
 1

A Semantic Framework for

Automatic Generation of Computational Workflows

Using Distributed Data and Component Catalogs

Yolanda Gil1, Pedro A. González-Calero2, Jihie Kim1, Joshua Moody1, and Varun Ratnakar1

1 Information Sciences Institute, University of Southern California

4676 Admiralty Way, Marina del Rey CA 90292, United States

{gil, jihie, moody, varunr}@isi.edu

2 Facultad de Informática, Universidad Complutense de Madrid

 28040 Madrid, Spain

pedro@sip.ucm.es

December 15, 2009

Abstract

Computational workflows are a powerful paradigm to represent and manage complex

applications, particularly in large-scale distributed scientific data analysis. Workflows

represent application components that result in individual computations as well as their

interdependencies in terms of data flow. Workflow systems use these representations

to manage various aspects of workflow creation and execution for users, such as the

automatic assignment of execution resources. This paper describes an approach to

automating a new aspect of the process: the selection of application components and

data sources. We present a novel approach that enables users to specify varying

degrees of detail and amount of constraints in a workflow request, including the

specification of constraints on input, intermediate, or output data in the workflow,

abstract workflow component classes rather than specific component implementations,

and generic reusable workflow templates that express a pre-defined combination of

components. The algorithm elaborates the user request into a set of fully ground

workflows with specific choices of data sources and codes to be used so that they can

be submitted for mapping and execution. The algorithm searches through the space of

possible candidate workflows by creating increasingly more specialized versions of the

original template and eliminating candidates that violate constraints cumulated in the

candidate workflow as components and data sources are selected. A novel feature of

our approach is that it assumes a distributed architecture where data and component

catalogs are separate from the workflow system. The algorithm explicitly poses

queries to external catalogs, and therefore any reasoning regarding data or component

properties is not assumed to occur within the workflow system. We describe our

implementation of this approach in the Wings workflow system. This implementation

uses the W3C Web Ontology Language (OWL) and associated reasoners to implement

the workflow system as well as the data and component catalogs. This research

demonstrates the use of artificial intelligence techniques to support the kinds of

automation envisioned by the scientific community for large-scale distributed scientific

data analysis.

Keywords: computational workflows, semantic workflows, workflow generation,

workflow systems, planning, semantic web, OWL, distributed reasoning.

To appear in the Journal of Experimental and Theoretical Artificial Intelligence, 2010.

 2

1. Introduction

Large-scale computational experimentation has an ever-increasing impact in scientific

practice, producing significant advancements in almost every discipline. Massive amounts

of computing power are exploited to create sophisticated simulations for weather and

earthquakes (www.scec.org), to extract new results from astronomical or particle physics

data (www.nvo.org, www.ligo.caltech.edu), and to link biological entities at the molecular

and cellular level. Visionary roadmaps in almost every scientific discipline include

increasing levels of automation and support for ever more complex software [Atkins et al

03; Washington et al 05; Nature 06]. Artificial intelligence techniques can play an

important role to represent complex scientific knowledge, to automate processes involved

in scientific discovery, and to support scientists to manage the complexity of the hypothesis
space [Muggleton 06; Gil 09; Gil et al 07b; Deelman and Gil 06; Langley et al 87].

Workflows have emerged as a useful paradigm to describe, manage, and share complex

scientific analyses [Taylor et al 06; Gil et al 07b; Deelman and Gil 06]. Workflows

represent declaratively the components or codes that need to be executed in a complex

application, as well as the data dependencies among those components. Workflow systems

exploit those representations in order to manage the elaboration and execution of

workflows that process very large datasets in a distributed environment. Several workflow

systems have been developed for a variety of applications, including Taverna [Oinn et al

06], Kepler [Ludaescher et al 06], Askalon [Wieczorek et al 05], and Pegasus [Deelman et

al 05; Deelman et al 03]. Some workflow systems use workflows to compose web

services. Other workflow systems manage computational workflows that combine

implemented codes that can be submitted for execution to different remote resources. As

the use of workflows becomes more common practice, workflow libraries have been

identified as a crucial mechanism for sharing and reuse that is very important for e-Science

[DeRoure et al 09; Gil 06; Gil et al 07b; Goderis et al 05a; Wroe et al 07]. Workflow

libraries can represent well-known methods for data analysis that are discovered once,

shown to work well, and subsequently reused by other researchers. These libraries would
represent standard approaches, and their reuse would provide assurance of good practices.

An important requirement for workflow systems is that they should assume a very

distributed environment. In e-Science, many distributed data repositories are made

available and maintained by diverse institutions. Examples are the National Virtual

Observatory (www.nvo.org), the Earth System Grid (www.earthsystemgrid.org), the

Biomedical Informatics Research Network (www.nbirn.org), and the Cancer Biomedical

Informatics Grid (cabig.cancer.gov). Data providers may provide services to access data

sources. There can be many organizations playing the role of data providers, and as a result

data may be accessible in various catalogs that are in distributed remote locations. Other

organizations may provide algorithms, services, models, or implemented codes that can

process data and can be used as components of the workflow. These are typically

distributed and provided by different organizations. Therefore, an important requirement

for workflow systems in e-Science is that they must rely on distributed services to access
the data and algorithms necessary for data analysis.

This paper describes a novel algorithm for automatic generation of workflows from

high-level workflow templates available in a workflow library. In our approach, users can

create a workflow request by selecting a workflow template from a library and providing

additional constraints on the desired results and on data sources to be used. A novel feature

of the algorithm is that it allows users great flexibility in terms of the level of abstraction in

the information that they provide as well as in the amount of information provided. Given

a workflow request, the algorithm: 1) interprets the workflow request as a set of constraints

on workflow components and datasets; 2) relies on an external component catalog to reason

 3

about the implications of those constaints on the individual components, and an external

data catalog to reason about individual data constraints; 3) reasons about the overall

workflow by propagating constraints throughout the workflow, and 4) considers alternative

dataset, component, and parameter choices by creating possible workflow candidates; 5)

generates workflows that are ready for execution submission. An important and novel

feature of the algorithm is that it assumes that all the reasoning about data and components

is done by external catalogs rather than within the workflow system. The paper also

describes our implementation of this approach in Wings [Gil et al 10; Gil et al 09b; Gil et al

09a; Kim et al 08; Gil et al 07a; Kim et al 06], which generates workflows executable by
the Pegasus workflow system [Deelman et al 05; Deelman et al 03].

To exemplify our approach we use a workflow library for machine learning and data

mining since this domain may be more familiar to computer scientists than other e-Science

domains. It is a complex computational domain where the theoretical characterization of

learning algorithms, their convergence properties, and their relative strengths and

weaknesses remains a major research topic [Mitchell 06]. As a result, it is a good domain

to investigate the use of workflow templates, as some researchers suggest that templates

can capture important expertise that is not captured in libraries of algorithms [Bernstein et

al 05]. It is also a domain that illustrates the distributed nature of data and algorithm

providers. Many algorithms for machine learning are available in libraries [Witten and

Frank 05], while many machine learning datasets used by researchers are maintained in the

well-known Irvine repository [Asuncion and Newman 07]. Many research groups make

datasets and algorithms available on their project sites. Machine learning is being pushed

by researchers in the direction of further sharing and accessibility of data and codes

[Sonnenburg et al 07]. Ultimately, automating the generation of workflows composed of

machine learning algorithms would open the door to a vast opportunities offered by the

scientific, business, and open source data available at an increasingly larger scale.

The paper begins describing the use of workflows for data analysis and motivating the

need for automating their creation. Next, it describes the requirements that automation

poses on various aspects of a workflow system architecture that operates in a distributed

environment. With those requirements in mind, we provide a formalization that reflects

those requirements and can be used to design the workflow system and its interactions with

external services. We then describe an algorithm that can elaborate workflow requests

automatically, and relies in the formalization to reflect its dependencies on various

components of the distributed architecture. Finally, we describe our implementation of this

algorithm and show results using workflows that use machine learning algorithms and data.

2. Motivation and Requirements for Automatic

Workflow Generation

The goal of our research is to automate workflow creation and execution as much as

possible. A benefit for scientists is the dramatic reduction of the computational

experimentation cycle, since setting up data analysis experiments can be done quickly and

all the elaboration and execution details are taken care of automatically by the system.

Another benefit of automation is that it paves the way for efficient experimentation and

discovery, as the system could autonomously explore different combinations of codes and

data that may be appropriate to accomplish high-level goals. Finally, a benefit of

automation is to empower users that are not experts in the particulars of workflow

constituents or available data sets, but would like to perform analyses that others have

designed and added to a workflow library. This not only includes junior researchers in an

area, but also scientists in a different area of research that may wish to conduct complex

 4

analysis that cross the boundaries of their particular discipline and do not have deep
understanding of the techniques used in other research areas.

Consider machine learning research and practice. Machine learning research has

produced a vast amount of learning algorithms and had led to many successful applications.

However, it is challenging to select the right algorithm or combination of algorithms when

faced with a new problem or dataset. This is in part because understanding the

relationships and applicability of different algorithms is an important research area in its

own right. Libraries such as Weka facilitate sharing of codes, and more recently also small

workflows. Some interactive tools for automatic generation of novel algorithm

combinations have been developed to assist researchers and practitioners alike [Berstein et

al 05; Morik and Scholz 04; St Amant and Cohen 98]. While it is possible to describe for

some algorithms what their function is, it remains a research challenge to specify how to

describe them fully or how to build valid or good combinations of a given algorithm with

others [Mitchell 06]. For example, it is possible to specify that a naïve Bayes classifier

and a decision tree classifier both generates classes based on their input data, and that the

former takes categorical attributes as input while the latter takes numerical attributes

[Bernstein et al 05]. For more complex algorithms in the literature that perform more

complex learning tasks such as pattern matching and other forms of relational learning

[Kubica et al 03; Adibi et al 04] it is very hard to characterize their individually

differentiating factors especially when combined with other algorithms into a more

complex analysis (a workflow). The choice of algorithms results in crucial tradeoffs

between the quality of the result, the cost (in terms of false positives and false negatives),

and the execution time. Recently, ensemble methods that combine several algorithms have

better performance than each of the algorithms individually [Opitz and Maclin 99].

Particular ensemble designs could be represented as workflows composed of the algorithms

selected. Therefore, a workflow library that captures successful combinations of

algorithms could provide very a useful repository of machine learning software.

While recent workflow repositories have been created with machine learning algorithms,

they rely on user-guided selection and sometimes execution of workflows [Cannataro et al

04]. Automating the selection and execution of workflows would make machine learning

technology accessible to a broader range of applications. [Bernstein et al 05] proposes that

a user could request an analysis to classify a dataset into two classes with minimal cost, to

find classes with comprehensible descriptions, or to classify a large dataset as fast as

possible. A user may also want to query for proof that a certain property holds for some

type of objects (i.e., a pattern), and the system would have to find a workflow and to

marshall appropriate data sources to provide matches for that pattern. [Bernstein et al 05]

argue strongly for the value of well-known reusable compositions of algorithms that are

essentially high-level workflow templates.

Figure 1 shows sketches of some very simple workflows that can be built with machine

learning algorithms. The first workflow shows how to use 2007 weather data for Santa

Monica to train an ID3 model, then use that model to make predictions of the weather in

Pasadena using an ID3 classifier. The suffix “.csv” indicates data formatted as comma-

separated values, and the parameter ClassIndex set to 5 indicates that the feature in column

5 is the one we are trying to predict. The second is a generic version of that workflow that

expresses how to use two algorithms, an ID3 modeler and an ID3 classifier, to learn a

decision tree model from training data and then use that learned model to classify test data.

The third is also a generic workflow that uses training data to learn a decision tree model

used to classify given test data. This workflow uses general classes of algorithms, since a

possible decision tree algorithm could be C4.5, ID3, or LMT. Because some algorithms

can only deal with discrete datasets, the workflow includes steps to discretize the initial

training and test data.

 5

 (a)

(b)

(c)

(d)

Figure 1: A high-level sketch of some workflows: (a) WA is a workflow to process 2007 weather

data from Santa Monica to make weather predictions for Pasadena; (b) WB is a generic version of

WA that uses ID3 to learn a model from training data, then use the model to classify test data; (c)

WC is a generic workflow to use any algorithms that use decision trees to learn and classify

continuous datasets after discretizing them; and (d) WD is a generic workflow that is customized for

weather prediction using ID3, and that samples the training data to obtain results faster.

Components are shown in upper case, references to data and component parameters are capitalized.

In addition, the workflow includes a step that will sample the training data if it is over a

certain size in order to make the learning process more efficient. The fourth workflow is

also generic but it is customized for predicting weather data using ID3. Notice that it is a
more specialized version of the second workflow.

The implementation of each algorithm as software code becomes a workflow component.

A workflow is essentially a composition of these components, and indicates the order and

dataflow for their execution. Workflow components can be web services, or implemented

codes that can be submitted for execution to different remote resources [Deelman et al 05;

Deelman et al 03; Kim et al 08; Gil 06]. We refer to either of these workflow constituent

 6

computations as workflow components. Workflow components are registered in a
component catalog.

Workflow components process data which is available through a data catalog that

manages unique identifiers for data objects. Initially, the data catalog is populated with

data that will be used as input to the workflows. As the workflows execute, the

components generate new data objects that are data products of the workflows. For

example, the execution of a Bayes learning algorithm generates a model of the training data

in the form of a Bayes model. This learned model is a new data object that is added to the
data catalog by the workflow system.

Our goal is to automate the process of answering user requests. Requests may include a

variety of requirements, such as:

Create a Naïve Bayes model of a dataset.

Classify a dataset using a model that was created by 10-fold cross-validation of 500 instances.

Classify a weather dataset, prefer faster rather than more accurate response.

Notice that the first includes requirements in terms of a desired output data product,

while the second constrains what kind of input data to use. The workflow in Figure 1(c)

would be appropriate for the first user goal, while the workflow shown in Figure 1(b)

would not be appropriate since the models created with ID3 are not Bayes models. For the

second user goal, either of those two workflows may be appropriate but the choice should

take into account what kinds of models are available in the data catalog. For the third

request, the workflow in Figure 1(d) would be most appropriate. Users may wish to use a

range of requirements, these are some initial examples just to illustrate that variety.

In order to reason about workflows and how to use them to satisfy user requests that

include such requirements on datasets, we need a rich workflow representation that allows

us to reason about the properties of input and output datasets as well as the properties of

algorithms. The rest of this section describes these requirements, starting off with data

representations, then component representations, and using those to introduce

representations of workflows and of user requests.

2.1. Representing Data: Requirements and Examples

Data objects have metadata properties, which are used to describe useful features of the

data. An example metadata property is the size of a datasets, and whether the data is

continuous or discrete. Table 1 shows some examples of the input datasets that we use in

this paper and some of their metadata properties.

Metadata properties can specify the type of the data, for example whether they are

instances or models, and for models whether they are a decision tree model or a Bayes

model. Table 1 shows the types of data that we consider in this paper. All the datasets
listed in the table are of type TrainingInstances.

An important requirement is the ability to describe new workflow data products

since we need to be able to refer to data objects that do not yet exist and that will only exist

once the workflow is executed. In addition, we need to anticipate the metadata properties

of those objects. We refer to this as the projected metadata for a data object. For example,

if the training dataset is of a particular kind or domain, such as weather data, then we can

state that the model learned is also for weather data and that the classifier is expected to

operate on test data that are also weather data. To support this, we need to be able to state

not only that the domain of the training data (e.g., weather) must be the same as the domain

for the given test data, but also to state or infer that the learned model is of that same

domain (e.g., also weather). Notice that the projected metadata for a data object may be

 7

different than the actual metadata obtained once the data object is created. For example,

we can anticipate that a learned model for a training set of 1,000 instances will have 25

rules, but the actual learned model may end up containing exactly 26 rules. The data

catalogs need to handle the fact that these new projected data products may never

materialize, either because the workflow will not be selected for execution (in favor of
other alternatives) or because the execution of the workflow may fail.

In summary, representing workflows requires being able to represent statements about

data objects that include the ability to:

1) refer to the data objects that will be used as input data,

2) attach properties to those data objects,

3) state relations among properties of different data objects,

4) refer to new workflow data products and their properties, and

5) make inferences about properties of new workflow data products based on properties

of existing input data objects and of other data products.

2.2. Representing Components: Requirements and

Examples

We mentioned earlier that the implementation of each algorithm as software code

becomes a workflow component. A workflow component is a model of a software code

that has been encapsulated so as to have clearly defined inputs and outputs. It also must be

encapsulated so that any execution requirements and dependencies on run-time libraries are

explicitly stated, so the component’s execution can be managed by the workflow system. A

given algorithm can have several implementations, each resulting in a different workflow

component. Also, a given implementation can be compiled or configured in different ways

for a range of computer architectures or operating systems, which would result in different

workflow components. Therefore, a workflow component uniquely identifies an algorithm

or function, an implementation of that algorithm, and an executable configuration of that
implementation.

Components take as input data datasets registered in the data catalog and produce output

data that will also be registered in the catalog when created. Additionally, components may

have parameters which are inputs that serve to configure the behavior of the component.

Parameters take values from simple types that are not registered in the data catalog. We

refer to the combination of input data and parameters as the set of arguments of a

component.

An example of a component is an ID3 decision tree modeler. Given a dataset as input

data, it uses the dataset as training data to learn a decision tree model that can be used to

classify new data. It has an additional input argument, which is a parameter to specify

which example feature is to be predicted by the learned model (this is called the class index

of the dataset, which effectively will be the column to be ignored for training). These
characteristics can be represented as shown in Table 2(a).

Components often require representing properties of their input or output data. For

example, that a component that discretizes a dataset has as output a dataset that is discrete

(instead of continuous data). This is shown in Table 2(b). Components also may require

representing constraints among their input and output arguments. For example, a

component that extracts a sample from a dataset by selecting every k-th element has as its

output a dataset whose size is 1/k of the size of the input dataset. This is shown in Table
2(c).

 8

Data sets:

Id Domain Size (K) isDiscrete hasMissingValues

20070730194138 contact lenses 3924 t nil

20070731161618 cpu 2388537 nil t

20070730195133 iris 30612 nil nil

20070730195539 labor 588210 nil t

20070730202315 soybean 27113 t t

20070731101501 weather 2413 nil nil

20070730221909 weather-nominal 27061 t nil

Data Types:

DataObject

 InitialData

 RawData

 SampledData

 DiscretizedData

 LearnedModel

 DecisionTreeModel

 BayesModel

 Classification

 DecisionTreeClassification

 BayesClassification

Components:

Weka-Component

Modeler Classifier

 DecisionTreeModeler DecisionTreeClassifier

 J48Modeler J48Classifier // Implements C4.5

 ID3Modeler ID3Classifier // ID3: discrete only

 LmtModeler LmtClassifier // Lmt: no missing values

 BayesModeler BayesClassifier

 BayesNetModeler BayesNetClassifier // BayesNet: discrete only

 NaiveBayesModeler NaiveBayesClassifier // NaïveBayes: discrete only

 HNBModeler HNBClassifier // HNB: discrete only

Preprocessor

 RandomSampleN

 Discretize

Table 1: Example datasets and components for machine learning workflows. For each

dataset we show the metadata properties. The data types are organizad into a class

hierarchy, indicated as indentation. All datasets shown are of type TrainingInstances. The

components are organized into hierarchies, classes shown in italics. Major requirements

that components have on datasets are also shown as comments on the right hand side.

 9

(a) Basic Datatypes

Component ID: ID3-Classifier

Input: d: Dataset

 m: DecTree-Model

Params: i: ClassIndex

Output: o: DecTreeClassification

(b) Properties

Component ID: Discretize

Input: d: Dataset

Output: o: Dataset is Discrete

(c) Inter-argument constraints

Component ID: SystematicSample

Input: d: Dataset hasSize s:Size

Params: k: SamplingInterval

Output: o: Dataset

 hasSize quotient(s,k)

Table 2. Increasingly more detailed representation of the arguments of a

workflow component: (a) representing only basic datatypes of the arguments,

(b) representing more detailed datatypes of the output arguments, (c)

representing constraints across component arguments.

(a) Abstract Component

Component ID: DecTreeModeler

 is Abstract

Input: d: Dataset

 hasSize s:Size

Params: i: ClassIndex

 j: maxJavaHeapSize

 j <- 256x rem(s/1000)

Output: o: Model is DecTree

(b) Concrete Components

Component ID: ID3-Modeler Component ID: Lmt-Modeler

 is DecTreeModeler is DecTreeModeler

 is Concrete is Concrete

Input: d: Dataset is Discrete Input: d: Dataset is NoMissingVals

Params: i: ClassIndex Params: i: ClassIndex

 j: maxJavaHeapSize j: maxJavaHeapSize

Output: o: DecTree-Model Output: o: DecTree-Model

Table 3. Representation of abstract and concrete workflow components.

Concrete components correspond to executable codes, abstract components

correspond to classes of components with common general properties.

Components have argument identifiers that enable the workflow system to refer to

particular arguments of the component. For example, the component ID3-Modeler has an
input dataset whose identifier is “d”.

Components in a component catalog may be abstract or concrete. Concrete components

model pieces of software that can actually be executed while abstract components are

descriptions of the common features of a set of concrete components, in a similar sense to

the way an abstract class in object-oriented programming gathers the commonalities of its

subclasses. Table 3(a) shows an example of an abstract component, which represents all

common properties of decision tree modelers such as the output is in the form of a decision

tree. Table 3(b) shows two examples of concrete components. The ID3-Modeler requires

input data that are discrete, while the LMT-Modeler requires the training examples used as

input to have no missing values for their features. The abstract component illustrates how

the value of a metadata property of an input dataset (s) is used to set the value of a
parameter (h).

