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ABSTRACT

The paper deals with the problem of estimating a discrete
time stochastic slgnal whlch Ís corrupted by addit'ive
white measurement nofse.

The first part of the paper shows how the stationary
solution to the fixed lag smoothíng problem can be obtained'
The first step is to construct an lnnovation model for the

process. Ït is then shown how the fixed lag smoother can

be determined from the polynomials ln the transferfunction
of t,he innovation model. In many applicatlons the sÍgnal
model and the characteristics of the noLse Process are

unknown. the paper shows that lt is possible to derive an

algorithm which on-I{ne fínds the optimal fixed lag smoother,

a self-tuning smoother.

The self-t,unLng smoother consists of two parts: An on-line
estlmation of the parameters ín.the one-step-ahead predictor
of the measured signalr and å computation of the smoother

coefflcients by simple manJ.pulation of the predictor para-

meters. The smoother has good transient as v¡elL as good'

asympt^otic properties .
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1. INTRODÜCS TON

The received sj-gnals in many applicat.ions are corrupted by

noi.se. The objective of a receiver ís therefore to eliminate
the influence of tliemeasurement noise as well as possible'
The receíved signal is often filtered in order to get the

best est.lmate of the desired signaL at a certain time, t,
based on the measurements up to and including the same time

t. In some sltuatÍons it Ís possible to get a substantial
improvement by making a smoothíng of the received signalt
i e the sÍgnal at some time back, t - k, is estímated
based on measurements up to the present t.fme t. Thís is
called fixed lag smoothíng. such an extra time lag ís,
especfally Ín one way communication, of almost no disadvan-

tage.

The filter and the smoothíngr cases of discrete time sLgnals

are illustrated in Fi-gure 1.I.

g Recicvcd signol b. Recived signol

Estimqtcd signol Egtimqtad
signot

t-k

Fig 1.1 The fifter (a) and the fixed lag smoothing (b)

cases for d.íscrete time slgnals.

t

t
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The fixed lag smoothíng is quíte compl.f.cated to implement

for continuous time slgnals, but straight forward in the
dfscrete t,lme case. A substantía} number of papers are
publlshed during the last years giving different mechani-

zations and derÍvatLons [41, [5] ' [6], [9], [10] r [11] ' [12].
Optimal estÍ$atíon requires that the statfstícs are known

both for the signal and the noise. The problem can then
be solved using a Riccatl-eguatJ.on. However, the parameters

of the process are in most cases Unknown. fn this paPer t're

will dfscuss the statÍonary dÍscrete t,ime fixed lag smoother

for a white noise corrupted unlnown signal-

Let, the desired signal be described by the model

z(t) c (q-1)
a (q-1)

where

^a 
(q t

-2 -3

v (t)

-1

(1.1)

-n)=1+a'q + a2q acf

-r -1c(q *) = ctÇl + 
"2Q

+ c^o + .ô. + crrQ

+ ... +

-n cr=1

are polynomials 1n the backward shlft operator q-1. The

coeffícients 1n the A and C polynomials are assumed to be

unknov¡n except, c, which is knov¡n to be egual to l.
The measurement of z(EI t y(t), ís corrupted by noise i e

y(t) s z(t) + e(t) (1.2)

The nolse processes, v(") and e(.), are lndependent white
noise processes wlth zer:o mean value and the sÈandard

deviations o' and oe respectively. It is assumed that'
o' and 0e are unknown

the problem can nowbe formulated as to find the best
estimate of z (t-k), in the sense of mean square errort
given data y(t), Y(t-t) ¡... . This estimat'e is denoted by

âtt-t<lt). I e we want to mÍnímize the lossfunction

E i(z(r-kl*âtt-t ¡ttl2lv(t¡,y(t-l),...1 (1.3)

with respecù to âtt-tlt).
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I'or the derívation of the smoother it, is also convenient

to introduce the recÍprocal polynomials A*(q) and C*(q)

respectively

a*(q) = qnA(q-l) = qn + âlqn-l +... * u'

c*(q) = qnc(q-r) * qn-l + crgt-2 + ... + clr

The self-tuning smoother fs derived for the case where e(t)
is white noLse. Tf e(t) is coloured nolse then Ít Ís nÊces-

sary to have further lnformation about, the signal Or t'he

measurement noise. For ínst,ance lf the cOvarfance functLon

of ett) is known thên y(t) could be fíltered using the

inverse of the noise model. Íhe smoothÍng problem 1s then

transformed to the problem dÍscussed in thÍs paper. If the

covariance of êhe sígnal ås known the problem can also be

solved in an equÍvalent waY.

