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Detailed responses to reviewers 

 

Reviewer #1:  

Comment 1: 

Based on my reading of the proposed techniques and the experimental evaluation, my major concern is 

on the magnitude of the contribution and the generalizability of the proposed framework to other 

domains. The presentation and illustration of the proposed framework seems to be too tailored to the 

target domain. It is difficult to judge the difficulty/simplicity of extending the framework to other domains 

and the authors did not make any effort on this front throughout the paper. As the authors stated in the 

paper, the novelty of their proposed work lies in the IOBSS which deals with complex relationships in a 

specific domain ontology. For this, they introduced a new inference mechanism - "associate networks".  

Considering this, I expect the authors to provide more discussion on the practical scope, conditions, or 

constraints for extending their framework to different domains. 

 
Response:  

Although the new IOBSS measure, related terms and calculation procedure were validated  using a case 

study in the old version, the terms and the inference mechanism of the proposed measure can be used in 

any domain as long as the domain ontology is available. In other words, for any given domain of interest, 

if the domain knowledge can be modelled and formalized as an ontology, the steps of calculating the 

IOBSS measure (as illustrated in the sub-section 3.4, revised version) can be followed to find the 

semantic similarity of any pair of instances using the IOBSS measure. Therefore there is no limitation to 

the practical scope for extending the framework to different domains. However, since the IOBSS measure 

aims to capture both the direct relationships and implicit relationships to compute semantic similarity 

between any pair of available items in the considered domain, if the given domain ontology has no much 

implicit relationships, the effects of using the IOBSS measure would  not be significant. 

Based on the expectation of the reviewer, a new sub-section (5.7), named ''Concerns about computational 

feasibility and flexibility'', is added to the revised version to discuss the generalization issue of the 

proposed SBCF-IOBSS approach. See page 31 of the revised version. 

Comment 2: 

It would be useful first to present a general formalization of the proposed method and then provide 

illustrative example using the contents of the target case study. The mixing of the examples and the formal 

*Detailed Response to Reviewers
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representation of the steps in the proposed approach makes it difficult to judge the generalization as well 

as computational complexity of the proposed approach. 

Response:  

Thanks for the suggestion. We have followed the reviewer’s suggestion to separate the examples from the 

formal representation of definitions and the proposed approach by restructuring the content of some 

sections, particularly the sections about the IOBSS measure and the target domain, to make the 

description more general. The main changes that have been made are listed as follows:  

(1) We have separated the new semantic similarity measure, its related definitions and terms from the 

examples of the target domain and the explanation of the target domain ontology itself. Regarding 

this, a new section has been added to the experimental validation, sub-section 5.1, named ''A case 

study: Australian Tourism e-government service''. Details can be found on page 24 (revised version). 

(2) Section 3 of the old version has been removed except the content of sub-section 3.1. The sub-section 

3.1 was restructured, expanded and combined with Section 4 (IOBSS in the old version) to form 

Section 3 (revised version) to present the concept of the IOBSS measure, its related terms and 

definitions and its algorithmic procedures of calculating the semantic similarity. Due to these 

changes, some modifications have been done as listed below: 

- Figure 3 in page 13 (old version) is deleted. 

- Figure 4 in page 15 (old version) is deleted. 

- Figure 5 in page 16 (old version) is deleted. 

- The examples that were presented in Section 4 (on pages 12-16 of old version) are also 

deleted. .   

- Eqs. (1) and (2) on pages 19 and 20 of old version, respectively, have been merged into one 

Equation, Eq.(1) on page 13 (revised version) to avoid extra explanation. According to this 

change, some text in page 21 (old version) has been shortened and updated. The changed text 

has been highlighted as shown in pages 12 and 13 of the revised version. 

- The mentioned example on page 23 (old version) has been updated to be more general, see 

page 14 of the revised version. Also, the updated Eq. (1) of weight factor has been employed 

to calculate the weight factor of the compared two instances, i.e. ������,� �	��
� 
. Please refer to 

page 15 of the revised version to see the changes  

- The first paragraph in Section 4.3 (page 27, the old version), is updated and the example is 

deleted. Detailed changes can be found in Section (3.4), page 18 of the revised version. 
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- Table 3 and Table 4 (Sub-section 4.3, old version) are deleted. We do not need to mix 

between examples and the procedure steps of the calculating IOBSS measure, as can be seen 

in sub-section 3.4 (revised version). 

- The Section (4.4) on page 30 of the old version is deleted. The content of this section is 

moved to the Section 5.6 in the revised version. 

(3) Section 5 (page 30, old version), the beginning of the first paragraph is updated to reflect the 

generalization. Please refer to Section 4, page 20 (revised version).  

(4) Figure 8 (Section 5, page 30, old version) is shortened. Please refer to Section 4, page 21 (revised 

version). 

Regarding the computational complexity, an analysis of the computational complexity of the proposed 

SBCF-IOBSS approach is added to the revised version, details can be found in Section 4.2, page 23 

(revised version). 

 

Comment 3: 

 Key parameters that define the size and complexity of the problem and the proposed approach need to be 

identified and discussed. This is particularly important in the definition of "associate network" (Definition 

3) and "Common Associate Pair Set" (Definition 4), which represent the main contribution of the paper.  

The authors need to provide a more general representation of the complexity involved in these steps. 

 

Response:  

Thank for the reviewer’s suggestion. We have followed this suggestion to add a separate section that 

identifies the size of the problem and discusses the complexity of both the IOBSS measure, including the 

associate network and Common Associate Pair Set, and the proposed hybrid SBCF-IOBSS approach. 

Please refer to Section 4.2, page 23 (revised version). 

 
Comment 4: 
 

Related to the above point, the authors stated that "with regard to the computational complexity of the 

new hybrid approach, it is evident that the calculation of semantic similarity is conducted offline and 

updated only when new instances are entered to the system". I disagree that this justifies the absence of 

any evaluation or discussion in the paper on the computational complexity of the proposed approach. I 

believe there are parameters that raise issues on complexity even if this this is done offline. For example, 

in the target experiment, the user-item rating matrix of 400 users and 500 tourism items was used. How 

does the size of this matrix affect the feasibility of the proposed approach in practice? Can the practical 
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size of this matrix have any implication on the density/sparsity and eventually on the prediction 

accuracy? 

 
Response:  

Thank the reviewer for the suggestion. We have followed this suggestion to add to a separate sub-section 

to present the computational complexity analysis for the proposed approach. Detailed can be found in 

Section 4.2, page 23 (revised version). 

Lastly, in regards to the density/sparsity of the user-item matrix, it does affect the prediction accuracy. 

This issue has been addressed in the sub-sections (5.5.2) and (5.7) of the revised version of the paper. 

 

Comment 5: 
 

The magnitude of the performance improvement over the comparison approaches needs statistical 

confirmation. The authors claim "significant" and "substantial" improvement in performance over the 

comparison approaches. However, as the figures show (Figs. 9, 10, 11 and 12), the performance 

difference is not that significant (except for the item-based CF). It would be useful to provide some sort of 

statistical confirmation. 

 

Response:  

Thank the reviewer for the suggestion. We have followed this suggestion to apply a statistical 

confirmation, using t-test measure, to the conducted experiments to confirm the improvement in the 

performance of the proposed approach over the competing approaches. The statistical confirmation is 

added to all sub-sections of the experimental results and highlighted (as can be seen at Section 5.5 and its 

sub-sections 1- 3), revised version.  

 

Comment 6: 
 

It appears that the choice of the semantic combination parameter (alpha) can mitigate the cold-start /new 

item problem if more weight is given to the ontology-based semantic similarity. This may be seen if a 

higher combination parameter than the optimal (from the sensitivity analysis) is used in the experiments 

conducted to evaluate the effectiveness of the method on the cold-start /new item problem. Please 

comment on this. 

 

Response:  
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The semantic combination parameter � specifies the weight of IOBSS in the combined similarity. The 

higher the � value is, the heavier the ontology-based semantic similarity in the combined similarity. For 

handling the cold-start/new item problem, we only consider the ontology-based semantic similarity by 

setting the � value to be 1, because for the new items, the CF based similarity cannot make prediction. 

The changes made have been highlighted in the sub-Section 5.5.3 (revised version). 

 
Comment 7-1: 
Overall, this paper is very well written and its objective and contribution is clearly stated.  
 

Response:  

Thank the reviewer for the comment. 

 
Comment 7-2: 

The paper also presents the proposed method and experimental evaluation clearly within the defined 

setting. However, the scope of the paper and the presentation of its proposed framework as well as 

experimental evaluation need to be expanded in order enhance the magnitude of its contribution and 

show its generalizability to different domains. 

 

Response:  

Based on the reviewer’s expectation, We have also added more explanation about the 

generalizability of the proposed approach by emphasising the following aspects (i) a formal 

presentation of the proposed approach and similarity measure has been presented in the revised 

version (Section 3 and Section 4); (ii) an analysis of the computation complexity of proposed 

approach is presented in the revised version (Section 4.2) to demonstrates the flexibility and 

feasibility of the proposed approach to be applied in different domains; (iii) an illustration of the 

proposed approach using a case study confirm its effectiveness using a related statistical 

measure, as can be seen in Sub-section 5.1 and the Sub-section 5.5 ; (iv) a new sub-section (5.7) 

is added to the revised version to emphasise the feasibility and flexibility of the proposed 

approach. 
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Reviewer #2 

This is an interesting study. It related to DSS closely. The problem about this study is on presentation. It 

goes too details sometimes and misses the focus of the study. My understanding is the core of this study 

has two aspects: recommendation system and semantic-rich approach. Thus, I suggest some minor 

revisions to be made: 

 

Comment 1:  

Abstract needs to be rewritten. It does not help a reader to get a good picture about the study before 

getting into the details. 

