Q,

R and P are defined as Q = diag(0.5, 4.5, 4.5, 0.1), R =
diag(0.17, 0.1, 1) and P = diag(1, 1, 1, 1), respectively.
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Fig. 5: The state of the robot wrt the target frame. (a) Self Triggered-
MPC. (b) Time Triggered MPC

In Fig.5 the states evolution of the system about x, y and

ψ in both experiments are depicted. The states of the system

are converging to a set around the desired position in both



cases. It can be witnessed that the performances in the case

of self triggering are better (or the same) comparing to the

classical case. In both cases, all the constraints are satisfied

and the robot have reached the desired position wrt the target.

In Fig.6 the triggering instants in the case of self triggering

are captured. When the vertical axis has the value 1, the

NMPC is triggered, the image is processed and the state

vector is calculated, consequently the optimization algorithm

is running and a new control input sequence is computed.

For value 0, the control law is implemented on the system

in an open-loop fashion using the rest of the last computed

control input sequence, thus no optimization and no image

processing is running.
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Fig. 6: The triggering instants in Self triggered NMPC . For value 1,
the NMPC is triggered. For value 0 the control law is implemented
on the robot in an open-loop fashion.

The computational time in a triggering instance is about

0.1sec while in the case of the open loop control is being

reduced to 0.0002 sec. This is happening because neither the

image processing nor the optimization algorithm are running

between two triggering instances in the case of self triggered

control. This is very important in the case of underwater

vehicle where the energy sources (batteries) are very limited

and the recharging is very difficult and time consuming.

Finally in Fig.7 the control inputs are depicted. It can be

seen that no violation of the constraints took place.
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Fig. 7: Control inputs. (a) Self Triggered MPC. (b) Time Triggered
MPC.

V. SUMMARY AND FUTURE WORK

In this paper, a Self-triggered Visual Servo Model Pre-

dictive Control Scheme for Underwater Robotic Vehicles is

presented. The main idea is to trigger and run the NMPC only

when it is needed and not periodically as in the case of the

classic NMPC schemes. During the inter-sampling instants

the control sequence from the NMPC is applied to the system

in an open-loop fashion, i.e., neither the image processing nor

the optimization algorithm are running between two trigger-

ing instances. In this paper sufficient conditions for triggering

were provided along with an experiment that shows the

effectiveness of the proposed framework comparing to the

classical time triggered NMPC. Future work will involve

extention of the proposed visual servo controller taking into

consideration the obstacles in the trajectory of the robot.
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