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Abstract. Models of business processes can easily become large and
difficult to understand. Abstraction has proven to be an effective means
to present a readable, high-level view of a business process model, by
showing aggregated activities and leaving out irrelevant details. Yet, it is
an open question how to combine activities into high-level tasks in a way
that corresponds to such actions by experienced modelers. In this paper,
an approach is presented that exploits semantic information within a
process model, beyond structural information, to decide on which activ-
ities belong to one another. In an experimental validation, we used an
industrial process model repository to compare this approach with ac-
tual modeling decisions, showing a strong correlation between the two.
As such, this paper contributes to the development of modeling support
for the application of effective process model abstraction, easing the use
of business process models in practice.

Keywords: business process modeling, model management, business
process model abstraction, activity clustering.

1 Introduction

Business process models are used within a range of organizational initiatives [19].
However, human readers are limited in their cognitive capabilities to make sense
of large and complex business process models [2,33]. One well-known way to ad-
dress this issue is by applying abstraction, the act of retaining essential properties
of a process model on a particular level of analysis while hiding insignificant pro-
cess details. Indeed, in a recent empirical investigation into the need for business
process model abstraction [32], we found that its most prominent use case is the
need for gaining a quick overview of the process. In such a situation, the user
wants to familiarize herself with a business process but has only a large process
model of many detailed activities at her disposal. To deal with such a demand,
the process model can then be displayed as a partially ordered set of coarse-
grained activities, each of which aggregates a number of lower-level activities.
As an example, an abstraction of a process model that captures the creation of
a forecasting report is shown in Fig. 1. In this figure, m is the initial model and
ma is the abstract model of the same process.
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Fig. 1. Motivating example: initial model and its abstract counterpart

While it has been empirically shown that abstraction can significantly improve
the sense-making of large process models [25], a limited insight exists into the
criteria that experienced modelers use to decide on which activities to aggregate
into new ones. A number of techniques has been proposed that exploit structural
properties of a process model to arrive at abstract models [5,24]. It seems likely
that experienced process modelers take a wider range of properties into account
rather than just a model’s control flow. For example, the fact that two activities
use the same document and are executed by the same role may be used as
relevant inputs in deciding to cluster these two into an aggregated activity. This
situation applies, for example, to the activities Prepare data for quick analysis
and Perform quick data analysis in Fig. 1.

In this paper, we complement the existing streams of work with respect to pro-
cess model abstraction by proposing an abstraction technique that incorporates
semantic aspects contained within a process model. We rely on the observation
that industrial process models are often enriched with non-control flow model ele-
ments. Examples are: data that is being processed within an activity, IT systems
invoked within particular activities, and roles assigned to activities. The central
idea in this paper is that activities associated with the same non-control flow
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elements are semantically related and, therefore, more appropriate candidates to
be aggregated into the same activity than activities without shared elements.

A number of recent contributions exist that consider semantic aspects for
aggregation, e.g., [8,31]. However, their assumptions, e.g., the existence of an ac-
tivity ontology [31], are too strict for generic use. Our approach is based on the
application of the vector space model, an algebraic model popular in information
retrieval [28]. As we will discuss in this paper, the use of vector spaces allows
to determine the degree of similarity between activities according to several in-
formation types available in process models. We have validated the proposed
technique applying it to a process model repository that is in use by a large
European telecommunication organization. The repository incorporates hierar-
chical relations between high-level activities and the activities that they aggre-
gate. Also, the process models contain various types of semantic information.
The validation suggests that our approach closely approximates the decisions of
the involved modelers to cluster activities.

The main contribution of this paper is a technique that may assist novice
process modelers in the abstraction of complex process models by mimicking
the abstraction decisions of more experienced modelers, as discovered from ex-
isting models. In this way, the technique allows to reuse activity aggregation
principles for future aggregation decisions. Since the lack of experienced process
modelers is a noted issue in many large modeling projects [26], this is a valuable
asset to improve the process model quality. Meanwhile, the designed technique
can also support experienced modelers enabling process model abstraction in
conformance to their specific abstraction style. Hence, experts can accelerate
their modeling routine configuring this technique, while staying in control over
the modeling outcome. Finally, the technique can also be used to safeguard a
particular “fingerprint” of a process model collection with respect to abstraction
choices.