 

Response:  

We have followed the reviewer’s suggestion to re-write the abstract to reflect the contributions of the 

paper, details can be found on page 1 of the revised version of this paper). 

  
Comment 2: 

 Literature is fine. 

Response: 

Thank the reviewer for the comment. 

 
Comment 3: 

Section 3 is for experiments. It should be simplified to one sub-session and move to somewhere near the 

experiments. 

 

Response:  

Thank the reviewer for the suggestion. We have followed this suggestion to simplify the Section 3 (old 

version) and shorten the extra explanation and examples. Some examples and figures have also been 

removed. In addition, a new sub-section, sub-Section 5.1, named '' A case study: Australian e-

Government tourism service '', has been added to Section 5 (revised version). The sub-Section 6.2 (old 

version), which talks about dataset, has been moved to sub-Section 5.1 (case study subsection in the 

revised version).  Details can be found on pages 24-25 (revised version). 

 

Comment 4: 

Section 4 is the core of this study. It needs to clearly describe a methodology that is general enough for 

applying to other domains. Section 4.3 is too tedious. It needs to be simplified. Many examples are not 
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necessary. Section 4.2 and 4.3 are the core of this study. It can be combined with session 5 into a new 

session. 

Response:  

Thank the reviewer for the suggestion. We have taken this suggestion into consideration while we 

addressed the similar comments made by reviewer #1. Please refer to the responses of the comment 2 of 

reviewer #1. 

 

Comment 5: 

Section 6 is good. It demonstrates the model by comparing with three others. But again it is too tedious 

sometimes. For examples, tables 5 and 6 are not necessary. 

Response:  

We have addressed the reviewer’s comment by rewriting the Section 6 to make the content clearer. The 

changes made are listed as follows: 

- The experimental dataset presented in Section 6.2 (old version) is expanded. Some important text 

in Section 3.2 (old version), was moved to Section 6.2 (old version) and highlighted. The updated 

text of the experimental dataset then added to the case study subsection 5.1 in the revised version. 

- Section 6.4.1 and Section 6.4.2 of old version are deleted. Some important text in both sections is 

added to sub-Section 6.4 (old version), named ''determination of experimental parameters''. Then, 

6.5.1which talks about the sensitivity of parameter α has been shortened and added to the 

''determination of experimental parameters'' sub-section 6.4. The updated content of section 6.4 

has been highlighted in the revised version of the paper and renumbered as Section 5.4 (page 27 

in the revised version). Additionally, some text in both sections 6.4.3 and 6.4.2 (old version)  is 

added to Sections 6.5.3 and 6.5.4, which have been renumbered as Sections 5.5.2 and 5.5.3, 

respectively in the revised version of the paper. The changes are highlighted. Please refer to pages 

28 and 29 (revised version). 

- Section 6.5.3 in the old version, is revised to make the idea of calculating the improvement in the 

MAE clearer. Eq. (19) was also deleted as it is not necessary to be mentioned. The updated text is 

highlighted as shown in Section 5.5.2, page 28 (revised version). 

- Section 6.5.4 in the old version is revised.  Fig. 12 has been removed because it was mistakenly 

inserted in the old version. Regarding to the new item problem, since the item-based CF approach 

and the CFO approaches cannot make prediction for new items, only the proposed SBCF-IOBSS 

and the SECF approaches are considered in the evolution. The updated text and figure are 

highlighted in the sub-Section 5.5.3, page 29 of the in revised version. 
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- Tables 5 and 6 in the old version are removed, refer to Section 5.5.1, page 27 of the revised 

version. 

- To make the experimental results clearer, the colours of all series in the plot area were changed, 

as shown in sub-sections 5.4, 5.5.1 to 5.5.3, please refer to these sections in the revised version. 

- The discussion of the experimental results (Section 6.6, old version) is revised to emphasise the 

features that make the new approach effective and feasible in achieving better performance 

particularly when dealing with sparsity and cold-start item problems. Please refer to Sub-section 

5.6 to see the highlighted section, page 31 (revised version).     

- Lastly, the conclusion is revised to remove the points that have been emphasised in other parts of 

the paper, refer to Section 6 in the revised version. 

In addition, to meet the requirement of page numbers, the following changes have been made: 

- Tables 1 and 2 are merged into Table 1, page 11 (revised version). 

- Section 3 is revised to be shorter. 

- Tables 3 and 4 are removed. 

- Sub-Section 5.4 is revised.  

- The sub-section 5.5.1 is removed. Some of its content is moved to sub-section 5.4.   

- A few reference papers are removed. 



A Semantic Enhanced Hybrid Recommendation Approach for E-

government Tourism Services 

 The paper proposes a hybrid semantic enhanced recommendation approach by incorporating the 

semantics of items into the standard item-based collaborative filtering approach for better 

recommendation in E-government domains.  

 

 This paper further proposes a new ontology-based semantic similarity (OBSS) measure between 

ontological instances based on a domain specific ontology, which can be used in the above hybrid 

recommendation approach. This OBSS measure takes into accounts the explicit hierarchical 

relationships, shared attributes and implicit relationships of two ontological instances so that it is 

more expressive than the existing similarity measures. 

 

 This paper also presents a number of new concepts, including Common Associate Pair Set of two 

ontological instances to support the OBSS measure.  

 

 This paper finally illustrates the effectiveness of newly proposed hybrid approach and semantic 

similarity (OBSS) measure using a case study of Australian e-government tourism services, 

within which the approach has been compared with three competing approaches including two 

advanced semantic-based recommendation approaches. The experimental results show that the 

newly proposed hybrid approach outperforms all the competing approaches in terms of 

recommendation quality and ability to address the cold-start and sparsity problems. 

Highlights (for review)



A Semantic Enhanced Hybrid Recommendation Approach: a Case Study of E-government Tourism 
Service Recommendation System 

 

Abstract 

Recommender systems are effectively used as a personalized information filtering technology to 

automatically predict and identify a set of interesting items on behalf of users according to their personal 

needs and preferences. Collaborative Filtering (CF) approach is commonly used in the context of 

recommender systems; however, obtaining better prediction accuracy and overcoming the main limitations 

of the standard CF recommendation algorithms, such as sparsity and cold-start item problems, remain a 

significant challenge. Recent developments in personalization and recommendation techniques support the 

use of semantic enhanced hybrid recommender systems, which incorporate ontology-based semantic 

similarity measure with other recommendation approaches to improve the quality of recommendations. 

Consequently, this paper presents the effectiveness of utilizing semantic knowledge of items to enhance 

the recommendation quality. It proposes a new Inferential Ontology-based Semantic Similarity (IOBSS) 

measure to evaluate semantic similarity between items in a specific domain of interest by taking into 

account their explicit hierarchical relationships, shared attributes and implicit relationships. The paper 

further proposes a hybrid semantic enhanced recommendation approach by combining the new IOBSS 

measure and the standard item-based CF approach. A set of experiments with promising results validates 

the effectiveness of the proposed hybrid approach, using a case study of the Australian e-government 

tourism services.  

 
Keywords: semantic enhanced recommender systems, collaborative filtering, semantic similarity, e-

government tourism services. 
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1 Introduction 

Recommendation systems (RSs) are known as the most popular applications of Web personalization. The 

RSs aim to provide users with personalized services or products that are relevant to their needs and 

interests. Recent research studies show that existing personalized online services adopt several RSs 

approaches. These approaches are classified into four main categories, including content-based (CB) 

filtering, collaborative filtering, knowledge-based filtering and hybrid recommendation [1, 10, 40]. 

Although the CB filtering and CF approaches are the most popular in practical applications, both of them 

suffer from several limitations [23]. For instance, the CB filtering approach tends to result in 

overspecialization in which the diversity in the recommendation results eventually vanishes [35], while the 

CF approach suffers from the data sparsity problem which occurs when the ratings obtained are few 

compared to the number of available items. Moreover, both the CB filtering and CF approaches have 

difficulty offering accurate recommendations for new items as there is usually little available information 

about new items.  

On the other hand, hybrid recommendation approaches, as a combination of two or more 

recommendation approaches, have been proposed to overcome the main limitations of traditional 

recommendation approaches and improve the quality of the recommendations offered [1, 11, 35]. 

Most of the existing hybrid recommendation approaches combine conventional CF approaches 

with other approaches such as CB filtering, since CF approaches are generally known to be the 

most promising approaches in the recommendation systems domain [1, 23, 45]. There has been 

considerable research into the hybridization of CF-based algorithms and improvements on the 

prediction accuracy have been made [11, 12, 45, 50]. However, obtaining better prediction 

accuracy and overcoming the main limitations of the standard CF recommendation approaches 

remain open challenges, as no cure-all solution is yet available and many research studies have 

been working on solutions for each of the CF limitations [12, 45].  

These challenges, combined with the increasing popularity of semantic web technologies, have 

inspired a growing interest in semantic enhanced recommendation approaches. These approaches mainly 

incorporate the semantic knowledge of users and/or items within the recommendation process of 



conventional CF-based algorithms to accurately evaluate similarity of items and to enhance 

recommendation accuracy [8, 36]. Most of these approaches rely on semantic knowledge extracted from a 

target ontology that includes the direct hierarchical (i.e. taxonomical) relationships of items and/or their 

shared attributes. However, evaluating the similarity of items is limited since ontological relationships1 that 

connect the available items in a target ontology are not usually handled very well [7, 25, 26, 33, 44]. Such 

relationships may include complex relationships between instances (i.e. items2) that consist of two or more 

relationships [3].  