The paper is organized as follows. Tn Section 2 the optimal
fixed lag smoother !s derlved when the procesS is knot¡In.

lhe fårst step is to construct the innovation model for t'he

prÕcess. It is then shown how the stationary fixed lag
smoother can be determÍned using polynomlal operatíons on

the polynomials ln the innovation moðe1".

The simple structure of the optimal smoot'her then indícates
hor,¡ to derive a self-tunfng filter, hrhen the parameters fn
the process are unknown. Thís Ís done in Sect^ion 3. fhe

filter can be separated lnto two part's. First the parameters

ln the innovation mod,el are estimated using a real time

estfmation method. Based, on the êstimated parameters the

smoother ls determl-ned. These t"wo steps are repeat,ed at
each step of tíme, when a ne$r measurement is obtained. In
SectÍon 3 lt ls shown that if sufflcfently many parameters

are eatl"mated then the self-tuni.ng fllter wtll canverge to
the optlmal flxed lag smoother derived in sect,Lon 2. The

algorithm ls analyzed and aspects on the implementat'ion are

also discussed in Sect,Lon 3.
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Section 4 contaíns some sÍüulated exampl"es which lllustrate
the properties of the seLf-tuning algorlthm. Sectlon 5

summarizes the propertles and dlscusses the usefulness of
the self-tuning filter for flxed lag smoothing. References

ãre given ln Sect,ion 6.
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2. THE OPT TMAL TTXED LAG SMOOTHER

Many different formulas and derivations for the smoothing

probl-em have appeared durlng the last few years ' Using t'he

trliener-formulation t15l the problem is conceptual"ly very

simple, but unfortunately nontrivial to mechanize.

When the recursive technlques for filters were l^ntroducedt

e g Kalman fllters t7l there appeared a number of papers

on "state space smoothing", e g Bryson and Frazier [4],
Rauch, fung and Striebel 1L23, Mayne [9]. lfhe theory is
surveyed e g in van Trees [14], l,tedftch tlol and Kailath
and Frost t6t. Ðspecially the fixed lag smoothíng problem

caused considerable difficultY.

Tt should, be noted that there is most often a considerable
difference ín complexity between the problem posed by e g
Irtiener: "Fínd a signal in noíse", as compared to the

problem: ,'Find the smoother estlmate of the st,ate in a

state space system". It Ís in fact for the former case

possible to de::ive and mechanize the stationary fixed-lag
smoothing estimator using shift operator polynomials.

The fact that the one step ahead prediction error, i(tlt-1)'
constit,utes innovations for the process y(t) defined by

(1.1) and (1.2), makes ft straighL forward to obtain the

k_lag smoother, âttlt+k) r âs a modlficatlon of the predic*

tlon estirnate â(tlt-r) t

t+k
4ttlt+x) = âttlt-rl +'i^ " I î.ttlt-1) fr(sls-r) ]'

s=t

. { s itsls-l) ft"fs-l)}-1 i(sls-r) (2"1)

where

ãttlr*rl -¡- z (t)

See for instance Kailath and Frost
It*r)
[6].

e (t)
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The formula (2.r) is valid also for multioutput, timevarying

systems, and f t describes the optirnal st,art up of the

est.imator,

In the present context with only one signal, zt in noÍse'

the .$truÕture of (2.1) is very simple, especially after t'hat

the start up transients have died off. The estimator ås

then moct easily descrLbed using shift operator polynomials.

