
A Semantic Foundation for TCOZ
in Unifying Theories of Programming

Shengchao Qin1, Jin Song Dong2, and Wei-Ngan Chin1,2

1 Singapore-MIT Alliance, National University of Singapore
2 School of Computing, National University o Singapore
{qinsc,dongjs,chinwn}@comp.nus.edu.sg

Abstract. Unifying Theories of Programming (UTP) can provide a formal seman-
tic foundation not only for programming languages but also for more expressive
specification languages. We believe UTP is particularly well suited for presenting
the formal semantics for integrated specification languages which often have rich
language constructs for state encapsulation, event communication and real-time
modeling. This paper uses UTP to formalise the semantics of Timed Communi-
cating Object Z (TCOZ) and captures some TCOZ new features for the first time.
In particular, a novel unified semantic model of the channel based synchronisation
and sensor/actuator based asynchronisation in TCOZ is presented. This semantic
model will be used as a reference document for developing tools support for TCOZ
and as a semantic foundation for proving soundness of those tools.

Keywords: UTP, semantics, integrated formal specifications

1 Introduction

Formal semantics of specification languages provide foundations for language under-
standing, reasoning and tools construction. Various formal specification languages are
often integrated for modeling large and complex systems. The development of the for-
mal semantics for those integrated formal specifications provides some challenges due
to the richness of the language constructs that facilitate complex states encapsulation,
communication and real-time modeling. Hoare and He’s Unifying Theories of Program-
ming (UTP) [6] can present formal semantics not only for programming languages but
also for specification languages. We believe UTP is particularly well suited for giving
formal semantics for the integrated specification languages. One integrated formal no-
tation namely Timed Communicating Object Z (TCOZ) [8] builds on the strengths of
Object-Z [4, 16] and Timed CSP [13, 2] notations in order to provide a single notation
for modeling both the state and process aspects of complex systems. In addition to CSP’s
channel-based communication mechanism (where messages represent discrete synchro-
nisations between processes), TCOZ has recently been extended with asynchronous
interface inspired by process control theory, sensors and actuators [7]. Based on the
infinite failure model of Timed CSP, an enhanced semantics for TCOZ has been pro-
posed [9] where the process behavioural aspects are focused. However, other important
aspects of TCOZ were left out. In particular, it does not cover the semantics of the asyn-
chronous communication mechanism of sensors and actuators. It is difficult to extend

K. Araki, S. Gnesi, and D. Mandrioli (Eds.): FME 2003, LNCS 2805, pp. 321–340, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

322 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

that semantics to cover sensors and actuators because the meta framework used is based
on events (channel), which is incompatible with the shared-variable nature of sensors
and actuators.

This paper demonstrates how UTP can be used for constructing a formal observation-
oriented model for TCOZ. In particular, a novel unified semantic model for both channel
and sensors/actuators based communications is presented. This UTP model not only
covers the TCOZ communication and process aspects, but also other features, such as
class encapsulation, inheritance, dynamic binding and extended TCOZ timing constructs
(deadline and waituntil commands), which have not been covered by the previous se-
mantics. This semantic model will be used as a reference document and a semantic
foundation for developing sound tools support for TCOZ. Our philosophy on tools sup-
port for integrated formal methods is to reuse/link existing tools especially graphical
tools as much as possible. For example, one approach is to develop transformation rules
from TCOZ to Timed Automata (TA) so that existing TA tools can be used to model
check TCOZ timing properties, or to Message Sequence Chart (MSC) so that MSC
tools can be used to analyse TCOZ’s message passing and interaction behaviour. The
proof of the soundness of those transformation rules can be based on this UTP semantic
framework.

The remainder of the paper is organised as follows. Section 2 outlines the TCOZ
syntax with a simple example. Section 3 starts with a brief introduction to UTP then
presents the UTP observation model with meta variables. Section 4 develops the UTP
semantics for TCOZ operations and processes. Section 5 presents the UTP semantics
for TCOZ classes. Section 6 addresses related works with a conclusion and points out
some future directions.

2 The TCOZ’s Syntax and Example

The abstract syntax of TCOZ is given as follows.

Specification ::= CDecl; · · · ; CDecl
CDecl ::=� VisibList; InheritC; StateSch; INIT; StaOp∗; ProOp∗; [Main]
VisibList ::= VisibAttr; VisibOp
VisibAttr ::= AttrName∗

VisibOp ::= OpName∗

InheritC ::= Inherits CName∗

StateSch ::= VarDecl∗; ChanDecl∗; SenDecl∗; ActDecl∗

VarDecl ::= v : T
ChanDecl ::= ch : chan
SenDecl ::= sv : T sensor
ActDecl ::= sv : T actuator
StaOp ::= ∆(AttrName∗ | ActName∗), VarDecl∗ • Pred(u,v’)
ProOp ::= VarDecl∗ • Process
Main ::= Process

A Semantic Foundation for TCOZ in Unifying Theories of Programming 323

Process ::= Skip | Stop | Chaos (primitives)
| StaOp (state update) | Comm → Process (communication)
| b • Process (state guard) | Process �{t} Process (timeout)
| Wait t (wait) | Process • Deadline t (deadline)
| Process • WaitUntil t (waituntil)
| Process; Process (sequential composition)
| Process�Process (external choice)
| Process � Process (internal choice)
| Process |[E]| Process (parallel composition)
| Process\E (hiding) | µ X • Process (recursion)

Comm ::= ch!e (chan. ouput) | b • ch?x (chan. input) | b • sv?x (sensor read)

where b is a boolean condition, t is a time expression, E is a finite set of communication
events, e is a message, and x is a variable.

Let us use a simple timed message queue system to illustrate the TCOZ notation.
The behaviour of the following timed message queue system is that it can receive a new
message (of type [MSG]) through an input channel ‘in’ within a time duration ‘Tj’ or
remove a message and send it through an output channel ‘out’ within a time duration
‘Tl’. If there is no interaction with environment within a certain time ‘To’, then a message
will be removed from the current list but stored in a (window like) actuator list (lost) so
that other objects (un-specified) with a sensor ‘lost’ can read it at any time. The message
queue has a FIFO property.