Even though progress is being made in developing efficient strategies for estimating the semantic 

similarity of items in semantic enhanced recommendation systems, this work is still in an early stage and 

more research is needed [3, 8, 13, 15, 25, 44]. This observation, combined with the specific features of 

service items (e.g. services are multi-relation and highly interrelated) in a specific domain, such as services 

in government, has motivated the research presented in this paper. Consequently, this paper presents two 

contributions (i) it proposes a new IOBSS measure to evaluate the semantic similarity between instances in 

specific domain ontology and (ii) it develops a new semantic enhanced hybrid recommendation approach 

that combines the new semantic similarity measure and the item-based CF to generate accurate 

recommendations.  

The effectiveness of the new semantic-based hybrid recommendation approach has been validated through 

a case study of the Australian e-government tourism service. It achieves highly effective results in terms of 

prediction accuracy of generated recommendations and in alleviating data sparsity and cold-start new item 

problems. 

The rest of the paper is organized as follows. Section 2 presents the related work. Section 3 presents the 

concept and calculation procedure of the new IOBSS measure with an illustrative example. Section 4 

presents the new semantic-based enhanced hybrid recommendation approach, its workflow and its 

computation recommendation procedure. An experimental study of the new hybrid recommendation 

approach, in the context of recommending e-government tourism services, is illustrated in Section 5. 

Finally, Section 6 concludes the paper and highlights potential future work. 

                                                 
1 Ontological relationships refer to semantic associations that link instances, examples of such relationships can be seen in object 
properties in OWL. Links between instances that consist of two or more relationships represent complex relationships. 
2 Henceforth, item and instance are used interchangeably.  



2 Related work 
 
This section reviews the literature related to this study, including semantic-based similarity and semantic-

based recommendation systems. 

2.1 Semantic similarity approaches 

Computing semantic similarity among ontological concepts with regards to their positions in a particular 

taxonomy has been studied in the last decade. Semantic  [5, 42]  similarity approaches can be classified 

into three main categories, namely (i) distance-based approaches, (ii) information Content (IC) based 

approaches, and (iii) hybrid approaches. 

Distance-based approaches measure the similarity between concepts in a specific taxonomy according to 

the distance/edge length between concepts. One of the most well-known distance-based measures is the 

shortest path-based approach, where the shorter the path between two concepts, the more similar they are 

[37]. Generally, distance-based approaches are highly dependent on the construction of the taxonomy [5, 

41]. The main drawback of these approaches is that they consider that the edges in a taxonomy structure 

represent uniform distances.  

The IC-based approaches compute the similarity between two concepts based on the extent to which they 

share information; the more information two concepts share in common, the more similar they are [38]. 

These approaches avoid the unreliability of edge distance measure because they require less information 

about the structure of a taxonomy. According to Resnik [38], the IC of two concepts can be measured with 

respect to the IC of their least common ancestor in a specific taxonomy [38]. Lin [27] enhanced Resnik’s 

IC measure based on the assumption of commonality information, i.e. the similarity between two concepts 

relies on the extent to which they share information. Based on Lin’s assumption, the IC value of two 

concepts can be measured as the IC of compared concepts themselves in addition to the IC of their least 

common ancestor [27]. The IC-based approaches obtain the IC values of concepts by combining the 

knowledge of the hierarchical structure of concepts with statistics on their actual usage and are usually 

computationally expensive. Seco et al. [41] proposed a wholly intrinsic measure for computing the IC of a 

specific concept. The new metric depends on the hierarchal structure (i.e. taxonomy) alone without the 

need to involve statistics [41].  



The hybrid semantic similarity approaches combine the features of edge-based and IC-based approaches, 

with the aim of producing more accurate similarity measure [22, 30, 42, 47, 49]. For instance, Jiang & 

Conrath [22] developed a hybrid model that uses the IC-based approach to enhance the distance-based 

approach. Their approach takes into account the factors of local density, node depth and link types [22]. 

Recently, Seddiqui & Aono [42]  proposed a hybrid similarity measure which combines the intrinsic IC-

based approach presented by Seco [41] and the content of concepts (attributes and relations). Their new 

measure is used to compute similarity between concepts for the purpose of partitioning a large taxonomy 

of ontology.  

All the aforementioned approaches are mainly designed for computing similarity between concepts based 

on the relative positions of concept nodes in a semantic network3 [16, 39], with some exceptions, as in [42] 

and [30]. The semantic similarity measures presented in [42] and [30] compute similarity between 

concepts in the ontology environment. Unlike semantic networks [32], where concepts are only linked by 

“is-a” relations, ontologies are more complex and concepts are defined with sufficient datatype properties, 

object properties, restrictions, etc. The knowledge of content i.e. attributes and relationships can be 

regarded as crucial information for identifying concepts and can significantly influence similarity 

estimations between concepts. Therefore, existing semantic similarity measures which are designed for 

semantic networks can be difficult to apply to ontologies, as they cannot capture the semantics represented 

in ontology. Although some studies consider the content of knowledge of concepts for similarity 

computation, they only focus on explicit relationships4 and pay little attention to content knowledge, 

including the attributes and indirect relationships between concepts [2, 15, 42]. Accordingly, this study 

adopts a new approach to estimate similarity between ontological instances based on rich semantics that 

can be captured from ontology by taking into account not only the items’ hierarchal relationships but also 

their ontological relationships. Moreover, a new IOBSS measure is proposed that can be utilized in this 

study to improve recommendation accuracy. 

                                                 
3 Semantic network is a graphic notation for representing knowledge in patterns of interconnected nodes (e.g. concepts) and arcs. 
A typical example of a semantic network is WordNet. 
 
4 Explicit relationships refer to taxonomical (i.e. hierarchal) relationships of instances and their attributes, such relationships also 
called direct relationships. 



2.2 Semantic-based recommendation systems 

Ontology is considered to be a knowledge base that enables systems to interpret, process and share 

information effectively [4, 29]. The merit of ontology lies in its ability to provide a clear conceptual 

description of relationships between entities (i.e. concepts) in a specific domain. Ontology aims to support 

the rich variety of semantic relations among entities in a specific domain, which in turn distinguishes it 

from other types of representation, such as keyword-based representation [4]. 

Semantic-based recommendation systems have recently been developed that make use of semantics based 

on ontology and semantic reasoning in the recommendation process to specifically improve the similarity 

estimations used in traditional CB filtering and CF approaches [36]. Based on a broad literature review, the 

incorporation of semantic knowledge that is formalized in the form of ontology with CF-based 

recommendation approaches can be summarized into three categories: (i) incorporate semantic knowledge 

of considered content (i.e. items) with the traditional item-based CF approach [33]; (ii) incorporate 

semantic knowledge of items with the user-based CF approach [14, 28, 31, 43, 48], and (iii) combine the 

user-based CF approach with the semantic enhanced CB filtering approach [7]. 

Two existing hybrid recommendation approaches that use semantic similarity with the traditional CF 

approaches are closely related to this study: (i) a semantically enhanced collaborative filtering (SECF) 

approach proposed by Mobasher et al. [33] and (ii) a collaborative filtering with ontology-based (CFO) 

user profiles approach proposed by Sieg et al. [44]. The aforementioned approaches resort to semantic 

knowledge of items to improve the prediction accuracy of the standard CF recommendation algorithms, as 

well as to deal with the sparsity and cold-start new items problems. However, these approaches use the 

semantic knowledge of items that is extracted from item descriptions (including datatype and object 

properties), as in the SECF approach, or hierarchical relationships of items, as in the CFO approach. Even 

though the use of semantic knowledge has improved the recommendation process of the aforementioned 

approaches, this source of knowledge is limited and not informative in the evaluation of instances since 

ontological relationships between instances are not usually handled very well [7, 15, 28, 48].  

This paper proposes a new semantic-based enhanced hybrid recommendation approach that combines 

item-based CF similarity and an inferential ontology-based semantic similarity measure to improve the 



prediction accuracy of recommendations. Details of the new approach will be presented in the following 

sections.  

3 Inferential ontology-based semantic similarity 

  
This section first introduces an ontology model and definition, and then describes the proposed inferential 

ontology-based semantic similarity measure.  

3.1 Domain ontology model 
 
According to Gruber [17], an ontology is a formal representation of the world. It defines a set of 

representational primitives that are relevant for modelling a domain of knowledge or discourse. These 

primitives typically consist of a set of concepts or entities within a domain, relationships among these 

concepts, and attributes that distinguish each concept [17]. A formal definition of an ontology structure as 

introduced by Maedche & Zacharias [33] is given below: 

Definition 1 (Ontology): An ontology structure is a six-tuple � ∶�< C, P, A, ��, prop, att >, where C 

represents the concept set defined in O; P is a set of relationships defined in O, each �� ∈ 	
 has a domain 

and range which are at least one concept of the set C; A is a set of attributes defined in O; �� is a directed 

transitive relation �� ⊂ � 
 � which is also called concept taxonomy, �����, ��
	means c2 “ is-a” c1, or c2 

is a sub-concept of c1; prop is a function, i.e. ����:		 → �	 
 �, that relates concepts non-taxonomically, 

e.g. the function �����	��
 � ���, ��
	means that the concept ��	is  related to concept �� through ��; and 

att is a function, i.e. ���:	�	 → 	�, that relates concepts with literal values such as string, integer, boolean, 

etc. 

In a domain ontology, concepts are linked through two kinds of relationships. One is the asserted 

relationships which are direct relationships between ontological concepts that are defined by the 

developers of the ontology This kind of relationships includes (i) the taxonomical or hierarchical 

relationships, denoted by �� as defined in definition 1; (ii) the the associations between concepts (e.g. 

object properties) and (iii) the attributes as special relationships of concepts (e.g. datatypes). The other type 

is the implicit relationships (i.e. inferred) which are the indirect relationships obtained through reasoning 

the asserted relationships [20]. Furthermore, ontology also includes instances of concepts, referred to 



as ontological instances. Based on the relationships between concepts, the relationships between 

instances will be automatically established when the instances are instantiated from corresponding 

concepts. 