In order ta get the statåonary one step ahead predict'or from

the A and c polynomía]s given in (1.1) it is requíred to
solve a stationary Rlccatí-equation or to make a spectral
factorization.

rhe innovatíons representation of y can be wrftten as

-1 -1 12 "21A, {q ) y(t) = D(q ) e (t,)

where the ÍnnovatLons e (t)
o2 and where

¿

n(q-l) = 1+ drÇ-l + ... + drre-n.

lhe coefficients d, and the variance û

the spectral factorization

ol tr*ar**. . .+d,rrxn) {xn+drxn-l*. ...+dn)

- 13(crx+...+crrxn) (.r** +...*c*

(v t have the varåance

are obtained from

)+

r-1)

2
e

(2.3'

or
''¿;

õ ê D (x) P* (x) u
.' 2

v c(x) ç*{x) + t A(x) ¡'t (x)
e

Tf it is required that D(x) has all its zeroeÊ outside the

unit circler eQ (2.3) has a unlque soluulon'

+ of; {r*"r**. . .+arrxn} (xn+., .+an)

The one step ahead predÍct'or is now obtained as

o'(q-l1 âttlt-r¡ = totq-1¡ * e(q-r)l y(t) (2"4)
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The computational work tCI get. the stat'íonary coefficient's
in (2"1) from A and D ís the easy part as compared to the

spectral factorizat.ion to obtaån D from A and C'

Theorem 2.1¡ Let z and y be defíned by (1.1) and tI.2).
Then, à,rc1t+k), the stationary k-step smoothing estimate of
ntEJ t can be obtained bY

o2
âttlt+r<t =y(t) ÉFk(q)'[v(t) 

âttlt*rll {2.5)
Õ

where F is defined ask

F (x) {2 "6}k

r (x) (,2.7|

-ir.x
l"

k
=T.

i=0
oó

E f.
a
*í

=$I

and computed from A and D of (2.2) using

A (x) = D (x) 'r (x)

and where

(2.8)

(2.10)

(2.9)

p{Slgf : The smoothing est,imate âttlt+k) is defíned as

â(ttt+l*) = E tz(r)ly(0) t.,.ty(t+k)l
and, it can be rewritten using the fact that the innovations
a(t) are independ,ent and form a suffícíent statÍstÍcs for y.

â (tlt+k) - E ty(t)-e(t) le(0),...¡â(t+kil

1aoe

2
0

e

dn
.
<a n

The equations

Atq-r)y(r)

(1.1), (L.21

= D(q-l), (t)

E [e(t)le(i]l

and 1,2.2') give

-1 *'l
= C (q-*)v(t) + A(Ç L

= y(t) t+kt
Í=0

)e(t)
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or

Ë (r) = ".lq=.1.1 v(r) .* u.("=ll e(r)
D(q -) D(q -)

But C/D and A/D are two stable sysËemsr sÕ that'
also be expressed using their ÍmpuJ-se responsest

{øi}l and {tr}i :

e (t) can
say

e (t) ç
7

q l e tt)

æ
E[e(t)e (í)] = E[e(t) r f.

j={

æ
t.
L

=Sj

@

+Eg
=$j

q-l v (t)j

Thus

j
0

-2r. ..ûì-+ Â
ILV

iàt
í<t

( 2.11)e(i-j) I =

so that.

å{tlt+t) = y(t)

2
õ

4.f., *.e(í) i¿t
', ¿ L

úo
¿

0 i<t
nie(tl le (f)l = E[e(t)e(i]I [EÊ2(í)]-1 e(i) =

and therefore
,2Kõ ö)€

a
i=0 öoc

L,
a

t-q e (t)

The equat,åons (,2.V, and (2.8) are another way of defining
the j.mpulse response, and the definitlon (2.6) completes

the proof of (2.5). The equatlon (2.10) follows immed'fately

frr>m. (2.3) with x = 0. 
n

Tt, should, be noted that *r, I 0 hy the definitåon af the

onder n, and the order of c is less than or equal to ß.

fhis means that there must be nO "r,çhite noj-se component" 1n

tlre signal z, Tf there were, dn/an would not give the
relat.ive contributåon of the measurement nolse, and such

lnformat,åon vrould have fo he sr:ppi"fed in SOme other vtay"

The ånterpretation of the weight,ing coefflcients f,t as the

first k values of the impu}se resp6nse of the whiteníng



fÍlter A,/D is very appeatlng, anrl they can be calculated

using a simP1e recurËion.