TimedQueue

items : seq MSG
in, out : chan
lost : seq MSG actuator
Tl, Tj, To : N

Init
items = lost = 〈 〉
RecLost
∆(lost)

lost′ = 〈head(items)〉�lost

Add
∆(items)
i? : MSG

items′ = items � 〈i?〉

Del
∆(items)
i! : MSG

items �= 〈 〉 ⇒ items = 〈i!〉�items′

items = 〈 〉 ⇒ items′ = 〈 〉
Join =̂ [i : MSG] • in?i → Add • Deadline Tj

Leave =̂ [items �= 〈 〉] • out!head(items) → Del • Deadline Tl

Main =̂ µ Q • (Join � Leave) �{To} (RecLost; Del) • Deadline Tl; Q

3 The UTP Observation Model

In the Unifying Theories of Programming (UTP), the relational/predicate calculus is
adopted as a fundamental basis for unifying various programming theories across three

324 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

dimensions: different computational paradigms, different levels of abstraction, and dis-
tinct mathematical representations. For each programming paradigm, specifications, de-
signs, and programs are all interpreted as relations between an initial observation and a
subsequent (intermediate stable or final) observation of the behaviour of their executions.
Program correctness and refinement calculus can be represented by inclusion of rela-
tions. All the laws in a relational calculus are also valid in reasoning about correctness
in all theories and languages.

Formal theories differ from one another by their alphabet, signature, and healthiness
conditions. The alphabet of a theory is just a set of names used to record external obser-
vations of the behaviour. The names for initial observations are undecorated, whereas the
names for subsequent observations are primed. The signature gives the way to represent
the elements of the theory by taking primitives directly as elements and using operations
to construct elements in an inductive manner. The healthiness conditions help filter out
required elements for a sub-theory from those of a larger theory in which it is embedded.
For example, in a top-down design process, programs are just a subset of intermediate
designs, while designs are a subset of specifications.

To give a semantic model for the timed communicating language TCOZ, we need
to choose an appropriate model of time. There are two typical models: a discrete model
and a continuous one. The continuous model is very expressive and closer to the nature
of real time. However, it is difficult to implement exactly for digital computer systems.
On the other hand, the discrete model is implementable and closer to an untimed model.
Timed CSP has a denotational semantics based on continuous time [2], and the existing
semantics for TCOZ also adopts the continuous model [9]. However, to follow the
objective of making our model simple and apt for exploration of algebraic refinement
laws, we choose the discrete model. The discrete time model has also been adopted by
the Sherif and He’s work [14] on the semantics for timed Circus [17], which naturally
extends Woodcock and Cavalcanti’s semantics for Circus [18]. Although the general
approach of the timed Circus semantics is adopted in our UTP semantic model for
TCOZ processes, our semantic model contains many new aspects especially the formal
treatment of both channel and sensor/actuator communication interfaces.

3.1 The Meta Process Model and Variables

TCOZ is mainly used to specify complex reactive systems. The behaviour of such a
system can be modeled by observations of two kinds. The initial observation reflects
the state of the system when the system starts to run. The follow-up observation records
the state of the system when the system reaches a stable state. A stable state is either a
termination state, in which the system terminates and the corresponding observation is
called the final observation, or an intermediate waiting state, in which the system has
no interaction with its environment and does not have infinite internal active events (not
divergent) [6].

The process model starts with the above observations: at the initial and final (or inter-
mediate stable) states of the system. Due to the timing feature of TCOZ, the observations
on the interactions with the environment are enriched by adding time information. The
existing model for Timed CSP and TCOZ attaches an explicit time stamp on each ob-
servation. The discrete model of time allows us to add time information implicitly. The

A Semantic Foundation for TCOZ in Unifying Theories of Programming 325

interactions of a system with its environment are recorded as a sequence of tuples, each
element of the sequence representing the observations over a single time unit. The first
component of the tuple is a sequence of communication events or shared-variable up-
dates which occur during a time unit. The second component represents a set of refused
events (refusal) at the end of the time unit.

The following meta variables are introduced in the alphabet of the observations of
the TCOZ process behaviour, some of them are similar to those in the previous UTP
semantic frameworks [6, 14, 18]. The key difference is that timed trace has now been
encoded with a set of shared-variable updates (due to sensors/actuators).

– ok, ok′ : Boolean. In order to analyse explicitly the phenomena of process initiation
and termination, these variables are introduced to denote these observations.
ok records the observation that the process has started. When ok is false, the process
has not started, so no observation can be made.
ok′ records the observation that the process has terminated or has reached an inter-
mediate stable state. The process is divergent when ok′ is false.

– wait, wait′ : Boolean. Because of the requirement for synchronisation, an active
process will usually engage in alternate periods of internal activity (computation)
and periods of quiescence or stability, while it is waiting for a reaction or an acknowl-
edgement from its environment. We therefore introduce a variable wait′, which is
true just when a process is waiting in such quiescent periods. Its main purpose is to
distinguish intermediate observations from the observations made on termination.
wait is used in the initial observation, which is true when the process starts in an
intermediate state.

– state, state′ : Var → Value. In order to record the state of data variables (class
attributes/local variables) that occur in a process, these two variables are introduced
to associate resp. every variable with its value in the corresponding observations.

– tr, tr′ : seq(seq (Event∪Update) × P Event). Each of these two variables records
a sequence of observations on the process’s interactions with its environment. tr
records the observations that occur before the process starts, and tr′ records the
observations that take place so far. Each element of the sequence denotes the ob-
servations over one time unit, which is specified by a tuple. The first component
of the tuple is the sequence of communication events or updates on sensor-actuator
variables that occur during the time unit, the second is an associated set of refusals
at the end of the time unit.
The set Event denotes all possible communicating events. The set Update, defined
as Update =df ((SV → Value) × Tag), represents the set of all possible updates
(states) of all sensor-actuator variables (SV). The binary set Tag =df {0, 1} shows
which process is making the current update:1 indicates that current update is made by
the current process, whereas0 indicates that current update is due to an environmental
process.

– trace : seq (Event ∪ Update). This variable is used to record a sequence of
events/updates that take place so far since the last observation. It can be derived
from tr, tr′ by taking their difference as follows:

flat(tr) � trace = flat(tr′), where � is the concatenation operator, and
flat : seq(seq (Event ∪ Update) × P Event) → seq (Event ∪ Update)

326 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

flat(〈〉) =df 〈〉 flat(〈(es, ref)〉 � tr) =df es � flat(tr)

Two auxiliary functions cs(trace), ds(trace) are adopted to extract resp. the sub-
sequences of communication events and shared-variable states from the sequence
trace. The function cs is defined as

cs(〈〉) =df 〈〉 cs(〈e〉 � tail) =df {〈e〉 � cs(tail), if e ∈ Event,
cs(tail), otherwise.

The function ds can be defined similarly.
– gs : SV → Value. This variable is used to hold the latest updated state of all shared

sensor-actuator variables.

In our semantics model, the observation-based semantics for a TCOZ process will
be described by a predicate whose alphabet contains the above variables [6].