3.2 Terms needed to define the new semantic similarity measure 

This section first introduces some terms that are needed to describe the new semantic similarity 

measure, including an associate relationship, an associate of an instance, an associate network of 

an instance and the common associate set of two instances, and then presents the IOBBS measure. 

Lastly, the IOBSS calculation procedure is presented using an illustrative example.  

Association 

Definition 2 (Association): Association is a link between two ontological instances through an object 

property. Two instances are associates if they are linked through an object property in a given OWL 

ontology. 

An association has three features: (i) self-determination, i.e., one instance is an associate of itself, (ii) 

reversibility, i.e. if �� has an association with �� via an object property op, denoted as �� ��� ��,  �� will have 

an inverse association with ��, denoted as �� ��!"�## ��.; and (iii) transitivity, i.e. for a given instance ��, if an 

instance �$ is an associate of �� which is an associate of ��, then this instance (�$
 is also an associate of the 

given instance (��
. In other words, an associate’s associate is also an associate. 

Associate network of an ontological instance  

The associate network of an instance is a network of instances that are directly or indirectly linked with 

this instance through its object properties (i.e. associations). 

Definition 3 (Associate Network): An associate network of an ontological instance �� in regard to 

ontology O (�� ⊂ �) is defined as a four-tuple, denoted as �%%&'(: ) �*��, �*��, �	�, �+�%,-,%% ., where 

�*��, �*�� ⊂ � are two sets of instances whose elements are associated through object properties;  �	� �
/��01 	|	3 ∈ 41, &6, 7 ∈ 81,&��(1 9: is a collection of object properties that form the associate network of ��, 
where k indicates how far an instance from the root instance in the hierarchical tree, ��01 is the i th object 



property at kth level of the associate network of ��, &��(1  is the number of distinct object properties at the kth 

level; N is the maximum number of associations in the associate chains of ��; and �+�%,-,%% ⊂ ; is a set 

of real numbers indicating how close an instance  ��<=1 ⊂	 �*�� (3 ∈ 41, &6, 7 ∈ 81,&��(1 9, > ∈ 41, &0?@,01 6) is 

to the root instance in the hierarchy of associate network of ��, where  &0?@,01  is the number of instances that 

are introduced by the object property ��01 at the kth level.  

 

 

 

 

 
 
 
 
 
 
 
 
 
 

 

 

An associate network can also be represented as a tree structure in which a node represents an instance, an 

edge represents an association (through an object property), two directly linked nodes are associates of 

each other, the edge sequence that links the instance ��<=1 ⊂	�*�� from the root instance �� is the associate-

chain. The length of the associate-chain represents the depth of instance ��<=1  in the tree hierarchy and 

determines the closeness of instance ��<=1  to the root instance ��, where ��<=1  denotes the >AB  associate of �� at 

level k. Figs. 1 and 2 illustrate the associate networks (in tree structure) for instances �� and ��, 

respectively. 

To describe an associate network of an instance, we introduce some symbols to represent the instances and 

object properties.  
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���"F  

���"G  

Fig. 1. The associate network of instance HI 



For the associate network of ��, �%%&'(  in Fig. 1, we have the maximum closeness levels &� � 4, ���<1  is 

the i th association (object propriety) at the kth closeness level, 7 � 1, 2, … ,&��(1 , where &��(1  is the number 

of object properties at the kth closeness level, and ��<=1  for the j th associate of �� at the kth closeness level that 

is introduced by the association ���<1 , 3 ∈ 41,46, 7 ∈ 81,&��(1 9, > ∈ 41, &0?@,01 ]. For example, the instance 

��CC�  indicates that this instance is an associate of 	��	 at the closeness level 2 and it is the second associate 

introduced by the object property	���C	� .  

 

 

 

 

 

 
 
 

   

 

For the associate network of ��, �%%&'M in Fig. 2, we have the maximum closeness levels &� � 3, ���<1  is 

the i th association at the kth closeness level, 7 � 1, 2, … ,&��M1 , where &��M1  is the number of object properties 

at the kth closeness level, and ��<=1  for the j th associate of �� at the kth closeness level that is introduced by the 

association	���<1 , 3 ∈ 41,36,	,	7 ∈ O1,&��M1 P, > ∈ 41,&0?@,01 ]. For example, the instance	��""F  indicates that this 

instance is an associate of	�� at the closeness level 3 and it is the first associate introduced by the 

association	���"F .  

Table 1 lists the parameters, as defined in Definition 3, for the two associate networks of  �� and  �� as 

shown in Figs. 1 and 2. 
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Fig. 2. The associate network of instance HR 



Table 1 
Parameters of the associate networks of instances  HI and HR. 

Root 
 instance 

SI THUVWT5 |XYZ| S[VI\  \ ∈ 4],S6	 \ ∈ 4],S6 ^ ∈ 4], S[VI\ 6 
 
 
 
 
 
 �� 

 
 
 
 
 
 
4 

 
 
 
 
 
 
19 

 
 
 
 
 
 
11 
 
 
 

k S[VI\  [V\̂ S^_`,^\  
 
1 

 
4 

i=1 1 
i=2 2 
i=3 2 
i=4 1 

2 4 i=1 1 
i=2 3 
i=3 1 
i=4 2 

3 2 i=1 3 
i=2 1 

4 1 i=1 1 

Root 
instance 

SR THUVWT  |XYZ| S[VR\  \ ∈ 4],S6	 \ ∈ 4],S6 ^ ∈ 4], S[VR\ 6 

�� 3 12 9 

k S[VR\  [V\̂ S^_`,^\  
1 3 i=1 1 

i=2 1 
i=3 1 

2 5 i=1 1 
i=2 1 
i=3 1 
i=4 1 
i=5 1 

3 1 i=1 3 

  

Based on Definition 3, we can extract the features of an associate network of an instance 	��	as follows: 

(1) If 	��	has no object property, its associate network is itself. 

(2) There exists a function �%%a1 that can retrieve the direct associates of all instances through ���<1 , 

7 ∈ 81, &��(1 9, at a closeness level k in a given ontology. All these associates become instances at the 

level	�3 b 1
.  
(3) At the kth closeness level, if the number of instances is &cd0?@A1  and their numbers of object properties 

are (-cd	����1,	-cd	����1,…, -cd	���efg<hijk1 ), then the total number of object properties 

l∑ -cd	���01efg<hijk0 n is the number of the instances at the level �3 b 1
. 
(4) An instance ��<=1  is in the associate network of instance �� if and only if this instance (��<=1 ) is the root 

instance (	��) or an instance that has an association with another instance in the network.  

(5) Each associate of an instance, say ��<=1 , has one direct predecessor which introduces it into the 

associate network of root instance (	��) through an object property. It may have a number of indirect 

                                                 
5 Operator | | denotes the cardinality of a set, i.e. the number of elements in a set. 



predecessors depending on its closeness level. An instance	��<,=1  , for example, is an associate at the 

closeness level k, has �3 o 1
 predecessors, which is denoted by %c��%%'(<,=k 	p , where q is the level 

number	0 r s ) 3. 

(6) If an association	���<1 , where		���<1 ∈ �	� of �%%&'(, is in the associate network, its reversed 

association must be excluded from the network to avoid an infinite loop. 

Common associate pair set of two ontological instances 

Definition 4 (Common Associate Pair Set): A common associate pair set of two ontological instances 

	�� 	and	��, i.e. ��	w,�'('M, is defined as a set of associate pairs that satisfy the following conditions: (i) the 

first and second elements of each pair are instances from the associate networks of	��	and	��, respectively; 

(ii) the two elements of each pair have the same closeness level; (iii) the two elements of each pair are 

introduced into the corresponding associate network by their direct predecessors through the same object 

property; and (iv) the direct predecessors of the two elements of each pair must be a pair in the ��	w,�'('M.  

The mth individual element in the ��	w,�'('M, is denoted by �g= ���x<1 , ��x=1 
, where y ∈ 41, 	&��g��1 6 and 

	&��g��1  is the number of common object properties at the closeness level k in both associate networks of 

	�� and 	��;  ��x<1  represents the i th associate at the kth level in the �%%&'(, which is introduced into this 

network through an object property ���x1 , while ��x=1  represents the j th associate at the kth level in the 

�%%&'M, which is introduced into this network through an object property ���x1 , 7 ∈ 41, 	&�x1 6 and > ∈
41, 	&�x1 6 with 	&�x1  and 	&�x1  being the number of instances introduced by the common object property 

��z1  (��z1 � ���x1 � ���x1 ) at the closeness level k in the associate networks of 	�� and 	��, respectively.  

The predecessor of the mth element in the ��	w,�'('M is a pair of associates that introduces the 	��x<1  and 

	��x=1  instances into �%%&'( 	and �%%&'M , respectively, through the common object property 	��z1  and is 

denoted by %c��%%'(x<k ,'Mx=k 	1{� . 

As shown in Figs. 1 and 2, given that ���"�  and ���"�  are common object properties between the instances 

��""�  and the ��""� , the pair (��""� , ��""� ) is an associate pair in the ��	w,�'('M because of the following factors: 



(i) ��""� and ��""� is from the associate networks of 	�� and 	��, respectively, as shown in Figs. 1 and 2; (ii) 

they have the same closeness level 3 � 1; (iii) they are introduced into the corresponding associate 

network via the same object property ���"� � ���"� , and (iv) the associate pair |�� , ��}, whose elements �� 
and �� are the direct predecessors of  ��""� 	and ��""�  respectively, is an element in the ��	w,�'('M. 