Most of the Ímprovement with s;moothing is obtained by the

first, few lags. The number of lags that should be used ln
a certaln appllcation depends on the c and A polynomials

and the slgnal to noíse ratio, cf for instance chirarattananon

and And,erson [5i, and Van Trees [14, p 4971'

The variance of the smoothing estimate can however also be

expressed Ín the ft coefficients:

Theo rem 2,2: r3he error varlance of the estimat,e *(tlt*L) Of

{2.5} Ís given by

=fi e(t)k

26ã
- 2 e(t) -ã

dof
Ê

11

I.

¡
¡jf Ê (r+j")

tr

2 (2.L21*k = var

Froof; The procf ås straíghtforv¡ard calculations using t2.5)
and {2.1}}

Õ
n

2

rz(t)-åtrrt+rr¡1 = "3 [r-ä ,i, ,i ]

1

J

e k

i=0 a
s (t+1)

¿tf
Ë

{*2trt*t f ,i, t+eE

"i-

k
E
*Q

,? ,* f rrE'e(tls(t+ili=Ë ot i=o
ê

r, l'

2fr
e

2

4
ú Õ¡- -Y,4
t

t

*2rl
k
E

l.=0

6
f
=81-

'il
k
E

i=0

t
6'eId 2e

r
t de

The limit of nf *" k tends to lnflnity
t
e

o n¿
2f

2
d ea
ct

Ê

2
eç2 t

L

2
i

e

1-
0

=o e
T T
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where I can be calculated dírectly from A and D using

complex integralsl
A, 2

L ð,2

D(zlD(z

whlch is most easily computed according to Åström [1, p 1211.

2 fs less than for ínstance

z
A

f
I

ãT

f
k
T

4'l
r * 0.05 0"/q'eie

k

ï-
ri
¿.

x
< 0.05

T

Õr

v¡hich ås easy to test' while the fi'* are computed'

The mechanizat.J.on of the equatione (2.4' and (2,5) can be

done in a number of ways. It immediately foll"ows that

Thus k can be chosen so t'hat o

5 * larger than øjr

-r o! -'rn(q') -Ë rk(q)'A(q *)
õe

o2r
â(rtr+¡c) * y(*) -€. Fk(s)lt-

Õe Þ (q-r )

I
J

("1 - ,!t t,!

k,
i*0 L

oz /o2Ê'e

-1 -l_n(q -A (q ) y(t)

y (t) ( 2.13 i

n (q-1)

so that the rninímal order, stable, k-lag smoother has a

realization with a state dimensíon n+k.

. ?hese stâte variables have however no physical meanlngn and

it is morê att,ractive to retain the original structure of (2.4',t

aricl (2.5r. This will requirc k o1ð y anrl k o1A âttlt'-L) or Ê

values, provåded that k Ls larger than n. otherwfse 2n

values woul4 be required. The order is t.hus 2'max(nrk) "
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ïn the self-tuning al-gorithm ln the next chapter ny-values
and n e *values have to be stor€d anyhow for the identifi-
catLon atgorithm.

A stight modj-fication of the smoother (2'5)

approaches "the unrealizable lrTiener filter"¡
tÏ4j.

shows how it
ê ê¿¡

tim â(rlt+k)
k-rø

,o?
= rÍm [ot*¡ -€ tn(q)tv(t]-â(¡lt-1)ll Ë

k+* L o-

' .gê
= y(*) -t .A" (q)

r--i- e (t)
D (q)

"3 o(qlD(q-1) - o A(qle (q-1)

2

gì.
E

2
e y (t)

,: D(qlÞ(q

,X c1q)c (e-1) / to(q)A(q-1) l

Io$ c(q)c(q-1) + o3 A{q}a(q Llll¡o1q¡A(a

-1
)

-1) i
y (t)

s

Ë +

7, y (t)
ê

e

where s, and s. are the spectral densitíes of the slgnal z

and the measurement noise respectlvely'
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3" A SBLF*TTJNTNG SMOOTHER

In section 2 the fixed lag smoother was derived for known

prÐcesses. Tn thís section we \^1111 show how it' is possible

to make a self-tuning smoother whích autotnatically adjust's

its parameters when the process and the variances of the

nolse processes are unknowri.