For this paper, we consider a component catalog with the components shown in Table 1,

organized into the component classes shown in italics. The catalog represents requirements

that the components place on the input datasets. For example, only J48 and Lmt can

process continuous data. Lmt cannot process data sets with missing values. The execution

of a workflow component results in an invocation of the code that implements that

component. We refer to the invocation command as the string that can be used to invoke

 10

that code and that contains all the arguments in the required order and with the required

prefixes and formats. The invocation command may require an identifier for the output

datasets (for example a file name). It may have inputs and outputs mixed together. In order

to enable dynamic assignment of execution resources to the component, the codes must be

encapsulated so that all their execution requirements are declared explicitly, including

paths to libraries and other dependencies. To execute workflow components, a workflow

catalog needs to be able to provide information about where the codes are installed and
what their execution requirements are.

Components can have additional general properties, such as failure rates, average

execution time, or usage rates.

In summary, we have the following requirements for representing components:

1) represent input data, parameters, and output data in each with a unique argument

identifier,

2) represent constraints on the values that arguments can take, including type,

3) represent constraints across argument values,

4) represent classes of components based on common properties, and

5) ability to generate an appropriate invocation command.

2.3. Workflows: Requirements and Examples

Figure 1(a) shows a workflow that refers to specific datasets and has values for all

component parameters. We refer to such a workflow as a workflow instance. Workflow

instances are specific to the given datasets and parameters. We also want to represent

workflows that are generally applicable to a range of types of data or that can take in a

range of parameter values. The workflows shown in Figures 1(b) and 1(c) are examples of

such generic workflows. We refer to such a workflow as a workflow template. Workflow
templates are reusable, and represent commonly used analyses.

The need for workflow templates places additional requirements for workflow

representation. For example, for the workflows sketched in Figures 1(b) and 1(c) we would

want to state one of the tenets of machine learning: that the training data must be a different

dataset from the test data used within the same workflow. Representing such statements

hinges on the ability to refer to the data objects that will be eventually selected as training

data and test data and to make statements that relate those data objects. Therefore, to

represent workflow templates we need to include data variables (instead of identifiers of

particular datasets as a workflow instance would). Data variables are used to refer to input

data as well as workflow data products that have not been yet identified. Thus, data

variables allow us to express workflows that are variabilized and highly reusable.

Workflows have complementary representations of structure and constraints. The

structure of a workflow reflects the dataflow among components, while the constraints

reflect interactions among components and datasets. We explain now both aspects of the
representation in more detail.

The structure of a workflow is specified as a set of nodes, each corresponding to a

component, and a set of links that reflect the dataflow across components. For simplicity,

we use links to specify input and output data and refer to them as input and output links,

with an empty origin node and an empty destination node respectively. Similarly, we use

parameter links for parameters, and give them an empty origin node. All other links are in-

out links and incluye both an origin and a destination node.

 11

__

 Workflow Structure:

 Workflow Constraints:

TrainingDataVariable ≠ TestDataVariable

Domain of TrainingDataVariable = Domain of TestDataVariable

Figure 2: The representation of a workflow to learn a model and then classify test data. The

nodes are shown in dashed ovals, links are shown in dotted arrows. The top illustrates the

representation of the structure of the workflow, the bottom shows the constraints of the workflow.

The representation of constraints for a workflow consists on assertions on data variables.

A constraint may restrict the kind of data that can be bound to a variable, essentially its

type. Workflow constraints can relate more than one data variable. An example is the
constraint mentioned earlier that the training data and the test data should not be the same.

Data variables express the cross-references between the structural representation and the

constraints representation. Constraints are expressed over workflow data variables. The

same data variables are used to express dataflow among components in the links of the

workflow structure representation.

 12

 Workflow Structure:

 Workflow Constraints:

TestDataVariable has Domain = weather

Training DataVariable = Weather-SM-2007-Data.csv

SamplingIntervalParameterVar = 20

ClassIndexParameterVar = 5

TrainingDataVariable ≠ TestDataVariable

Domain of TrainingDataVariable = Domain of TestDataVariable

Figure 3: A workflow to learn a model to predict weather. The training data is sampled first at a

set rate. The workflow constraints specify bindings of data variables as well as parameter settings.

Workflow constraints also express a restriction on the test dataset that it contains weather data,

which avoids incorrect use of the workflow with other kinds of data.

Figure 2 shows a representation of the workflow in Figure 1(b) which has only two

nodes. The dotted ovals and the dotted lines represent workflow nodes and links

respectively. The ModelerThenClassifier workflow consists of two nodes (modelerNode with

Modeler component and ClassifierNode with Classifier component), two input links (for

modelerTrainingData and classifierInputData), two parameter links (for javaMaxHeapSize and

modelerClassIndex), one in-out link (for outputModel and classifierInputModel), and one output

link (for classifierOutput). In this workflow, there are several data variables shown. One is

TrainingDataVariable, which refers to the input data that will be used as training data and

 13

can be bound to any data sets available. Another data variable is ModelDataVariable,

which refers to the data product generated after the Modeler component will be executed.

The workflow in the figure is variabilized, and its input data variables can be bound to

many posible combinations of data inputs. Links specify which argument identifier of the

component is associated with the link. In Figure 2, the argument identifiers are shown next

to the solid arrows inside the nodes. For example, the learned model corresponds to the

“m” argument id of the Classifier component. We include here a parameter that is used in

the Weka implementation and that specifies the allocation of memory to be used (indicated

with a “j” argument identifier on both components) and should be set in proportion to the

size of the input data sets. We will use this parameter in later sections to illustrate how the

components can be automatically configured during workflow generation.

In our work, the structure of a workflow is constrained to be a directed acyclic graph

(DAG). This is a very simple structure that we have found very useful in many fronts:

including hiding programming constructs from users, facilitating reasoning about

workflows (in particular automatic workflow generation, which is the concern of this

paper), and last but not least recovery of execution when a job fails in the middle of the

workflow. Many workflow languages depart from this basic structure and enable

constructs such as conditionals and iterations through global variables. Using DAGs, we

are able to support simple forms of iteration over data collections, as well as conditional

execution based on data types [Gil et al 07a]. We have found this structure to be very
manageable and to cover what was needed for a wide range of applications.

Figure 3 shows another example of a workflow customized to learn to predict weather

data, as sketched in Figure 1(d). This is a workflow that has data objects assigned to some

of the data variables and values assigned to some of the parameters, both done through the

workflow constraints. This workflow also illustrates how constraints represent additional

metadata properties of the input data. In this case, a constraint indicates that the domain of

the test dataset used must be weather. This constraint will avoid the incorrect use of this
workflow to make predictions over non-weather data.

The representation of the structure of the workflow is essentially syntactic in nature, as it

is concerned with having a complete specification of the direction of the dataflow for all

the inputs and outputs of the components. The representation of the constraints is semantic

in nature, and is concerned with having a consistent specification of the nature of the data
exchanged among components through the dataflow.

In summary, to represent workflows we have the following requirements:

1) represent dataflow across components,

2) represent data variables that are generic placeholders for actual datasets, so we can
have reusable workflow templates,

3) represent constraints on data variables,

4) represent constraints across data variables, and

5) represent different degrees of generality in the workflows, including bindings for

input datasets and values for parameters.

2.4. Workflow Requests: Requirements and Examples

Our goal is to automatically generate responses for a variety of requests from users by

generating and executing workflows that satisfy the requests. Users may specify a variety
of criteria in the requests, such as:

• Functional properties: Users often want to use workflows based on the nature of the

computations performed or the desired data products. These include:

 14

o component-centered properties that refer to the kinds of computations
performed by the workflow components

o data-centered properties that refer to desired data products, or that specify

that a certain type of data of interest to the user must be used in the
workflow.

Example of output data properties: Create a Naïve Bayes model of labor data.

Example of input data properties: Classify iris data using a naive-bayes model with three classification classes
and created from at least 500 instances.

Example of component properties: Create a model of labor data using ID3.

Example of component properties: Create a model of labor data with no sampling steps in the workflow (i.e.,
using the complete training data set).

• Structural properties: Users may provide constraints on the structural composition

of the workflow concerning the relative ordering of steps. For example, a user may

seek a workflow that performs data aggregation on a collection of datasets before

performing clustering operations.

Example: Sample soybean data and then create a Naïve Bayes model.

Example: Use ModelThenClassify workflow with soybean data.

• Non-functional properties: These properties express user requirements regarding

workflow performance and other costs. We highlight two here:

o Execution time: A desired turnaround time for obtaining results.

o Result quality: A threshold of quality or accuracy measured in some domain-
relevant metric.

Because some of these requirements may be in conflict, users may state additional

combination functions or preferences. For example, there is typically a tradeoff

between execution time and result quality, where shorter time often implies a lower

quality results. A combination function may be expressed in the request when both

time and quality matter.

Example: Create a model of soybean data with maximum accuracy.

Example: Classify iris data and minimize the response time.

• Resource properties: Users may have specific requirements about the execution

resources to be used in executing the workflow. For example, for a workflow

designed to compare the performance of a set of algorithms the user may request that

all the algorithms may be executed on the same target architecture, or that the

datasets used should be those existing at specific locations. Users may also request

that specific resources should not be used, such as datasets generated by prior
workflow executions or datasets that have not been updated for some period of time.

• Cumulative properties: These are properties of workflows that are derived through

usage. Users may prefer to use workflows that are most frequently used by a user
group, or more popular for a given function.

Example: Create a model for soybean data using the most popular decision tree modeler.

• Comparative properties: Properties that are derived by comparing across possible

candidate workflows. These can be used as ranking functions that drive the selection

of workflows that have higher ranking.

Example: Create a model for soybean data with minimum description length.

A language for expressing workflow requests should include constructs to specify all

these kinds of properties. For this work, we focus on supporting requests that specify

functional and structural properties. In order to represent user requests we need to be able
to:

 15

1) allow users to specify specific input datasets,

2) allow users to specify properties of desired input, output, and intermediate data,

3) allow users to specify values of parameters, and

4) allow users to specify a workflow template as a pattern of computation.

2.5. Workflow Generation: Requirements and Examples

An important consideration for automated workflow generation is that it must allow the

user to have the flexibility to specify very little or alternatively to specify precisely what

they want in the workflow request. The system has to specify all the aspects of the

workflow that the user did not specify in the request. We illustrate this requirement for

flexibility in the user input using the examples in Table 4. We show several examples of

user requests, which refer to the workflows shown in Figure 1. For each request, the table

shows whether workflow, component, parameter, and data are specified by the user or by

the system. In user request RA a workflow template is provided that specifies all the

components to be executed and the datasets to be used. However, the request only

specifies one parameter setting, so the system has to generate values for other parameters

and as it turns out they depend on the parameter value that the user provided. In user

request RB only one dataset is specified, but constraints on another input dataset (training

data) are given (domain must be weather and area must be Pasadena). The system has to

select a dataset that satisfies those constraints. The system also has to select values for all

the component parameters, and those values are determined by what datasets are chosen.

All the components are specified in RB so the system does not have to select them. RC

shows an example of a user request where the user does not specify the components to be

used, but provides constraints on an intermediate dataset (the model learned must be a C4.5

model) and the output dataset (it must be of labor data). The system also has to choose

values for parameters not provided by the user, which it could do by assuming default

values. RD is a user request where all the components, data, and parameters are provided by

the user, so there are no requirements for the system in terms of workflow generation. In

the other extreme is RE where the user does not specify a workflow template to follow, and

only specifies one dataset to be used. The system would have to either retrieve a matching

workflow template or generate a workflow from scratch. When retrieving a workflow

template, the system would have to map the dataset constraints provided by the user to data

variables in the template. Then the system would have to select the remaining datasets,

components (if the template has abstract components), and parameters.

These examples illustrate that user requests can range in terms of the specificity and the

completeness of the information provided. The system must be able to use the information

provided in the request and automatically generate a completely specified workflow that
can be submitted for execution.

In terms of user interaction, the requirements for the workflow generation system are

that it should provide flexibility to the user in two important ways:

1. Users should have the ability to specify functional or structural properties

concerning any component or dataset in the workflow. The system should then

use that information to generate an executable workflow from that high level
guidance.

2. Users should have the flexibility to specify some or no information concerning a

specific type of functional or structural property. For example, users should be

allowed to issue workflow requests that do not specify what components should

be used but that specify what datasets to use.

 16

User request Workflow

selection

Component selection Parameter selection Data selection

User selects a

workflow

template.

User selects a

workflow that has

specific components.

User specifies class index 5

for the modeler but no other

parameters.

User specifies all datasets. R
A
: “Use WA as

is”

System does

not have to

determine

dataflow

among

components.

System does not have

to select any

components.

System has to select:

• Class index for the

classifier, which has to be

set to the same value as the

class index for the modeler

• Heap size, which could be

set to a small size since

those weather datasets are

large

System does not have to

select any datasets.

User selects a

workflow

template.

User selects a

workflow that has

specific components.

User specifies no parameter

values.

User specifies one of the

input dataset to be used and

some of the characteristics of

another dataset (the training

dataset).

R
B
: “Use WB to

classify 2007

Santa Monica

weather data

using Pasadena

weather as

training data”
System does

not have to

determine

dataflow

among

components.

System has to select

any components.

System has to select all the

parameter values, some using

defaults and some constrained

by the datasets chosen (eg

heap size will depend on the

size of the dataset chosen).

System has to select:

• A training dataset with the

required characteristics of

containing Pasadena

weather data

User selects a

workflow

template.

User selects a

workflow template but

does not select specific

components.

User specifies class index 7

for the classifier but no other

parameters.

User specifies characteristics

of the output dataset, which

should determine the choice

of input datasets.

R
C
: “Use WC-

NEW!! to

generate a

classification of

labor data on

class index 7

using a C4.5

model”

System does

not have to

determine

dataflow

among

components.

System has to select

appropriate decision

tree modelers and

classifiers, inferring

that only J48 is

possible:

• ID3 cannot be used

as classifier since it

is a continuous

dataset, and cannot

be used as modeler

because its output is

not a C4.5 model

• LMT is not possible

since labor data have

missing values

System has to select:

• Class index for the modeler,

inferring that it has to be set

to the same value as the

class index for the classifier

• Heap size, which has to be

set to a large size since that

labor dataset is large

• A default value for the

sampling rate

• A default value for the

discretizer bins

System has to select:

• A test dataset in the labor

domain as specified in the

request

• A training dataset,

inferring that it would have

to be in the labor domain

so that the model created is

in the labor domain and

can be used for a labor

classification

User selects a

workflow

template.

User selects a

workflow that has

specific components.

User specified all parameter

values.

User specifies all datasets. R
D
: “Use WD to

classify

Pasadena 2007

weather using

class index 5

and heap size

512M”

System does

not have to

determine

dataflow.

System does not have

to select any

components.

System does not have to select

any parameter values.

System does not have to

select any datasets.

User does not specify a workflow

template, components or a dataflow.

User specifies no parameter

values.

User specifies some datasets. R
E
: “Generate

a classification

of 2007 Santa

Monica

weather data

using 2006

Pasadena

weather as

training data”

System has to:

• Retrieve a matching workflow that

satisfies the constraints in the user

request

• Select components if the matching

workflow has any abstract

components

System has to select all the

parameter values once a

workflow is chosen.

System has to:

• Assign each dataset in the

request to specific

workflow data variables

• Select other datasets that

may be needed by the

workflow retrieved

Table 4. Examples of user requests with descriptions of what requirements

they pose to the system in terms of automated workflow generation as well as
requirements to the workflow request language.

 17

Figure 4. Workflow systems use distributed services to access external data,

component, and other catalogs for workflow creation and execution.

In the remainder of this article, we assume that user requests always specify a workflow

template to be used in combination with a seed that specifies additional constraints. If a

workflow request does not include a workflow template, the seed could be used to search

for relevant workflows in the library that could be used to accomplish the request.

Matching requests and workflow templates is a unification problem [Baader and Narendran

01]. There is a large body of work on matching in the case-based reasoning literature

[Ashley and Aleven 97; Bergmann and Stahl 98; Champin and Solnon 03; Forbus et al 94]

as well as in matching in first-order and in description logic [Li and Horrocks 03; Baader et

al 05; Hull et al 06]. Graph matching techniques have been used to retrieve workflows

based on structural properties [Goderis et al 06]. For this paper, we assume that a workflow

request is formed by a workflow template and a seed that specifies additional constraints

and do not address workflow matching issues. Another alternative to responding to a

workflow request that does not include a template is to use a planning algorithm to generate

a workflow using the seed as a goal statement [Blythe et al 04a; Blythe et al 04b; Sirin et al

04] or as user guidance [Lin et al 08]. However, even though those approaches would be

useful to express user requests such as RE they would not be able to express some of the

other types of requests exemplified above. Users cannot refer to intermediate datasets in

the workflow, or to specific combinations of components and dataset characteristics. A

wider range of user requests presented here could be addressed by approaches to planning

from sketches [Myers et al 03] using hierarchical task network planning, although those

 18

approaches have not been used for workflow systems. In our approach, by having a

workflow template that contains a handle on what data variables and what components are

to be used and what their ordering is, the user has great flexibility to refer to specific
constituents of the workflow and relate them as they wish.

Another important set of requirements stems from the fact that workflow systems must

assume a highly distributed architecture. Figure 4 illustrates the distributed nature of the

environment where workflow systems must operate. Workflow generation is not a typical

function of deployed workflow systems, and we will come back to describe this function

shortly. Rather, workflows are typically created by selecting components and data by hand

using a workflow editor [Taylor et al 06; Oinn et al 06; Ludaescher et al 06]. Workflow

editors access distributed catalogs of components and datasets, and allow users to compose

workflows out of those elements. Once a workflow is specified, an important function of

workflow systems is mapping workflows to execution resources available in the

environment. A well-known workflow mapping and execution system that we use in our

work is Pegasus [Deelman et al 03; Deelman et al 05]. Pegasus assigns execution resources

to each workflow component depending on its requirements stated in the component

catalog, adds nodes to the workflow to account for movement of data to execution

locations, adds nodes for data registration in catalogs, reduces the workflow by removing

computations whose data products already exist, and performs several optimizations by

restructuring the workflow. Pegasus submits the final workflow to the Condor Directed

Acyclic Graph Manager (DAGMan) for execution [Thain et al 05]. Other examples of

workflow execution systems include Askalon [Wieczorek et al 05] and the Java CoG Kit

[von Laszewski et al 06]. Workflow execution is customized and optimized to the

available resources. Once workflows are executed, provenance catalogs store detailed

records of the execution process [Moreau and Ludaescher 08; Kim et al 08; Zhao et al 08].

Provenance services can be accessed by any other sercice in the architecture. For example,

the component catalog services may use provenance data to analyze which components in

its catalog are not used in practice and as a result can extend or improve the representations
of those components.

Data and component catalogs are distributed and are external to workflow systems.

Data catalogs typically focus on offering services that enable distributed access to data in

an efficient and scalable manner [Moore et al 01; Singh et al 03; Tuchinda et al 04; Gil et al

05; Szalay and Gray 06]. The data resides in various distributed locations, and metadata

services contain descriptions of the data. Runtime workflow systems typically access data

catalogs to find out the necessary access protocols and physical locations of the data.

Component catalogs may be service registries, typically using a registry based on the

standard Universal Description Discovery and Integration (UDDI). Component catalogs

can also be code repositories. Components are typically described today in terms of simple

input and output data types [Fan and Kambhampati 05; Al-Masri and Mahmoud]. Some

recent research addresses the development of catalogs with semantic service descriptions

[Bussler et al 02] and their use to validate workflows created by users [Belhajjame et al
08].

For workflow generation, we must assume that the components and data catalogs are

distributed and external to the workflow system. These catalogs will be typically provided

by third parties that naturally want to have control over their contents. Data catalogs must

be able to support workflow generation by reasoning about characteristics of datasets.

Component catalogs must support reasoning about constraints and requirements of

components.

The workflow system should be responsible for any reasoning that concerns the

workflow itself while invoking the data and component catalogs to perform aspects of the

 19

reasoning that are specific to data and components. At a minimun, in order to support the
kinds of user requests discussed above, the workflow system should be responsible for:

• Merging off-the-shelf workflow templates with additional seed constraints

expressed in the request,

• Reasoning about end-to-end compositions by managing the propagation of the

effects that the requirements expressed in the request pose on other components and

datasets of the whole workflow, and

• Exploring choices of datasets, components, and parameters to generate an

executable workflow such that all choices are consistent with the information

provided by the user in the workflow request.

To accomplish this, the workflow system should rely on the following reasoning

services provided by external catalogs:

• Reasoning about data constraints should be performed by data catalogs

• Retrieval of datasets should be supported by data catalogs

• Assignment of unique indentifiers for any new datasets created by the workflow
must be performed by data catalogs

• Reasoning about any constraints on input and output data characteristics that are

required by components should be done by component catalogs

• Reasoning about the criteria for component specialization should be performed
by component catalogs

• Assignment of component parameter values should be supported by component

catalogs

Therefore, the distributed environment where workflow systems operate leads us to the

requirement that workflow generation be driven by the workflow system while relying on

reasoning functions provided by data and component catalogs that are external to the

workflow system. The distributed reasoning that occurs during workflow generation is

illustrated in Figure 4. Other existing research on workflow generation [McIlraith and Son

01; McDermott 02; Narayanan and McIlraith 02; Blythe et al 03; Kim et al 04; Ambite and

Kapoor 07; Sirin et al 04; Lin et al 08] does not comply with this requirement. Those

approaches assume a distributed architecture but the reasoning about data and components

is centralized in the workflow generation system. In that work, the descriptions of

components and data may come from external distributed services and in that aspect they

assume a distributed architecture. However, the descriptions are imported into the

workflow system, which then reasons about all data and component constraints so that all
the reasoning is centralized.