Weight Factor 

Each element (i.e. associate pair) in the ��	w,�'('M has a weight factor that indicates how much the 

similarity of each element contributes to the semantic similarity of the two given instances	�� and 	��.  

Definition 5 (Weight Factor): A weight factor for the mth element in the ��	w,�'('M, denoted as ag, is 

defined as follows: 

ag � ~13 l 131 ∗ 1ℓ ∗ 1�n -�- o +,��	-��,%12 l 131 ∗ 1ℓ ∗ 1�n +,��	-��,% �	, (1) 

 
where d ∈ 41,�6 and M is the number of elements in the ��	w,�'('M, \ is the closeness level of the mth 

element, � and � are two parameters. 

The rationale behind treating the weight factor of the given mth element in the ��	w,�'('M differently, as 

defined in Eq. (1), is that the leaf nodes have no further object properties to be evaluated, so that  the 

weight of leaf nodes to the similarity is influenced by two sources of information (the structure 

and datatype property); while the non-leaf nodes have object properties that lead to further 

exploration of the associates so their weight factors are determined using three factors including 

their object properties, datatype properties and taxonomical relationships. 

The two parameters, � and �, are determined as follows:  

Determination of the � parameter 

The � parameter for the mth element, i.e. �g= ���x<1 , ��x=1 
, is defined as the product of the numbers of 

associates of all predecessors of the mth element, which are introduced by the common object properties of 

all predecessors of  ��x<1 	and	��x=1  and can be calculated as follows: 



ℓ ���x<1 , ��x=1 � �� ��; l%c��%%'(x<kp , ��zp��n� ∗ �; �%c��%%'Mx=kp , ��zp������
p�1{� , (2) 

where 

- ; l%c��%%	'(x<kp , ��zp��	n denotes the set of associates that are introduced by %c��%%'(x<kp into	�%%&'( 
through ��zp��, where %c��%%'(x<kp  is the direct predecessor associate of 	��x<1  at level q, and the size 

of this set is	�; l%c��%%	'(x<kp , ��zp��n�; 
- ; �%c��%%	'Mx=kp , ��zp��	� denotes the set of associates that are introduced by 

%c��%%'Mx=kp into	�%%&'M through ��zp��, where %c��%%'Mx=kp  is the direct predecessor associate of 

��x=1  at level q, and the size of this set is	�; �%c��%%	'Mx=kp , ��zp����; 
- %c��%%	'(x<kp ∈ ���0?@A|��x<1 }, where ���0?@A|	��x<1 } � �%c��%%'(x<kp |∀s ∈ 40, 3 o 16� is the set of 

all the predecessor associates of instance ��x<1 ; 

- %c��%%	'Mx=kp ∈ ���0?@A ���x=1 �, where ���0?@A �	��x=1 � � �%c��%%'Mx=kp |∀s ∈ 40, 3 o 16� is the set of 

all the predecessor associates of instance 	��x=1 ; and 

-  ��zp�� is the object property of instances at the qth level that introduces the associates at the level 

qth+1. 

As a special case, the �	 parameter of |	��, 	��} � ���x<� , ��x=� � is set to one, i.e. �|	��, 	��} � 1. 

Determination of the � parameter 

The � parameter of the mth element in the ��	w,�'('M, i.e. the associate pair ���x<1 , ��x=1 
, is defined as the 

product of numbers of common object properties of its all predecessor pairs and can be calculated as 

follows: 

 ����x<1 , ��x=1 
 � ∏ &�����p
�p�1{� , (3) 
 
where 



- &�����p
 denotes the number of common object properties with respect to a predecessor pair ��p
, 
i.e. (��x<p , ��x=p 
, at the sAB closeness level of the associate pair ���x<1 , ��x=1 �; 

- �p ∈ 	��,���0� ���x<1 , ��x=1 �, where �����0� ���x<1 , ��x=1 � � �%c��%%'(x<k ,'Mx=kp |∀s ∈ 40, 3 o 16� is the 

set of all the predecessor pairs of the element ���x<1 , ��x=1 
, and %c��%%'(x<k ,'Mx=k 	p is the predecessor 

pair of the ���x<1 , ��x=1 � pair at the closeness level q; %c��%%'(x<k ,'Mx=k� represents the given pair of 

instances (i.e. �� and 	��). 

As a special case, the � parameter of |	��, 	��} � ���x<� , ��x=� � is set to one, i.e. �|	��, 	��} �1. 

As an example of calculating the weight factor of an associate pair, consider the associate pair  |��D",� ��D"� } 
in the ��	w,�'('M, the common object property ��z1  between ��D"�  and ��D"�  is  ��F� � ���D� � ���D� , as 

shown in Figs 1 and 2. In view of that, the ℓ	and	� parameters of the given associate pair  |��D",� ��D"� } are 

calculated as follows:   

ℓ|��D",� ��D"� }: 	���0?@A|��D"� } � ���E"� , ����;   ���0?@A|��D"� } � ���E"� , ���� 
Thus,	ℓ|��D",� ��D"� } � ∏ ��; �%c��%%'(D"Cp , ��zp���� ∗ �; �%c��%%'MD"Cp , ��zp������p�1{�  

       � |T;|��E"� , ��F�}T ∗ T;|��E"� , ��F�}T} ∗ |T;����, ��F�
T ∗ T;|���, ��F�}T} 
       � �1 ∗ 1
 ∗ �2 ∗ 1
 � 2 

�|��D",� ��D"� }:	�����0�|��D",� ��D"� } � /|��E"� , ��E"� }, |���, ��	�}: 
Thus, �|��D",� ��D"� } � ∏ &�����p
�p��  

                              � &���|��E"� , ��E"� } ∗ &���|���, ���} 	� 1 ∗ 3 � 3                   

Since the instances of the pair |��D",� ��D"� } are not leaf-nodes, the weight factor of this pair is calculated 

as:	a|'(D",C 'MD"C } � �F � �Fk ∗ �ℓ ∗ ��
 � �F � �FC ∗ �� ∗ �F
 			� ���� 



3.3 Definition of the semantic similarity (IOBSS) measure 

Given two instances	�� and	��, the new semantic similarity (IOBSS) measure of	�� 	and	��, denoted as 

�-�w,dw7d|��, ��}: � 
 � → 40,16, can be expressed as follows: 

�-�w,dw7d|��, ��} � ∑ ag ∗ |w7d@A���g
 b w7d�A��g
}�g�� , (4) 

where, ag is the weight factor of the mth element in the ��	w,�'('M, which is determined using Eq. (1);	� 

is the number of elements in the ��	w,�'('M; w7d�A���g
 and w7d�A��g
 is the structure-based similarity 

and datatype-based similarity of the mth element, respectively. The structure-based similarity and datatype-

based similarity are illustrated in the following sections. 

3.3.1 Structure-based similarity of two ontological instances 
 
The structure-based similarity between two ontological instances compares two instances in terms of 

concepts that they belong to in the hierarchical structure	��. Given two instances	�� and ��, the structure-

based similarity between two instances, denoted as w7d�A�|��, ��}, is calculated as follows [41]: 

 

w7d�A�|��, ��} � 	1 o ������
 b ��|��} o 2 
 ������'(,'M
2 �,                                  (5) 

 
where �����
	and	�����
	is the intrinsic IC of ��	and	��		respectively; ������'(,'M
 denotes the intrinsic IC 

of  given two instances ��	and	��, which is obtained with regard to their Least Common Ancestor (LCA) of 

the concepts that subsumes them in the considered 	��. The intrinsic IC of a specific instance, ��, is 

assigned as the intrinsic IC of the concept that it belongs to in	��, as follows: 

�����
 � �����
,   �� ∈ ���,  (6) 

where c1 is the concept that �� belongs to in �� (the concept that the instance �� is instantiated from).  

Since the parent concept of any given instance will be the leaf concept in  �� [20, 41], and the intrinsic IC 

values of leaf concepts are assigned to their maximum values of one according to Seco’s IC metric [41], 

we assume that the intrinsic IC value of an instance 	�� 	would always be one, i.e. �����
 � ��|��} � 1. 

Substituting these values into Eq. (6), we can simplify Eq. (6) as follows:  

w7d�A�|��, ��} � 	�� ����'(,'M�, (7) 



Considering the fact that the instances in OWL ontology may have more than one parent concept [20], we 

define ���'(,'M as the most informative LCA for	��	and	��, which is the pair of parent concepts that has the 

highest IC. For example, if the parent set of two given instances		��	and	��	is	���, ���	and	��F�, 
respectively, the ���'(,'M can be expressed as follows: 

d�� ���|����",�C},	 ��|����",�E}�,                                            (8) 

The IC of a concept can be calculated using the metric proposed by Seco et al. [41] as follows: 

����
 � 1 o log	�£¤����
 b 1
log	�d����?@
 ,	 0 r ����
 r 1                    (9) 

where c is a concept in	��, hypo is a function that returns the number of hyponyms6 of a given concept (c) 

and d����?@ is the number of concepts that exist in the taxonomy under consideration ��.  
Based on Eq. (9), it can be seen that the IC value decreases monotonically as we traverse from leaf nodes 

up to the root node in the taxonomy. Hence, the IC value of a leaf-node concept will have an IC value of 

one, which indicates that the concept has been maximally expressed and cannot be further differentiated. In 

contrast, the IC values of concepts that are at the upper levels are less than one because they have many 

hyponyms. In particular, the root node concept will have an IC value of zero. 

3.3.2 Datatype-based semantic similarity of two ontological instances 
 
Datatype-based semantic similarity describes the similarity of two instances based on their common 

datatype properties with respect to a domain ontology. Datatype properties connect an instance to an XML 

schema datatype value or an RDF literal. The XML schema datatypes include interval-scaled, binary, 

nominal, ordinal, and/or ratio. The similarity between two instances connected to each datatype needs to be 

treated differently. A detailed description of similarity metrics that suits each type can be found in [18].  