T0 synthesÍze the aptimal smCIothêr we have to know the

process, i e the polynomials A and c and the resåduals. The

idea is now basecl on the observat,ion that the one step ahead

prerliction of z{t) is the same as the one step ahead pre-

dÍction of y(t,) r i e

å(ttr-rl = f(ttt-t)
The pred,ictor of y(t) is given bY

$ t* tt-rl =
Ð -A

p (q-1)

rn WÍttenmark tf6l ít, is shown how Ít is possible to
cçnst-ruct. a self-tunÍng predictor of an unkno!'tn process of
the form t2.2). The predictor consists of two parts. Fírst
the g:arameters of the unknol¡rn process are estimated usíng

some recursive estimatign method. Secondly the predictlon Ís
done usÍng (3.1). In t16l the pollrnomials A and D-A v¡ere

estimated dfrectly. In this appticäClon the parameters Ín
the A, an<l D pclynomials w111 be estímated using the method

of Extend.ed Least, Squares (ELS) or the 'Real-time l4axLmum

tåkelj"hoodmethod(RMt).Differentrecursiveidentification
met.hods are cÕmpared, ín [13]. fhe cholce of ídent'lfication
metliod wåII be discussed later in thís section.

The aI rithm

The seLf-tuníng smoother can now þe described Ín t'he following

y{r} = qroll):â.J.o-li, ,tri (3.r}
R(q *)

-t_ -1

5i'eeps t
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-^
FlgB-]; Ëstímate the parameters a, and dtr i = 1¡... ¡rl in
the polynomials A and D using ELS or the RML identifÍcatlon
method. The estimated polynomialsare denoted by ^â "*a ô.

Êlep-3: Comput* $nte)
the smoothing estimate

$tql ôtq¡ and compute^from a(q)
from

ânn
r--
¿Ân

ått-Ltr)= y{r-k} $ntøt âtt-Ll (3.2)

t¡hef e

y {t-k)

{Compare eq (2.5) and, (3.1).}

fhe two ste¡>s of the algortthm are repeated at' each st'ep of
tir*e" The estimation rout.ines and (3.2) are ¡¡ell suited for
recuruive calcul"ations. '

Î'lotice that the algorithm eetfmates the parameters in the
proress t2,2j and not in the prCIcess (1.2). Thus it ís not
ãeceËsary to make any spect,ral factorizatlon. Further t'he

quotient of;tol "*t be computed directly using i2.9).

ãst,imat.ion rnet?rod

The est.inat,íon of the A and I) polynomíats Ín the innovatíon
model (2"?j can be done usíng different estlmation routines,
The extended least squares method has the advantage that it
ís easy tO lmplement. Ï'urther the computations in each step
of time wå}i- be moderate, Tt has, hÕvrever, been shor^rn in t$l
t,hat the ELS method does not al"ways converge. If the ELS

method *oàt*tg** then ít vríLl cclnverge to the true parameter

va}-ues provåded, tha| the o¡'tler o[ the model ís sufficiently
high.

Uq .-)
ô tq"l¡
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Tt has been shown that the RML method a1-wa1ts coRverges for
,A,Rl\4A-processes {2 .2} [ 3 ] . The convergence rate can, helwever,

be rather slow and different modifÍcatíons can he done in
order t,o speed up the rate of cÕnvergence. Further the Ê¡'{L

algorithm is more compJ-ex than the ELS algorÍthm. The símu-

Iatlons presented in Section 4 have been done using the
HLS method.

ff the process has tíme varylng parameÈers ft" is posslble
to mod.ify the estimation routínes in such a \Á¡a!¡ that old
d,ata wÍlr he forgot,ten. This can easily be done by intro-
ducing a forEetting factor, À. If f, * L, all data have the
same weight. If I < I, olda data will be expÕnentially
forgotten, The forgetting factor wfll also infl"uence the
rate of con\¡ergence and a time varying À can be used in
RML to increase the rate of convergence.

Asvmpt-qLic pro[lert íes

Theorem 3.1¡ Assume that thê self-funing smoother defined
by $tep 1 and 2 above fs used on unknown processes of the

type (1"2). Further it is assumed that the reä.I t'íme

maximum likelihood method is used with the order of the
mÕd,el â = *. The self-tuníng smoother \^/Í11 then converge

to the optimal smoother (2.5) that'can be derived for known

processes.