The next section introduces a formalism that captures the requirements on the various

distributed services needed to support automatic workflow generation.

3. Formalization

This section shows a formalization of our framework to satisfy the requirements

discussed above. The formalization describes how a workflow system can model data,

components, and workflows. We also show the basic functions that the workflow system

needs in order to access external data, component, and workflow catalogs. Although our

own implementation uses a particular representation formalism we use a more general

formalization here, since we aim to be inclusive of data and component catalogs that do not

use logic but are developed with other formalisms in mind (e.g., [Moore et al 01; Singh et

 20

al 03; Tuchinda et al 04; Gil et al 05; Szalay and Gray 06]). We show later in the paper our
implementation of this formalization.

Most functions in our framework take and produce metadata annotations. We use the

term data object description (DOD) to refer to a set of metadata annotations that describe

the properties of a given data object. DODs for workflow data variables effectively

constrain the possible data that can be used to bind those data variables or to specify the

dataset identifier that is bound to that data variable. DODs for component parameters can

be used to constrain the values that the parameter can take, and to specify the value of a

component parameter. DODs are in effect sets of constraints, and we often refer to them as

constraints. DODs are sometimes obtained from reasoning about the workflow seeds,
other times they represent metadata properties or characteristics of an existing dataset.

First, our formalism need the ability to express literal annotations and literal relational

annotations. Formally, given the set E of data objects (input data, data variables or

component arguments) that can be annotated with metadata, the set P of metadata

properties, and the set R of relations between pairs of property values, we assume that the
metadata formalism allows to write:

— literal DODs to specify the value of a metadata property for a given object as:

〈 e, p, v 〉

where e ∈ E, p ∈ P, v ∈ Tp and Tp is the type of metadata property p, i.e., the set of

possible values for that type.

Example: For the workflow shown in Figure 3,

<TestDataVariable, has Domain, weather>

— literal relational DODs to specify a relation between the values of two properties of

the same or different data objects as:

〈 r, e1, [p11, ... , p1n], e2, [p21, ... , p2m] 〉

where e1, e2 ∈ E, p11, ... , p1n, p21, ... , p2m ∈ P, r ∈ R, and n, m ≥ 1

Representing that relation r holds between the value at the end of the property chain

p11, ... , p1n starting in e1 and the value at the end of the property chain p21, ... , p2m

starting in e2. Formally:

∃ x1, ... , xn, y1, ..., ym such that

〈 e1, p11, x1 〉 ∧ ... ∧ 〈 xn-1, p1n, xn 〉 ∧ 〈 e2, p21, y1 〉 ∧ ... ∧ 〈 ym-1, p2m, ym 〉 and

r(xn, ym)

Example: To add a restriction in the workflow in Figure 3 that it can only be used to

make predictions with weather data that is from the same county as the training
data, we can state:

< equals, TestDataVariable, [has-area, has-county],

TrainingDataVariable, [has-area, has-county]>

 which represents compactly the following set of literal DODs:

< TestDataVariable, has-area, A1>

< A1, has-county, C1>

< TrainingDataVariable, has-area, A2>

< A2, has-county, C2>

< C1, equals, C2>

With these representations for DODs, we can represent workflow constraints. For
example, the workflow constraints shown in Figure 3 can be expressed as the set of DODs:

 21

M3= {< TestDataVariable, hasDomain, weather >

 < TrainingDataVariable, has-value, Weather-SM-2007-Data >

 < SamplingIntervalParameterVar, has-value, 20 >

< ClassIndexParameterVar, has-value, 5 >

< not-equal, TrainingDataVariable, [has-value],
TestDataVariable, [has-value] >

< equal, TrainingDataVariable, [has-domain],

TestDataVariable, [has-domain] >}

Given a set E of data objects that can be annotated with metadata, a set P of metadata

properties, and a set R of relations between pairs of property values we denote as M
EPR

 the

set of all possible literal and literal relational DODs, as defined above, that can be built

using those sets. Whenever we do not need to specify E, P and R for the description, we

will use M as an abbreviation for M
ERP

, and whenever P and R are not relevant but E is we
will use M

E
 as an abbreviation for M

ERP
.

We assume two functions to extract the subset of DODs that only refer to a set of given

entities E, and a function that returns the set of entities used in a set of DODs, as follows:

— entity-DODs: P(E) × P(M) → P(M)

which returns a subset of the given set of DODs that only refer to the given set of

entities, and

— get-entities-in-DODs: P(M) → P(E)

which returns the set of entities referred in the given set of DODs.

Given a set V1 of entities and a set M1 of DODs the following must hold:

entity-DODs(V1, M1) ⊆ M1, and get-entities-in-DODs(entity-DODs(V1, M1)) = V1

For example, for the set of DODs M3 above:

entity-DODs ({TestDataVariable TrainingDataVariable}, M3) ≡

{ <TestDataVariable, hasDomain, weather>

<TrainingDataVariable, has-value, Weather-SM-2007-Data >

<not-equal, TrainingDataVariable, [has-value], TestDataVariable, [has-
value]>}

get-entities-in-DODs(M3) ≡

{ TestDataVariable TrainingDataVariable

 SamplingIntervalParameterVar ClassIndexParameterVar }

Note that P(M) and P(E), which

represent the powerset of the set M of possible metadata

annotations and the powerset of the set E of entities, are the types of the arguments.

3.1. Data and Data Catalogs: Formalization

A data catalog must include functions relevant to retrieve and reason about data objects.

Formally, we say that given the set E of entities that can be annotated with metadata, a

data catalog DC is described through a set of object data identifiers DDC (DDC ⊆ E) for the

data objects managed by the catalog, along with the set of metadata anotations on those
entities MDC. Given those sets, we define the following functions:

— obtain-DODs: DC × DDC → P(MDC)

Return as a DOD all the metadata properties and values of the given data object
identifier.

 22

— assign-identifier: DC × P(M
E
) → E

Provides a data object identifier based on a given set of metadata properties and

values on an entity e. The identifier is formed based on the metadata properties and

values and not on the actual entity e. The entity e may in fact not exist until the

workflow is executed, and at the same time the workflow system needs an identifier
to refer to it so it can prepare for the execution of the workflow.

— assert-predicted-DODs: DC × P(M
E
) × E → DC

Register in the data catalog all the predicted metadata properties and values of the

given data object identifier. As a result, the entity passed to the funtion is included

in DDC.

— find-data-objects: DC × P(M
E
) → P(P(E × DDC))

Given an input set of DODs for several data variables, return a (possibly empty) set

of data objects for all the variables in the input DODs that are consistent with the

DODs. Each tuple of the form 〈 e × d 〉 is a binding for a workflow data variable,

where a variable is bound to a data object identifier.

— combine-DODs: DC × P(M
E
) × P(M

E
) → P(M

E
)

Return a set of DODs which combines the metadata properties of two given sets, all
of them on a given set of variables.

In order to be valid, an invocation to combine-DODs must verify that the sets are

consistent.

3.2. Components and Component Catalogs: Formalization

In order to support the workflow generation process, a component catalog must include
different functions about the components in the catalog.

Formally, we say that a component catalog CC is described through a set of components

CCC, which may be abstract or concrete, a set I of unique identifiers for each argument of

the components (input data, input parameters, and output data), and a set MCC of metadata

annotations on the entities identified by ICC. The invocation command for a concrete

component in the catalog can be generated for data objects in a given set D and parameter

values in a given set V.

We define the following basic functions:

— inputs: CC × CCC → P(ICC)

Return the identifiers for the input data objects of a component.

— parameters: CC × CCC → P(ICC)

Return the identifiers for the parameters of a component.

— outputs: CC × CCC → P(ICC)

Return the identifiers for the outputs of a component.

— args: args(c) is the set of arguments of a component c ∈ CCC:

args(c) ≡ inputs(c) ∪ parameters(c) ∪ outputs(c)

— invocation-command: CC × CCC × P(MCC) → String

Return the invocation command for a concrete component, given a set of data object

descriptions that set the values (data object identifiers) for its inputs and the values

for its parameters.

When the component library supports these functions for a component, and the

invocation command results in a successful invocation and execution of the component, we

consider the library to contain a basic component encapsulation. Supporting this basic

 23

encapsulation of the underlying code does not require a component library to include
semantic constraints or properties of data or components.

When a component catalog includes both abstract and concrete components, it needs

to support the following functions:

— is-concrete: CC × CCC → Bool

Determine whether a component c is abstract or concrete.

— specialize: CC × CCC × P(MCC) → P(CCC)

Return a (possibly empty) set of abstract or concrete components that can specialize

a given abstract component using a given set of DODs on the abstract component

arguments. We assume that there is a one-to-one mapping between the arguments of

each of the concrete components returned and the arguments of the abstract one.

When this is not the case, there must be provisions for extending the workflow to

account for the additional arguments, possibly to link them to data variables in the

workflow, and possibly to add workflow components to the workflow to generate
some of the additional arguments.

In order to be valid, an invocation of specialize(cc, c, M1) must verify that DODs in

M1 only refer to the arguments of c: M1 ⊆ M
args(c)

.

— specialize-to-concrete: CC × CCC × P(MCC) → P(CCC)

Similar to specialize but returns only concrete components rather than subclasses.

The next functions support the automatic setting of parameters for a given

component. When the component library supports these functions, we refer to the
component as self-configurable. The functions are defined as follows:

— is-configurable: CC × CCC × P(MCC) → Bool

Determine whether the parameter values for the component can be obtained from

the component catalog given a set of DODs on the component arguments. Notice

that this does not set the values of any parameters, it simply checks that they can be
set by the component catalog.

— configure: CC × CCC × P(MCC) → P(P(MCC))

Return a set of sets of DODs, each set specifying values for all the parameters of a

component c given a set of DODs on the component arguments (inputs, outputs and

parameters).

In order to be valid, an invocation of configure(cc, c, M1) must first verify that:

• DODs in M1 only refer to the arguments of c: M1 ⊆ M
args(c)

 and

• is-configurable(cc, c, M) returns true.

— is-configured: CC × CCC × P(MCC) → Bool

Determine whether a component c is fully configurable based on a given set of
DODs on the component arguments.

We define two additional functions that component catalogs can provide in order to

support workflow generation:

— find-DODs-given-output-requirements: CC × CCC × P(MCC) → P(MCC)

Return additional metadata properties on the concrete component arguments using

the given DODs.

In order to be valid, an invocation find-DODs-given-output-requirements (cc, c, M1)
must comply with:

 24

 DODs in M1 only refer to the arguments of c:

M1 ⊆ M
args(c)

 M1 includes some annotations on the outputs of c:

get-entities-in-DODs(M1) ∩ outputs(c) ≠ ∅

Ex: find-DODs-given-output-requirements(Catalog1, ID3-Classifier,

<ID3-Classifier-o hasDomain Weather>)

→ { < ID3-Classifier-d hasDomain Weather>}

— predict-DODs-given-input-requirements: CC × CCC × P(MCC) → P(MCC)

Return additional metadata properties on the concrete component arguments using
the given DODs.

In order to be valid, an invocation predict-DODs-given-input-requirements (cc, c,

M1) must comply with:

 DODs in M1 only refer to the arguments of c:

M1 ⊆ M
args(c)

 M1 includes some annotations on the inputs of c:

get-entities-in-DODs(M1) ∩ inputs(c) ≠ ∅

Ex: predict-DODs-given-input-requirements(Catalog1, ID3-Classifier,

<ID3-Classifier-d has-value weather-2007-31-101501>)

→ {< ID3-Classifier-d number-of-instances 100>,

< ID3-Classifier-j has-value “512M”>}

When a component library supports the first function for a given component, we refer to

the component as backward-enabled. The function is used to propagate through the

workflow structure any constraints required from the output data products. When the

second function is supported, we refer to the component as forward-enabled. This function

is used to propagate through the workflow structure any properties of the input data. We

also have functions to check whether the component representations in the catalog support

these capabilities as follows:

— is-backward-enabled: CC × CCC → Bool

The function find-DODs-given-output-requirements is defined for the

component.

— is-forward-enabled: CC × CCC → Bool

The function predict-DODs-given-input-requirements is defined for the

component.

Finally, a function to estimate the performance of a component:

— estimate-performance: CC × CCC × P(MCC) × A → T

Return estimated performance as time of execution for the component for the given

metadata that must include values for all the component parameters. The

performance is estimated for a given reference architecture a within the set of all

possible architectures A.

In order to be valid, an invocation estimate-performance (cc, c, M1,v1, … , vn, a)
must comply with:

 DODs in M1 only refer to the arguments of c:

M1 ⊆ M
args(c)

 25

 M1 includes some annotations on the inputs of c:

get-entities-in-DODs(M1) ∩ inputs(c) ≠ ∅

 is-concrete(cc, c) returns true

 is-configured(cc, c, M1) returns true

In later sections of the paper, we will show how all these functions are used during
workflow generation.

3.3. Workflows

Given a component catalog which includes a set C of components, a data catalog with a

set D of data object identifiers, a set V of possible values for component parameters and a

set P of metadata properties, a workflow w is defined as a tuple of nodes, component to

node mappings, data variables, parameter variables, DODs on data and parameter variables,

data links, parameter links, data bindings, and parameter bindings. Formally, a workflow is

specified as a tuple:

〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉

where:

 Nw is the set of nodes in the workflow,

 σw is a mapping function that associate a component to a node:

σw : Nw → C

Note that different nodes in the workflow may have the same associated
component.

 DVw is the set of data variables in the workflow

 PVw is the set of parameter variables in the workflow.

 Mw, is DODs on the data and parameter variables of the workflow: get-entities-

in-DODs (Mw) ⊆ DVw ∪ PVw

 Lw, is the set of links in the workflow. A link l is represented as a tuple of the

form:

〈 no, o, v, nd, i 〉

where no, nd ∈ Nw ∪ {⊥}, o ∈ outputs(σ(no)) ∪ {⊥}, v ∈ DVw ∪ PVw, and i ∈

inputs(σ(nd)) ∪ {⊥}.

We refer to no as the origin and to nd as the destination.

An input link to the workflow is one without origin that connects a data

variable to an input argument of a component: 〈 ⊥, ⊥, v, nd, i 〉 v ∈ DVw, while

an output link is one without destination that connects an output argument to a

data variable: 〈 no, o, v, ⊥, ⊥ 〉 v ∈ DVw.

 PLw, is the set of parameter links in the workflow. A parameter link pl is

represented as a tuple of the form:

〈 pv, n, p 〉

where pv ∈ PVw, n ∈ Nw, and p ∈ parameters(σw(n)).

 DVBw is a, possibly empty, set of bindings of the data variables to data object
identifiers:

〈 dv, d 〉 ≡ 〈 dv, has-value, d 〉

 26

where dv ∈ DVw, d ∈ D

 PVBw is a, possibly empty, set of bindings of the parameter variables to values:

〈 pv, v 〉 ≡ 〈 pv, has-value, v 〉

pv ∈ PVw, v ∈ V

The parameter link indicates which parameter variable in the component corresponds to

the link. No values are set to parameters in parameter links, instead the values are set
through the parameter bindings.

Workflow catalogs should contain workflows that comply with the basic component

encapsulation requirements for all of its nodes’ components. That is, all the arguments and

argument identifiers specified in the workflow nodes and links have a one-to-one

correspondence with the arguments and argument identifiers defined for the nodes’

components. We refer to such workflows as well-formed workflows. This is a syntactic

property concerning the structure of the workflows, and does not concern the constraints or
properties that may be defined for data variables or data objects.

We define the following types of workflows:

— Specialized workflow:

A workflow that contains only concrete components.

Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where

 ∀ c ∈ Cw : isConcrete(c)

where Cw denotes the set of components in the workflow:

Cw ≡ { c ∈ C | ∃ n ∈ Nw : σw(n) = c }

— Bound workflow:

A workflow whose input data variables are bound to data objects identifiers

registered in the data catalog.

Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where

 ∀ dv ∈ DVi that is an input data variable ∃ d ∈ D : 〈 dv, d 〉 ∈ DVBw

where DVi denotes the set of input data variables in the workflow:

DVi ≡ { dv ∈ DVw | ∃ n ∈ Nw : ∃ i ∈ I : 〈 ⊥, ⊥, dv, n, i 〉 ∈ Lw }

— Configured workflow:

A workflow where all the parameters of its components have been assigned values.

Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where:

 ∀ pv ∈ PVw : ∃ v ∈ V : 〈 pv, v 〉 ∈ PVBw

— Ground workflow:

A workflow where all the data variables in the workflow have been assigned data

object identifiers.

Formally, a workflow 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉 where:

 ∀ dv ∈ DVw : ∃ d ∈ D : 〈 dv, d 〉 ∈ DVBw

With these definitions at hand, we can make the following distinction:

— Workflow instance.

 27

A specialized bound workflow which is also configured. A ground workflow is a

special case of workflow instance where all data variables are bound to data objects

with assigned identifiers.

— Workflow template.

Any workflow that is not a workflow instance.

The workflow in Figure 2 is not specialized, since both nodes contain abstract

components. It is partially bound, since it has a binding for the training data variable but

not for the test data variable. It is partially configured, since only some of its parameter

variables have been assigned values. This workflow is a workflow template, and we will

use it as a running example to show how our algorithms use it to create a workflow

instance by specializing, binding, and configuring it. The workflow in Figure 3 is

specialized, partially bound, and partially configured.

A workflow library containing reusable workflows can include any kind of workflow

template, whether they are fully or partially specialized, bound, or configured. Different

kinds of workflow templates can be reused for different purposes. For example, a fully

configured workflow can be reused to process different datasets, while a fully bound

workflow can be reused to explore alternative parameter settings.

In contrast with workflow templates, workflow instances are fully specified in terms of

data, parameters, and components to be used. Therefore, workflow instances can be

submitted to a workflow mapping and execution engine to be mapped to available
execution resources and to be subsequently executed.

In order to be submitted to the workflow mapping and execution system, workflow

instances need to have unique data object identifiers for each new data product as well as

exact command line invocations for each component. The workflow mapping and

execution system does not need the DODs and other constraints that may be included in the

workflow as a result of its evolution from a workflow template to a workflow instance. It

only needs to have a unique identifier for each new dataset that will result from the

execution of the workflow, specific mention of codes to be executed for each component,

and an invocation command to invoke each component code. We refer to these workflows

as ground workflow instances, where only the basic structure of the workflow is given and

no data variables or metadata are included.

A workflow catalog can support analogous functions to component catalogs:

 is-configurable(workflow)

 configure(workflow)

 is-backward-enabled(workflow)

 find-DODs-given-output-requirements(workflow)

 is-forward-enabled(workflow)

 predict-DODs-given-input-requirements(workflow)

 estimate-performance(workflow)

The functions find-DODs-given-output-requirements and predict-DODs-given-

input-requirements can be used to generate requirements on inputs and predictive

metadata on outputs respectively at the workflow level, as an alternative to finding

requirements component by component as we will explain in detail later. Similarly to

components, we refer to the workflows in the workflow catalog as self-configurable,
forward-enabled, and backward-enabled when the corresponding functions are supported.

Later on, we will show how these functions can be used during workflow generation.

 28

3.4. Workflow Requests: Formalization

We discussed earlier a broad range of requirements that users could provide to a

workflow system. We focus here on a particular kind of requests, namely those where a

workflow template is given by the user to provide functional and structural properties of the

answer to be found by the system. Together with a workflow template from the library, a

seed is specified that further constrains data and parameter variables. A given request may

contain several pairs of templates and seeds when the user would like the system to

consider several templates as a starting point to find the solution. By specifying a template,

the user is providing structural properties as indicated by the relative ordering of the steps

in the template. Also through the workflow template, the user can provide functional

properties since the template specifies component types to be used as well as constraints on

data variables.

Formally, given a workflow template library L, a component catalog C, and a data
catalog D, a request WR is defined as a pair of a workflow template and a seed:

 〈 wr, Sr 〉

where wr ∈ L is a workflow template defined by a tuple

 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉

and the seed Sr is defined by a tuple:

〈 DVr, PVr, Mr, DVBr, PVBr 〉

where:

 DVr is a set of data variables for the seed. A subset of these variables

may be specified to be input variables IDVr ⊆ DVr and another subset

may be specified to be output variables ODVr ⊆ DVr.

 PVr is a set of parameter variables for the seed.

 Mr is a (possibly empty) set of DODs using the variables in DVr and
in PVr

 DVBr is a (possibly empty) set of bindings of the workflow data

variables to data object identifiers:

〈 dv, d 〉 ≡ 〈 dv, has-value, d 〉

dv ∈ DVr, d ∈ D

 PVBr is a (possibly empty) set of bindings of the parameter variables
to values:

〈 pv, v 〉 ≡ 〈 pv, has-value, v 〉

pv ∈ PVr, v ∈ V

We use the following definitions:

— Unified request:

A request where the data and parameter variables in the seed correspond to the data

and parameter variables of the workflow template specified in the request.

Formally, DVr ⊆ DVw and PVr ⊆ PVw

— Well-formed request:

A request where any bindings and values in the seed for data and parameter

variables do not overlap with the bindings specified in the workflow template.

Formally:

 DVBr ∩ DVBw = ∅

 29

 PVBr ∩ PVBw = ∅

— Bound request:

A unified well-formed request where the seed and the workflow template provide

bindings for all the input data variables of the workflow template, and the bindings
do not overlap.

Formally:

 DVBr ∩ DVBw = ∅

 ∀ dv ∈ DVw then ∃ <dv, d> ∈ DVBr ∪ DVBw

— Configured request:

A unified well-formed request where the seed and the workflow template provide

values for all the parameter variables of the workflow template specified in the
request, and the value assignments do not overlap.

Formally:

 PVBr ∩ PVBw = ∅

 ∀ pv ∈ PVw then ∃ <pv, v> ∈ PVBr ∪ PVBw

— Seedless request:

A request where the seed is empty.