A binary relation
t� is defined over two sequences of observations as follows.

tr1
t� tr2 =df (front(tr1) � tr2) ∧ (π1(last(tr1)) � π1(tr2(#tr1)))

where � is the ordinary subsequence relation between sequences of the same type.
front(tr) is the initial part of tr obtained by dropping those observations recorded in
last time unit. last(tr) gets the last element of the sequence tr. π1(tup) returns the first
component of the tuple tup. #tr is the number of elements in tr, while tr(n) returns the
nth element.

This definition states that, given two timed traces, tr1 and tr2, tr2 is an expansion of
tr1, if the initial part of tr1 is a subsequence of tr2, and the untimed traces recorded at
the last time unit of tr1 is a subsequence of the untimed traces at the same time in tr2.

Since the execution of a process can never undo any action performed previously, each
trace can only get longer. The current value of tr must therefore always be an expansion
of its initial value. Hereby, the semantics predicate P for any process P should satisfy
the healthiness condition R defined as follows:

R(P) =df P = (P ∧ tr
t� tr′)

3.2 The Class Model

TCOZ has two kinds of classes, active and passive ones. The behaviour of (an object
of) an active class can be specified by a record of its continuous interactions with its
environment via its Main process, whereby any update on its data state is hidden. Passive
class does not have its own thread of control and its state and operations (processes) are
available for use by its controlling object. We model an active class as a predicate with
an assumption and a commitment (also known as design in [6]), and a passive class as
a service provider, which provides a set of services to its environment.

In order to address issues like class encapsulation and dynamic typing that are es-
sential for object-orientation, the following TCOZ features are considered in the UTP
model.

A Semantic Foundation for TCOZ in Unifying Theories of Programming 327

1. An object-oriented specification contains not only variables of simple types but also
objects. To ensure a legal access to a variable, the model is equipped with a set of
visible attributes/operations.

2. Due to the subclass mechanism, an object can lie in a subclass of its originally
declared one. Therefore, the behaviour of its operations will depend on its current
type. To support such a dynamic binding mechanism for operation calls, our model
keeps track of the dynamic type for each object. This enables us to validate operations
in a framework where the type of each variable is properly recorded.

3. A value of an object variable is a finite tuple, which may record the current type of
the object, and the values of its attributes. Since an object may contain attributes of
object types, its value is often defined with nested recursions.

In order to address the above issues clearly, the following meta variables are intro-
duced to keep track of the class information.

– CN and super are used to record the contextual information on classes and their
relationships. CN is the set of classes already declared, super is a partial function
which maps a class to the set of its direct superclasses. For example, C1 ∈ super(C2)
states that C1 is a direct superclass of C2. C is a superclass of C′ if there exists
a finite sequence of classes C0, · · · , Cn, such that C = Cn and C′ = C0 and
Ci+1 ∈ super(Ci) for all 0 � i < n. We use the set super+(C) to denote all
superclasses of C, and super∗(C) to present all superclasses of C and itself. Note
that super∗(C) =df super+(C) ∪ {C}.

– For each class C ∈ CN, we use the following notations to denote its structure and
record different variables involved in its specification.

• The set of state attributes of class C, attr(C) = {〈a1 : T1〉, · · · , 〈am : Tm〉},
comprises both the attributes declared in C and those that C inherits from its
superclasses, where Ti stands for the type of attribute ai of class C, and will be
referred by type(C.ai). The set of channels declared in class C is denoted by
chan(C) = {ch1, · · · , chn : chan}.

• The set of operations declared or inherited by C, op(C) = ops(C) ∪ opp(C). It
is composed of a set of state operations (ops(C)) and a set of process operations
(opp(C)).

• senvar, actvar: the set of sensor and actuator variables declared in current class
or inherited from its superclasses. They provide an interface between the control
system and its controlled system.

• locvar: the set of local definitions, {v1 : T1, · · · , vm : Tm};
• visibattr, visibop: the set of visible state attributes and visible operations.

For notational convenience, we assume the following four sets of names are pairwise
disjoint: classes, attributes, operations and (local or shared) variables.

A state binds variables to their current values. A variable of a primitive data type can
take any value of that type. The value of an object variable is composed of the values of
its attributes together with its current type (as in [5]):

{a 	→ value | a ∈ attr(C)} ∪ {myclass 	→ C}

328 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

In what follows, we investigate the observation-based semantics of TCOZ processes,
and as well explore some associated algebraic laws. After that, we formalise the TCOZ
class semantics. Following the notation style in UTP [6], we adopt the italic format to
represent semantic notations (e.g., predicates), whereas we use the sans serif format to
denote syntactic notations (e.g., specifications) in this paper. For instance, the semantics
of a process P is simply represented by a predicate P, rather than [[P]].

4 Process Semantics

In this section, the observation model for TCOZ processes is developed. Some process
models that are similar to [14] are moved to the Appendix.

4.1 Communication

This subsection is devoted to communications. Other primitives Chaos, Skip and Stop
are presented in the Appendix.

A synchronisation ch.e can take place only if an output event ch!e is ready, an input
event b • ch?x is also ready, and the message to be passed satisfies the condition b.

In order to describe the behaviour of these two primitives, we introduce two auxil-
iary predicates, com blk(ch) and com syn(ch), to represent the waiting behaviour for
communication and the synchronised communication respectively.

com blk(ch) =df ok′ ∧ wait′ ∧ no interact(trace) ∧ not ref(tr, tr′, ch)
com syn(ch.e) =df ok′ ∧ ¬wait′ ∧ trace = 〈ch.e〉 ∧ #tr′ = #tr

Note that predicate not ref(tr, tr′, ch) is true if any events with respect to channel ch do
not occur in the refusals of the observations recorded from tr to tr′.

not ref(tr, tr′, ch) =df ∀ n : #tr ≤ n ≤ #tr′ • ch �∈ π2(tr′(n))

The predicate no interact(trace)denotes that there are no communication events recorded
in trace, while the shared-variable updates recorded in trace (if any) are due to the en-
vironmental process. That is, for any s ∈ seq(Event × Update),

no interact(s) =df cs(s) = 〈〉 ∧ ∀ u ∈ ds(s) • π2(u) = 0

An output primitive ch!e stays in a waiting state before some other process becomes
ready to receive a message via the channel ch, or finishes the communication instanta-
neously once the receiver is ready.

ch!e =df com blk(ch) ∨ (com blk(ch) ◦ (com syn(ch.e) ∧ state′ = state))

where the operator ◦ is the composition of two sequentially made observations. For two
observation predicates P(v, v′), Q(v, v′), where v, v′ represent respectively the initial and
final versions of all observation variables, the composition of them is

P(v, v′) ◦ Q(v, v′) =df ∃ v0 • P(v, v0) ∧ Q(v0, v′)