8ggo.$; Using the result, Ín
estÍmates always converges'
and t,he result foll"ows.

Remaqk lr
contain a

zrJ.L u Lire¡r

smoother,
which can

it 1s found that the
â*e and ô*n äs t+æ

t3l
ie

ïf â " r, the estimated polynomlals A an¿ 6 wlfl
corTrmÕn factor. If this factor ís not egual to
Llie algorit-hn¡ will stíIl convergc to the optlmal
The corruron factor witl be zero only if an = dr, = 0r

be t.ested for.
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SgmaII__?: If tl-re ElS-method is used for the estirnation
then the theorem has to be modified. It is then possible
to state that if the estj-mation converges then the
parameter estimates will converge to the true values in
the innovation model, and the optimal smoother wiII thus

be obtained. There are, however, processes for which the

estimates do not converge.

Parameters of the alqorithm

fn order to use the self-tuning smoother some parameters

have to be chosen. These are:

o The order of the estimated model, â

o The initial vafues of the parameter estimates

o The covariance matrix of the initial errors of the
parameter estimates

o The forgetting factor, À

o The lag in the smoother, k.

The order of the model can be chosen

orders and comparing the accumulated
by testing
sum of the

. Statist-icaI
are discussed

different
sguares of

methods
for

the prediction error, i e by comparing rty(r)-f (rlr-1) l2
â tt)2 for clifferent orders of âL

for choosing the order of the model

instance in 121.

The initial estimates of the parameter estimates are not
crucial. The estimation routines use to get parameter

estimates that are not too bad fairly quickl1r, especially
if the covariance matrix of the initiat values of the
parameters is larqe or if a forgetting factor is used.

In Section 2 a way of determining the lag k was discussed.
This procedure can be used on-fine in order to get a good

value of k. Sinrulations have i.ndicated that a good way to
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start up the algorlthm 1s to start wlth k = 0 and change k

accordlng to the rule ln Sectlon 2 when the parameter

estLmates have stabiLtzed. rhe tunfng of k has however

not been fully analyzed and tested.

)

)
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4. EXA¡{PLES

In thLs section some simulatLons are shown whlch l"LLustrate

the properties of the self-tuning snnother.

Example 4 .l-#

ConsLder the Process

z (t) = ;*jï v(t-l)
1+aq

y(r)=z(r)+e(t)

v € N(0rorr)

e € N(0'o.)

where a = -0.95r o?, = t, and ol = 10. 'I'hls process fs used

1n [5l. In this case the variance of the fflter estlmate
(k = 0) ls equal to 2.4L and the mlnlmaL error varlance

o3 = I.58. The self-tuning smoother has been compared

with the optfmal smoother for dlfferent values of k. In
thís case the fnnovatl,on modet has the form

L+dq- Iy (t) e (t)
1 + aq-l

Figure 4.1 shows the parameter estimates â ana å when ühe

ELS method has been used. The stratght llnes show the true
values. The est,lmation routine flnds fafrly good estlmates

after approxS.mately 75 steps of tlme. ÌIhe jump in the

estimates at t n¡ 5?5 is due to the noise reallzat'ion'

rlared r.oss v- B Ë [z(sl-âtsrs]12,Figure 4.2 shows the accumulated Loss Va

Í e þ a O,when the seLf-tuning and the s=0

optimal smoother have been used. Apart, fråm the Lnitial
loss the sel-f-tunlng smoother wil"l, give approximately the

Eame loss as the oPtÍmal smoother.

In Table 4. I a. comparison l-s done between simulat,ions of the

self-tunlng and the optÍmal smoother for dlfferent values

of k.
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1

)

)

Time

4.1 Parameter estimates for Example 4'L when the

method is used.

Time

I
I
t

!

,
I
,.

!-.2 Accumurated loss rlz(t)-â(tlt)J2 when the self-
;; and the optimal smoother are used on Example 4 .1".