The paper is structured accordingly. We continue in Section 2 explaining the
proposed algorithm, along with providing the required background knowledge.
Section 3 empirically validates the proposed approach, using an industrial set of
process models from the telecommunication sector. Finally, Section 4 contrasts
our contribution with the related research, while Section 5 concludes the paper.

2 Activity Aggregation

This section elaborates on the proposed activity aggregation algorithm. After
the introduction of the main concepts, we argue how activity aggregation can be
interpreted as a clustering problem. We discuss a suitable clustering algorithm
and alternative activity distance measures. The section focuses on one specific
measure that enables the tuning of an activity aggregation. We explain how the
aggregation setup is realized and show how the setup information can be mined
from an existing process model collection.
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2.1 Foundations

The designed aggregation algorithm inspects an activity environment, i.e., pro-
cess model elements that are related to activities in a process model. Examples
of such elements are data objects accessed by activities and roles supporting ac-
tivity execution, e.g., see model in Fig. 1. The list of such model element types
varies depending on the process modeling language, the tool at hand, modeling
procedures taken into account, and the modeler’s style. Each of the model ele-
ment types can be considered as an activity property that has a specific value.
Definition 1 formalizes the activity property concept.

Definition 1 (Activity Property Value and Activity Property Type).
Let P be a finite nonempty set of activity property values. Alongside, T is a

finite nonempty set of activity property types. Mapping type : P → T assigns a
type to each value.

The process model in Fig. 1 illustrates Definition 1. Raw data, FA data, and
Analyst are examples of activity property values. The process model presents
two activity property types: Role and Data object. For instance, type(Raw data)
= Data object, type(FA data) = Data object, and type(Analyst) = Role. Further,
we define a process model as follows.

Definition 2 (Process Model). A tuple mi = (Ai, Gi, Fi, Pi, propsi) is a
process model, where:
– Ai is a finite nonempty set of activities;
– Gi is a finite set of gateways;
– Ni = Ai∪̇Gi is the set of nodes, where ∪̇ denotes a disjoint union of sets;
– Fi ⊆ Ni × Ni is the flow relation;
– Pi ⊆ P is a set of activity property values;
– propsi : Ai → 2Pi is a mapping that assigns property values to an activity.

Definition 2 does not make a distinction between different gateway types, since
the future discussion does not make use of them. Mapping propsi assigns activity
property values to model activities. Referring to model m in the motivating
example of Fig. 1, mapping propsi can be illustrated as propsi(Collect data)
= {Clerk, Raw data}. Notice that Definitions 1 and 2 allow to manage the
considered activity property types in a flexible fashion: it is enough to introduce
a new activity property type to set T , the values to P , and respectively update
mapping type. Thereafter, new activity properties can be easily considered within
the activity aggregation. Finally, we postulate the concept of a process model
collection.

Definition 3 (Process Model Collection). A tuple c = (M, A, P, σ) is a
process model collection, where:
– M is a nonempty finite set of n process models with elements

mi = (Ai, Gi, Fi, Pi, propsi), where i = 1, 2, . . . , n;
– A = ∪̇i=1,2,...,nAi is a set of collection activities;
– P = ∪i=1,2,...,nPi is a set of collection activity property values;
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– σ ⊆ M × M is a subprocess relation refining a process model with subpro-
cess models, such that ∀mi, mj ∈ M , where j = 1, 2, . . . , n and i �= j, if
(mi, mj) ∈ σ then (mj , mi) /∈ σ+, where σ+ is a transitive reflexive closure
of σ.

Definition 3 explicitly enumerates the model collection activities and property
value types. The relation σ formalizes the subprocess relation that exists between
models. Note that according to the definition, σ enables only a process model
hierarchy without loops. Without loss of generality in the remainder of this
paper we discuss abstraction of process models within a process model collection.
Indeed, a process model mi can be seen as a trivial process model collection
c = ({mi}, Ai, Pi, ∅).