A Semantic Foundation for TCOZ in Unifying Theories of Programming 329

Note that the final observation from P coincides with the initial observation from Q.
For the input primitive b • ch?x, if the message to be passed does not satisfy the

condition b, it results in deadlock. Once this communication occurs, the value passed
along the channel will be assigned to the variable x and recorded in the state.

b • ch?x =df com blk(ch) ∨ (com blk(ch)◦
(b[e/x] ∧ com syn(ch.e) ∧ state′ = state ⊕ {x 	→ e} ∨
¬b[e/x] ∧ Stop))

The guarded sensor read command b(x) • sv?x is defined in terms of the following
recursive process. Intuitively, it consecutively reads values from the sensor (once per
time unit) until the sensed value meets the guard.

b(x) • sv?x =df µ X • sv?x → ((b(x) • Skip) � (¬b(x) • (Wait 1; X)))

where the simple read sv?x obtains the latest value of the sensor-actuator variable sv.

sv?x =df ok′ ∧ ¬wait′ ∧ tr′ = tr ∧ state′ = state ⊕ {x 	→ gs(sv)}
The simple prefix process Comm→ P is explained as a sequential composition of

the communication behaviour and the behaviour of the process that follows.

Comm → P =df Comm; P

Semantics for sequential composition is presented in the Appendix.

4.2 State Operation

There are two kind of state operations, one only updates the local state of the current
class, whereas the other updates the global state, i.e., the sensor-actuator variables that
it is in charge of.

Local State Update. A local state operation ∆(y), x : T • Pred(u, v’) enlarges the state
with its local definitions and updates the state afterwards.

∆(y), x : T • Pred(u, v′) =df ok′ ∧ ¬wait′ ∧ no interact(trace) ∧
((∃ val1 • state′ = state ⊕ {x 	→ val1})◦
(∃ val • state′ = state ⊕ {v 	→ val} ∧ Pred(state(u), state′(v))))

Actuator Update. An actuator update operation ∆(sv), x : T•Pred(u, sv, sv’) specifies
that expected values can be assigned to the sensor-actuator variables sv.

∆(sv), x : T • Pred(u, sv, sv′) =df ok′ ∧ ¬wait′ ∧ #tr′ = #tr ∧
∃ val • gs′ = gs ⊕ {sv 	→ val} ∧ ((∃ val1 • state′ = state ⊕ {x 	→ val1})◦
Pred(state(u), gs(sv), gs′(sv))) ∧ trace = 〈(gs′, 1)〉

where gs and gs′ indicate the value of the variable gs resp. before and after the update.
In our model, consecutive actuator update operations are combined into one atomic

update operation. Therefore, the above update list can be a list of actuator variables.

330 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

4.3 Timeout Process

The timeout process P �{t} Q behaves as P if P has no interaction with the environment
at all but terminates within time t, or it reacts to the environment within time t, otherwise
it behaves as Q.

P �{t} Q =df (P ∧ no interact(trace) ∧ #tr′−#tr � t) ∨
(∃ k : #tr < k � #tr+t, ∃ t̃r • π1(tr′(k)) �= 〈〉 ∧ tr � t̃r ∧ #t̃r−#tr = k ∧
(∀ i : #tr < i < #tr+k • no interact(π1(tr′(i))) ∧ t̃r(i) = tr′(i)) ∧ P[t̃r/tr]) ∨
(∃ t̃r • tr � t̃r ∧ #t̃r − #tr = t ∧
(∀ i : #tr < i < #tr+t • no interact(π1(tr′(i))) ∧ t̃r(i) = tr′(i)) ∧ Q[t̃r/tr])

If P is ready to react to the environment exactly when it has waited for time t, the timeout
process chooses P or Q non-deterministically.

The following are some algebraic laws that can be derived from our semantic defi-
nition. For simplicity, the proofs are omitted.

T1. P �{t} P = P
T2. Skip �{t} P = Skip
T3. (a → P) �{t} (b → P) = ((a → Skip) �{t} (b → Skip)); P
T4. P �{t} (Q � R) = (P �{t} Q) � (P �{t} R)
T5. (P � Q) �{t} R = (P �{t} R) � (Q �{t} R)

4.4 Wait

The process Wait t just waits for t time units to pass before terminating immediately. It
can be defined as follows in terms of timeout construct defined in section 4.3.

Wait t =df Stop �{t} Skip

It is subject to the following laws.

W1. Wait t1; Wait t2 = Wait (t1 + t2)
W2. (Wait t1) |[E]| (Wait t2) = Wait (max(t1, t2))
W3. Stop �{t} P = Wait t; P

4.5 Deadline

The Deadline construct P • Deadline t imposes a timing constraint on a specification
P, which requires the computation of P to be finished within time t.

P • Deadline t =df P ∧ (#tr′−#tr � t)

It enjoys the following properties.

D1. P • Deadline t1 • Deadline t2 = P • Deadline min(t1, t2)
D2. (P � Q) • Deadline t = (P • Deadline t) � (Q • Deadline t)

A Semantic Foundation for TCOZ in Unifying Theories of Programming 331

4.6 WaitUntil

In case that P terminates within time t, the WaitUntil construct P • WaitUntil t has to
keep waiting after the termination of P until t time units have passed.

P • WaitUntil t =df (∃ t̃r′ • tr � t̃r′ � tr′ ∧ (#t̃r′−#tr < t) ∧
(P[t̃r′

/tr′, true/ok′, false/wait′]◦
(Wait (t−(#t̃r′−#tr))[t̃r/tr]))) ∨ P ∧ (#tr′−#tr � t)

It enjoys the following properties.

U1. P • WaitUntil t1 • WaitUntil t2 = P • WaitUntil max(t1, t2)
U2. (P � Q) • WaitUntil t = (P • WaitUntil t) � (Q • WaitUntil t)

4.7 State-Guarded Process

The state-guarded process b • P behaves as P if the condition b is initially satisfied,
otherwise it waits for ever (like the process Stop).

b • P =df b ∧ P ∨ ¬b ∧ Stop

It satisfies the following properties.

G1. false • P = Stop
G2. true • P = P
G3. b • Stop = Stop
G4. b • (c • P) = (b ∧ c) • P
G5. b • (P; Q) = (b • P); Q

4.8 Parallel Composition

The parallel composition of two processes represents all the possible behaviours of
both processes which are not only synchronised on a specific set of events and on
the time when these events occur, but also coincide with each other on the state of
sensor-actuator variables at each update. The overall process will terminate when both
component processes do.

The parallel composition is defined in terms of the general parallel merge operator
‖M in UTP [6], where the predicate M denotes the way to merge two observations.

In the following definition, our new merge predicate M(E) is in charge of both
channel based communications and shared-variable updates, due to the existence of two
distinct communication mechanisms (channel and sensor/actuator) in TCOZ.