Optimot
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vtooo vzot
800

SeLf-tuning OPttmal

vzooo - vtool
----T3õo-*

Self-tuning oPtimal

0

I
2

4

6

I

2.22

1.84

l_.65

L.44

1.37

1.33

2.08

L.',I 4

L.57

L.40

l-.34

l. 31"

2,L7

1.85

1.66

1.51,

1.45

r.43

2.20

r.87

1.68

1.51

1.45

1..43

2L

tlble 4..1 Average loss f or one slmuLation during the

lntervalls 201-1000 and 100L-2000 when the optimal and

the self-tuning smoother are used'

From the table 1t can be seen that, ln statfonarity the

self-tuning smoother wtlI have as good performance as

the optímal smoother. It mlght be surprlsíng that the

self-tuning smoother glves a lower loss than the optimal

smoother in the interval 1000-2000. Thls can be explained

by the fact that the variances of the nolse processes e

and v are not exactly L0 and t respectlvely Ín this
particular simuLatlono \

Example 4.2

Consider the process

z (t) 1 v(t-L)
2--l1-1.6q *+0'8q

y(t)=z(r:)+e(t)

where the varfances of v and e are 1 and 12 respectiVely.
By making a ãPectral factorization it fs found that' the

Ínnovatlon model ls glven bY
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-1 -21 1.241 + 0.5264 e (r) (4.1)y (t)
I - l.6q-l+0'8q-

tIhe variance of e is L8.24. For this example different
\^rayÊ of estimatlng z(t) has been J.nvestigated. Tal¡l,e 4'2

shows the expected error variance for different methods'

Table 4,2 Expected variance or ã(t) = z(t) âttl , for
different methods.

In t,his example ít is seen that eubstantial fmprovements

can be obtained.by using a ffxed-Iag smoother. By using the

self-tuning smoother it is possible to obt.ain good

smoothfngestimates. Table 4.3 glves a comparison between

a simuLatíon when the optlmal and the self-tunÍng smoother

have been used.

k

I 20CI0
E

1001
tz(t)ïffi-o'

Self-tuningOptlmaL
(based on (4.1) )

û

1

3

5

3.gL

3 .09

2,86

2. B3

3.78

2.98

2.78
., "7 7,

Table 4.3 Comparison betr^reen the opt'lmal
smoother based on eq (4.1) and the self-
tuning smoother. The table shows the average

loss per step for different vaLues of k'

var ã(r)

12 .00

6.24

4 .10

2.69

No sm<¡othing âttl = Y(t)
one step ahead predlcto, à,(t) = f tt lt-rl

OptÍmal. filter estimate (k = 0)

Optimal smoothfng estimat'e (k * æ)
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Also ín this example lt is found that the seLf-tunlng
smoother adapts to the reallzat,l"on of, the nolse processes.

In the derivation of (4.I) it was assumed that the
varlances were L and 12 for v and, e respectLvely. In the

simu}atlons the varlance of e was about 10t higher than
prescribed during the lntervaL t00l-2000. fhts expLains

the fact that the self-tuninqr smoother glves a Lov¡er Loss

than the optlmal smoother.

I

I

)

I

I

I

)

.)

)
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5. CONCLÜSTONS

fn thís paper the optimal flxed J.ag smoother Ís derived
for a discrete tlme signal which is corrupted by white
noise. In Section 2 the smoother is derlved for the case

when the modeL of the sS"gna} {s known. The smoother l"s

determined ín tÌ^to stePs. First the innövation model of
the measured signals fs determined by solving a Riccati
equation or by maklng a spectral factorizat,ion. When the
innovat.íon model Ís knovtn 1t ls straight forward lo compute

the smoothing estLmator. In Section 3 1t r¡ras shoþrn Ehat it
ís possible to make a self-tuning smoother when the mod'el

of the signal is unknor¿rn. The seJ.f-tuning smoother estl-
maÈes the parameters of the lnnovatfon modeL in real time.
Based on the estimated parameter values the smoothing

estimates are obtafned. The self-tuni-ng smoother wfl-l con-

verge to the optlmal smoother which would have. been obtained
knowing the process. Further ít is not Recessary to make

any spectrat factorizatåon when using the self-tuning
smÕôther. The computatíons in each step of time are
moderate and the self-tuning smoother is well suÍted for
real time applicatj-Õns *

There âre many areas in the fíelds of communication and

control where the self-tuning smoother can be used.

Examples are transmission of digital signals, quality and

production control, and measurements with Low s|çnal to
noise ragío. '
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