Table 5 shows an example request specifying the workflow to be used

(ModelerThenClassifier) and providing DODs on a data variable (ClassificationDataVariable) and a

binding for a parameter variable (ClassIndexParameterVar).

We define an additional type of workflow:

— Seeded workflow, or workflow seeded with a request:

A workflow where the DODs for the variables in the request have been combined

with the DODs of the workflow template specified in the request, and the bindings

and parameter values in the request have been combined with those of the workflow

template specified in the request. In order to create a seeded workflow, the request
has to be unified and well-formed.

Formally, a request with the workflow template:

 〈 Nw, σw, DVw, PVw, Mw, Lw, PLw, DVBw, PVBw〉

and the seed:

 〈 DVr, PVr, Mr, DVBr, PVBr 〉

results in the seeded workflow:

 〈Nw, σw, DVw, PVw, Mn, Lw, PLw, DVBn , PVBn 〉

where:

 DVr ⊆ DVw

 DVBr ∩ DVBw = ∅

 PVr ⊆ PVw

 PVBr ∩ PVBw = ∅

 Mn = d:combine-DODs(Mr, Mw)

 DVBn = DVBr ∪ DVBw

 PVBn = PVBr ∪ PVBw

 30

 <ModelerThenClassifier,

<{ClassificationDataVariable}, {ClassIndexParameterVar},
 {<ClassificationDataVariable hasDomain weather> <ClassificationDataVariable hasType Classification>},
 {}

 {<ClassIndexParameterVar 5>}>>

Table 5. Formal representation of a request as a pair of a workflow template and a seed

tuple.

Typically a request will contain a single template and a single seed. We generalize

this by allowing a request to contain several template and seed pairs. We refer to the

former as an atomic seed and the later as a composite seed. By specifying a composite

seed, the user would intend to provide the system with a broader pool of candidate

workflows to search through in generating a solution. There is another reason to support

workflow generation from composite seeds. If a workflow template were not specified in

the request and only the seed was, the system would have to retrieve relevant templates

from the workflow library, which would often result on several matching templates. At

that point, the workflow generation process would be started using a composite seed

formed by each of the templates combined with the original seed.

4. Automatic Template-Based Workflow Generation

The workflow generation process starts with a request containing several template/seed

pairs. We assume we start with a unified and well-formed request, that is, the variables that

appear in the seed are a subset of the variables in the workflow template and any bindings

specified in the seed do not overlap with the bindings specified in the workflow template.

Throughout this section, we use the following conventions. The variables of the

algorithm are shown in italics. The functions shown in all capital letters are elaborated in

later subsections. We assume some functions have been defined with the prefixes “get-“ or

“set-“ on workflow and request data structures to access their individual constituents. The

function calls in boldface are functions supported by external catalogs, using c: as a prefix

for function calls to external component services, d: for metadata services, and w: for

workflow services.

Since the algorithms perform function calls to external services, it includes provisions

for function calls returning a special error code (the empty set) when there is either some

error in the inputs to the function call or the function is undefined for those inputs. In such

cases, the algorithms reject the workflow being considered as a candidate. These may be

indications that the external catalogs may need to be extended to refine their models or to
include additional components or data objects.

4.1. Overview of Template-Based Workflow Generation

Figure 5 shows an overview of the distinct stages during workflow generation. A pool

of workflow candidates is formed from the initial request. Each stage adds increasingly

more detail to each candidate workflow until they are ready to be submitted to the

workflow mapping and execution engine. In this process candidate workflows can be added

or eliminated. If at any point there are no workflow candidates remaining, the algorithm
ends returning an empty result.

 31

The initial request is assumed to contain template/seed pairs that are each well-formed

and unified with the template variables. In the first stage, a seeded workflow is created

from each template/seed pair by merging the seed with the workflow template constraints.

These seeded workflows are considered to be the initial pool of candidate workflows. The

next stage propagates constaints from the workflow outputs to the workflow inputs to

create binding-ready workflows. Next, input data sources that satisfy the constraints

imposed by the workflow are found to create a pool of candidate bound workflows. In the

next stage, the properties of input data sources are propagated through each component,

resulting on configured workflows. Finally, unique identifiers for workflow data products

are obtained to create workflow instances, and specific command invocations are

associated with each workflow component to create ground workflows. Finally, the

candidate workflows are ranked and the k-best candidates are submitted to the workflow

mapping and execution engine.

4.2. Top-Level Algorithm

Table 6 describes the top-level algorithm for automatic template-based workflow

generation. The algorithm analyzes workflow candidates at each level on a breadth-first

manner, that is, all candidates are elaborated before proceeding to elaborate workflows at

the next level of detail. A depth-first search version of the algorithm is also a possible

alternative. In either case, the approach we take is to generate all possible candidates, and

then rank them to select the top choices. This is needed because ranking candidates
properly requires that the workflow is specialized and configured.

The algorithm begins by creating a seeded workflow from each of the template/seed pair

in the request. If there were any errors seeding the workflow, due to inconsistencies in the

definition of the seed and the template, the call to SEED-WORKFLOW would return an

empty set and the whole procedure would be terminated.

Next, the algorithm elaborates the workflows and in the process it will find the

requirements on input data. For each candidate workflow, it will start from the output links

and retrieve any additional constraints on the workflow variables that are required in order

to produce the required output. We refer to this process as a backward sweep. This is done

within the algorithm BACKWARD-SWEEP, which we describe in detail below. When the

workflows contain abstract components, the backward sweep algorithm may find more

specific component classes that are appropriate to satisfy the requirements. When this

occurs, several candidate workflows are returned. At the end of the backward sweep, the

original DODs of the workflows have been augmented and can be used to find datasets that

match the request and workflow requirements. We refer to these as binding-ready

workflows.

Now that there are as many constraints on the input data as could be uncovered in the

backward sweep, the algorithm retrieves appropriate input data sources. This is done by

the algorithm SELECT-INPUT-DATA-OBJECTS, which essentially generates bindings for

all the input data variables of the workflow that are not bound in the original request.

Because there may be several alternative datasets that are appropriate, several alternative

bindings may be found and in that case several candidate workflows are returned. For each

workflow candidate, all the properties of the input data sources that may be relevant to the

request are incorporated into the workflow. At the end of this process, the workflow

candidates are all bound.

Next, the algorithm elaborates the workflows by propagating the properties of input data

sources through each step of the workflow. Starting from the input links, it will retrieve

any additional constraints on workflow variables that result from the properties of input

data sources. This process is called a forward sweep. It is done with the algorithm

 32

FORWARD-SWEEP, which is described below. These workflows have augmented DODs

that result from propagating the properties of the input data, and we refer to them as

elaborated workflows. The workflow may still contain abstract components, and the

forward sweep algorithm would specialize them. This results on several candidate

workflows being returned. The forward sweep also assigns values to all the parameters of

the workflow components based on the constraints that are known for the workflow

variables at each step. At the end of this process, the workflow candidates are all
specialized and configured in addition to being elaborated.

Next, all the candidate workflows are ranked based on estimates of their performance.

This ranking function only takes into account a rough estimate of the execution time of a

component based on characteristics of the data. It does not take into account the different

performance across architectures or other characteristics of the execution host such as

memory availability. It also does not take into account how the workflow performance is

affected by data movements, queue wait times, and other execution delays. Such finer-

grained estimates are produced by the workflow mapping and execution system and are not

discussed here. The rough estimates used at this stage are generated by the algorithm
ESTIMATE-PERFORMANCE, described below. The k-best workflows are returned.

The algorithm then proceeds to ground the selected workflows by assigning unique

logical identifiers to variables in the workflow that are not input data variables nor

parameter variables. For each intermediate and final link in the workflow, its

corresponding variable will be assigned a unique identifier using the DODs that describe its

properties. During this step the invocation command for each component is also

formulated. This is done by the algorithm INSTANTIATE-WORKFLOW described

below. All workflow candidates will then be ground and ready to be formatted for

submission to the workflow mapping and execution system by extracting from the
workflow instance only the information required for a ground workflow.

4.3. Generating Seeded Workflows

First, the DODs of the seed and the DODs of the workflow template of the request are

combined. If the DODs of the seed and the workflow are inconsistent, the call to the

metadata services to combine these DODs will indicate an error by returning an empty set.

In that case, an empty seeded workflow is returned to the top-level algorithm. Next, the

data variable bindings of the seed and the workflow template are combined. Finally, the

parameter bindings of the seed and the workflow are combined. Since we assume that the

request is unified and well-formed, no errors will occur when merging the bindings. The
result of this stage is a seeded workflow.

4.4. Backward Sweep

The backward sweep can obtain the constraints on the input data variables in two

different ways. One way is to use workflow services. These services would propagate the

constraints at the workflow level and would not necessarily reason about constraints for the

intermediate variables in the workflow. Another way is to use component services. The

algorithm would have to walk though the workflow nodes and propagate constraints

component by component by invoking functions implemented by the component catalog
for each of the components.

Table 8 shows the algorithm for the BACKWARD-SWEEP function using the workflow

services. A single function that takes the whole workflow as an argument will return any

additional DODs including DODs on input data variables but may also contain DODs on

intermediate data variables when appropriate.

 33

Figure 5: Stages During Workflow Generation.

Table 9 shows the algorithm for the BACKWARD-SWEEP function using the

component services. For each node in the candidate workflow, it traverses the workflow

from end results to initial inputs. For each of the nodes visited, the algorithm processes

together all the links that have that node either as an origin or as a destination. This is

because some workflow nodes are origin to more than one link. In such cases, we need to

gather all the DODs on workflow variables that constraint the parameters of that node’s

component as we traverse the workflow. If the component is abstract, all the possible

specializations from that abstract component class are obtained. These could be either more

specific component classes or concrete components. When more than one specialization is

returned, more than one specialized workflow will be created for the initial seeded

workflow. All additional DODs that the component places on its arguments and that are

returned by the component catalog are added to the workflow DODs. This may include

parameter values that can be set during this step as constraints on input and output

arguments of the component are introduced by the workflow.

 34

Algorithm: TEMPLATE-BASED-WORKFLOW-GENERATION

Input: request

Output: workflow-instances

 Seed Workflows from Request

1 seeded-workflows ← {}

2 for each template-seed-pair ∈ request do

3 workflows ← SEED-WORKFLOW(template-seed-pair)

4 if (workflows ≠ null) then

5 seeded -workflows ← seeded -workflows ∪ workflows

6 if (seeded -workflows = null) then workflow-instances ← {}; return

 Find Input Data Requirements

7 binding-ready-workflows ← {}

8 for each seeded-workflow ∈ seeded-workflows do

9 workflows ← BACKWARD-SWEEP(seeded-workflow)

10 if (workflows ≠ null) then

11 binding-ready-workflows ← binding-ready-workflows ∪ workflows

12 if (binding-ready-workflows = null) then workflow-instances ← {}; return

 Data Source Selection

13 bound-workflows ← {}

14 for each binding-ready-workflow ∈ binding-ready-workflows do

15 workflows ← SELECT-INPUT-DATA-OBJECTS(binding-ready-workflow)

16 if (workflows ≠ null) then

17 bound-workflows ← bound-workflows ∪ workflows

18 if (bound-workflows = null) then workflow-instances ← {}; return

 Parameter Selection

19 configured-workflows ← {}

20 for each bound-workflow ∈ bound-workflows do

21 workflows ← FORWARD-SWEEP(bound-workflow)

22 if (workflows ≠ null) then

23 configured-workflows ← configured-workflows ∪ workflows

24 if (configured-workflows = null) then workflow-instances ← {}; return

Workflow Ranking

25 ranked-workflows ← {}

26 for each configured-workflow ∈ configured-workflows do

27 workflow ← ESTIMATE-PERFORMANCE(configured-workflow)

28 ranked-workflows ← ranked-workflows ∪ {workflow}

29 ranked-workflows ← select-k-best(ranked-workflows)

Workflow Instatiation and Grounding

30 workflow-instances ← {} ground-workflows ← {}

31 for each ranked-workflow ∈ ranked-workflows do

32 workflow ← INSTANTIATE-WORKFLOW(ranked-workflow)

33 workflow-instances ← workflow-instances ∪ {workflow}

34 ground-workflows ← GROUND-WORKFLOW(workflow)

354 return ground-workflows

Table 6. Top-Level Algorithm for Automatic Template-Based Workflow Generation.

 35

Algorithm: SEED-WORKFLOW

Input: template-seed-pair

Output: seeded-workflow

1 workflow ← get-template(template-seed-pair)

2 seed ← get-seed(template-seed-pair)

 Combine DODs of the seed with the workflow DODs

3 workflow-DODs ← get-DODs(workflow)

4 seed-DODs ← get-DODs(seed)

5 new-DODs ← d:combine-DODs(workflow-DODs, seed-DODs)

 If the DODs are inconsistent, reject the current workflow

6 if new-DODs = {} then

7 workflow ← {}

8 else

9 set-DODs(workflow, new-DODs)

 Combine the data variable bindings of the seed with the workflow data variable bindings

10 workflow-data-var-bindings ← get-data-var-bindings(workflow)

11 seed-data-var-bindings ← get-data-var-bindings(seed)

12 new-data-var-bindings ← workflow-data-var-bindings ∪ seed- data-var-bindings

13 set-data-var-bindings(workflow, new-data-var-bindings)

 Combine the parameter bindings of the seed with the workflow parameter bindings

14 workflow-par-var-bindings ← get-par-var-bindings(workflow)

15 seed-par-var-bindings ← get-par-var-bindings(seed)

16 new-par-var-bindings ← workflow-par-var-bindings ∪ seed-par-var-bindings

17 set-par-var-bindings(workflow, new-par-var-bindings)

18 return workflow

Table 7: Algorithm for Seeding a Workflow Template with the Seed Given in the Request.

Algorithm: BACKWARD-SWEEP-THROUGH-WORKFLOW

Input: seeded-workflow

Output: binding-ready-workflows

1 workflow ← seeded-workflow

2 new-DODs ← w:find-DODs-given-output-requirements(workflow)

3 when (new-DODs ≠ {})

4 set-DODs(workflow, get-DODs(workflow) ∪ new-DODs)

5 binding-ready-workflows ← {workflow}

6 return binding-ready-workflows

Table 8: Algorithm for Backward Sweep Through Workflow.

For simplicity, the algorithm in Table 10 assumes that each node in the workflow is

origin to only one link. In cases where there is more than one link with the node as origin,

the algorithm will only proceed to specialize the component in a node when all links

relevant to the outputs of a node have been processed. That is, it ensures that the paths

from the outputs to that node have already been fully processed.

 36

Algorithm: BACKWARD-SWEEP-THROUGH-COMPONENTS

Input: seeded-workflow

Output: binding-ready-workflows

1 workflow-queue ← seeded-workflow

2 binding-ready-workflows ← {}

3 while (workflow-queue ≠ {}) do

4 workflow ← dequeue(workflow-queue)

7 link-queue ← get-output-links(workflow)

8 while (link-queue ≠ {} & workflow ≠ {}) do

9 link ← dequeue(link-queue)

10 when (current-link ∉ get-input-links(workflow))

11 node ← get-origin(link)

 Find all links (going sideways) that have the current node as the origin node

12 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node

13 link-queue ← link-queue \ links-shared-origin

 Find all links (going upstream) that have the current node as the destination node

14 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node

15 link-queue ← link-queue \ links-shared-dest

 Create a set with all those links that have the current node as origin or destination

16 links-current-node ← links-same-origin ∪ links-dest-is-origin

 Find all the DODs in the workflow that are relevant to the current node

17 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)

18 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v

19 node-DODs ← entity-DODs(vars-node, get-DODs(workflow))

20 comp ← get-node-component(node)

 Map DODs on workflow variables to DODs on arguments of the node’s component

21 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)

 If the node’s component is not concrete, get specializations of the component

 and create a new workflow candidate with each of the specializations obtained

22 if (not c:is-concrete(comp)) then

23 concrete-components ← c:specialize(comp,comp-DODs)

 If no specialization of the component can satisfy the requirements, reject the current workflow

24 when (concrete-components ≠ {})

25 for each cc ∈ concrete-components do

26 copy ← copy(workflow)

27 copy ← replace(comp,cc, node,copy)

28 workflow-queue ← workflow-queue ∪ copy

29 else

30 comp-input-DODs ← c:find-DODs-given-output-requirements(comp,comp-DODs)

 If no DODs can satisfy the requirements on the component, reject the current workflow

31 if comp-input-DODs = {}

32 workflow ← {}

33 else

 Map DODs on arguments of the node’s component to DODs on workflow variables

34 var-DODs ← find-variable-DODs(vars,node,comp,comp-input-DODs)

35 set-DODs(current-workflow) ← get-DODs(workflow) ∪ var-DODs

36 end while over link-queue

37 when (workflow ≠ {})

38 binding-ready-workflows ← binding-ready-workflows ∪ workflow

39 end while over workflow-queue

40 return binding-ready-workflows

Table 9: Algorithm for Backward Sweep Through Components.

 37

Algorithm: SELECT-INPUT-DATA-OBJECTS

Input: binding-ready-workflow

Output: bound-workflows

1 bound-workflows ← {}

2 input-links ← get-input-links(specialized-workflow)

3 input-data-variables ← get-variables(input-links)

4 input-DODs ← get-variables(input-data-variables)

5 input-bindings ← d:find-data-objects(input-DODs)

6 for each binding ∈ input-bindings do

7 workflow ← copy(specialized-workflow)

8 set-data-variable-bindings(workflow, get-data-variable-bindings(workflow) ∪ binding)

9 data-objects ← get-data-objects(input-bindings)

10 for each data-object ∈ data-objects do

11 additional-DODs ← d:obtain-dataset-characteristics(data-object)

12 set-DODs(workflow, get-DODs(workflow) ∪ additional-DODs)

13 bound-workflows ← bound-workflows ∪ {workflow}

14 return bound-workflows

Table 10: Algorithm for Binding Workflows by Selecting Input Data.

Algorithm: FORWARD-SWEEP-THROUGH-WORKFLOW

Input: bound-workflow

Output: configured-workflow

1 workflow ← bound-workflow

2 new-DODs ← w:predict-DODs-given-input-requirements(workflow)

3 when (new-DODs ≠ {})

4 set-DODs(workflow, get-DODs(workflow) ∪ new-DODs)

5 if is-configured(workflow)

6 configured-workflow ← workflow

7 else

8 configured-workflow ← null

9 return configured-workflow

Table 11: Algorithm for Forward Sweep Through Workflow.

When using the wokflow services for the backward sweep, any abstract components of

the workflow will not be specialized. Therefore, when using workflow services for the

backward sweep the workflow template specified in the request must be a concrete

workflow.

The result of the backward sweep is a set of candidate workflows that are all binding-
ready workflows.

4.5. Selecting Input Data

This algorithm starts with a binding-ready workflow that includes DODs on all input

data variables. First, it finds available data objects that match those DODs. There can be

several combinations of data object for input data variables, and in that case several sets of

 38

bindings are returned. In that case, a bound workflow will be created for each set of

bindings. If there are no matching data sources then the workflow is rejected and an empty

workflow is returned.

Note that there is a single query to the data catalog for a given workflow, rather than a

query per input data variable. This ensures that any constraints among input data variables

are taken into account by the data catalog during the matching of input data sources.

Next, the algorithm requests from the metadata services all additional DODs of the

selected input data objects. There may be arbitrarily many possible properties of a data

object and there may be a cost to generating the values of some of the properties. Ideally,

this function would be invoked in a selective and cost-sensitive manner though this is not

addressed in our current work.

4.6. Forward Sweep

Like the backward sweep, the forward sweep can be approached in two different ways.

One approach is to use workflow services. These services would propagate the constraints

on input data variables at the workflow level and would not necessarily reason about

constraints for the intermediate variables in the workflow. Another approach is to use

component services. The algorithm would have to walk though the workflow nodes and

propagate constraints component by component by invoking functions implemented by the

component catalog for each of the components.

Table 11 shows the FORWARD-SWEEP algorithm using the workflow services. A

single function that takes the whole workflow as an argument will return additional DODs
on output and intermediate data variables.

Table 12 shows the FORWARD-SWEEP algorithm using the component services. For

each node in the candidate workflow, it traverses the workflow from initial inputs to end

results. For each of the nodes visited, the algorithm processes together all the links that

have that node either as an origin or as a destination. This is because some workflow nodes

are the destination of more than one link. In such cases, we need to gather all the DODs on

workflow variables that constraint the parameters of that node’s component as we traverse

the workflow. In the table, we refer to a function find-comp-DODs that extracts all the

DODs relevant to a component expressed in terms of component parameters rather than

workflow data variables so that then component catalog can be invoked. If a component is

abstract, all the concrete components of that abstract component class are obtained. When

more than one concrete component is returned, more than one specialized workflow will be

created for the initial bound workflow. In the table we use a function replace-component

that replaces the relevant component by one of those returned. All additional DODs that

the component places on its arguments are added to the workflow DODs.

For simplicity, as with the backward sweep, the algorithm in Table 12 assumes that each

node in the workflow is the destination to only one link. In cases where there is more than

one link with the node as destination, the algorithm will only proceed to specialize and find

output requirements for the component in a node when all links relevant to the inputs of a

node have been processed. That is, it ensures that the paths from the inputs to that node
have already been fully processed.

As was the case with the forward sweep, the algorithm that uses the workflow services

for the backward sweep does not specialize components. Therefore, when using workflow
services for the forward sweep the workflow must be a concrete workflow.

The result of the forward sweep is a set of candidate workflows that are all configured

and specialized workflows.