P |[E]| Q =df (((P; idle) ‖M(E) Q) ∨ (P ‖M(E) (Q; idle)));

((ok ⇒ Skip) ∧ (¬ok ⇒ tr
t� tr′))

An idle process, which may either wait or terminate, follows after each of the two
processes. This is to allow each of the processes to wait for its partner to terminate.

idle =df ok′ ∧ no interact(trace) ∧ state′ = state

332 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

The merge predicate M(E) is defined as

M(E) =df ok′ = (0.ok ∧ 1.ok) ∧ wait′ = (0.wait ∨ 1.wait) ∧
state′ = (0.state ⊕ 1.state) ∧
tr′ ∈ syn(0.tr, 1.tr, E) ∧ #tr′ = #0.tr = #1.tr ∧
∀ i : #tr..#tr′ • consistent(ds(π1(0.tr(i))), ds(π1(1.tr(i))))

Given two timed traces tr1, tr2, and a set of events E, the set syn(tr1, tr2, E) is defined
inductively as follows.

syn(tr1, tr2, E) =df syn(tr2, tr1, E)
syn(〈〉, 〈〉, E) =df {〈〉}
syn(〈(t, r)〉, 〈〉, E) =df {〈(t′, r)〉 | t′ ∈ (t ‖

E U
〈〉)}

syn(〈(t1, r1)〉 � tr1, 〈(t2, r2)〉 � tr2, E) =df

{〈(t′, r′)〉 � u | t′ ∈ (t1 ‖
E U

t2) ∧ r′ = r1 ∪ r2 ∧ u ∈ syn(tr1, tr2, E)}

The predicate consistent(s1, s2) specifies that two sequences of updates on shared vari-
ables are consistent. It is used in the above definition to ensure that two individual records
of shared-variable updates coincide with each other in every time unit.

consistent(s1, s2) =df #s1 = #s2 ∧ ∀ i : 1..#s1 • (π1(s1(i)) = π1(s2(i)) ∧
π2(s1(i)) + π2(s2(i)) �= 2)

s ‖
E U

t is used to merge untimed traces s and t into one untimed trace, where E is the

set of events to be synchronised, U is the set of possible shared-variable updates. In
comparison to Roscoe’s model for the parallel merge of untimed traces [12], the following
definition is more sophisticated as it also captures the shared variable communications.
In the following clauses, e, e1, e2 are representative elements of E (events), u, u1, u2
are representative elements of U (updates), whereas x, x1, x2 represent communication
events not residing in E.

s ‖
E U

t =df t ‖
E U

s 〈〉 ‖
E U

〈〉 =df {〈〉} 〈e〉 ‖
E U

〈〉 =df {}
〈u〉 ‖

E U
〈〉 =df {} 〈x〉 ‖

E U
〈〉 =df {〈x〉}

〈x〉�s ‖
E U

〈e〉�t =df {〈x〉�l | l ∈ (s ‖
E U

〈e〉�t)}
〈e〉�s ‖

E U
〈e〉�t =df {〈e〉�l | l ∈ (s ‖

E U
t)}

〈e1〉�s ‖
E U

〈e2〉�t =df {}, where e1 �= e2

〈u1〉�s ‖
E U

〈u2〉�t =df {{}, if ¬consistent(〈u1〉, 〈u2〉)
{u�l | join(〈u〉, 〈u1〉, 〈u2〉) ∧ l ∈ (s ‖

E U
t)}, otherwise

〈x〉�s ‖
E U

〈u〉�t =df {〈x〉�l | l ∈ (s ‖
E U

〈u〉�t)}
〈e〉�s ‖

E U
〈u〉�t =df {}

〈x1〉�s ‖
E U

〈x2〉�t =df {〈x1〉�l | l ∈ (s ‖
E U

〈x2〉�t)} ∪ {〈x2〉�l | l ∈ (〈x1〉�s ‖
E U

t)}

A Semantic Foundation for TCOZ in Unifying Theories of Programming 333

The predicate join(s, s1, s2) merges two consistent sequences of updates (s1 and s2)
into one overall sequence (s).

join(s, s1, s2) =df consistent(s1, s2) ∧ #s = #s1 ∧
∀ i : 1..#s1 • (π1(s(i)) = π1(s1(i)) ∧
π2(s(i)) = π2(s1(i)) + π2(s2(i)))

The following are some properties that parallel composition owns.

P1. Chaos |[E]| P = Chaos
P2. Stop |[E]| P = Stop
P3. P |[E]| Q = Q |[E]| P
P4. P |[E1]| (Q |[E2]| R) = (P |[E1]| Q) |[E2]| R
P5. P |[E]| (Q � R) = (P |[E]| Q) � (P |[E]| R)

Definitions for sequential composition, internal/external choices, recursion, and hid-
ing are presented in the Appendix, which are similar to the definitions in [14].

5 Class Semantics

This section aims to deal with class declarations, their well-definedness and their com-
position.

Given a class declaration cdecl as follows.

C

� (VisibAttr, VisibOp)

Inherits C′

lv : T

a : Ta

ch : chan
sv1 : Ts

1 sensor
sv2 : Ts

2 actuator

Init
b

m1
∆(y

1
), x1 : Tp

1 • Pred(u1, v′
1)

· · ·
mk

∆(y
k
), xk : Tp

k • Pred(uk, v′
k)

mk+1 =̂ [xk+1 : Tp
k+1] • Pk+1

· · ·
mn =̂ [xn : Tp

n] • Pn

[Main =̂ P]

where

– C is the name of the class which is declared as a direct subclass of classes C′.
– The names of visible attributes and operations are listed in VisibList(resp. in Visi-

bAttr and VisibOp).
– m1, · · · , mn are operations declared in C. ∆(y

i
) states that only attributes (or actu-

ators) y
i

can be modified by mi. xi : Tp
i are the parameters of the operation mi. The

set of operations is divided into two parts, the first part, m1, · · · , mk , called state

334 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

operations, represent operations in Object-Z style, where the body is specified by a
predicate. The second part, mk+1, · · · , mn, called process operations, are operations
in process style, where the body is specified by a process.

– the Main operation is optional. If it is present in the definition, the class is called
an active class. Otherwise, it is called a passive class.

We first discuss the passive class where the Main operation is absent. A passive
class declaration cdecl is well-defined, denoted by WD(cdecl), if it satisfies the fol-
lowing conditions: (1) C is distinct from C′, (2) the following names are distinct: local
variables, state attributes, channels, sensors, actuators, operations, operation parameters,
(3) each state operation can only modify the attributes or actuators in its ∆-list, (4) the
VisibAttr and VisibOp are resp. subsets of the attributes and operations declared in the
current class or inherited from its superclasses, (5) each ∆-list in state operations should
be names of attributes or actuators (declared in current class or inherited from super-
classes), (6) the set of sensors and the set of actuators should also include those inherited
from superclasses. The last three conditions cannot be tested based on an individual
class declaration, but can be checked at the end of all class declarations. Formally, the
well-definedness of the above class declaration given for C is defined by the following
predicate.