2.2 Activity Aggregation as Cluster Analysis Problem

In this paper we interpret activity aggregation as a problem of cluster analysis.
Consider process model mi = (Ai, Gi, Fi, Pi, propsi) from process model collec-
tion c = (M, A, P, σ). The set of objects to be clustered is the set of activities
Ai. The objects are clustered according to a distance measure: objects that are
“close” to each other according to this measure are put together. The distance
between objects is evaluated through analysis of activity property values P . The
cluster analysis outcome, activity clusters, correspond to coarse-grained activi-
ties of the abstract process model. While cluster analysis provides a large variety
of algorithms, e.g., see [29], we focus on one algorithm that suits the business
process model abstraction use case in focus.

In the considered scenario, the user demands control over the number of activ-
ities in the abstract process model. For example, a popular practical guideline is
that five to seven activities are displayed on each level in the process model [30].
Provided a fixed number, e.g. 6, the clustering algorithm has to assure that the
number of clusters equals the request by the user. We turn to the use of k-means
clustering algorithm, as it is simple to implement and typically exhibits good
performance [16]. K-means clustering partitions an activity set into k clusters.
The algorithm assigns an activity to the cluster, which centroid is the closest
to this activity. To evaluate an activity distance, we analyze activity property
values P . We foresee a number of alternative activity distance measures and
elaborate on them in the next section.

2.3 Activity Distance Measures

To introduce the distance measure among activities we represent activities as vec-
tors in a vector space. Such an approach is inspired by the vector space model, an
algebraic model widely used in information retrieval [28]. The space dimensions
correspond to activity property values P and the vector space can be captured
as vector (p1, . . . , p|P |), where pj ∈ P for j = 1, . . . , |P |. Consider an example set
of property values P ′ = {FA data, QA data, Raw data} and the corresponding
vector space presented in Fig. 2. A vector va representing an activity a ∈ Ai in
process model mi = (Ai, Gi, Fi, Pi, propsi) is constructed as follows. If activity a
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Fig. 2. Example of a vector space formed by dimensions FA data, QA data, Raw data

is associated with a property value pj ∈ Pi, the corresponding vector dimension
πj(va) has value 1; otherwise, the dimension πj(va) has value 0:

πj(va) =

{
1, if pj ∈ propsi(a);
0, otherwise.

For process model m in Fig. 1, activities Prepare data for quick analysis and
Prepare data for full analysis correspond, respectively, to vectors v1 = (0, 1, 1)
and v2 = (1, 0, 1) in the vector space with dimensions FA data, QA data, Raw
data, see Fig. 2.

Similarity of two vectors in the space is defined by the angle between these
vectors: the larger the angle, the more distant the activities are. Typically, the
cosine of the angle between two vectors is used as a vector similarity measure:

sim(a1, a2) = cos(va1 , va2) =
va1 · va2

‖va1‖ ‖va2‖
(1)

Then, the distance between two activities is:

dist(a1, a2) = 1 − sim(a1, a2) (2)

By construction the vector dimension values are non-negative. Hence, the activity
similarity and activity distance measures vary within the interval [0, 1].

For a process model collection c = (M, A, P, σ) we distinguish two types of
vector spaces. On the one hand, a vector space can be formed by the dimen-
sions corresponding to the activity property values disregard their type, i.e., all
elements of P . We reference such spaces as heterogeneous vector spaces. An exam-
ple of a heterogeneous vector space is a space with 6 dimensions Analyst, Clerk,
FA data, QA data, Raw data, and Senior analyst. On the other hand, a vector
space can be formed by the dimensions corresponding to the activity property
values of a particular type. Given an activity property type t, such a space is
formally defined by the set Pt = {∀p ∈ P : type(p) = t}. We refer to such spaces
as homogeneous vector spaces. Fig. 2 provides an example of a homogeneous
vector space formed by activity properties of type Data object. We denote the
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activity distance in a heterogeneous space with disth(a1, a2) and in a homoge-
neous vector space with distt(a1, a2), where t is the respective activity property
type. Both distance measures can be employed for activity aggregation. If the
user wants to make use of one activity property type t only, the distance is de-
fined by distt. To cluster activities according to several activity property types,
disth can be employed. In addition, we introduce an alternative distance measure
distagg that aggregates multiple homogeneous distance measures distt:

distagg(a1, a2) =
1
|T |

∑
∀t∈T

wt · distt(a1, a2) (3)

In Equation 3, the set T corresponds to the activity property types that appear
in process model collection c. Then, function distagg is the weighted average
value of distance measures in the vector spaces corresponding to the available
activity property types. Coefficient wt is the weight of distt indicating the impact
of the activity distance according to property type t. We reference all the weights
in Equation 3 as W = (wt1 , . . . , wtn), where n = |T |. In the remainder of this
section we will explain the role of vector W .