Given two instances, �� and	��, let N be the set of their common datatype properties. The datatype-based 

similarity of these two instances, denoted as		w7d�A|��, ��}, is defined as follows: 

w7d�A|��, ��} � ∑ 	¥�w7d�<|��, ��}e0�� & , (10) 

                                                 
6 Hyponymy involves specific instantiations of a more general concept. On another word, the hypo of a concept c denotes the 
number of its direct subclasses. 



where		�0 ∈ & is the i th common datatype property, and ¥�w7d�<|��, ��}	denotes the datatype similarity 

between �� and	�� for the property �0. If two given instances ��	and	�� do not share any datatype property, 

their w7d�A|��, ��} � 0.  

The datatype-based similarity shown in Eq. (10) differs according to the type of datatype property		�0.  
Since the type of datatype properties that may be involved in similarity computation in our case study in 

the tourism domain  is mainly nominal (or categorical), we adopted the Jaccard coefficient7 [34], to 

compute the datatype similarity between two instances with regards to their common categorical 

properties.  Suppose �0 is a common datatype property between �� and	��, ¦�? and ¦�g are the sets of values 

that the ��	and	�� can take for	�0, respectively. Then, datatype-based similarity between �� and	�� for a 

categorical property �0,	¥�w7d�<|��, ��},	is defined using the Jaccard coefficient as follows: 

¥�w7d�<|��, ��} � #|¦�? ∩ ¦�g}#�¦�? ∪ ¦�g
	, (11) 

where #�¦�? ∩ ¦�g
 is the cardinality of positive matching values between �� and	�� for �0, #�¦�? ∪ ¦�g
 is 

the cardinality of union of none zero values between �� and	�� for �0. 
3.4 Algorithmic procedure of the IOBSS measure 

 
Having presented the new IOBSS measure, this subsection describes the algorithmic procedure to calculate 

the semantic similarity of any two instances in a given OWL domain ontology. The two instances �� and �� 

and their associate networks as shown in Figs 1 and 2, respectively, are used as examples. The procedure 

consists of three steps as listed below: 

 Step 1. Determine the associate networks of the two given instances (	��	and	��
 
Determine the associate network of each instance by finding all its associates through tracing its object 

property chains. Starting from the given instance, e.g. ��	or	��, with closeness level = 0, retrieve all the 

object properties of this instance. For each object property, find the linked instances as its associates at the 

next level; this process continues until the last closeness level where the instances have no object 

properties (leaf-nodes).  

                                                 
7 which is frequently used as a similarity measure for asymmetric information on binary and non-binary variables 



Algorithm 1: Construction of the common associate pair set of two instances 
Input: associate networks of two instances 	��	and	��, 	�%%&'( and 	�%%&'M 
Output: common associate pair set of these two instances, ��	w,�'('M 
Process: 
     Declare a Set, “��	w,�'('M” 
     Declare a Queue, “ComInsPairQ” 
     Declare Lists: “InstList1”, “InstList2”, “PairInstList”  
     Add the given element (	��, ��) to the queue ComInsPairQ 3 � 0 

While-loop (condition) { 	3 � b1 
For each level 3 of both	�%%&'( and 	�%%&'M 
     For each common object property ��z at level k of	�%%&'( and 	�%%&'M 
        InstList1←	GETCONNECTEDINSTANCES(��z1 , �%%&'()  
        InstList2←	GETCONNECTEDINSTANCES(��z1 , �%%&'M) 
        //each list contains instances that are associates of the ��z1  in 	�%%&'( and 	�%%&'M 
        PairInstList←	GETPAIROFINSTANCES(PairInstList1, PairInstList2) 
        //each element in the this list represents two instances that are introduced via an ��z1  
        For each element in the PairInstList  
           Add this element to the queue ComInsPairQ            
        end for 
     end for 

                    end for 
             end while                 
             For each element in the ComInstPairQ   
                   k  ←	GETCLOSNESSLEVEL(element, �%%&'(,	�%%&'M) 
                   Determine ℓ using Eq. 2 
                   Determine � using Eq.3 
                   Form a five-tuple consists of the two associates in the element, k,	ℓ and �. 
                   Add this tuple to the set ��	w,�'('M 
             end for 

  

Step 2. Construct the common associate pair set of two given instances �� and �� 

Step 2.1 Determine the common associate pairs 

Given the associate networks of  two given instances,	�� and ��, 	�%%&'( and 	�%%&'M, as shown in Figs. 1 

and 2, go through all the closeness levels from top to the bottom, for each level k of	�%%&'( and	�%%&'M, 

find the common object properties, then retrieve the linked instances for each common object property to 

form the common pairs of instances of 	�� 	and	��. The common associate pair set can be viewed as a set of 

five-tuple, i.e. �,+,d,-�	1, ,+,d,-�	2, 3, ℓ	, �
. The algorithmic procedure of this process is presented in 

Algorithm 1. 

 

Step 2.2. Calculate the weight factor for each common associate pair  



In this step, the weight factor is calculated for each common associate pair (element 1, element 2), thus, we 

need to determine the parameters	ℓ	and	� using Eqs. (2) and (3), respectively, and 3 and calculate its 

weight factor using Eq. (1). 

 

Step 3. Calculate the semantic similarity (IOBSS) of the two instances 	�� and �� 

For each element in the common associate pair set of two given instances, 	�� and ��, first calculate the 

structure-based and datatype-based similarities of the pair of instances of each element using  Eqs. (7) and 

(10), respectively, and then calculate the IOBSS similarity value using Eq. (4). 

4 The semantic-based enhanced hybrid recommendation approach 

With the aim of recommending the most appropriate items to users, we propose a semantic-based enhanced 

hybrid recommendation approach (SBCF-IOBSS) by combining the new IOBSS measure of items with the 

item-based CF framework. The rationale for this combination is twofold: (i) the IOBSS measure can 

enhance the similarity of items so that the accuracy of recommendation can be improved, and (ii) the 

hybrid approach can alleviate the sparsity and new item problems, because it captures additional 

knowledge by using the IOBSS measure.  

4.1 Procedure of generating top-N recommendations 

Fig. 3 shows the workflow of generating recommendations with this new hybrid approach, where 

 the inputs of this approach include the user-item ratings matrix, denoted by	;4d 
 -6, where m represents 

the number of users and n represents the number of items; the target domain ontology schema and data 

(instances or items); and a given user, c�, with his or her ratings of some of items (indicated by a vector of 

ratings). The output of this approach is the top-N recommendations to the given user	�c�
.  



 ¬­®®®®̄ � �^], ^W, … , ^_
 
 	c� 41 
 -6 

 

Fig. 3. The workflow of the computational recommendation procedure steps of the SBCF-IOBSS approach 

 
Details of the workflow of the proposed SBCF-IOBSS approach are described as follows: 

Step 1: Compute the item-based CF similarity of items 

We adopted item-based CF similarity to calculate the similarity of each pair of items because it is superior 

in performance to other similarity measures, according to previous research [1, 6].  The Pearson 

Correlation coefficient [40] is used to calculate the item-based CF similarity, based on the given user-item 

ratings matrix	;4d 
 -6.  
Formally, given the user-item ratings matrix	;4d 
 -6, the item-based CF similarity value between two 

items	�0	and �°, denoted as 	�aw7d'<,'=: � 
 � → 4o1, 16, is calculated as follows [24]: 

�aw7d'<,'= � ∑ ��f,'< o �̅'<
��f,'= o �̅'=
T²<=Tf��³∑ ��f,'< o �̅'<
�T²<=Tf�� ³∑ ��f,'= o �̅'=
�T²<=Tf��
	, (12) 

where ́ 0° is the set of users who rated the items �0 and �° together, T 0́°T is the number of users in 0́°, 
�f,'< 	and	�f,'= represents the rating given by user c ∈ 0́° on service items �0 and 	�°, respectively, and  

�̅'< 	and	�̅'= is the average ratings of all users who have rated the item �0	and	�°, respectively.  

The resultant item-based CF similarity of each pair of items is stored in an item-item similarity matrix, 

denoted by	�aw4- 
 -6.  
Step 2: Compute the ontology-based semantic similarity (IOBSS) 



The semantic similarity between each pair of items is calculated based on the IOBSS measure using Eq. 

(4), and stored in an item-item semantic similarity matrix, denoted by ww��4- 
 -6, where n is the number 

of items in the ontology dataset. 

Step 3: Integrate the item-based CF and ontology-based semantic similarities 

We calculate the semantic enhanced item-item similarity by linearly combining the Item-based CF and 

IOBSS similarities. The combined similarity of instances	�0 and	�°, denoted as	��dµw7d'<,'=: � 
 � →
4o1,16, is computed as follows:  

��dµw7d'<,'= � ¶ 
 �-�w,dw7d'<,'= b	�1 o ¶
 
 �aw7d'<,'= , (13) 

where ¶ is a semantic combination parameter which specifies the weight of IOBSS in the combined 

similarity. If ¶ � 0, then the combined similarity represents only the respective item-based CF similarity 

of �0	and	�°; if ¶ � 1, then the combined similarity represents only the respective IOBSS similarity of 

�0	and	�°. Finding the proper value of ¶ is not a trivial task and is usually highly dependent on the 

characteristics of the data. Thus, a sensitive analysis of the different values of ¶ parameter is necessary to 

choose an appropriate ¶ value that achieves the best performance for a given dataset. The combined 

similarity of each pair of items is stored in a new item-item similarity matrix, denoted as	�w��4- 
 -6. 
Step 4: Generate top-N recommendations for an active user 

This step aims to generate the most relevant items that an active user might be interested in. First, we 

predict the user’s ratings (i.e. rating values between 1 and 5) on all unseen items, and then generate the top-

N items for the active user based on his/her predicted ratings. 