WD =df




C �∈ {C′} ∧ type(a) = Ta ∧ #a = #Ta ∧ type(lv) = T ∧ #lv = #T
type(sv1) = Ts

1 ∧ #sv1 = #Ts
1 ∧ type(sv2) = Ts

2 ∧ #sv2 = #Ts
2 ∧

∀ i • (dif(〈lv〉 � 〈a〉 � 〈ch〉 � 〈sv1〉 � 〈sv2〉 � 〈m1, · · · , mn〉 � 〈xi〉)
∧ #xi = #Tp

i) ∧ ∀ i : 1..k • {vi} ⊆ {y
i
} ∪ {xi}




where dif(〈e1, · · · , en〉) =df ∀ i, j : 1..n • i �= j ⇒ ei �= ej.
The class declaration cdecl provides the structural information of class C to the state

of the system, and its role is specified by the following design.

cdecl =df WD �




locvar′ = {C 	→ {lv : T}} ∧ CN′ = {C} ∧
super′ = {C 	→ Ci | Ci ∈ C’} ∧
visibattr′ = {C 	→ VisibAttr} ∧
visibop′ = {C 	→ VisibOp} ∧ attr′ = {C 	→ {a : Ta}} ∧
senvar′ = {C 	→ {sv1 : Ts

1}} ∧
actvar′ = {C 	→ {sv2 : Ts

2}} ∧
chan′ = {C 	→ {ch}} ∧ op′ = op′

s ∪ op′
p ∧

op′
s = {C 	→ {m1 	→ (〈x1 : Tp

1〉, {y
1
}, Pred(u1, v′

1)),
· · · , mk 	→ (〈xk : Tp

k〉, {y
k
}, Pred(uk, v′

k))}} ∧
op′

p = {C 	→ {mk+1 	→ (〈xk+1 : Tp
k+1〉, Pk+1),

· · · , mn 	→ (〈xn : Tp
n〉, Pn)}}




The design P � Q =df ok ∧ P ⇒ ok′ ∧ Q as in UTP [6].
The above environment generated by an individual class declaration cdecl, only

records the names of those variables, attributes and operations. The complete information
will be generated at the end of the class declaration section when class dependencies are
also available.

The well-definedness of the operation bodies can not be determined by the individual
class declaration itself, and it will be defined at the end of all class declarations. As a

A Semantic Foundation for TCOZ in Unifying Theories of Programming 335

result, the logic variable op(C) binds each operation mi to its body rather than its meaning.
The meaning of mi will be calculated at the end of the declarations.

We now turn our attention to active classes. The Main operation is used to determine
the behaviour of objects of an active class after initialisation. Objects of an active class
have their own thread of control and their mutable state attributes and operation defini-
tions are fully encapsulated. This condition should be reflected in the well-definedness
of the definition of an active class.

Suppose the Main process is present in the above definition cdecl for class C. The
well-definedness is specified by

WD(cdecl) =df WD ∧ VisibAttr = ∅ ∧ VisibOp = {Main}

where the predicate WD is defined as above.
The Main operation part: Main 	→ (b • P) should be added into the value of the

logic variable opp(C) in the above definition of the design cdecl, where b is the condition
declared in Init schema. However, when we calculate the set of process operations for
a class later, Main is implicitly removed from the set of process operations of any of its
active superclass, since TCOZ does not allow Main process to be inherited.

5.1 Composing Class Declarations

All class definitions cdecls for a specification is a composition of a number of class
declarations

cdecls =df cdecl1; · · · ; cdeclk

Based on these complete definitions, we derive the whole context information for the
specification by composing all the class declarations. This is done by simply adding up
the contents of the current environment generated by the component class declarations
provided that there is no redefinition of a class in its scope. It is also defined by the
parallel merge operator:

cdecl1; cdecl2 =df cdecl1 ‖M cdecl2

where the merge predicate M is defined as the following design

M =df (CN1 ∩ CN2 = ∅) �




CN′ = CN1 ∪ CN2 ∧
super′ = super1 ∪ super2 ∧
visibattr′ = visibattr1 ∪ visibattr2 ∧
visibop′ = visibop1 ∪ visibop2 ∧
locvar′ = locvar1 ∪ locvar2 ∧
senvar′ = senvar1 ∪ senvar2 ∧
actvar′ = actvar1 ∪ actvar2 ∧
attr′ = attr1 ∪ attr2 ∧ op′ = op′

s ∪ op′
p ∧

op′
s = ops1 ∪ ops2 ∧ op′

p = opp1 ∪ opp2




336 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

5.2 Well-Definedness of the Class Declarations

A sequence of class declarations for a specification is well-defined if the contents of the
environment it has generated meet the following well-definedness conditions:

– The visible attributes (resp. operations) declared in a class should be members of
the state attributes (resp. operations) in the current class or in any of its superclasses.

WD1 =df ∀ C ∈ CN • VisibAttr(C) ⊆ attr(super∗(C))
∧ VisibOp(C) ⊆ op(super∗(C))

where super∗(C) is composed of all superclasses of C and C itself as before, and

attr({C1, · · ·, Cn}) =df
⋃

i:1..n attr(Ci), op({C1, · · ·, Cn}) =df
⋃

i:1..n op(Ci)

– Multiple inheritances are allowed in TCOZ. However, distinct direct superclasses
of any class are not permitted to have any common process operations (i.e. process
operations with the same name and signature).

WD2 =df ∀ C ∈ CN • #super(C) > 1 ⇒ (∀ C1, C2 ∈ super(C)•
(C1 �= C2 ⇒ dom(opp(super∗(C1))) ∩ dom(opp(super∗(C2))) = ∅

∧ π1(ran(opp(super∗(C1)))) ∩ π1(ran(opp(super∗(C2)))) = ∅))

– The ∆-list in each state operation can only comprise attributes or actuator variables
declared in the current class or inherited from any superclass.

WD3 =df ∀ C ∈ CN, m ∈ ops(C) • π2(ran(m)) ⊆ attr(super∗(C)) ∨
π2(ran(m)) ⊆ actvar(super∗(C))

– No parallel process operation is allowed to update any actuator variable in more
than one component.