2.4 Process Model Collection Abstraction Fingerprint

The application of different abstraction operations to one process model leads to
various abstract representations of the modeled business process. The differences
between abstraction operations are explained by their pragmatics, i.e., various
abstraction purposes. If the abstraction is realized by a human, the modeling
habits of the designer are reflected in the abstraction operation as well. Hence,
abstraction pragmatics and modeling habits of the designer are inherent proper-
ties of the abstraction operation and together form an abstraction style. We use
vector W in Equation 3 to model an abstraction style.

From the user perspective vector W is the tool to express the desired abstrac-
tion style. We foresee two scenarios how vector W can be obtained. In the first
scenario, the user explicitly specifies W . This approach is useful if the user wants
to introduce a new abstraction style. However, coming up with an appropriate
value for W may be challenging. Hence, the second scenario implies that vector
W is mined from a process model collection enriched with subprocess relation
(formalized with σ in Definition 3). The discovered vector is a “fingerprint” of
the process model collection with respect to the used abstraction style. We will
now describe an approach how vector W can be discovered from such a process
model collection.

The discovery process of a model collection’s abstraction fingerprint is driven
by the following argumentation. Activities of a process model collection are ag-
gregated into aggregated activities, i.e. subprocess placeholders, by the model
designer. We aim to achieve an activity clustering algorithm that approximates
this aggregation behavior of a human. This is possible if an activity distance mea-
sure employed by the algorithm resembles the criteria that a human designer uses
to aggregate activities into a subprocess. The exact criteria are unknown. Yet,
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for each pair of activities we can observe the outcome: Either the activities be-
long to different subprocesses or to the same one. For a process model collection
c = (M, A, P, σ) function diff formalizes this observation:

diff(ak, al) =

{
0, if ak, al ∈ Ai;
1, otherwise.

(4)

To mine the process model collection fingerprint W we select its value in such a
way that the behavior of function distagg approximates the behavior of diff. The
discovery of vector W is realized by means of linear regression. In our setting,
the values distt are considered independent variables and the value of function
diff the the dependent variable. Components of vector W are the regression
coefficients. The standardized coefficients indicate the impact of each activity
property type on the abstraction style. Hence, it is possible to reveal criteria em-
ployed by the human designer during abstraction. Furthermore, the regression’s
coefficient of determination R2 allows to judge how well the obtained statisti-
cal model explains the observed behavior. For our purposes, R2 suggests if the
discovered statistical model can be used for business process model abstraction.

3 Empirical Validation

The proposed activity aggregation mechanism calls for validation. The goal of
the validation is to learn how well the proposed operation approximates the
abstraction style of human modelers. We performed an empirical validation of
the approach by conducting an experiment with a real world business process
model collection. This section provides a detailed discussion of the validation; it
describes in detail the explored process model collection, explains the experiment
design, and discusses the validation results.

3.1 Validation Setup

As a research object we choose a set of business process models from a large
telecommunication service provider. This organization is currently in the process
of setting up a repository with high-quality process models, which are brought
together for the purpose of consultation and re-use by business users. The model
set includes 30 elaborate models, enriched with activity properties of the follow-
ing types: roles, responsible roles, IT systems, and data objects. It is noticeable
that a special type of roles, i.e., responsible roles, is also distinguished in these
models. In addition to these non-control flow types of information, we also study
the impact that activity labels and activity neighboring control flow elements
have on the decision to aggregate activities into the same subprocess. To com-
pare activities with respect to their labels, the corresponding vector space is
formed by the words that appear in the labels. Against this background, finding
the distance between activities becomes an information retrieval task as labels
can be treated as documents in information retrieval. The comparison of activi-
ties with respect to their neighbors shows whether the neighborhoods of the two
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Table 1. Properties of business process models used in the validation

Nodes Activities Role Responsible role IT system Data object

Average 15.5 6.3 2.1 0.76 1.5 0.76
Minimum 5 1 0 0 0 0
Maximum 48 20 5 2 7 17

activities intersect, i.e., contain the same flow elements. Table 1 outlines the rel-
evant properties of the process models. In the existing repository, the models are
hierarchically organized using a subprocess relation. Within the model set, we
have identified 8 subprocess hierarchies. Each hierarchy contains a root process
model refined with subprocesses, allowing for several levels of refinement.