To predict the ratings of the active user for the unseen items, the weighted sum method is employed as it 

commonly used in studies of recommendation systems [40]. With this method, first, we determine the 

neighborhood of each un-rated item (e.g. �0), denoted as ·08; then we calculate the predicted rating value 

for an active user �c�
, on the target item	�0,		f¹,'<: ´ 
 � → 40,56, using the following formula: 

	f¹,'< � ∑ �»¹,¼½
¾�g¿�0g�'<,'½
À<½Á"∑ ¾�g¿�0g�'<,'½
À<½Á" 	,                               (14) 

                                                 
8 ·0 denotes the service items that are most similar to the un-rated item �0 



where �p belongs to the neighborhood of �0 and should be rated by the active user c�, 	�f,'½ denotes the 

rating of an item �p	by the user c�, ��dµw7d��0, �p
 denotes the combined similarity value of the target 

item �0	and	�p which can be calculated by Eq. (13). The predicted rating values of unseen items for the user 

c� are stored as a vector in the prediction matrix 	f¹41 
 -6. Based on 	f¹41 
 -6, we sort all unseen items 

according to the predicted rating values and then choose the top-N service items as the top-N 

recommendations for the given user. 

4.2 Computational complexity analysis 
 
The computational complexity of the proposed SBCF-IOBSS approach is the combination of the 

computational complexities of calculating similarity of items and predictions. The computational 

complexity of calculating similarity of items includes the time required to calculate both the item-based CF 

and the IOBSS similarities. The item-based CF similarity requires ��-�
 for calculating the item-item 

similarity of - items. This step can be accomplished offline. 

On the other hand, the time required to calculate the item-item similarity using the IOBSS measure is 

divided into three sub-steps, including the time required to build the associate networks, find the common 

associate sets and calculate item-item semantic similarity. First, the time required to build the associate 

networks of all available items defined in the ontology is	�|- 
 ��	 b �
}, where ���	 b �
 is the time 

required to build the associate network of each item, �	 is the number of object properties defined in the 

ontology and � is the number of concepts in the target ontology. Second, the time required to find all the 

common associate sets is �|-� 
 ���	 b �
}, where ����	 b �
 is the time required to find the 

common associate network of a pair of items, ��	 is the number of common object properties between 

any two associate networks. Third, the time required to compute the IOBSS similarity for - items, as 

defined in Eq. 4, is ��-� b -�& b 2-� +�Â ��	 b -
, where, -� is needed to calculate the structure 

similarity, -�& is needed to calculate the datatype similarity (& is the number of common datatype 

property between any two items), 2-� +�Â ��	 is for computing ℓ and � parameters and lastly - is needed 

for calculating the factor a. Therefore, the overall computational complexity of calculating the IOBSS 

similarity measure is		�|- 
 ��	 b �
} b �|-� 
 ���	 b �
} b ��-� b -�& b 2-� +�Â ��	 b -
 	Ã



		�|- 
 ��	 b �
} b �|-� 
 ���	 b �
}. The IOBSS measure can be calculated offline. Finally, ��-
 is 

required to predict all unrated items for an active user; hence the overall computational complexity of the 

hybrid SBCF-IOBSS recommendation approach in the worst case becomes	� �d|- 
 ��	 b �
}� b
� �d|-� 
 ���	 b �
}�.  
Although the proposed SBCF-IOBSS approach is computationally more expensive than classical item-

based CF recommendation approaches (i.e. ��-�d
), the calculations in the SBCF-IOBSS 

recommendation approach will be conducted at the beginning and when a new item is added to the 

ontology. In addition, all these calculations can be done offline. Therefore this approach is computationally 

feasible. 

5 Experimental validation 

To validate the effectiveness of the proposed SBCF-IOBSS recommendation approach, this section 

presents the experimental validation through conducting comparisons with three competing approaches 

based on a case study.  

5.1 A case study: Australian e-government tourism service 
 
One of the main directions in the e-government development strategy is to provide better online services to 

citizens such that the required information can be located with less time and search effort [21]. Tourism is 

one of the focused domains of e-government service development strategies as it represents 11% of the 

worldwide GDP. Many governments around the world have devoted considerable time and energy to 

promote the tourism industry through non-profit services [46]. In the tourism domain, a government 

usually provides information about tourism entities including destinations, attractions that can be visited, 

activities that can be taken and events that can be attended at different destinations within the 

corresponding country. In this study, the Australian e-Government tourism service domain is utilized to 

validate the effectiveness of the new SBCF-IOBSS recommendation approach. 

The experimental validation is conducted on a real-world dataset of Australian tourism services, extracted 

from two main sources: (i) the official NSW tourism service websites, and (ii) the Australian Tourism Data 

Warehouse (ATDW) (http://www.atdw.com.au/). The tourism service dataset consists of a total of 500 



Australian tourism service items that include different attractions, activities, events, and destinations. To 

use this tourism service dataset to generate top-N recommendations, the dataset is used in two ways: One is 

to construct an Australian e-government tourism ontology, which represents the semantic knowledge of 

Australian tourism e-government service items.  

The Australian e-government tourism ontology was formalized using Protégé 

(http://protege.stanford.edu/) based on the Australian tourism knowledge. The knowledge formalized in 

ontology for the e-government tourism domain provides a detailed semantic description of the entities in 

the domain, such as tourist attractions, and events or activities that are associated with a specific attraction. 

These entities are formalized as concepts. Each concept can have attributes and relationships with other 

concepts. The knowledge in the Australian tourism service ontology is utilized for the purpose of 

computing item similarity using the proposed IOBSS measure as well as to build the user-item ratings 

matrix. The columns of user-item matrix represent tourism service items which reference their 

corresponding items in the tourism ontology. The rows of the user-item ratings matrix represent user 

ratings information, where each data entry of each row represents a user’s rating score which is either a 

rating value that ranges from 1 to 5, or zero (for entries in which the items have not been rated by the 

corresponding users). The user ratings information about preferred tourism items is retrieved from the 

ATDW. 

The user-item ratings matrix, of 400 users and 500 tourism items, is split into a training set and a test set 

using a specific parameter called training/test ratio (x). A value of � � 0.8 indicates that 80% of all the 

ratings of the entire dataset will be randomly selected as a training set, while the remaining 20% of ratings 

data will be used as the test set. The training set will be used to construct the required similarity matrix (the 

item-item similarity for the standard item-based CF approach, SECF and our new hybrid SBCF-IOBSS 

approach or the user-user similarity for the CFO approach) while the test dataset will be used to validate 

the predicted ratings of unseen items (i.e. the hidden portion of the rated tourism items). 

5.2 Experimental design  

To validate the performance of the new semantic-based enhanced hybrid recommendation approach 

(SBCF-IOBSS), three approaches were chosen as competing approaches for the experimental comparison, 



the standard item-based CF approach proposed by Sarwar et al. [40] and two state-of-the-art semantic 

enhanced recommendation approaches as mentioned in Section 2, i.e. (i) the semantically enhanced CF 

(SECF) approach proposed by Mobasher et al. [38], and (ii) the user-based CF with ontology-based 

approach (CFO) proposed by Sieg et al. [44]. The reasons for selection of these three as competing 

approaches is that the standard item-based CF approach has been widely exploited as a benchmark 

approach for its effective performance results, while the two advanced semantic enhanced hybrid 

recommendation approaches – the SECF and CFO – are closely related to the work presented in this study.  

The experimental evaluation was conducted based on the dataset from the case study to generate the top-N 

most-liked service items, such as destinations, attractions, activities or events, to a given user using the 

new hybrid recommendation approach. The results were compared with the ones obtained from the three 

competing approaches which were run in the same environment. The platform used for the implementation 

is the Java NetBeans. The OWLModel and Jena OntModel were employed to facilitate and manage the 

communication between the OWL ontology of the tourism data and the Java NetBeans platform. 

5.3 Experimental evaluation metric 

The Mean Absolute Error (MAE) metric is used to evaluate the accuracy and quality of generated 

recommendations, as it is widely used in the recommendation research field [9, 19, 40]. The MAE is a 

measure of the deviation of predicted values of recommendations from their true user-specified values. 

This metric determines recommendation accuracy by computing the mean absolute deviation of the 

predicted rating values of unseen items compared to their actual ratings. For a given set of n items, the 

MAE metric is given by: 

��Ä � 	∑ |�0 o �0|?0�� - , (15) 

where 	�0 is the predicted rating and �0 is the actual rating of a hidden item i in the test dataset. Note that, a 

lower MAE value represents a higher prediction accuracy of generated recommendations. 

To validate the performance of the new SBCF-IOBSS approach and to eliminate the potential bias of 

training/test sets in calculating the recommendation accuracy, ten-fold cross validation is conducted for 

each experiment. At each fold, 80% of rated tourism service items of the entire user-item ratings matrix 

will be randomly selected as training dataset. The remaining 20% of the rated items will be included in the 



test dataset. The MAE was computed and recorded at each fold and the overall MAE value then obtained as 

the averaged value. The MAE in the following experiments represents the overall MAE. 

5.4 Determination of experimental parameters 
 
In this study, there are three parameters that have a noticeable impact on the prediction accuracy of the new 

hybrid recommendation approach, namely the neighborhood size (K) (Step 4 in the sub-Section 4.1), the 

semantic combination parameter (α) (step 3 in the sub-Section 4.1), and the sparsity level.  The values of K 

and α were determined based on the sensitivity analysis of these two parameters to the recommendation 

accuracy. In this case study, we run the experiments using the new hybrid SBCF-IOBSS and SECF9 

approaches by varying the semantic combination parameter (¶) and neighborhood size K values. For each 

¶ value within the range from 0 to 1 with an increment of 0.1, we run the experiment by varying the 

neighborhood size K from 5 to 80, and the neighborhood size K with the minimum MAE is then recorded. 