WD4 =df ∀ C ∈ CN, (P1 |[E1]| · · · |[En-1]| Pn) ∈ opp(C)•
∀ i, j : 1..n • i �= j ⇒ avar(Pi) ∩ avar(Pj) = ∅

where avar(P) is the set of actuators employed by P.
– In addition, other well-definedness conditions, such as the inheritance relation does

not contain circularity, are omitted here, since similar conditions have been discussed
in He, Liu and Li’s work [5] for Java-like object-oriented languages.

5.3 Formalising the Behaviour of Class Operations

The dynamic behaviour of class operations is defined as the least fixed point of a set
of recursive equations due to the inheritance (dependency) relation among the declared
classes. We deal with the state operations and the process operations separately, since
the former follow the inheritance rules of Object-Z, whereas the latter do not.

A Semantic Foundation for TCOZ in Unifying Theories of Programming 337

State Operations. For each class C ∈ CN and every state operation m ∈ {ops(C
′) |

C′ ∈ super∗(C)}, it contains an equation D(C.m) = f (D), which is defined with respect
to the following cases.

Case (1): m is newly introduced, i.e., it is declared in C, but not in any superclasses.
Suppose the declaration of m is ∆(y), x : T • Pred(u, v’).

D(C.m) =df ∆(y), x : T • Pred(u, v′)

The right-hand side is the semantic predicate defined in section 4.2.
Case (2): m is not declared in C but in its “nearest” superclasses, C1, · · · , Cr , i.e.,

m �∈ ops(C) ∧ ∀ i : 1..r • (m ∈ ops(Ci) ∧ Ci ∈ super+(C))

We can always assume none of these classes is a superclass of others, i.e., Ci �∈
super∗(Cj), for any i, j : 1..r. Otherwise, we remove Ci from the list if Ci ∈ super∗(Cj).
We also assume that each Ci is the nearest one to C that defines m in the corresponding
dependence path, i.e.,

∀ i : 1..r, ¬ ∃ C’ • C’ ∈ super+(C) ∧ Ci ∈ super+(C’) ∧ m ∈ ops(C’)

The equation for D(C.m) is

D(C.m) =
∧

i:1..r D(Ci.m)

Case (3): m is defined in class C as ∆(y), x : T • Pred(u, v’), but also defined in
some “nearest” superclasses, C1, · · · , Cr , i.e.,

m ∈ ops(C) ∧ ∀ i : 1..r • (m ∈ ops(Ci) ∧ Ci ∈ super+(C))

Using the same assumption as in case (2), the equation for D(C.m) is

D(C.m) = (∆(y), x : T • Pred(u, v′)) ∧ ∧
i:1..r D(Ci.m)

Process Operations. Given a class name C, and a process operation m, there are two
cases to deal with.

Case (1). The process is not defined in C, but in a superclass C’ of C. Then simply

D(C.m) = D(C’.m)

Case (2). The process operation is defined in C. Its dynamic behaviour is captured by
its body and the environment in which it is executed. The design D(C.m) is thus subject
to the equation D(C.m) = ϕ(body(C.m)). ϕ is used to pass the actual parameters to their
corresponding formal parameters, and generate the semantics predicate afterwards, as
discussed in section 4.

The function ϕ distributes over operators and is inductively defined as:

ϕ(P1 op P2) =df ϕ(P1) op ϕ(P2), where op ∈ {; , �, �, |[E]| , �{t}, →, •}
ϕ(P • Deadline t) =df ϕ(P) • Deadline t
ϕ(P • WaitUntil t) =df ϕ(P) • WaitUntil t
ϕ(µ X • P) =df µ X • ϕ(P), ϕ(P\E) =df ϕ(P)\E
ϕ(x) = x, ϕ(f(e)) = f (ϕ(e)),

338 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

where f can be any legal arithmetic operator (+, −, ∗, /,�, �=, · · ·), logical connector
(∧, ∨, ¬, ⇒, · · ·), or set operator (∈, �∈, ⊆, · · ·).

An operation invocation o.m is mapped by ϕ to

ϕ(o.m(val)) =df �{o(myclass) = C’ ∧ m ∈ visibop(C’) • D(C’.m)[val/x]}

where x is the parameters of the operation C’.m.

5.4 The Behaviour of Active Classes

This subsection is devoted to formalising the behaviour of active classes. The behaviour
of a system specified in TCOZ is determined by the Main processes of active classes.

Given a sequence of class declarations cdecls =df cdecl1, · · · , cdecln, where cdecln
is an active class of interest which may depend on (inherit from) the other classes. The
behaviour of (any objects of) this active class is defined as the following predicate:

cdecls; initial; D(cdecln.Main)

The design initial performs the following tasks: (1) to check the well-definedness of
the complete declaration section; (2) to derive the final values of the logical variables;
(3) to define the dynamic behaviour of every operation.

initial =df
∧

i WDi �


super′ = super ∧ CN′ = CN ∧ ∀ C ∈ CN•
locvar′(C) = locvar(super∗(C)) ∧ attr′(C) = attr(super∗(C)) ∧
senvar′(C) = senvar(super∗(C)) ∧ actvar′(C) = actvar(super∗(C)) ∧
op′

s(C) = {(m
→ (〈x : T〉, ∆(y), D(C.m))) | ∃ Pred•
(m
→ (〈x : T〉, ∆(y), Pred)) ∈ ops(C

′) ∧ C′ ∈ super∗(C)} ∧
op′

p(C) = {(m
→ (〈x : T〉, D(C.m))) | ∃ P•
(m
→ (〈x : T〉, P)) ∈ opp(C

′) ∧ C′ ∈ super∗(C)} ∧
visibattr′ = {C
→ (attr(super∗(C)) � visibattr(C)) | C ∈ CN} ∧
visibop′ = {C
→ (op(super∗(C)) � visibop(C)) | C ∈ CN}




where WDi is the well-definedness condition discussed in section 5.2. D(C.m) discussed
in last section defines the dynamic behaviour of the operation m of class C.

6 Related Work, Conclusion and Future Work

The semantics of Object-Z has been investigated earlier. For example, Object-Z has a
fully abstract semantics [3, 15]. Timed CSP’s semantics has also been well studied [2,
10, 11]. The process model used by TCOZ [9] presented a conservative extension to the
basic timed failures model [10]. The semantic model of TCOZ in this paper is based on
the UTP framework. The most closely related works are the UTP timed [14] and un-
timed [18] semantic models of Circus and the UTP semantic model [5] of object-oriented
programming languages. A significant contribution of this paper is the unified semantic
model for both channel and sensor/actuators based communications in TCOZ. This new

A Semantic Foundation for TCOZ in Unifying Theories of Programming 339

model is far more complete. It not only covers the communication and process aspects of
TCOZ, but also other features, such as class encapsulation, inheritance, dynamic binding
and extended TCOZ timing constructs (deadline and waituntil commands), which have
not been covered by the previous result [9].