 39

Algorithm: FORWARD-SWEEP-THROUGH-COMPONENTS

Input: bound-workflow

Output: configured-workflows

1 workflow-queue ← bound-workflow

1 configured-workflows ← {}

3 while (workflow-queue ≠ {}) do

4 workflow ← dequeue(workflow-queue)

2 link-queue ← get-input-links(workflow)

8 while (link-queue ≠ {} & workflow ≠ {}) do

9 link ← dequeue(link-queue)

10 when (current-link ∉ get-output-links(workflow))

11 node ← get-dest(link)

 Find all links (going sideways) that have the current node as the origin node

12 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node

13 link-queue ← link-queue \ links-shared-origin

 Find all links (going upstream) that have the current node as the destination node

14 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node

15 link-queue ← link-queue \ links-shared-dest

16 links-current-node ← links-same-origin ∪ links-dest-is-origin

 Find all the DODs in the workflow that are relevant to the current node

17 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)

18 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v

19 node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow))

20 comp ← get-node-component(node)

 Map DODs on workflow variables to DODs on arguments of the node’s component

21 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)

 If the node’s component is not concrete, create a new workflow candidate with each specialization

22 if (not c:is-concrete(comp)) then

23 concrete-components ← c:specialize-to-concrete(comp,node-DODs)

 If no specialization of the component can satisfy the requirements, reject the current workflow

24 when (concrete-components ≠ {})

25 for each cc ∈ concrete-components do

26 copy ← copy(workflow)

27 copy ← replace(comp,cc, node,copy)

28 workflow-queue ← workflow-queue ∪ copy

29 else

 If the component is not configured, create a new workflow candidate with each configuration obtained

30 if (not c:is-configured(comp, comp-DODs)) then

31 component-configurations ← c:configure(comp,comp-DODs)

 If no configuration of the component can satisfy the requirements, reject the current workflow

 when (component-configurations ≠ {})

32 for each cc ∈ component-configurations do

33 new ← copy(workflow)

34 new ← replace-component(workflow, cc)

35 workflow-queue ← workflow-queue ∪ copy

36 else

37 comp-o-DODs ← c:predict-DODs-given-input-requirements(comp,comp-DODs)

 Map DODs on arguments of the node’s component to DODs on workflow variables

38 var-DODs ← find-variable-DODs(vars,node,comp,comp-o-DODs)

39 set-DODs(current-workflow, get-DODs(workflow) ∪ var-DODs)

40 end while over link-queue

41 when (workflow ≠ {})

42 configured-workflows ← configured-workflows ∪ {workflow}

43 end while over workflow-queue

44 return configured-workflows

Table 12: Algorithm for Forward Sweep Through Components.

 40

Algorithm: ESTIMATE-PERFORMANCE-THROUGH-WORKFLOW

Input: ground-workflow

Output: ranked-ground-workflow

1 workflow ← ground-workflow

2 set-performance-estimate(workflow, w: estimate-performance(workflow))

3 return workflow

Table 13: Algorithm for Estimating Workflow Performance Through the Workflow.

Algorithm: ESTIMATE-PERFORMANCE-THROUGH-COMPONENTS

Input: ground-workflow

Output: ranked-ground-workflow

1 workflow ← ground-workflow

2 link-queue ← get-output-links(workflow)

3 while (link-queue ≠ {} do

4 link ← dequeue(link-queue)

5 when (current-link ∉ get-output-links(workflow))

6 node ← get-dest(link)

 Find all links (going sideways) that have the current node as the origin node

7 links-shared-origin ← l s.t. l ∈ get-links(workflow) & get-origin(l) = node

8 link-queue ← link-queue \ links-shared-origin

 Find all links (going upstream) that have the current node as the destination node

9 links-shared-dest ← l s.t. l ∈ get-links(workflow) & get-destin(l) = node

10 link-queue ← link-queue \ links-shared-dest

11 links-current-node ← links-same-origin ∪ links-dest-is-origin

 Find all the DODs in the workflow that are relevant to the current node

12 vars ← get-data-vars(workflow) ∪ get-param-vars(workflow)

13 vars-node ← v s.t. v ∈ vars & l ∈ links-current-node & get-variable(l) = v

14 node-DODs ← d:entity-DODs(vars-node, get-DODs(workflow))

15 comp ← get-node-component(node)

 Map DODs on workflow variables to DODs on arguments of the node’s component

16 comp-DODs ← find-comp-DODs(node,comp,node-DODs,links-current-node)

 Get estimate of the component performance

17 set-predicted-execution-time(node, c:estimate-performance(comp,comp-DODs))

18 end while over link-queue

19 set-performance-estimate(workflow, estimate-aggregate-performance(workflow))

20 return workflow

Table 14: Algorithm for Estimating Workflow Performance Through Components.

4.7. Estimating Workflow Performance

Like the forward and backward sweeps, estimating wokflow performance can be done

using workflow services or component services. Because the estimates using component

services would need the DODs for intermediate data products, it is required that the
forward sweep should have been done using component services as well.

 41

Algorithm: INSTANTIATE-WORKFLOW

Input: configured-workflow

Output: workflow-instances

1 workflow-queue ← configured-workflow

2 workflow-instances ← {}

3 while (workflow-queue ≠ {}) do

4 workflow ← dequeue(workflow-queue)

5 link-queue ← get-output-links(workflow)

6 while (link-queue ≠ {} & workflow ≠ {}) do

7 link ← dequeue(link-queue)

8 when (current-link ∉ get-input-links(workflow))

9 link-DODs ← d:entity-DODs(get-variable(current-link), get-DODs(workflow))

10 id ← d:assign-identifier(link-DODs)

11 binding ← <get-link-variable(link), id>

12 d:assert-predicted-DODs(id,link-DODs)

13 set-workflow-bindings(workflow, get-workflow-bindings(workflow) ∪ binding)

14 end while over link-queue

14 set-invocation-commands(workflow)

15 workflow-instances ← workflow-instances ∪ {workflow}

16 end while over workflow-queue

17 return workflow-instances

Table 15: Algorithm for Instantiating Workflows.

The algorithm to estimate performance using component services is shown in Table 14.

It walks through the nodes of the workflow, and for each node it gathers the DODs that are

relevant to it. Using those DODs, it invokes the component services to retrieve the

estimates of performance of the workflow. With the individual estimates for each node, the

algorithm then calls a function that aggregates the estimates for the overall workflow

(estimate-aggregate-performance). This function finds the longest path between the input

links and the output links.

4.8. Instantiating and Grounding Workflows

The algorithm for instantiating workflows, shown in Table 15, traverses a workflow and

gathers all the DODs on a data variable and requests from the data catalog a unique

identifier for the corresponding execution data product. If the DODs are rich enough, the

data catalog will be able to detect when data products are equal and therefore give them the

same identifier. This enables data reuse with the benefit of saving computation time, as the

workflow execution system can eliminate unnecessary computations that produce already

existing data that was produced by previously executed workflows. When the DODs are

not rich enough, then reuse will not be possible as each new data product will have its own

identifier and there will be no way to detect when data products from different workflows

are the same (unless the workflows are identical). This can happen in the case where the
forward sweep proceeds through workflows rather than through components.

During grounding of workflows, the invocation command is set for each of the node’s

components. A function is shown in the table that applies to the whole workflow, within

that function there is an invocation of the component catalog for each node’s component

using all the DODs that are relevant to the variables in links adjacent to the node.

The final grounding step essentially extracts a small subset of the information in the

workflow instance to create a ground workflow that can be submitted to the workflow

 42

mapping and execution engine. An example of a workflow instance and its corresponding
ground workflow is shown in the next section.

4.9. Summary of Reasoning Requirements for Data and

Catalog Services

Table 16 summarizes the functions for data and catalog services invoked by the

workflow generation algorithm. For each function, we indicate the use of that function in

the algorithm.

Table 17 highlights the main types of reasoning needed for automatic template-based

workflow generation and the corresponding requirements on the data, component and

workflow catalogs. It shows the kind of workflow needed to carry out the reasoning, and

what kind of workflow is produced. Reasoning about component constraints is done first

in the backward sweep, starting with a seeded workflow and ending with a binding-ready

workflow. The calls to the component catalog obtain the constraints of each component,

but the workflow generation algorithm takes care of their propagation throughout the

workflow and of their integration with seed constraints. Data selection starts with a

binding-ready workflow to produce a bound workflow. Notice that a binding-ready

workflow contains constraints relevant to the seed and the components, however the

selected datasets may have additional characteristics that can affect how the components

behave. Those characteristics are obtained in the data characterization step, and result in a

workflow that characterizes all its input datasets. With such a workflow, the algorithm

proceeds to reason again about component constraints in the forward sweep to produce a

workflow that states all the predicted characteristics for all the datasets in the workflow.

This information is needed to reason about component configuration to produce a

configured workflow. It is also needed for easoning about data identifier assignments,

since the datasets can be described by their characteristics and assigned a unique identifier

that enables future reuse in other workflows as well as retrieval by other users. We note

that reasoning about component constraints and component configuration occurs jointly for

each workflow component during the forward sweep. This is because the parameter

settings often determine the characteristics of the output datasets for a component. For

domains where this is not the case the two kinds of reasoning can be done separately.

The next section walks through the main steps of the algorithm with an example of a
workflow request.

5. A Walkthrough Example of Workflow Generation

We now show an example of how workflow candidates are generated from a

workflow request using the algorithm just presented. We present an example that runs end-

to-end in our implemented system, and show through the representation of candidate

workflows at each stage. We use different namespaces to refer to terms that are defined in

different catalogs. Therefore, the workflow catalog, component catalog, and data catalog

will have different namespaces. We use the W3C Ontology Web Language OWL

(www.w3.org/TR/owl-features) to represent workflows and DODs, but will show the

examples using N3 notation.

Table 18 shows the representation of the workflow template for

ModelerThenClassifier shown in Figure 2. The workflow contains two nodes for a

modeler and a classifier. There are six links that represent inputs and outputs of the two

nodes. Note that the workflow in Figure 2 shows the heap size as a parameter of the

classifier, which is not used in this example.

 43

Reasoning

required

Description Workflow

needed

Functions

required from

data catalogs

Functions

required from

component

catalogs

Workflow

produced

Component

constraints – for

backward

sweep

What kinds of

input data are

required given

output

requirements

Seeded

workflow

- c:find-DODs-

given-output-

requirements

Binding-ready

workflow

Dataset

selection

How to select

valid input

data

Binding-ready

workflow

d:find-data-

objects

- Bound

workflow

Dataset

characterization

What kinds of

input data are

needed for the

workflow

Bound

workflow

d:obtain-

dataset-

characteristics

- Worfklow

with

characteristics

of input

datasets

Component

constraints – for

forward sweep

What kinds of

output data

will be

produced

given input

characteristics

Worfklow

with

characteristics

of input

datasets

- c:predict-DODs-

given-input-

requirements

Workflow

with predicted

characteristics

of all datasets

Component

configuration

How to set up

parameter

values

Workflow

with predicted

characteristics

of all datasets
1

- c:is-configured

c:configure

Configured

workflow

Dataset

identifier

assignments

How to assign

unique

identifiers for

semantically

equivalent

datasets

Workflow

with predicted

characteristics

of all datasets

d:assign-

identifier

d:assert-

predicted-

DODs

- Workflow

instance

Table 17: Types of reasoning needed for automatic template-based workflow generation

and the corresponding requirements placed on external data and component services to

supplement what a user may not specify in the workflow request. Our algorithm combines

the forward propagation of constraints with the component configuration, since parameters
are often important to determine predictive characteristics of output datasets.

 44

Function in Metadata Services Purpose in Automatic Generation Process

d:combine-DODs Seed workflow templates

d:assign-identifier

d:assert-predicted-DODs

Create unique identifiers and properties for

workflow data products so they can be reused
in future workflows

d:find-data-objects Selection of input data enables creation of

bound workflows

d:obtain-dataset-characteristics Propagation of input data properties in

forward sweep enables component

specialization and workflow candidate
elimination

Function in Component Services Purpose in Automatic Generation Process

c:invocation-command Ground workflows to be submitted for
execution

c:is-concrete

c:specialize

c:specialize-to-concrete

Use of abstract components in workflow

templates that can be specialized in backward
and forward sweep

c:is-backward-enabled

c:find-DODs-given-output-requirements

Generate binding-ready workflows in
backward sweep

c:is-forward-enabled

c:predict-DODs-given-input-requirements

c:is-configurable

c:configure

c:is-configured

Generate configured workflows in forward
sweep

c:estimate-performance Rank candidate workflows

Table 16: Summary of functions that need to be supported in the metadata services and

the component services to enable automatic template-based workflow generation.

Table 19 shows an example of a representation of a workflow request. It specifies

the workflow to use (ModelerThenClassifier) and provides additional DODs on an output data

variable and a parameter variable. In particular, the output of the workflow should include a

classification of a weather data object (i.e. the domain of the ClassificationDataVariable is

Weather) and the value of the ClassIndexParameterVar is 5. This is the same request shown

in Table 5.

Given this request, the seeded workflow initially generated by the algorithm is as

the original template shown in Table 16 except that it includes the additional DODs on

ClassificationDataVariable and ClassIndexParameterVar that are introduced by the request.

Table 20 shows a relevant excerpt of the seeded workflow, where the additions to the

origninal workflow template are highlighted in bold face.

 45

ModelerThenClassifier a wflow:WorkflowTemplate ;
 wflow:hasNode classifierNode , modelerNode ;
 wflow:hasLink modelerTrainingDataInputLink, modelerJavaMaxHeapInputLink,
 classifierOutputLink , modelerOutputClassifierInputInOutLink,
 modelerClassIndexInputLink , classifierDataInputLink .

modelerNode a wflow:Node ; wflow:hasComponent ac:Modeler.

classifierNode a wflow:Node ; wflow:hasComponent ac:Classifier .

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable .

TrainingDataVariable a dcdm:Instance , wflow:DataVariable .

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable .

modelerJavaMaxHeapInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable maxJavaHeapSizeModelerParameterVar .

ClassIndexParameterVar a wflow:ParameterVariable .

modelerClassIndexInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:i ;

ModelDataVariable a dcdm:Model , wflow:DataVariable .

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ModelDataVariable .

classifierDataInputLink a wflow:InputLink ;

 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TestDataVariable .

TestDataVariable a dcdm:Instance , wflow:DataVariable ;

 dcdm:notSameObject TrainingDataVariable;
 wflow:hasVariable modelerClassIndex .

classifierOutputLink a wflow:OutputLink ;

 wflow:hasOriginNode classifierNode ;
 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ClassificationtDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:Classification .

 Table 18: A workflow example in N3 notation.

 46

owl:imports ModelerThenClassifier.owl // use ModelerThenClassifier workflow

ClassificationDataVariable a dcdm:Classification ;
 dcdm:hasDomain dcdm:weather.

ClassIndexParameterVar wflow:hasParameterValue 5.

Table 19: Example of workflow request in N3 notation.

…

ClassIndexParameterVar a wflow:ParameterVariable ;
 wflow:hasParameterValue 5. // from the request

…

ClassificationDataVariable a wflow:DataVariable , dcdm:Classification;
 dcdm:hasDomain dcdm:weather. // from the request

…

 Table 20: Relevant excerpts of a seeded workflow.

Table 21 shows an example of a binding-ready workflow generated as a candidate

after the backward sweep. The original Modeler abstract component has been specialized

into LmtModeler and the Classifier into J48Classifier. This specialization introduces some new

DODs of the data objects used or created by the components, such as dcdm:hasModelType.

The DODs in the original request are propagated by the backward sweep and result in

additional DODs on some of the workflow data variables. For example, TrainingDataVariable,

ModelDataVariable, and TestDataVariable have a new DOD with a requirement in their domain

property that it be weather.

Decision Tree classifiers can use Decision Tree models only and Bayes classifiers

can only use Bayes models. Assuming a component catalog that includes three Decision

Tree modelers (J48Modeler, LmtModeler, ID3Modeler), three Decision Tree classifiers(J48Classifier,

LmtClassifier, ID3Classifier), three Bayes modelers(BayeNetModeler, NaiveBayesModeler, HBNModeler)

and three Bayes classifiers (BayeNetClassifier, NaiveBayesClassifier, HBNClassifier and six

classifiers), 18 total seeded specialized workflows would be generated as candidates.

The next step of the algorithm finds available data objects for the input data

variables. With the workflow in Table 21, the following query for selecting input data

objects for two input data variables is generated:

TrainingDataVariable a dcdm: Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:notSameObject TrainingDataVariable;
 dcdm:hasDomain dcdm:weather.

 47

LmtModelerThenJ48Classifier a wflow:WorkflowTemplate ;
 wflow:hasNode classifierNode , modelerNode ;
 wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink ,
 modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink.

modelerNode a wflow:Node ; wflow:hasComponent ac:LmtModeler.
classifierNode a wflow:Node ; wflow:hasComponent ac:J48Classifier.

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable ;

TrainingDataVariable
 a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable .

modelerJavaMaxHeapInputLink a wflow:InputLink ;

 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable j maxJavaHeapSizeModelerParameterVar .

ClassIndexParameterVar a wflow:ParameterVariable .
 wflow:hasParameterValue 5. // from the request

modelerClassIndexInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;

 wflow:hasDestinationArgument ac:i ;
 wflow:hasVariable ClassIndexParameterVar .

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;

 wflow:hasVariable ModelDataVariable ;

ModelDataVariable
 a dcdm:LmtModel , wflow:DataVariable ;
 dcdm:hasDomain dcdm:weather ;
 dcdm:hasModelType DecisionTree.

classifierDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:i ;

 wflow:hasVariable TestDataVariable .

TestDataVariable a dcdm:Instance , wflow:DataVariable;

 dcdm:notSameObject TrainingDataVariable;
 dcdm:hasDomain dcdm:weather.

classifierOutputLink a wflow:OutputLink ;
 wflow:hasOriginNode classifierNode ;

 wflow:hasOriginArgument ac:o ;
 wflow:hasVariable ClassificationDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:DtmClassification ;

dcdm:hasDomain dcdm:weather; // from the request

 Table 21: An example binding-ready workflow after the backward sweep.

 48

…

TrainingDataVariable
 a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm: weather-2007-31-101501.

TestDataVariable
 a dcdm:Instance , wflow:DataVariable;

 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm:weather-2007-31-155754.

Table 22: Relevant excerpts of an example bound specialized workflow.

Other seeded specialized workflow candidates may generate different queries for

finding data objects. For example, workflow candidates with BayesModeler or BayesClassifier

will need DiscreteInstance as an input. A workflow with a NaiveBayesModeler and a J48Classifier
will result in a query with the following data object descriptions:

TrainingDataVariable a dcdm:DiscreteInstance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather.

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:notSameObject TrainingDataVariable;
 dcdm:hasDomain dcdm:weather.

With a data catalog with four weather domain datasets (weather-2007-31-101501,

weather-2007-31-101503, weather-2007-31-101656, and weather-2007-31-155754) that are

all ContinuousInstances, the system will not find matching datasets for the workflows that

need DiscreteInstances. In our running example, only 4 of the 18 candidate workflows with

Lmt and J48 combinations (LmtModelerThenJ48Classifier, LmtModelerThenLmtClassifer,

J48ModelerThen LmtClassifier, J48ModelerThen J48Classifier) will get results from the query to find

matching data objects. For each candidate binding-ready workflow, the system produces

twelve bindings since TrainingDataVariable and TestDataVariable should be bound to

different weather datasets. That is a total of 48 candidate bound workflows generated in our

running example. Table 22 shows an example of a bound workflow for

LmtModelerThenJ48Classifier. For brevity, only the bindings and the DODs of the input data

variables are shown.

The forward sweep sets all the parameter values of components and includes DODs for

workflow data products. After that, the grounding step introduces data object identifiers for

intermediate and final workflow data variables. Table 23 shows an example of a resulting

workflow instance. The value of maxJavaHeapSizeModelerParameterVar is set in

proportion to the size of the data sets that are bound to Training DataVariable (dcdm:weather-

2007-31-101501). In particular, if the size of the data set is greater than 10,000 the parameter

value is set to 1024M and if the size is less than 1,000 the value is set to 256M; otherwise it

will be set to 512M.

The next step is ranking the 48 candidate workflows based on estimates of performance.

For this, the predicted DODs for intermediate data sets are useful. For example, the size of

intermediate data products is useful to obtain estimates on performance time for the
different algorithms of the workflow components.

 49

LmtModelerThenJ48Classifier a wflow:WorkflowTemplate ;
 wflow:hasLink modelerTrainingDataInputLink , modelerJavaMaxHeapInputLink , classifierOutputLink ,
modelerOutputClassifierInputInOutLink , modelerClassIndexInputLink , classifierDataInputLink ;
 wflow:hasNode classifierNode , modelerNode .

modelerNode a wflow:Node ; wflow:hasComponent ac:LmtModeler.
classifierNode a wflow:Node ; wflow:hasComponent ac:J48Classifier.

modelerTrainingDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TrainingDataVariable.

TrainingDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 wflow:hasDataBinding dcdm:weather-2007-31-101501.

maxJavaHeapSizeModelerParameterVar a wflow:ParameterVariable ;
 wflow:hasParameterValue “512M”;

modelerJavaMaxHeapInputLink a wflow:InputLink ;

 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:j ;
 wflow:hasVariable maxJavaHeapSizeModelerParameterVar .

modelerClassIndex a wflow:ParameterVariable .
 wflow:hasParameterValue 5; // from the request

modelerClassIndexInputLink a wflow:InputLink ;

 wflow:hasDestinationNode modelerNode ;
 wflow:hasDestinationArgument ac:i ;

modelerOutputClassifierInputInOutLink a wflow:InOutLink ;
 wflow:hasDestinationNode classifierNode ;
 wflow:hasDestinationArgument ac:m ;
 wflow:hasOriginNode modelerNode ;
 wflow:hasOriginArgument ac:o ;

 wflow:hasVariable ModelDataVariable .