Fig. 4 plots the minimum value of MAE for each parameter ¶ value with the best neighborhood size K.   

 
 

Fig. 4. The impact of the integration of the Item-based CF and IOBSS measure on prediction accuracy 

It can be seen from Fig.4 that the integration of the semantic similarity with traditional item-based CF 

yields substantial improvement to the accuracy. The best prediction accuracy result is obtained when the ¶ 

parameter equals 0.6 and 0.5 by the proposed hybrid SBCF-IOBSS approach and the SECF approach, 

                                                 
9 The ESCF approach is sensitive to parameter alpha as it linearly combines the item-based CF similarity and the semantic 
similarity. The combined similarities are used to generate predictions of unseen items. 
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respectively. Fig. 4 also shows that the proposed approach has outperformed the SECF approach by 

achieving better prediction accuracy at different ¶ values. 

Furthermore, the improvement of the SBCF-IOBSS approach compared to the SECF approach has been 

verified statistically using the paired t-test statistical measure. Using this test, it has been found that the 

obtained �-value is 1.1148e-05, which is significance (i.e. �	 ) 0.05), thus, the null hypothesis of mean 

equality is rejected and a meaningful difference in the prediction accuracy exists.   

 The sparsity level of a user-item ratings matrix is defined as: 

w���%7�¤ � 1 o �,-%7�¤, (16) 

where density is the density of the user-item ratings matrix, which is defined  as the ratio of the number of 

non-zero elements  to the total number of elements in the matrix. 

 For instance, the density of the user-item ratings matrix that used in this study is 0.0577, then the sparsity 

level of this matrix is 1 - 0.0577 = 0.9423. 

5.5 Experimental results  

This section presents the results of the experiments in terms of the prediction accuracy of the 

recommendations. 

5.5.1 Effectiveness of the new hybrid approach on prediction accuracy 
  
A number of experiments are conducted using different K values from 5 to 80 and the optimal ¶ is set to 

values for the hybrid SBCF-IOBSS and SECF approaches. Fig. 5 shows the best prediction accuracy 

values of all considered approaches with different values of parameter K. It can be seen from Fig.5 that the 

proposed hybrid approach reveals substantially better prediction accuracy than the three competing 

approaches for all values of parameter K under consideration. It can also be clearly seen that prediction 

accuracy increases as parameter K increases and reaches the optimal value, which is around K = 70 for all 

approaches except for the traditional item-based CF.  

To justify the differences of MAE values of the proposed approach from other competing approaches on 

the prediction accuracy, the paired t-test statistical measure has been applied. The reported �-values are 

9.58051e-05, 3.66739e-06 and 2.15778e-09 for the proposed approach in comparison with the SECF, CFO 



and item-based CF approaches, respectively. Therefore, the null hypothesis of mean equality is rejected 

and meaningful differences in prediction accuracy of the proposed approach are proven against all other 

competing approaches. 

 

 
Fig. 5. Comparison of prediction accuracy between the new SBCF-IOBSS approach and the three competing approaches 

5.5.2 Effectiveness of the SBCF-IOBSS approach in dealing with the sparsity problem  

  
Sparsity is one of the main problems that negatively affect the prediction accuracy. It occurs when the 

obtained ratings are few compared to the number of available items. For testing the effectiveness of the 

SBCF-IOBSS approach in handling the sparsity problem, we conduct a number of experiments using all 

the considered approaches with several datasets which were formed based on the same Australian tourism 

dataset. Each new dataset has a sparsity levels. Fig. 6 plots the MAE improvement of the proposed 

approach against the three competing approaches. It can be seen from Fig. 6 that the MAE of the proposed 

hybrid approach has achieved better improvement than the traditional item-based CF and other two 

competing approaches at all sparsity levels. Nevertheless, the achieved improvement in the prediction 

accuracy by the SBCF-IOBSS approach clearly declines as the proportion of the training data is 

reduced (the sparsity is increased), and as might be expected this improvement tends to converge to 

zero for very sparse datasets. This is because for very sparse data, neither approach can generate a 

reasonable recommendation. However, the shown result in Fig. 6 indicates that the new approach 

performs better in handling the sparsity problem than the competing approaches even when the data is very 

sparse.   
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To verify the differences of the MAE values of the proposed approach from other competing approaches on 

the prediction accuracy, the paired t-test statistical measure has been applied. The reported �-values are 

0.000375, 0.000394 and 2.59216e-05 for the proposed approach in comparison with the SECF, CFO and 

item-based CF approaches, respectively. Therefore, the null hypothesis of mean equality is rejected and 

meaningful differences in prediction accuracy of the proposed approach are proven against all other 

competing approaches. 

 

Fig. 6. Improvement in prediction accuracy of the SBCF-IOBSS approach over competing approaches at different sparsity levels 

5.5.3 Effectiveness of the SBCF-IOBSS in dealing with the cold-start item problem  
 
As reported by other studies (Schafer et al. 2007), it is difficult to give accurate recommendations for new 

items, because high-quality recommendations can only be obtained with sufficient data ratings. To validate 

the effectiveness of the proposed SBCF-IOBSS approach in dealing with the new items problem, we form 

a new dataset based on the Australian tourism dataset by purposely adding a number of new items to the 

test set, which are the items that have been rated only once in the training dataset. Using this new dataset, 

we conducted a number of experiments in which the K parameter is varied from 5 to 80 and ¶ parameter is 

set to 1 using only the proposed SBCF-IOBSS and SECF approaches, the item-based CF and the CFO are 

excluded from the experiments as they cannot make recommendations for new items. Fig. 7 plots the MAE 

values for the two approaches. It can be seen that the proposed approach gives better prediction accuracy 

for new items than the SECF approach at all values of parameter K under consideration. This indicates that 

the new hybrid SBCF-IOBSS approach can better deal with the new item problem than the SECF 
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approach. This result has been confirmed through conducting a paired t-test statistical measure. According 

to this test, the null hypothesis of mean equality is rejected and a meaningful difference in the prediction 

accuracy is proven with a �-value of 8.50e-06 less than the significance value. 

 
 

Fig. 7. Improvement in prediction accuracy of the SBCF-IOBSS approach against the SECF approach on new items problem 

5.6 Discussion of the results 
 
The achieved improvement by the proposed hybrid approach, as presented in the sub-Section 5.5, can be 

explained by following factors: (i) the proposed IOBSS measure explores the implicit semantics of 

instances by inferring rich semantic knowledge through semantic associations; (ii) the IOBSS measure can 

handle complex relationships well by the new inference mechanism, termed associate networks. By means 

of associate networks, relationship chains that span several instances become a very useful approach for 

discovering hidden links between seemingly disparate instances; (iii) the associate networks can support 

the semantic analytic of heterogeneous content which in turn can reveal useful insights into the similarity 

of ontological instances. This improves the existing semantic similarity measures which mainly focus on 

direct relationships of instances and pay less attention to indirect ontological relationships.  

5.7 Concerns about computational feasibility and flexibility 

 
Even though the proposed SBCF-IOBSS hybrid approach is mainly validated using the case study of the 

Australian e-government tourism service dataset, several facts reveal that the proposed approach is also 

computationally viable and scalable in more complex environments with a greater number of users and 

items. The first fact is that the proposed SBCF-IOBSS approach has no real-time requirements, as the 

calculation of the semantic similarity of instances can be done offline and updated only when new 
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instances are added to the system. Secondly, the similarity computation using the IOBSS measure is within 

the items space, which has less chance to change, compared to the users’ space. Since, the user’s 

preferences and the items similarity are known in advance, the computational complexity of the proposed 

approach does not cause an unacceptable delay in the delivery of recommendations. Lastly, the semantic 

similarity measure provides valuable information in improving the estimation of item-item similarity 

which in turn contributes positively towards generating more accurate and high quality recommendations, 

especially in the cases where the sparsity problem and/or new item problem are present.  

Regarding the generalization of the proposed approach, although the IOBSS measure, related terms and 

calculation procedure were validated using a case study, its inferential mechanism and the steps of 

calculating the IOBSS measure can be used in any domain as long as the domain knowledge can be 

modelled and formalized as an ontology and the type of datatype properties are known. Therefore there is 

no limitation to practical scope for extending the framework to different domains. However, since the 

IOBSS measure aims to capture both the direct and implicit relationships to compute semantic similarity 

between any pair of available items in the considered domain, if the given domain ontology has no much 

implicit relationships, the effects of using the IOBSS measure would be not significant. 

6  Conclusion and future work 

This paper proposes a new hybrid semantic-based enhanced recommendation approach that can be used to 

effectively offer items tailored to users’ needs and preferences. The proposed approach integrates semantic 

similarity of items with the traditional item-based CF approach to enhance the personalization capabilities 

of existing recommendation approaches. A new IOBSS measure is proposed to accurately estimate 

semantic similarity among instances. The performance of the new recommendation approach has been 

validated using a real world dataset from the Australian tourism domain and has been compared with the 

traditional item-based CF as a baseline approach and two advanced semantic-enhanced CF. The 

experimental evaluation results demonstrate that the proposed approach outperforms the three competing 

approaches in terms of recommendation accuracy and capability to deal with the sparsity and new-item 

problems. Furthermore, it has been shown that the SBCF-IOBSS recommendation approach is feasible and 

practical for use in real world e-government recommendation systems.  



Some future work could be (i) to apply the SBCF-IOBSS approach in other e-government service domains, 

such as Education, Medicare and Welfare; (ii) to develop an e-government tourism service 

recommendation system using the proposed approach. 
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