This paper also demonstrates that UTP can provide a formal semantic foundation
not only for programming languages but also for much more expressive specification
languages. In particular, UTP is well suited for capturing formal semantics for integrated
specification languages (i.e., TCOZ) which often have rich language constructs for state
encapsulation, event communication and real-time modeling. Our semantic model will
be used as a reference document for developing tools support for TCOZ. For example,
in the semantic model, the well formed rules can be used as precise requirements for
developing a type checking system. Various laws for the language constructs can be
encoded as theorems to support a reasoning system.

The semantic model presented in this paper is a discrete time model which can
readily be connected to an untimed model, so that model checker like FDR [12] can also
be used to check untimed properties of TCOZ. For checking timing properties, we have
recently developed transformation rules from TCOZ to Timed Automata (TA) so that
various TA tools, i.e. UPPAAL [1], can be applied to check timing properties. We plan
to give a UTP semantic model for TA, and to prove the soundness of our transformation
rules based on UTP semantics for both TCOZ and TA.

Another further research work would be to develop operational and data refinement
techniques for TCOZ and to look into transforming TCOZ to object-oriented program-
ming languages, e.g., Java. This work should be achievable given that UTP semantics
for Java-like language has already been formulated in [5].

Acknowledgement

We would like to thank Jifeng He for helpful comments and inspiring related work. We
are also grateful to anonymous referees for many helpful comments.

References

1. J. Bengtsson, K. Larsen, F. Larsson, P. Pettersson, and Y. Wang. UPPAAL - a Tool Suite for
Automatic Verification of Real-Time Systems. Hybrid Systems, LNCS 1066, pages 232–243.
Springer-Verlag, 1996.

2. J. Davies and S. Schneider. A brief history of Timed CSP. Theoret. Comput. Sci., 138:243–
271, 1995.

3. D. Duke and R. Duke. Towards a semantics for Object-Z. In D. Bjørner, C.A.R. Hoare, and
H. Langmaack, eds., VDM’90: VDM and Z!, LNCS 428, pages 242–262. Springer-Verlag,
1990.

4. R. Duke and G. Rose. Formal Object Oriented Specification Using Object-Z. Cornerstones
of Computing Series. Macmillan, March 2000.

5. J. He, Z. Liu, and X. Li. A relational model for specification of object-oriented systems.
Technical Report 262, UNU/IIST, October 2002.

6. C.A.R. Hoare and J. He. Unifying Theories of Programming. Prentice-Hall, 1998.

340 Shengchao Qin, Jin Song Dong, and Wei-Ngan Chin

7. B. Mahony and J. S. Dong. Sensors and Actuators in TCOZ. In J. Wing, J. Woodcock, and
J. Davies, eds., FM99: World Congress on Formal Methods, LNCS 1709, pages 1166–1185,
1999.

8. B. Mahony and J. S. Dong. Timed Communicating Object Z. IEEE Transactions on Software
Engineering, 26(2):150–177, February 2000.

9. B. Mahony and J. S. Dong. Overview of the semantics of TCOZ. In K. Araki, A. Galloway,
and K. Taguchi, eds, IFM’99: Integrated Formal Methods, pages 66–85. Springer-Verlag,
1999.

10. M. Mislove, A. Roscoe, and S. Schneider. Fixed Points Without Completeness. Theoret.
Comput. Sci., 138:273–314, 1995.

11. G. Reed and A. Roscoe. A timed model for communicating sequential processes. Theoret.
Comput. Sci., 58:249–261, 1988.

12. A.W. Roscoe. The Theory and Practice of Concurrency. Prentice-Hall, 1998.
13. S. Schneider, J. Davies, D. Jackson, G. Reed, J. Reed, and A. Roscoe. Timed CSP: Theory

and practice. Real-Time: Theory in Practice, LNCS 600, pages 640–675. Springer-Verlag,
1992.

14. A. Sherif and J. He. Towards a timed model for circus. In C. George and H. Miao,
eds., ICFEM’02 Formal Methods and Software Engineering, LNCS 2495, pages 613–624.
Springer-Verlag, 2002.

15. G. Smith. A fully abstract semantics of classes for Object-Z. Formal Aspects of Computing,
7(3):289–313, 1995.

16. G. Smith. The Object-Z Specification Language. Kluwer Academic Publishers, 2000.
17. J. Woodcock and A. Cavalcanti. Circus: a concurrent refinement language. Technical report,

Oxford University Computing Laboratory, Oxford OX1 3QD, UK, July 2001.
18. J. Woodcock and A. Cavalcanti. The Semantics of Circus. In D. Bert, J. Bowen, M. Henson

and K. Robinson, eds., 2nd International Conference on Z and B, LNCS 2272, pages 184–203.
Springer-Verlag, 2002.

Appendix

The semantics for the process constructs (e.g., primitives, internal/external choices, etc.)
that are similar to Sherif and He’s work[14] are listed here.

Skip =df ok′ ∧ ¬wait′ ∧ tr′ = tr ∧ state′ = state
Stop =df ok′ ∧ wait′ ∧ state′ = state ∧ no interact(trace)
Chaos =df R(true)
P; Q =df P[false/ok′] ∨ P ∧ wait′ ∨ P[true, false/ok′, wait′] ◦ Q
P � Q =df P ∨ Q
P�Q =df (P ∧ Q ∧ wait′ ∧ trace = 〈〉) ∨

(((P ∧ Q ∧ ok′ ∧ wait′ ∧ trace = 〈〉 ∧ state′ = state) ∨ Skip)
◦ (¬wait′ ∨ (¬(tr � tr′) ∧ trace �= 〈〉))) ∧ (P ∨ Q); Skip

µ X • F(X) =df � {X | X � F(X)}
P\E =df (∃ t̃r • P[t̃r/tr′] ∧ ∀ k : #tr � k � #tr′•

π1(tr′(k)) = π1(t̃r) � (Event − E) ∧
π2(t̃r(k)) = π2(tr′(k)) ∪ E); Skip

	1 Introduction
	2 The TCOZ’s Syntax and Example
	3 The UTP Observation Model
	3.1 The Meta Process Model and Variables
	3.2 The Class Model

	4 Process Semantics
	4.1 Communication
	4.2 State Operation
	4.3 Timeout Process
	4.4 Wait
	4.5 Deadline
	4.6 WaitUntil
	4.7 State-Guarded Process
	4.8 Parallel Composition

	5 Class Semantics
	5.1 Composing Class Declarations
	5.2 Well-De.nedness of the Class Declarations
	5.3 Formalising the Behaviour of Class Operations
	5.4 The Behaviour of Active Classes

	6 Related Work, Conclusion and Future Work
	Acknowledgement
	References
	Appendix