To formally validate how good the designed activity aggregation approximates
the behavior of modelers clustering a set of activities into the same subprocess,
we selected the following approach. For each pair of activities that belong to
the same process hierarchy, we have evaluated two values in the process model
collection: diff and dist. Here, diff describes the human abstraction style, which
indicates whether the activities have been decided to be placed in the same sub-
process or not. The value of dist represents the vector space distance between
the two activities in accordance with our approach. To discover if the two ap-
proaches yield similar results, we study the correlation between the two variables.
A strong correlation of two variables implies that dist is a good distance measure
in the clustering algorithm. In this case, the inclusion of two activities within
the same subprocess is mirrored by a close positioning of the corresponding vec-
tors in the vector space. Given the nature of the observed variables, we employ
Spearman’s rank correlation coefficient.

In the following, we first investigate the human abstraction style in the model
collection as a whole. Then, we verify the results organizing a K-fold cross valida-
tion. We partition the model sample into 4 subsamples, i.e., k = 4 and perform
four tests. In each test, three subsamples are used to discover vector W , while
the fourth subsample is used to evaluate the correlation values between the diff
and dist measures in different vector spaces. In this way, a more reliable in-
sight is developed into the question whether the human abstraction style can be
mimicked in contrast to using the whole process model collection for both the
discovery and the evaluation of this correlation.

3.2 Validation Results

Table 2 outlines the validation’s results. The columns in the table correspond
to distance measures. While the first 6 columns correspond to distances in ho-
mogeneous spaces, the last three columns reflect the distance measure taking
into account multiple activity properties. All three distance measures make use
of the activity property types in columns 1–6. The distance disth is measured
in heterogeneous vector space, where dimensions are activity property values of
types listed in columns 1–6. The distance measure distavg is the average value of
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Table 2. Correlation values observed in the K-fold cross validation

Experiment ρ(distt, diff) ρ(disth, diff) ρ(distavg, diff) ρ(distagg, diff)

R
o
le
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b
le
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le

IT
sy
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em

D
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ct

L
a
b
el

N
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r

All models 0.70 0.61 0.60 — 0.34 0.58 0.74 0.65 0.77
Test1 0.79 0.76 0.75 — 0.42 0.60 0.79 0.69 0.79
Test2 0.64 0.56 0.56 — 0.43 0.62 0.68 0.70 0.70
Test3 0.68 0.58 0.58 — 0.53 0.64 0.68 0.72 0.71
Test4 0.61 0.47 0.45 — 0.20 0.48 0.70 0.56 0.52
Average1−4 0.68 0.59 0.58 — 0.39 0.59 0.71 0.67 0.68

distances in columns 1–6. The distance measure distagg is evaluated according
to Equation 3. Vector W used in distagg is obtained using linear regression as
described in the previous section. Rows of Table 2 correspond to experiments.
The first row describes the study of the whole model collection. Rows 2–5 de-
scribe the results of 4 tests along the K-fold cross validation we explained earlier,
while the last row provides the average correlations observed in the 4 separate
tests.

The correlation values that are presented in Table 2 are all significant using
a confidence level of 99%, i.e., all p values are lower than 0.01. However, no
statistically significant results were obtained for the distance in the homogeneous
vector space that corresponds to Data objects. Overall, the presented correlation
values range around 0.7. This level is generally considered to indicate a strong
correlation [11,12], particularly in situations where human decision making is
involved. Therefore, we can speak of a strong relation between the dist and diff
measures.