ModelDataVariable a dcdm:BayesModel , wflow:DataVariable ;
 dcdm:hasModelType DecisionTree ;
 dcdm:hasDomain dcdm:weather ;
 wflow:hasDataBinding modelerOutputModelDataVariable_1191372118140.

classifierDataInputLink a wflow:InputLink ;
 wflow:hasDestinationNode classifierNode ;

 wflow:hasDestinationArgument ac:d ;
 wflow:hasVariable TestDataVariable .

TestDataVariable a dcdm:Instance , wflow:DataVariable;
 dcdm:hasDomain dcdm:weather;
 workflow:hasDataBinding dcdm:weather-2007-31-155754.

classifierOutputLink a wflow:OutputLink ;

 wflow:hasOriginNode classifierNode ;
 wflow:hasOriginArgument ac:o;
 wflow:hasVariable ClassificationDataVariable .

ClassificationDataVariable a wflow:DataVariable , dcdm:DtmClassification ;
 dcdm:hasDomain dcdm:weather; // from the request
 wflow:hasDataBinding ClassificationDataVariable_1191372118140.

Table 23: A workflow instance after workflow instantiation.

 50

<?xml version="1.0" encoding="UTF-8"?>

<!-- generated: Tue Oct 02 17:42:29 PDT 2007 by Wings -->

<adag xsi:schemaLocation="http://www.griphyn.org/chimera/DAX http://www.griphyn.org/chimera/dax-
1.10.xsd"

xmlns="http://www.griphyn.org/chimera/DAX"

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

version="1.10" count="1" index="0" name="ModelerThenClassifier-dax198d8-b4d199239c5e7f99">

<!-- part 2: definition of all jobs -->

 <job id="Job1-04bd4f3cbfd2" namespace="http://www.isi.edu/ac/dm/library.owl" name="J48Classifier"
version="">

 <argument>-T <filename file="weather-2007-31-155754"/>

 -l <filename file="modelerOutputModelDataVariable_1191372118140"/>

 -O <filename file="ClassificationDataVariable_1191372118140"/> </argument>

 <uses file="modelerOutputModelDataVariable_1191372118140" link="input"/>

 <uses file="weather-2007-31-155754" link="input"/>

 <uses file="ClassificationDataVariable_1191372118140" link="output"/>

 </job>

 <job id="Job0-18917e3ec858" namespace="http://www.isi.edu/ac/dm/library.owl" name="LmtModeler"
version="">

 <argument>-Xmx 512M -t <filename file="weather-2007-31-101501"/>

 -d <filename file="modelerOutputModelDataVariable_1191372120250"/> -c 5 </argument>

 <uses file="weather-2007-07-31-101501" link="input"/>

 <uses file="modelerOutputModelDataVariable_1191372120250" link="output"/>

 </job>

<!-- part 3: list of control-flow dependencies (empty for single jobs) -->

 <child ref="Job1- 04bd4f3cbfd2">

 <parent ref="Job0-18917e3ec858"/>

 </child>

</adag>

Table 24: Example ground workflow in Pegasus format, generated from a workflow

instance.

In the final step, each workflow instance is turned into a bound workflow that can be

submitted to the workflow mapping and execution system. Table 24 shows the ground

workflow extracted for the workflow instance in Table 22. It shows the format used by the

Pegasus workflow mapping and execution engine [Deelman et al 03; Deelman et al 05].

The next section shows an implementation of a component, workflow, and data

catalog that were used to generate these workflows automatically.

6. Using Wings for Template-Based Automatic

Workflow Generation

We have implemented the automated template-based workflow generation algorithm as

part of the Wings workflow generation system [Gil et al 10; Gil et al 09b; Gil et al 09a;

Kim et al 08; Gil et al 07a; Kim et al 06]. We also implemented a workflow catalog, a

component catalog, and a data catalog that were separate components following the
distributed architecture shown in Figure 4.

 51

Modeler a ModelerClass ;
 ac:hasArgument modelerClassIndex , outputModel,

 javaMaxHeapSize , modelerTrainingData;
 ac:hasInput javaMaxHeapSize , modelerTrainingData , modelerClassIndex ;

 ac:hasOutput outputModel ;
 ac:isConcrete "false"^^xsd:boolean .

Classifier a Classifier_Class ;
 ac:has Argument classifierInputData , classifierInputModel ,

 classifierOutput ;
 ac:hasInput classifierInputData , classifierInputModel ;
 ac:hasOutput default:classifierOutput ;

 ac:isConcrete "false"^^xsd:boolean .

 Table 25: Representation of a Modeler component and a Classifier component.

// properties represented as metrics (such as the property domain) are propagated backward by a Modeler

[modelerTransferBackwd:

 (?c rdf:type pcdom:Modeler)

 (?c pc:hasOutput ?odv) (?odv ac:hasArgumentID "o")

 (?c pc:hasInput ?idv) (?idv ac:hasArgumentID "d")

 (?odv ?p ?val) (?p rdfs:subPropertyOf dc:hasMetrics)

 -> (?idv ?p ?val)]

// number of classes is propagated backward by a Classifier

[classifierTransferNClass:

 (?c rdf:type pcdom:Classifier)

 (?c pc:hasOutput ?odv) (?odv ac:hasArgumentID "o")

 (?c pc:hasInput ?idvmodel) (?idvmodel ac:hasArgumentID "m")

 (?c pc:hasInput ?idvdata) (?idvdata ac:hasArgumentID "d")

 (?odv dcdom:hasNumberOfClasses ?val)

 -> (?idvmodel dcdom:hasNumberOfClasses ?val),

 (?idvdata dcdom:hasNumberOfClasses ?val)]

__

Table 26: Examples of rules used in the component services for the backward sweep.

We use the W3C Web Ontology Language OWL standard (www.w3.org/TR/owl-

features) to represent components, workflows, and metadata. OWL is based on description

logics and extends the W3C RDF/XML standards with an ontology language. We also use

the Jena framework and its associated reasoning engines (jena.sourceforge.net). Each of the

services uses its own reasoner, so the reasoning about components is separate from the

reasoning about workflows. The workflow system uses the functions in the component

service according to the algorithms presented in the prior section. A well-known issue of

using OWL and other description logic systems is that one cannot make assert property

values about classes. This is because there is a separate A-box for instances and a separate

T-box for classes (i.e., for terminological reasoning). Therefore, we create instances for

many items in order to be able to make assertions. For example, in order to assert properties

of a component class or a file type, we create a Skolem instance that represents a

prototypical instance of the class. A definition of a Modeler_Skolem and a Classifier_Skolem are

shown in Table 25 in a N3 style notation. The workflow template representations use these

Skolem instances to refer to a component.

 52

__

// number of classes is propagated forward by a Classifier

[classifierTransferDataFwdNOfClasses:

 (?c rdf:type pcdom:Classifier)

 (?c pc:hasOutput ?odv) (?odv ac:hasArgumentID "o")

 (?c pc:hasInput ?idvmodel) (?idvmodel ac:hasArgumentID "m")

 (?c pc:hasInput ?idvdata) (?idvdata ac:hasArgumentID "d")

 (?idvmodel dcdm:hasNumberOfClasses ?val) (?idvdata dcdom:hasNumberOfClasses ?val)

 -> (?odv dcdom:hasNumberOfClasses ?val)]

// metrics data is propagated forward by a Modeler

modelerTransferFwd:

 (?c rdf:type pcdom:Modeler)

 (?c pc:hasOutput ?odv) (?odv ac:hasArgumentID "o")

 (?c pc:hasInput ?idv) (?idv ac:hasArgumentID "d")

 (?idv ?p ?val) (?p rdfs:subPropertyOf dc:hasMetrics) -> (?odv ?p ?val)]

// javaMaxHeapSize is set by the number of instances in the data object

[exampleParamSet1:

 (?c rdf:type pcdom:Modeler)

 (?c pc:hasInput ?idv) (?idv ac:hasArgumentID "d")

 (?c pc:hasInput ?ipv) (?ipv ac:hasArgumentID "j") // maxJavaHeapSize

 (?idv dcdom:hasNumberOfInstances ?x) ge(?x 10000)

 -> (?ipv ac:hasValue "1024M")]

[exampleParamSet2:

 (?c rdf:type pcdom:Modeler)

 (?c pc:hasInput ?idv) (?idv ac:hasArgumentID "d")

 (?c pc:hasInput ?ipv) (?ipv ac:hasArgumentID "j") // maxJavaHeapSize

 (?idv dcdom:hasNumberOfInstances ?x) lessThan(?x 10000)

 -> (?ipv ac:hasValue "512M")]

[exampleParamSet3:

 (?c rdf:type pcdom:Modeler)

 (?c pc:hasInput ?idv) (?idv ac:hasArgumentID "d")

 (?c pc:hasInput ?ipv) (?ipv ac:hasArgumentID "j") // maxJavaHeapSize

 (?idv dcdom:hasNumberOfInstances ?x) lessThan(?x 1000)

 -> (?ipv ac:hasValue "256M")]

Table 27: Examples of rules used by the component services to answer queries about
components during the forward sweep.

6.1. Component Services for Workflow Generation

Table 26 shows some of the rules used to answer backward sweep queries that are used

in this step. For example, for a modeler component, any values of hasMetrics sub-properties

of the output are asserted to be the same for the input data. Table 27 shows some rules

used to answer forward sweep queries.

 53

WT1 WT2

WT3 WT4

WT5 WT6

Figure 6: An example workflow template library for relational learning algorithms

 54

 [WT6TransferBackwd:

Area(GroupsFile_output_1, ?a) -> Area(LinksFile_input, ?a)

GroupType(GroupsFile_output_1, ?g) ->

GroupType(WatchListFile_input, ?g) ^

GroupType(SeedMembers_input, ?g)

StartYear(GroupsFile_output_1, ?s) ->

StartYear(LinksFile_input, ?s) ^ StartYear(SeedMembers_input, ?s)

EndYear(GroupsFile_output_1, ?s) ->

EndYear(LinksFile_input, ?s) ^ EndYear(SeedMembers_input, ?s)]

__

Table 28: Examples of rules for workflow template WT6 used in the workflow services

to answer queries during the backward sweep.

 [WT3TransferFwd:

wflns:WorkflowTemplate(?w) ^

aflns:hasNumLinks(LinksFile_flib, ?numl) ^

aflns:hasLinkWeight(?w, ?lw) ^

aflns:hasLinkWeightError(?w, ?lwe) ^

swrlb:divide(?p1, ?numl, ?lw) ^

swrlb:divide(?p2, ?numl, ?lwe) ^

swrlb:add(?p3, ?p1, ?p2) ^

swrlb:subtract(?p4, ?p1, ?p2)

 ->

hasMinEntities(GroupsFile_flib, ?p4) ^

hasMaxEntities(GroupsFile_flib, ?p3)]

__

Table 29: Example of a rule for workflow template WT3 used in the workflow services

to answer queries during the forward sweep.

6.2. Workflow Services for Workflow Generation

We have also used Wings with an implementation of the forward sweep and backward

sweep using workflow-level rules. The workflow templates in this case combine pattern

matching and other forms of relational learning algorithms such as the Kojak pattern

matcher [Adibi et al 04], the GDA group detection algorithm [Kubica et al 03], and

Betweenness Centrality to detect densely connected groups [Newman and Girvan 04]. For

these algorithms, it is hard to characterize their individually differentiating factors

especially when combined with other algorithms into a more complex analysis (a

workflow). The choice of algorithms results in crucial tradeoffs between the quality of the

result, the cost (in terms of false positives and false negatives), and the execution time.

Therefore, rather than representing detailed models of each algorithm in a component

service, we represent the information needed to support workflow generation in the

workflow service.

Figure 6 shows a few templates built from the algorithms mentioned. Table 28 shows a

rule used in the workflow service for the template WT6. This rule is used to compute the

predicted minimum and maximum number of resulting groups given the number of links in

the input file. The number of entities (groups) is obtained as a percentage (the “weight”) of

the number of links in the input with an associated error interval. Those numbers
(hasLinkWeight and hasLinkWeightError) can be a default value or be empirically obtained

 55

Figure 7. A Workflow Template for Seismic Hazard Analysis.

from data about previous executions of the templates. In comparing estimates for the

number of groups, intervals that overlap are considered equivalent. The rule is used to

answer queries during the backward sweep. Table 29 shows a rule for workflow WT3 used

to answer queries during the forward sweep.

We also have used workflow-level constraints in workflows for seismic hazard analysis.

Figure 7 shows a workflow template that estimates spectral acceleration based on physics-

based simulations of potential fault ruptures. These workflows require an extended

language that what we presented in this paper, since the template needs to capture how data

collections of many items are processed by many jobs. The processing of data collections

is abbreviated in the workflow template with nodes that represent collections of jobs that

would execute the same component over each item of the data collection. The workflow-

level constraints were represented and propagated as OWL assertions. The details of these

representations are described in [Kim et al 06; Gil et al 07a]. In this application the initial

request consisted of a bound workflow, that is, the initial data to be processed was given.

Workflow-level constraints were then used to elaborate the original workflow template and

specialize, configure, and instantiate it. Finally a ground workflow (also a Pegasus dax)

was submitted for mapping and execution.

7. Solving Workflow Generation Requests

This section discusses in detail eight workflow requests and summarizes the workflow

generation process for each of them. At the end of the section, we summarize the number

of workflow candidates generated, the number of calls to the data and component services,

and the time to run the workflow generation algorithm.

For these runs, we used a component catalog with the components shown in Table 1.

We used a data catalog of similar properties to the datasets in Table 1, but we had 4

datasets of weather data and 4 datasets of soybean data. The first four requests use four

different workflow templates, and illustrate how different numbers of datasets are matched

 56

for each request. The fifth and sixth requests illustrates that candidate bound workflows

can be eliminated during workflow generation. The seventh request shows that a request

can use a workflow template that is partially bound. Finally, the eighth request is one

where no matching datasets are found for any workflow candidates, so no solutions are

generated.

For each request, we show the diagram of the workflow template and the templte

constraints if any. We also show the seed constraints. For brevity, we show the constraints

on types of workflow data variables as annotations in the graph.

Request R1: ModelWeather

Request description:

Use the Modeler workflow template to create a model of weather instances where the

maximum java heap size for running the modeler is 500M, and the instances dataset

contains class ids in column 5.

Workflow template:

Seed:

 dataVariable1 dcdm:hasDomain dcdm:weather

 javaMaxHeapSize wflow:hasParameterValue 500M

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

Since there is only one component in the template, during backward sweep, the system

makes only one call for c:find-DODs-given-output-requirements. There are 6

modelers in the component catalog, and 6 binding-ready workflows are generated. There is

only one data variable for each, so one d:find-data-objects call is created for each

workflow. Out of the binding-ready workflows, 2 have 4 matching weather datasets for

dataVariable0:

J48Modeler: [(dataVariable0 weather-2007-07-31-155754)], [(dataVariable0

weather-2007-07-31-101503)], [(dataVariable0 weather-2007-07-31-101656)],

[(dataVariable0 weather-2007-07-31-101501)]]

and

Instance

Model

 57

LmtModeler: [[(dataVariable0 weather-2007-07-31-101656)], [(dataVariable0

weather-2007-07-31-155754)], [(dataVariable0 weather-2007-07-31-101501)],

[(dataVariable0 weather-2007-07-31-101503)]]

The other workflow candidates take DiscreteInstances only. With a data catalog with four

weather domain datasets (weather-2007-31-101501, weather-2007-31-101503, weather-

2007-31-101656, and weather-2007-31-155754) that are all ContinuousInstances, the

system will not find matching datasets for the workflows that need DiscreteInstances. That

is, 8 bound workflows are generated. During the forward sweep, one c:predict-DODs-

given-input-requirements call is made for each workflow. All the bound workflows

are configured after the forward sweep, and the system generates 8 workflow instances.

Request R2: SampleWeatherThenModel

Request description:

Use SampleThenModel workflow to generate a model of weather data. The instances

dataset contains class ids in column 5.

Workflow template:

Seed:

 randomSampleNClassIndex wflow:hasParameterValue 5

 modelerOutputModelDataVariable dcdm:hasDomain dcdm:weather

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

Since there are 6 modelers and 1 sampler in the component catalog, during the backward

sweep, one c:find-DODs-given-output-requirements call for the Modeler

component and six calls for the RandomSampleN component are made, generating 6

binding-ready workflows. Each of the workflow makes one d:find-data-objects call.

Out of the six workflows, only 2 binding-ready workflows match the available weather

data, and each have 4 matching datasets. As a result, the system generates 8 bound

workflows:

RandomSampleN-J48Modeler: [(dataVariable0 weather-2007-07-31-155754)],

[(dataVariable0 weather-2007-07-31-101503)], [(dataVariable0 weather-

2007-07-31-101656)], [(dataVariable0 weather-2007-07-31-101501)]]

and

Instance

Model

 58

RandomSampleN-LmtModeler: [[(dataVariable0 weather-2007-07-31-101656)],

[(dataVariable0 weather-2007-07-31-155754)], [(dataVariable0 weather-

2007-07-31-101501)], [(dataVariable0 weather-2007-07-31-101503)]]

During the forward sweep, two c:predict-DODs-given-input-requirements calls

are performed for each workflow since there are two components per each. All the bound

workflows are configured after the forward sweep. That is, 8 configured workflows are

generated.

Request R3: DiscretizeAndModelWeather

Request description:

Use DiscretizeAndModel workflow template to generate a model of weather data. The

instances datset contains class ids in column 5.

Workflow template:

Seed:

 modelerOutputModelDataVariable dcdm:hasDomain dcdm:weather

 discretizeClassIndex wflow:hasParameterValue 5

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

Since there are 6 modelers and 1 discretizer in the component catalog, 6 binding-ready

workflows are generated. The number of c:find-DODs-given-output-

requirements and d:find-data-objects calls are the same as the Request R2. The

discretizer accepts ContinuousInstances, so any modeler can be used in this case. That is,

for each binding-ready workflow, the system will match 4 weather datasets, and generate a

total of 24 bound workflows. During the forward sweep, each workflow makes two calls

for c:predict-DODs-given-input-requirements. All the bound workflows can be

elaborated, resulting in 24 workflow instances.

Continuous Instance

Discrete Instance

Model

 59

Request R4: SampleDiscretizeThenModel

Request description:

Use SampleDiscretizeThenModel workflow to generate a model of weather data. The

instances dataset contains class ids in column 5.

Workflow template:

Seed:

 modelerClassIndex wflow:hasParameterValue 5

 modelerOutputModelDataVariable dcdm:hasDomain dcdm:weather

 randomSampleNClassIndex wflow:hasParameterValue 5

 discretizeClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

Since the discretizer turns the data into discrete data, all modelers can be used in this

workflow. During the backward sweep, one c:find-DODs-given-output-

requirements call for the Modeler component, six calls for the Discretize component

and six more calls for the RandomSampleN are made. For each workflow candidate, one

d:find-data-objects call is made, and there will be 4 matching datasets. That is, 24

bound workflows are generated. During the forward sweep, all the bound workflows can

be elaborated, resulting in 24 configured workflows. A total of 72 calls for c:predict-

DODs-given-input-requirements (3 calls for each bound workflow) are made.

Request R5: ModelerThenClassifier

Request description:

Use ModelThenClassify workflow to generate a classification of weather data. The

modeler input dataset contains class ids in column 5.

Continuous Instance

Continuous Instance

Discrete Instance

Model

 60

Workflow template:

Template Constraints:

 [instanceInequalityCheck:

 (:classifierInputDataVariable wflow:hasDataBinding ?classifierDS)

 (:modelerInputDataVariable wflow:hasDataBinding ?modelDS)

 equal(?classifierDS, ?modelDS)

 (?t rdf:type wflow:WorkflowTemplate)

 -> (?t wflow:isInvalid "true"^^xsd:boolean)]

Seed:

 classifierOutputDataVariable dcdm:hasDomain dcdm:weather

 classifierOutputDataVariable rdf:type dcdm:Classification

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

During the backward sweep, one c:find-DODs-given-output-requirements call

for the Classifier component and six calls for the Modeler component are made. The

system finds that the 3 decision tree classifiers can only take decision tree models, so they

can only be combined with one of the 3 decision tree modelers. Similarly, the 3 Bayes

classifiers can only take as input Bayes models. That is, 9 workflow candidates are created

with decision tree modelers and classifiers and 9 with Bayes models. So in total the system

generates 18 binding-ready workflows. For each workflow candidate, one d:find-data-

objects call is made for the two data variables.

Instance

Instance Model

Classification

 61

The system will not find matching weather datasets for the candidate workflows that

need DiscreteInstances. In this case, only 4 of the binding-ready workflows with Lmt and J48

combinations (LmtModelerThenJ48Classifier, LmtModelerThenLmtClassifer, J48ModelerThen

LmtClassifier, J48ModelerThen J48Classifier) will get matching datasets. Since there are four

matching weather dataset for each of the two input variables, a total of 64 candidate bound

workflows generated in our running example. During the forward sweep, total 128 calls for

c:predict-DODs-given-input-requirements (2 calls for each candidate bound

workflow) are made. However, 16 candidates are eliminated by the workflow template

constraint, expressed in the rule above, that indicates that the bound datasets for

classifierInputDataVariable and modelerInputDataVariable cannot be the same. As a

result, a total of 48 configured workflows are generated.

Request R6: Soybean-ModelerThenClassifier

Request description:

Use ModelThenClassify workflow to generate a classification of soybean data. The

modeler input dataset contains class ids in column 5.