Among the distance measures in homogeneous spaces, one can point out the
distance in the Role space that overall displays the highest correlation values for
the different studies (0.61–0.79). In contrast, correlation values for Label are the
lowest (0.20–0.53). Another observation is that distances taking into account
multiple activity property types tend to have higher correlations. From these,
distagg outperforms all other distance measures with a value arriving at 0.77
when all models are considered. For the average values of the K-fold cross vali-
dations, however, disth, distavg, and distagg demonstrate a similar performance,
with correlation values of 0.71, 0.67, and 0.68 respectively. This observation
can be explained by the fact that distagg is parameterized by vector W—the
abstraction fingerprint of a particular model set. Thus, the distance measure
distagg “trained” on one model set may never excel distavg, once the set of mod-
els is changed. Tests 1–4 support this argumentation. Note that this result does
not restrict the applicability of the approach: in a real world setting, the goal
is to transfer the abstraction style from one model set to another. The average
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values in the lower row should, therefore, be seen as most important from the
ones displayed.

A careful inspection of the linear regression results associated with parame-
terizing vector W provides additional insights. In particular, we are interested
in the observed R2 values and the beta coefficients (also known as “standardized
coefficients”). The R2 for the whole model set, as well as the average value for
the K-fold cross validation is 0.52. This value shows the explained level of vari-
ation in abstraction style as explained by the various distance measures under
consideration and can be considered as moderately strong. The beta coefficients
of the distance measures in various spaces reveal their impact on the activity ag-
gregation. The beta coefficients for activity property types Role and Responsible
role have average values of 0.55 and 0.37, respectively. At the same time, the
standardized coefficients of Neighbor and Label property types fluctuate around
0. The average value for IT systems is in between, with a beta coefficient of
0.19. The provided numbers illustrate that the activity property types Role and
Responsible role have a big impact on the abstraction style of the considered pro-
cess model collection. IT systems also contributes to the activity aggregation,
but the influence of activity labels and activity neighborhood is insignificant.
Clearly, such insights may differ from one process model to the other.

The validation indicates that the suggested distance measures can be used
in a close approximation of the abstraction style of human modelers. Among
the introduced measures, distagg is of great interest, as it takes into account
the abstraction style of a particular process model collection. Furthermore, the
validation revealed activity property types, Role and Responsible role, that have
the highest impact on the abstraction style for this particular collection.

4 Related Work

The topic of business process model abstraction can be related to several research
streams. We identify these streams looking both from the perspective of the
disciplines of software engineering and business process management.

Model properties and relations are thoroughly investigated in the software
engineering area. For instance, in [21,22] Kühne elaborates on the concepts of
model, metamodel, model types, and model relations. These works systematically
describe and organize relations, e.g., generalization and classification, which are
seminal for the problem of model abstraction. Closely related are also the studies
that cover model granularity. In [17], the authors investigate model and meta-
model granularity. The authors compare several metamodels and come up with
best practices with respect to granularity. One can observe that the relation be-
tween a coarse-grained activity in an abstract model and its counterparts in the
initial model is the meronymy, or part-of, relation. Meronymy has been studied
in depth in the software engineering domain [3,13]. Although the referenced pa-
pers do not provide concrete techniques for the implementation of abstraction
within process models, they facilitate a better problem understanding and help
to identify the main concepts in this domain.
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Business process management is the discipline concerned with using methods,
techniques, and software to design, enact, control, and analyze operational pro-
cesses. A large body of knowledge corresponds to process model analysis based
on model transformations. Model transformations can be reused in the context
of the abstraction problem. An example of such a transformation consists of re-
duction rule sets for Petri nets, e.g., see [4,23,27]. Each reduction rule explicitly
defines a structural fragment to be discovered in the model and a method of
this fragment transformation. Hence, reduction rule sets enable process model
abstraction through iterative rule application. As the transformed process frag-
ments are explicitly defined, each reduction rule set handles only a particular
model class. Thereby, each reduction rule set requires an argument about the
model class reducible with the given rules. The model class limits the application
of abstraction approaches based on reduction rules [5,10]. Process model decom-
position approaches are free of this limitation: they seek for process fragments
with particular properties. An example of such a decomposition is presented
in [34], where single entry single exit fragments are discovered. The result of
process model decomposition is the hierarchy of process fragments according to
the containment relation, i.e., the process structure tree. Such a tree can be
used for abstraction in process models [24]. Finally, one can distinguish model
transformations that preserve process behavior properties. In [1], van der Aalst
and Basten introduce three notions of behavioral inheritance for WF-nets and
study inheritance properties. The paper suggests model transformations, such
that the resulting model inherits the behavior of the initial model. An approach
for process model abstraction can exploit such transformations as basic opera-
tions. While the outlined model transformations can support solving the general
problem of process model abstraction, they all focus on structural and behav-
ioral aspects of models and model transformations, leaving the semantic aspect
out of scope.

Many tasks in the management of large process model collections can be traced
back to the problem of activity matching, which is closely related to the problem
of business process model abstraction. Examples of such management tasks are:
the search for a particular process model over a process model set or ensuring the
consistency of models capturing one and the same process from different perspec-
tives. Activity matching is realized through analysis of activity properties: activ-
ity labels, referenced data objects and neighboring activities. In [9,35] the authors
suggest activity matching algorithms and evaluate them. While the named works
explore the existing process models and do not directly address the problem of pro-
cess model abstraction, their results have a potential of being applied in business
process model abstraction. Semantic aggregation of activities relates to research
on semantic business process management. Notice that process models enriched
with semantic information facilitate many process analysis tasks, see [18]. Along
this line of research, several authors argue how to use activity ontologies to realize
activity aggregation [6,7]. It should be noticed, however, that such works imply the
existence of a semantic description for model elements and their relations, which
is a restriction that rarely holds in real world settings.
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Establishing an activity’s granularity level is also a recurrent challenge in
process mining, where logs contain records that are often very fine-granular. As
such, the process models directly mined from the logs can be overloaded with
information making them hard to comprehend. Activity clustering is an efficient
means to raise the abstraction level for the mined models. In [14,15] Günther
and van der Aalst propose activity aggregation mechanisms based on clustering
algorithms. The mechanisms extensively use information present in process logs,
but which are less common for process models, i.e., timestamps of activity starts
and stops, activity frequencies, and transition probabilities. Thus, in contrast
to the activity aggregation approach proposed in this paper, process mining
considers other activity property types for clustering and utilize other clustering
algorithms.

5 Conclusions and Future Work

Despite business process model abstraction has been addressed in a number of
research endeavors, this paper proposes a novel approach in this area. Specifically,
it exploits semantic aspects—beyond the control-flow perspective—to determine
a similarity between different activities for the purpose of simplifying process
model abstraction. Relevant levels of similarity can be determined on the basis
of existing process models in which abstraction was already applied.

Our main contribution is a method to discover sets of related activities, where
each set corresponds to a coarse-grained activity of an abstract process model.
As a second contribution, we propose an approach to discover an abstraction
style inherent to a given process model collection, which is reusable for ab-
straction of new process models. Both contributions are of practical interest,
as they addresses model management issues recurrently appearing in process
model projects. The experimental validation provides strong support for the
applicability and effectiveness of the presented ideas.

Our approach is characterized by a number of limitations and assumptions.
First of all, it builds on the assumption that all kinds of semantic information,
such as data objects, roles, and resources, can be observed within the descrip-
tions of process models in industrial collections. The process model collection
we obtained through our cooperation with a large telecommunication company
clearly confirms this idea, but this also applies to other industrial repositories,
such as the SAP Reference Model [20]. Secondly, in our validation we have merely
focused on the appearance or not of two activities being within the same sub-
process or process model, although it can be imagined that a more fine-grained
correspondence measure could yield even more useful results.

These and other limitations guide our future research plans. The direct next
step for us is the use of advanced vector space models reflecting the relations
between different activity property values. Such models enable activity cluster-
ing algorithms to consider the structure of organigrams and data object rela-
tions. Meanwhile, it can also be beneficial to consider other clustering algorithms
and compare the outcome with the solution introduced in this paper. From a
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practical perspective, it is important to suggest names for coarse-grained activi-
ties that are products of activity aggregation. Finally, we would like to improve
the validation method for activity aggregation. On the one hand, this implies re-
placing correlation with an alternative metric for activity aggregation quality. On
the other hand, the validation will require an empirical study involving human
modelers and stakeholders, who can evaluate the proposed activity aggregation.

References

1. van der Aalst, W.M.P., Basten, T.: Life-Cycle Inheritance: A Petri-Net-Based
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