Workflow template:

Template Constraints:

 [instanceInequalityCheck:

 (:classifierInputDataVariable wflow:hasDataBinding ?classifierDS)

 (:modelerInputDataVariable wflow:hasDataBinding ?modelDS)

 equal(?classifierDS, ?modelDS)

 (?t rdf:type wflow:WorkflowTemplate)

 -> (?t wflow:isInvalid "true"^^xsd:boolean)]

Instance

Instance Model

Classification

 62

Seed:

 classifierOutputDataVariable dcdm:hasDomain dcdm:soybean

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

As in R5, the system generates 18 binding-ready workflows. The number of c:find-

DODs-given-output-requirements and d:find-data-objects calls are the same as the Request R5.

Since there are 4 discrete soybean datasets, the system generates 16 bindings for each of the

18 binding-ready workflows, which results in 288 bound workflows. During the forward

sweep, a total of 576 calls for c:predict-DODs-given-input-requirements (2 calls for each

candidate bound workflow) are made.

The template constraint above that the training and test datasets cannot be the same

invalidates 72 (18x4) workflows, and as a result the system generates 216 configured

workflows.

Request R7: TDataBound-ModelerThenClassifier

Request description:

Use ModelThenClassify workflow to generate a classification of a given weather data

weather-2007-07-31-101503. The instances dataset contains class ids in column 5.

Instance

Instance Model

Classification

 63

Template Constraints:

 [instanceInequalityCheck:

 (:classifierInputDataVariable wflow:hasDataBinding ?classifierDS)

 (:modelerInputDataVariable wflow:hasDataBinding ?modelDS)

 equal(?classifierDS, ?modelDS)

 (?t rdf:type wflow:WorkflowTemplate)

 -> (?t wflow:isInvalid "true"^^xsd:boolean)]

Seed:

 modelerInputDataVariable wflow:hasDataBinding dclib:weather-2007-07-

31-101503

 classifierOutputDataVariable dcdm:hasDomain dcdm:weather

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

This request, unlike the others above, specifies a dataset to use for the modeler
component (i.e. the training data).

As in R5, the backward sweep generates 18 candidate binding-ready workflows. The

same number of calls to the component catalog and the data catalog are made. Also as in

R5, only 4 of the binding-ready workflows with Lmt and J48 combinations

(LmtModelerThenJ48Classifier, LmtModelerThenLmtClassifer, J48ModelerThen

LmtClassifier, J48ModelerThen J48Classifier) will get a matching dataset for the classifier

input data variable. For each of the four workflows, the system will return 4 bindings for

the input dataset to the classifier. That creates a total of 16 bound workflows. During the

forward sweep, 32 calls for c:predict-DODs-given-input-requirements (2 calls

for each candidate bound workflow) are made.

The workflow constraint above that the training and test datasets must not be equal

causes the elimination of 4 of the candidate bound workflows. As a result, only 12
configured workflows are created.

Request R8: ModelWeather-NoBindings

Request description:

Use the Modeler workflow to create a model of a soybean-nominal domain where the

maximum java heap size for running the modeler is 500M, and the instances dataset

contains class ids in column 5.

 64

Workflow Template:

Seed:

 dataVariable1 dcdm:hasDomain dcdm:soybean-nominal

 javaMaxHeapSize wflow:hasParameterValue 500M

 modelerClassIndex wflow:hasParameterValue 5

Workflow Generation Run:

This template results in 6 binding-ready workflows, one for each modeler. The number

of c:find-DODs-given-output-requirements and d:find-data-objects calls are the

same as the Request R2. However, there are no matching datasets. There are no bound or

configured workflows generated for this request.

7.1. Summary

Table 30 summarizes the above requests and the results from running the workflow

generation algorithm. The three columns show the number of binding-ready workflow

candidates, bound workflow candidates, and configured workflow candidates. These

represent the number of workflow candidates generated after step backward sweep, input

data object selection and forward sweep respectively. The next three columns show the

number of queries to data catalog and component catalog for individual candidate

workflows. The current implementation handles individual workflow separately, and

different candidate workflows do not share the calls.

Instance

Model

 65

Request
ID

Binding-
Ready

Workflow
Candidates

Bound
Workflow

Candidates

Configured
Workflow

Candidates

Calls to

c:find-DODs-
given-
output-

requirements

Calls
to

d:find-
data-

objects

Calls to

c:predict-
DODs-given-
input-
requirements

Workflow

Generation
Time

R1 6 8 8 1 6 8 5 s

R2 6 8 8 7 6 16 4 s

R3 6 24 24 7 6 48 7 s

R4 6 24 24 13 6 72 8 s

R5 18 64 48 7 18 128 22 s

R6 18 288 216 7 18 576 81 s

R7 18 16 12 7 18 32 10 s

R8 6 0 0 1 6 0 1 s

Table 30: Generation of workflows for a variety of workflow requests.

8. Related Work

We discuss related work grouped into four topics: plan generation, workflow systems,
workflow representations, and software composition.

The emphasis of our work is not on workflows for data mining or machine learning,

rather we use this as a domain to illustrate our approach. But it is worth noting that

workflow planning has been proposed as an approach to automatically compose data

mining applications [Bernstein et al 05]. There are also several projects that suggest the

use of grid execution infrastructure for data mining, and in particular for the Weka libraries
[Cannataro et al 04; Talia et al 05].

8.1. Related Work in Plan and Workflow Generation

Workflow generation can be seen as a planning problem, where the workflow request

specifies features of the initial or goal status. We have used AI planning as a framework in

our prior work to assist users to create workflows [Kim et al 04] and to assemble

workflows from individual components [Blythe et al 03]. Earlier work that proposed the
use of AI planning to compose software applications incluyes [Chien and Mortensen 96].

A major novel aspect of our work is that our algorithm is the first that truly distributes

the functions of component reasoning and data reasoning to external services. In the plan

and workflow generation approaches described below all reasoning about components and

data is done internally in the workflow system rather than by invoking services provided by
external component and data catalogs.

 66

MOLGEN used skeletal planning that propagated constraints through a skeletal plan in

order to generate a concrete ground plan [Friedland and Iwasaki 85; Stefik 81]. In skeletal

planning, the same steps that appear in the skeletal plan are the same as those apprearing in

the concrete plan. Our algorithm follows this principle, it does not allow the component

catalog to return additional arguments when specializing a workflow component. It would

be useful to extend the algorithm so that additional steps could be added to the workflow,

perhaps allowing for non-critical components to be added. For example, components that

convert data into other formats, or enrich the data in some useful manner. This would be a

form of abstract planning, where our algorithm would use a high-level template to build the

plan at an abstract level and then a less abstract level where additional workflow

components are added.

Planning by analogy and case-based planning reuse an existing plan and adapt it to

satisfy new goals [Veloso 94; Kambhampati and Hendler 92]. Existing plans are modified

according to the aspects of the new state and goals that are not present in past cases. The

adaptations may include new steps or remove steps from the previous plan. In constrast,

our algorithm does not add or remove steps from the workflow template.

The backward sweep and the forward sweep have some commonalities with techniques

used in planning to propagate constraints in initial and goal states throughout the steps of a

plan. The backward sweep is essentially a form of goal regression, while the forward

sweep is in essence a forward projection [McDermott 91; Fikes and Nilsson 71]. There is

an analogy between the workflow requests that include requirements on data products and

goal statements in planning. The requiremenst in workflow requests that specify the

bindings for initial data sources can be seen as similar to initial states in planning.

However, initial states in planning contain ground predicates while workflow requests can

include requirements that are not ground predicates. That is, workflow requests specifying

the initial data sets to be used turns into ground predicates, but specifying properties of

those datasets does not.

AI planning and other techniques have been used to generate workflows both

automatically and interactively [McIlraith and Son 01; McDermott 02; Narayanan and

McIlraith 02; Medjahed et al 03; Blythe et al 03; Kim et al 04; Ambite and Kapoor 07].

However, these approaches require representations of components that can support

composition from first principles. In many domains, it is impractical or impossible to

obtain the detailed information required to support this kind of workflow generation from

first principles. In contrast, by starting from a library of known-to-work workflow

templates, the models required for the components can be much lighter, since they are only

required to specialize workflows but not to compose them. Another issue shared by these

approaches is the incorporation of user requirements and preferences. Scientists have very

extensive requirements about the kind of analysis that they want performed on a dataset.

Often these requirements amount to following a method (workflow) that is published in the

literature or is proven to work well [Gil 06; Gil et al 07b; Goderis et al 05a; Goderis et al

05b; Goderis et al 06; Wroe et al 07]. Automatic generation of workflows from libraries of

well-designed templates is a practical alternative approach for many application domains.

An alternative to generating workflows from first principles is the use of hierarchical

task network planning [Sirin et al 04]. As we discussed in section 2.5, the reasoning about

data and components is done within the planner rather than distributed to the data and

component catalogs as in our approach. Another difference is that our approach allows

users to state rich constraints on the kinds of solutions sought. More recent work [Lin et al

08] supports user preferences on the types of results or initial data or components to be

used. Our approach allows users to also specify precisely relationships between datasets

and components (e.g., that the output of a specific modeler within the workflow be of a

 67

certain type, not just any modeler in the workflow), as well as to express requirements on

intermediate datasets. In this sense, our approach is closer to planning from sketches in

hierarchical task network planning, where users provide some high-level features of a plan

and the system elaborates them into a complete executable plan [Myers et al 03]. Based on

the sketch, the system retrieves relevant plan fragments, and uses the sketch to guide the

completion of the plan. Plan sketches are not as complete as workflow templates, as they

can omit many steps needed in the plan. Generating workflows from such high-level

sketches has not been investigated to date, but might provide more flexibility than allowing

for user advice only. It might also support more flexibility than template-based workflow
generation.

8.2. Related Work in Workflow Systems

Most research on workflow systems is concerned with workflows of web services, and

in that sense their execution is done in a distributed environment [Oinn et al 06; Ludaescher

et al 06]. In contrast, our work addresses computational workflows, where each workflow

component is an executable code that can be submitted to execution on a remote host
through grid services.

The myGrid project (www.mygrid.org.uk) is perhaps the most closely related as it

focuses on the discovery, reuse and repurposing of bioinformatics workflows [Wroe et al

07]. They distinguish between direct “re-use” of an existing workflow as is and “re-

purposing” an existing workflow by modifying some aspect of it. [Goderis et al 05a]

defines requirements and bottlenecks for workflow re-use based on many user interviews

and practical experiences. They identify seven bottlenecks to workflow reuse, including

the need for more appropriate and interoperable workflow description and discovery

models, intellectual property rights on workflows that hinder sharing, service accessibility,

relative workflow rankings, and knowledge engineering needed to appropriately annotate

workflows. Our work presents additional requirements stemming from a different set of

application areas, as well as a different perspective since we consider workflows of

computations rather than of web services. One of the requirements addressed in myGrid is

the retrieval of workflows based on requests specifying structural properties of the

workflows, which is a requirement not addressed in our solution described in this paper. A

first solution using role specialization in OWL Lite allowed only to consider sequential

composition of components in the workflow is shown in [Goderis et al 05a], an improved

technique for graph sub-isomorphism matching is presented in [Goderis et al 06]. As in our

work, functional properties of workflows are used to support workflow retrieval with

expressive requirements, addressing interactive refinement of queries that is also

complementary to the focus of this paper [Goderis et al 05b]. Other than automating this

kind of workflow retrieval, there is little automation for actually elaborating the workflows

into executable ones. An important novel aspect of our work is the automatic selection of

input data objects and the automatic ranking and selection of workflows, which are strong
requirements in the domains that we have worked with.

Some workflow systems automate many aspects of the execution process. Prior work

on Pegasus [Deelman et al 05; Deelman et al 03] automated the selection of execution sites

and data replicas of computational workflows so that the user did not need to be concerned

with the specifics of the execution environment. Although that research automates an

important aspect of the overall workflow creation process and relieves a significant burden

from end users, it is only concerned with automating decisions regarding resource selection

and performance optimization. It does not address the selection of what software or data

sources are needed in order to accomplish some data analysis goals that the user may have.

 68

8.3. Related Work in Workflow Representations

The formalization and algorithms presented in this paper does not commit to specific

languages or representations. This was intentional, as we believe that our approach can be

implemented in any choice of language. More expressive languages can support more

complex reasoning capabilities, but our approach would work with less expressive

languages as well.

Our workflows are represented using structure (nodes and links) and constraints

(metadata properties of workflow data variables). Our algorithms could be used with any

workflow representations that can represent both. Popular workflow languages for web

services, such as BPEL (www.oasis-open.org/committees/wsbpel), use complex control

structures such as conditionals and iterations that we do not include. We assume a simple

DAG control structure that offers several advantages and has been sufficient to support a

variety of applications that we have addressed so far in our work [Gil et al 07a; Kim et al

06; Hall et al 08; Deelman et al 05]. It is easier to recover from execution failures if there

are simple dependencies across components. In addition, the workflow components are

likely to be more composable if they hide internally any complex control structures and are

likely to be easier to compose for non-programmers.

Some languages that include semantic constraints expressed in OWL have been

proposed [Ankolekar et al 01; Roman et al 05]. Our workflow generation algorithm could

be used with any of those languages, though only a small subset of the constructs allowed

in those languages are used in our framework.

8.4. Related Work in Software Composition

Computational workflows are software artifacts. From that point of view, our approach
has some commonalities as well as distinct requirements that are worth considering here.

The Model Driven Architecture (MDA) (www.omg.org/mda) as defined by the OMG

consortium shares with the approach presented here the interest on separating the problem

domain from the execution environment in a software system. MDA proposes the use of

different models for a software system along with a number of transformations going from

more abstract models into more specific ones. In MDA terms, its goal is to separate

business and application logic, which tends to be more stable, from the underlying platform

technology, which may evolve more quickly due to technological evolution. MDA is

intended mainly for large-scale distributed web-based business applications. The main

differences with our approach come from the type of models used to describe a software

system. MDA models are built with UML and do not support complex semantic constraints

other than is-a and part-of hierarchies. On the other hand, UML models allow expressing

not only data flow aspects of an application but also module relations and operation

sequencing. Finally, while MDA tries to model the whole software system from a very high

level down to the function level, a workflow system considers course-grained component

level descriptions of data and execution requirements without concern for how those

components are implemented internally.

Workflow-based approaches promote reuse at different levels: code reuse, since

algorithms are componentized they can be plugged into different workflows; design reuse,

since every workflow template provides an abstract design that can be specialized with

different components; requirements reuse, since the formal description of the problem

solved by a given workflow documents interesting combinations of problem characteristics;

and test reuse, since workflow instantiation and execution are also record for future use.

However, as it is well documented in the research on software reuse [Frakes and Kang 05],

any methodology that promotes reuse, and somehow prioritizes a long-term view of

 69

software development that penalizes short-term results, must take into account not only

technical but also human and organizational factors in order to be successfully applied. We

advocate what in the software product lines literature is known as “minimally invasive

transitions” [Krueger 06], trying to minimize disruption of ongoing development efforts

and to take advantage of existing software assets to make possible an incremental adoption
of the workflow-based approach.

9. Discussion

A variety of search strategies could be used to implement the workflow generation

algorithm. The algorithm as described in this paper follows breadth-first search strategy,

and generates all possible workflow candidates. Our implementation supports beam

search, which is more efficient but does not guarantee completeness. The same algorithm

could be applied with a depth-first search strategy. In that case, the algorithm could be

configured to stop after generating k solutions, rather than generating an exhaustive list of

candidates. This would not guarantee that the top-k ranked candidates would be generated

and selected, but would expedite the search in cases where the space is complex. An

alternative search strategy could be to conduct a heuristic search over the space of

candidates. This would require heuristic functions at each level to determine which

candidates are superior to others based on the information available at that point about each

of the candidates. Other search strategies could combine these heuristic estimates and
expand only the k-best candidates at each level.

The generation of workflows need not be a completely stratified process divided into

independent stages as presented in this paper. In some contexts, it may be desirable to

make the process less stratified. For example, several iterations of the backward or forward

sweep may be needed so that incrementally more detailed descriptions of the data are

constructed. In addition, the algorithm considers one candidate at a time but it could be

implemented to take advantage of what it has learned for a candidate in order to prune

others. This would be very useful when the search space is very complex and the number

of candidates explodes. Candidates may have significant shared workflow strands or data

properties that could be reused to avoid redundant expansions and queries, particularly to

eliminate candidates more efficiently.

An interesting area of research is the extension of the algorithm to enable the

incorporation of new components in the workflow template as workflow generation

proceeds. The algorithm described in this paper assumes that the initial workflow template

contains all the steps that will appear in any bound workflow resulting from the workflow

generation process. This requires that abstract component classes are defined in the

component catalog to have the same amount of input and output arguments as their

component subclasses. A simple extension to the current algorithm is to allow component

classes to not contain all the parameters that will appear in the specialized component

classes. The algorithm would add links and data variables to the workflow candidate as

needed to represent the additional parameters once the template is being specialized. A

different kind of extension may be to add components that do not create new kinds of data

but simply reformat the same dataset. That is, a component may output a dataset in its own

format, and the next component may need the dataset in a different format. The dataset

properties as far as the workflow generation algorithm would be the same, but the actual

realization of the dataset would be in different formats. Format conversion components

could be automatically inserted where needed in the workflow. A more complex extension

would be to extend the algorithm to be able to add new nodes (components) to the

workflow template. Specifically, this could be triggered when no data sources are found to

 70

match the requirements of the existing input data variables for a workflow. In those cases,

the algorithm could recursively turn the input data requirements into a request that it then

tries to find, instantiate, and execute workflows to satisfy it.

The development, refinement, and validation of component models, workflow models,

and data models needs to occur in the context of running the algorithm. Throughout the

workflow generation process each step generates or eliminates workflow candidates based

on knowledge from the catalogs. It is possible that the models in the component catalog

and workflow catalog do not contain enough constraints and therefore do not eliminate

candidates that are inappropriate. In that case, candidate workflows will be generated that

either fail to execute or that generate invalid results. If the models in the catalogs are

overly constraining, some workflow candidates may not be generated and solutions may be

missed. By analyzing the pool of candidates, a developer can refine the catalogs and
improve their fidelity over time.

Similarly, it is not possible to determine whether a workflow request issued to the

system is consistent with the component, workflow, and data catalogs untils it is processed

by the workflow generation algorithm. By propagating the constraints through the

workflow template and by incorporating constraints of the individual components, the

algorithm would encounter inconsistencies and the pool of candidates would be empty. For

example, consider a request that specifies bindings for a subset of the input variables.

Peforming the backward sweep would validate the request and ensure that the bindings

provided are consistent with the components and workflow template descriptions.

Automation requires knowledge about components or workflows to support the

workflow generation algorithm. The queries to the catalogs performed during workflow

generation require that the appropriate knowledge to answer them exists in the catalogs.

Therefore, automation comes at a cost incurred in developing and debugging those

catalogs. However, this cost depends on the kind of information needed and the amount of

automation required. First, there is a choice between adding knowledge about components

or about workflows. Adding knowledge about components is done in the component

catalog, and can support the component-level backward and forward sweep. Component-

level knowledge has the advantage of being applicable to all workflows that contain a

component, however for this very reason it needs to be specified with care so that the

knowledge generalizes across components. An alternative choice is to add knowledge

about workflows in the workflow catalog to support the workflow-level backward and

forward sweep instead. Workflow-level knowledge is specific to a workflow, and is not

transferable across workflows. On the other hand, it is easier to specify as it is only

concerned with the workflow at hand. A hybrid approach may be best, where knowledge is

specified for components where generalizations are possible, but otherwise the knowledge

is specified for workflows. The algorithm would perform the backward and forward sweep

for both the component-level queries and the workflow-level queries, combining the

constraints obtained from both. The second choice regarding cost is the degree of

automation desired as allowed in the workflow requests. That is, depending on the amount

of information included in the original workflow request, some of the steps of the algorithm

may not be needed. If the workflow request is seedless, then there is no need to seed the

workflow template. If the template in the request is concrete, then there is no need for the

component catalog to be able to specialize abstract classes. If the workflow request is

already bound, then there is no need for the backward sweep or to find data objects. If the

workflow request is configured, then there is no need for the configuration query

knowledge in the forward sweep. A third issue regarding cost arises from the generation of

properties of new workflow data products. That is, the algorithm can generate ground

workflows without generating any metadata properties of the new data products.

 71

Generating descriptions of new data products during the forward sweep requires knowledge

to generate such descriptions. The advantage is that data reuse can be supported. That is,

before the workflow is executed, the workflow system can notice that a data product

already exists based on its anticipated properties. In that case, the workflow system can

remove unnecessary computations and simply reuse that dataset. If data reuse is not

desirable, then there is no need to specify the knowledge that generates descriptions of new

data products. In domains where a selective characterization of the individual algorithmic

components is not possible, a different approach to workflow generation may be needed.

Anticipating which algorithms are more appropriate for a given dataset may not be

possible, and therefore pruning workflow candidates would not occur as needed. An

alternative path to workflow generation would be a portfolio approach for algorithm

selection [Leyton-Brown et al 03], where all the available algorithms for the request would

be executed and their results would be evaluated and compared in order to select the
algorithms that performed best.

Learning the knowledge needed for component selection and characterization is an

intriguing possibility. Performance data could be obtained by executing all possible

workflow candidates formed with all combinations of available algorithms present in a

workflow template. The performance data could be compared with a gold standard for

known datasets, and applicability rules could be learned that correlate the characteristics of

those datasets with the performance obtained. Similarly, running all possible workflow

templates relevant to a request would enable the collection of performance data that would

enable learning knowledge needed to discriminate among workflow templates in the initial
library.

Designing a shared workflow library also poses difficult challenges. An expert in the

domain may design a workflow template by combining available components applied on

certain types of data, but different experts may come with different solutions which would

be, in principle, equally good. Designing workflow templates is also challenging if they

must be reusable, retrieved in the appropriate contexts, and contain enough information to

be instantiated for new workflow requests. Learning abstract workflow templates from
many example executions of workflows may be a desirable approach.

10. Conclusions

We have presented a novel algorithm to generate workflows automatically from high-

level specifications of a user request. The algorithm conforms to a formalism proposed in

the paper to characterize datasets, workflow components, and workflows that frames the

process of workflow generation from a user request. Workflow generation starts from a

generic workflow template and incrementally adds detail to the workflow by selecting

components and data sources, while it generates or eliminates workflows from a pool of
candidates. The major novel features of this workflow generation algorithm are:

• It provides users with flexibility both in the kinds of information that they can

provide and in the amount of information provided. The algorithm can start from a
user request specified at different levels of abstraction and completeness.

• It either uses a workflow template provided in the request or retrieves relevant

workflow templates from a catalog, and generates possible candidates that are

consistent with the user request. This is an important requirement that allows users

to reuse typical workflow structures that reflect common approaches to a problem
or proven methodology shared by a community.

• It explicitly calls out to external semantic data and component catalogs for specific

reasoning tasks concerning data and components, therefore explicitly declaring

 72

what reasoning is required from third-party catalogs to support workflow

generation. It assumes an architecture where the workflow system is separate from

data and component services, which are distributed and provided by others. This is

important in many application areas, where components and data are made available

by third parties that are separate from the workflow libraries and the workflow

system itself. This is the case in the design of e-Science “collaboratories” where

data and software are made available in physically distributed environments, and

the producers and the users are different sets of people. The workflow generation

algorithm invokes external services that reason about components and data, and

obtains properties and constraints that are then propagated to the rest of the

workflow.

There is a cost to automating workflow generation in terms of the amount of engineering

of the knowledge needed to answer queries about components and about workflow

templates. We discussed in the paper the tradeoffs between automating only some aspects

of workflow generation instead of the whole process. The workflow generation algorithm

presented has two variants: one that requires deeper knowledge in the component catalog,

and one that requires deeper knowledge in workflow templates. The algorithm also

includes a workflow ranking to select a subset of all the workflow candidates generated.

This approach degrades gracefully: more investment in knowledge engineering leads to

more pruning in the space explored and therefore less wofklow candidates considered

during workflow generation. But less investment in knowledge engineering is still

acceptable, as the system will just generate many more workflows to be ranked.

Scientific data processing has reached a new era of complexity and scale. Instruments

are now available that can collect terabytes of data in a day. Shared data repositories make

vast amounts of data available to entire communities for analysis and experimentation.

Tremendous amounts of computing power are available to scientists. Scientific exploration

and experimentation can no longer be conducted in the realm of handcrafted processes

carried out by individual investigators. Automated workflow generation processes can

explore a larger space of hypotheses and execute experimental tests more effectively than

manual data analysis processes. Knowledge representation, planning, and other artificial

intelligence techniques can contribute to the automation of important aspects of the

scientific discovery process. Scientists can then be empowered by intelligent workflow

systems that can be tasked at a high level to conduct specific experiments and to analyze

the results. Automated workflow generation systems as a form of intelligent assistance

have tremendous potential to significantly accelerate scientific progress.

Acknowledgements

We would like to thank Ewa Deelman, Gaurang Mehta, and Karan Vahi for their

feedback on this work and the integration of our workflow generation algorithm with their

Pegasus workflow mapping and execution system. We would also like to thank Christian

Fritz and Paul Groth for many useful comments. This work was supported in part by the

National Science Foundation under grant CCF-0725332.

 73

References

Adibi, J., Chalupsky, H., Melz E., and Valente, A. “The KOJAK Group Finder:

Connecting the Dots via Integrated Knowledge-Based and Statistical Reasoning”.

Proceedings of the Sixteenth Innovative Applications of Artificial Intelligence
Conference (IAAI), San Jose, CA, July 2004.

Al-Masri, E. and Q. H. Mahmoud. “Investigating Web Services on the World Wide Web.”

Proceedings of the World Wide Web Conference, Beijing, China, 2008.

Ambite, J.L. and Kapoor, D. “Automatically Composing Data Workflows with Relational

Descriptions and Shim Services”. Proceedings of the 6th International Semantic Web

Conference (ISWC-2007), Busan, Korea, November 2007.

Ankolekar, A., M. Burstein, J.R. Hobbs, O. Lassila, D.L. Martin, S.A. McIlraith, S.

Narayanan, M. Paolucci, T. Payne, K. Sycara, and H. Zeng. “DAML-S: Semantic

Markup For Web Services”. Proceedings of the International Semantic Web
Workshop, 2001.

Ashley, K. D. and Aleven, V, 1997, Reasoning symbolically about partially matched cases.

In Proceedings of the Fifteenth International Joint Conference on Artificial Intelligence.
San Francisco, CA: Morgan Kaufmann, pp. 335–341.

Asuncion, A. & Newman, D.J. (2007). UCI Machine Learning Repository

[http://www.ics.uci.edu/~mlearn/MLRepository.html]. Irvine, CA: University of
California, School of Information and Computer Science.

Atkins, D. E., K. K. Droegemeier, S. I. Feldman, H. Garcia-Molina, M. L. Klein, D. G.

Messerschmitt, P. Messina, J. P. Ostriker, M. H. Wright. "Revolutionizing Science and

Engineering Through Cyberinfrastructure," National Science Foundation Blue-Ribbon

Advisory Panel on Cyberinfrastructure January 2003.
http://www.nsf.gov/publications/pub_summ.jsp?ods_key=cise051203

Baader, F. and P. Narendran, "Unification of Concept Terms in Description Logics",

Journal of Symbolic Computation, 2001.

Baader, F. C. Lutz, M. Milicic, U. Sattler, and F. Wolter. "Integrating Description Logics

and Action Formalisms: First Results", Proceedings of the Twentieth National

Conference on Artificial Intelligence (AAAI-05), Pittsburgh, PA, USA, 2005.

Belhajjame, K., Embury, S.M., Paton, N. W., Stevens, R., and C. A., Goble. “Automatic

annotation of Web services based on workflow definitions.” ACM Transactions on

the Web, 2(2), 2008.

Bergmann R and Stahl, A, 1998, Similarity measures for object-oriented case

representations. In Proceedings of the Fourth European Workshop on Case-Based

Reasoning. Berlin: Springer, pp. 25–36.

Bernstein, A., F. Provost and S. Hill. "An Intelligent Assistant for the Knowledge

Discovery Process: An Ontology-based Approach" IEEE Transactions on Knowledge

and Data Engineering 17(4), pp. 503-518, 2005.

Blythe, J., Deelman, E., Gil, Y., Kesselman, C., Agarwal, A., Mehta, G., Vahi, K.. “The

Role of Planning in Grid Computing.” Proceedings of the 13th International Conference

on Automated Planning and Scheduling (ICAPS), June 9-13, 2003, Trento, Italy.

Bussler, C., Fensel, D., and A. Maedche, A. “ A conceptual architecture for semantic Web-
enabled Web services.” SIGMOD Record 31(4) 2002.

 74

Cannataro, M., Comito, C., Schiavo, F.L. and Veltri, P. 2004: Proteus, a Grid based

Problem Solving Environment for Bioinformatics: Architecture and Experiments. IEEE

Computational Intelligence Bulletin, 3(1) (2004) 7-18.

Champin, PA and Solnon, C, 2003, Measuring the similarity of labeled graphs. In

Proceedings of the Fifth International Conference on Case-Based Reasoning. Berlin:

Springer, pp. 80–95.

Chien, S. A., and H. B. Mortensen, "Automating Image Processing for Scientific Data

Analysis of a Large Image Database," IEEE Transactions on Pattern Analysis and

Machine Intelligence 18 (8): pp. 854-859, August 1996.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K., Blackburn, K.,

Lazzarini, A., Arbree, A., Cavanaugh, R., and Koranda, S. “Mapping Abstract

Workflows onto Grid Environments.” Journal of Grid Computing, Vol. 1, No. 1, 2003.

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Vahi, K.,

Berriman, G. B., Good, J., Laity, A., Jacob, J. C., and D. S. Katz. "Pegasus: a

Framework for Mapping Complex Scientific Workflows onto Distributed Systems".
Scientific Programming Journal, Vol 13(3), 2005.

Deelman, E., and Gil, Y. (Eds). "Final Report of the NSF Workshop on Challenges of

Scientific Workflows", National Science Foundation, Arlington, VA, May 1-2, 2006.
http://www.isi.edu/nsf-workflows06.

Fan, J. and S. Kambhampati. “A Snapshot of Public Web Services.” ACM SIGMOD

Record, March 2005.

Fikes, R. E., and Nilsson, N. J. “STRIPS: A New Approach to the Application of Theorem
Proving to Problem Solving”, Artificial Inelligence, 2(3/4):189-208, 1971.

Forbus, K, Gentner, D and Law, K, 1994, MAC/FAC: a model of similarity-based retrieval.

Cognitive Science 19(2), 141–205.

Frakes, W., and K. Kang, “Software Reuse Research: Status and Future,” IEEE Trans. on
SW Eng., vol.31, no. 7, pp. 529-536, July 2005.

Friedland, P. and Iwasaki, Y. “The Concept and Implementation of Skeletal Plans.” Journal

of Automated Reasoning, 1(2): 161-208, 1985.

Gil, Y., Ratnakar, V., and Deelman, E. Virtual Metadata Catalogs: Augmenting Metadata

Catalogs with Semantic Representations. Fourth International Semantic Web

Conference (ISWC-05), Galway, Ireland, November 7-10, 2005.

Gil, Y. “Workflow Composition”. In Workflows for e-Science, D. Gannon, E. Deelman,
M. Shields, I. Taylor (Eds), Springer Verlag, 2006.

Gil, Y., Ratnakar, V., Deelman, E., Mehta, G. and J. Kim. "Wings for Pegasus: Creating

Large-Scale Scientific Applications Using Semantic Representations of Computational

Workflows." Proceedings of the 19th Annual Conference on Innovative Applications of

Artificial Intelligence (IAAI), Vancouver, British Columbia, Canada, July 22-26, 2007.

Gil, Yolanda, Ewa Deelman, Mark Ellisman, Thomas Fahringer, Geoffrey Fox, Dennis

Gannon, Carole Goble, Miron Livny, Luc Moreau, and Jim Myers. “Examining the

Challenges of Scientific Workflows,” IEEE Computer, vol. 40, no. 12, pp. 24-32,
December, 2007.

Gil, Y. “From Data to Knowledge to Discoveries: Scientific Workflows and Artificial

Intelligence.” Scientific Programming, Volume 17, Number 3, 2009.

Gil, Yolanda, Jihie Kim, Gonzalo Florez, Varun Ratnakar, and Pedro A. Gonzalez Calero.

“Workflow Matching Using Semantic Metadata.” Proceedings of the Fifth International

Conference on Knowledge Capture (K-CAP), Redondo Beach, CA, September 1-4,
2009.

 75

Gil, Yolanda, Paul Groth, Varun Ratnakar, and Christian Fritz. Expressive Reusable

Workflow Templates. Proceedings of the Fifth IEEE International Conference on e-

Science, Oxford, UK, December 9-11, 2009.

Gil, Yolanda, Varun Ratnakar, Jihie Kim, Pedro Antonio Gonzalez-Calero, Paul Groth,

Joshua Moody, and Ewa Deelman. “Wings: Intelligent Workflow-Based Design of

Computational Experiments.” To appear in IEEE Intelligent Systems, 2010.

Goderis, A., Ulrike Sattler, Phillip Lord and Carole Goble. Seven bottlenecks to workflow

reuse and repurposing. Proc. of the 4th Int. Semantic Web Conference, Galway, Ireland,

2005.

Goderis, A., Sattler, U., Goble, C.A.: Applying description logics for workflow reuse and

repurposing. In Horrocks, I., Sattler, U., Wolter, F., eds.: Description Logics. Volume

147 of CEUR Workshop Proceedings., CEUR-WS.org (2005)

Goderis, A., Li, P., Goble, C.A.: Workflow discovery: the problem, a case study from e-
science and a graph-based solution. In: ICWS, IEEE Computer Society (2006) 312–319

Hall, M., Gil, Y. and Lucas, R. "Self-Configuring Applications for Heterogeneous Systems:

Program Composition and Optimization Using Cognitive Techniques". Proceedings of
the IEEE, Special Issue on Edge Computing, February 2008.

Hull, D., Zolin, E., Bovykin, A., Horrocks, I., Sattler, U., and Stevens, R. “Deciding

Semantic Matching of Stateless Services.” Proceedings of the Twenty-First National
Conference on Artificial Intelligence (AAAI), 2006.

Kambhampati, S. and J. A. Hendler. “A Validation Structure-Based Theory of Plan

Modification and Reuse”, Artificial Intelligence Journal. Vol 55. pp. 193-258. 1992.

Kim, Jihie, Marc Spraragen, and Yolanda Gil. An Intelligent Assistant for Interactive

Workflow Composition, In proceedings of the 2004 International Conference on

Intelligent User Interfaces (IUI), Madeira Islands, Portugal, January 2004.

Kim, Jihie, Yolanda Gil, and Varun Ratnakar. “Semantic Metadata Generation for Large

Scientific Workflows.” Proceedings of the Fifth International Semantic Web

Conference (ISWC-06), Athens, GA, November 5-9, 2006.

Kim, J., Deelman, E., Gil, Y., Mehta, G., and V. Ratnakar. “Provenance Trails in

Wings/Pegasus”, Journal of Computation and Concurrency: Practice and Experience,

Special issue on the First Provenance Challenge, L. Moreau and B. Ludaescher (Eds),
2008.

Krueger, C. W. “New methods in software product line practice,” Communications of the

ACM, vol. 49, no. 12 pp. 37-40, December 2006.

Kubica, J., Moore, A., Schneider, J. Tractable Group Detection on Large Link Data Sets.
The Third IEEE International Conference on Data Mining, 2003.

Langley, P., Simon, H.A., Bradshaw, G.L., Zytkow, J.M. “Scientific Discovery:

Computational Explorations of the Creative Processes.” Cambridge, MA: The MIT
Press, 1987.

Leyton-Brown, K., Nudelman, E., Galen A., McFadden, J. Shoham, Y. “A Portfolio

Approach to Algorithm Selection.” Proceedings of the International Joint Conference
on Artificial Intelligence (IJCAI) 2003.

Li, L., and Horrocks, I., "A software framework for matchmaking based on semantic web

technology", Proceedings of the World Wide Web Conference (WWW), 2003.

Lin, N., Kuter, U., and E. Sirin “Web Service Composition with User Preferences.”
Proceedings of the Fifth European Semantic Web Conference, 2008.

 76

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger-Frank, E., Jones, M., Lee, E., et

al. “Scientific Workflow Management and the Kepler System”. Concurrency and

Computation: Practice and Experience, Special Issue on Workflow in Grid Systems,
18(10), 2006.

McDermott, D. “Regression Planning”. International Journal of Intelligent Systems,

Volume 6, Issue 4, 1991.

McDermott, D. "Estimated-Regression Planning for Interactions with Web Services."
Proceedings of the AI Planning Systems Conference, 2002.

McIlraith, S. and Son, T. "Adapting Golog for Composition of Semantic Web Services,"

Proceedings of the Eighth International Conference on Knowledge Representation and
Reasoning, 2002.

Medjahed, B., A. Bouguettaya, and A. K. Elmagarmid. "Composing Web services on the

Semantic Web." The International Journal on Very Large Databases, 12(4), November
2003.

Mitchell, T. M. “The Discipline of Machine Learning.” Machine Learning Department

technical report CMU-ML-06-108, Carnegie Mellon University, July 2006.

Moore R. W., Boisvert, R., and Tang, P, Data Management Systems for Scientific

Applications. "The Architecture of Scientific Software," pp. 273-284, Kluwer

Academic Publishers, 2001.

Moreau, L. and B. Ludaescher (Eds). Special issue on the First Provenance Challenge,
Journal of Computation and Concurrency: Practice and Experience, 2008.

Morik, K. and Scholz, M. "The MiningMart Approach to Knowledge Discovery in

Databases". In: Ning Zhong and Jiming Liu (editors), Intelligent Technologies for
Information Analysis, Springer, pages 47 -- 65, 2004.

Muggleton, Stephen H. “2020 Computing: Exceeding human limits,” Nature, Special Issue

on 2020 Computing, Vol. 440, pp. 413-414, 2006.

Myers, K. L., P. A. Jarvis, W. M. Tyson, and M. J. Wolverton. "A Mixed-initiative

Framework for Robust Plan Sketching", In Proceedings of the 13thInternational

Conferences on AI Planning and Scheduling , Trento, Italy, June, 2003.

Narayanan, S., and S. McIlraith. " Simulation, verification and automated composition of

Web services." Proceedings of the 11th International World Wide Web Conference,

2002.

Nature Editorial: “2020 computing: Milestones in scientific computing”, Special Issue on
2020 Computing, Nature, Volume 440, Number 7083, March 23 2006.

Newman, M. E. J. and M. Girvan. Finding and evaluating community structure in

networks. Physical Review, 2004.

Oinn, T., Greenwood, M., Addis, M., Nedim Alpdemir, M., Ferris, J., Glover, K., Goble,

C., Goderis, A., Hull, D., Marvin, D., Li, P., et al. “Taverna: Lessons in creating a

workflow environment for the life sciences.” Concurrency and Computation: Practice

and Experience, Special Issue on Workflow in Grid Systems, Volume 18, Issue 10,

August 2006.

Opitz, D. and Maclin, R. “Popular Ensemble Methods: An Empirical Study.” Journal of
Artificial Intelligence Research, Vol 11, 1999.

Roman, Dumitru, Uwe Keller, Holger Lausen, Jos de Bruijn, Rubén Lara, Michael

Stollberg, Axel Polleres, Cristina Feier, Christoph Bussler, and Dieter Fensel: Web
Service Modeling Ontology, Applied Ontology, 1(1): 77 - 106, 2005.

 77

Singh, G., S. Bharathi, A. Chervenak, E. Deelman, C. Kesselman, M. Manohar, S. Patil,

and L. Pearlman. A Metadata Catalog Service for Data Intensive Applications.

Proceedings of the Supercomputing Conference, November 2003.

Sirin, E., B. Parsia, D. Wu, J. Hendler, and D. Nau. "HTN planning for web service
composition using SHOP2." Journal of Web Semantics, 1(4):377-396, 2004.

Sonnenburg, Sören, Mikio L. Braun, Cheng Soon Ong, Samy Bengio, Leon Bottou,

Geoffrey Holmes, Yann LeCun, Klaus-Robert Müller, Fernando Pereira, Carl Edward

Rasmussen, Gunnar Rätsch, Bernhard Schölkopf, Alexander Smola, Pascal Vincent,

Jason Weston, Robert Williamson; “The Need for Open Source Software in Machine
Learning”, Journal of Machine Learning Research, Vol 8(Oct):2443--2466, 2007.

St Amant, R. and Cohen, P. “Intelligent Support for Exploratory Data Analysis.” Journal

of Computational and Graphical Statistics, 7(4), 1998.

Stefik, M. “Planning with Constraints”, Artificial Intelligence, 16:111-140, 1981.

Szalay A. and J. Gray, "2020 Computing: Science in an exponential world," Nature,
Special Issue on 2020 Computing, Vol. 440, pp. 413-414, 2006.

Talia, D., P. Trunfio, and O. Verta, "Weka4WS: a WSRF-enabled Weka Toolkit for

Distributed Data Mining on Grids," in 9th European Conference on Principles and
Practice of Knowledge Discovery in Databases (PKDD 2005). Porto, Portugal, 2005.

Taylor, I., Deelman, E., Gannon, D., Shields, M., (Eds). "Workflows for e-Science",

Springer Verlag, 2006.

Thain, D., Tannenbaum, T., and Livny, M. "Distributed Computing in Practice: The

Condor Experience" Concurrency and Computation: Practice and Experience, Vol. 17,

No. 2-4, pages 323-356, February-April, 2005.

Tuchinda, R., Thakkar, S., Gil, Y., and Deelman, E. Artemis: Integrating Scientific Data

on the Grid. Proceedings of the 16th Annual Conference on Innovative Applications of

Artificial Intelligence (IAAI), San Jose, CA, July 25-29, 2004.

Veloso, M. M., Planning and Learning by Analogical Reasoning: Springer Verlag,
December 1994.

Von Laszewski, G., Hategan, M., and D. Kodeboyina. “Java CoG Kit Workflow.” In

Workflows for e-Science, D. Gannon, E. Deelman, M. Shields, I. Taylor (Eds),
Springer Verlag, 2006.

Washington, W. M. et al. "National Science Board 2020 Vision for the NSF," National

Science Board Report December
2005.www.nsf.gov/publications/pub_summ.jsp?ods_key=nsb05142

Wieczorek, M., R. Prodan, and T. Fahringer, "Scheduling of Scientific Workflows in the

ASKALON Grid Environment," SIGMOD Record, vol. 34, 2005.

Witten, I. H. and Frank E. “Data Mining: Practical Machine Learning Tools and
Techniques.” Morgan Kaufmann, San Francisco, 2 edition, 2005.

Wroe, C., Goble, C., Goderis, A., Lord, P., Miles, S., Papay, J., Alper, P., Moreau, L.:

“Recycling workflows and services through discovery and reuse.” Concurrency and
Computation: Practice and Experience 19(2) (2007) 181–194.

Zhao, J., Goble, C., Stevens, R., Turi, D. “Mining Taverna's semantic web of provenance.”

Journal of Computation and Concurrency: Practice and Experience, Special issue on the
First Provenance Challenge, L. Moreau and B. Ludaescher (Eds), 2008.

