
A SEMANTIC GRAPH DATABASE FOR BIM-GIS INTEGRATED INFORMATION

MODEL FOR AN INTELLIGENT URBAN MOBILITY WEB APPLICATION

A.E.Hadi Hor1, S. Gunho1*, P. Claudio 2, M. Jadidi1, A. Afnan1

1 Earth and Space Science and Engineering at York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada

(elhadi, gsohn, mjadidi, aafnan) @yorku.ca
2 Computer Science and Engineering at York University, 4700 Keele St, Toronto, ON M3J 1P3, Canada

pio@cse.yorku.ca

Commission IV, WG IV/4

KEY WORDS: Property, graph, database, model, IFC, CityGML, BIM, GIS, Neo4j, Web GIS Services, SPARQL

ABSTRACT:

Over the recent years, the usage of semantic web technologies and Resources Description Framework (RDF) data models have been

notably increased in many fields. Multiple systems are using RDF data to describe information resources and semantic associations.

RDF data plays a very important role in advanced information retrieval, and graphs are efficient ways to visualize and represent real

world data by providing solutions to many real-time scenarios that can be simulated and implemented using graph databases, and

efficiently query graphs with multiple attributes representing different domains of knowledge. Given that graph databases are schema

less with efficient storage for semi-structured data, they can provide fast and deep traversals instead of slow RDBMS SQL based joins

allowing Atomicity, Consistency, Isolation and durability (ACID) transactions with rollback support, and by utilizing mathematics of

graph they can enormous potential for fast data extraction and storage of information in the form of nodes and relationships. In this

paper, we are presenting an architectural design with complete implementation of BIM-GIS integrated RDF graph database. The

proposed integration approach is composed of four main phases: ontological BIM and GIS model’s construction, mapping and semantic

integration using interoperable data formats, then an import into a graph database with querying and filtering capabilities. The

workflows and transformations of IFC and CityGML schemas into object graph databases model are developed and applied to an

intelligent urban mobility web application on a game engine platform validate the integration methodology.

1. INTRODUCTION

Industry foundations classes (IFC) and City Geographic

Modelling language (CityGML) are both standards for encoding

3D models and their integration can open opportunities for

applications in a broad range of areas such as urban planning,

facility management, seamless indoor-outdoor routing, and in the

environmental simulation (Ismail, A., Nahar, A., & Scherer, R.

(2017)) and many more other applications. Even that, these two

technologies have evolved differently, both can benefit from each

other if they could exchange data effectively. As BIM technology

is mainly focused on indoor environments, GIS can extend the

benefits and applicability of existing building models to the

outdoor environment, this is not an easy task to transfer no to

exchange data between BIM and GIS without consideration of

data format and meaning. Current state-of-the-art BIM (or GIS)

tools enable the data exchange between the systems by using a

common data format (Khalili, A., & Chua, D. 2015). Therefore,

the users can access data from a different software program and

share data within the BIM (or GIS) domain. However, it requires

the user to have a thorough understanding of both systems and

their functionalities. The integration tools and current standards

lack the ability to help the user to convey meaning. To fully

integrate GIS and BIM, there is a need to provide interoperability

at the semantic level.

Given the fact that industry foundation classes (IFC) files and

City Geography Mark-up Language (CityGML) both have

capabilities for storing semantic properties and relationships

between objects and elements, these models can be integrated

into one information model the Resource Description Framework

(RDF). This modern ontology language framework with web

ontology language (OWL) are based on description logics. As

description logics describe the domain in terms of concepts,

roles, and individuals, OWL describes that in terms of classes

instead of concepts, properties instead of roles, and individuals.

A collection of these classes, their attributes and relationships can

be stored as RDF statements or triples describing each individual

resource, it’s properties, and values which can be intuitively
understood as a graph that can also be represented as nodes

representing classes and connecting vertices representing

relationships and values (A. Hadi. Hor, Jadidi, A., & Sohn, G.

(2016). In this study we have investigated, designed, and

developed a graph database framework for BIM-GIS RDF

integrated model to take advantages of the powerful

performance, flexibility and agility properties of graph databases

and explore BIM-GIS integration patterns through large-scale

graphs analysis and real-time applications like intelligent urban

mobility.

2. METHODOLOGY AND CONCEPTUAL

FRAMEWORK

The main purpose of this research work is to develop and

implement a conceptual design for a BIM-GIS integrated

information model using their IFC and CityGML source datasets

using their semantics and geometric information represented in

ontological taxonomies and graph database. The end-to-end

system implementation for a semantic graph database for BIM-

GIS integrated information model for intelligent Urban Mobility

web application is mainly composed of four modules as shown

in the diagram illustrated in Figure 1.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

89

Figure 1. BIM-GIS semantic integrated model conceptual

design

These four modules are described the section below

• Source Models: These are the BIM and GIS models

expressed respectively in IFC and CityGML native

formats exported into RDF representations for model

integration.

• Data translation and graph matching module: the

IFC and CityGML datasets are matched and aligned

using a graph Matching algorithm for ontologies

(GMO) algorithm, before migration into an integrated

RDF graph model, to be then exported into a labelled

property graph (LPG) datasets stored in a graph

database management system.

• BIM-GIS integrated Model management: this

module provides sets tools granting access to

administration and development using the graph

database.

• Application: an application was developed using the

graph database to validate the BIM-GIS graph

database.

The new proposed methodology introduces a workflow to

develop and build IFC and CityGML based graphs models using

their RDF ontological models developed (A. Hadi et al 2016), in

this workflow the transformation is described in Figure 2.

Figure 2. Transformation pipeline

The process of getting data from Resouce Description

Framework (RDF) data into graph database can be completed by

transforming the BIM-GIS integrated RDF model into CSV

format. The CSV files can feed visualizations platforms and with

its propositional form can be suitable for most data mining

algorithms . queries were designed and executed to extract

semantically mapped and aligned using semantic alignment

techniques triples (A.Hadi et al., 2016) from the BIM-GIS RDF

integrated model, before been exported to tabular view. The

resulting RDF data can be then serialized to a CSV as specified

in the W3C recommendation https://www.w3.org/TR/sparql11-

results-csv-tsv/.

Once completed a data quality check is performed with a number

of tools to help validating the imported dataset. In the course of

this research we used a number of validation tools: mainly, the

CSVkit a set of python tools that provide statistics on data, these

statistics can allow inaccuracies detection, also we took

advantage of LOAD CSV clause from Cypher, this powerful

ETL and conversion tool can direct mapping of large data into

complex graph/domain structure, merge data from heterogenous

sources, their relationships structures and supportes well heavy

computations.

Figure 3. Semantic Alignment workflow of BIM-GIS

integrated ontologies (A. Hadi. Hor, Jadidi, A., & Sohn, G.,

2016).

Resource description Framework (RDF) triple stores and

property graphs both have ways to explore and graphically depict

connected data and provide methods to explore and query

integrated data models. However, there are differences, and each

has strengths when it comes to represent BIM and GIS data. This

study is looking to combine the RDF and Property graphs to

develop a graph data model able to integrate these two domains

of knowledge that can provide the highest level of accuracy and

data richness and with sets of admin tools allowing graph data

management, however knowing that:

• RDF does not uniquely identify instances of

relationships of the same type: no two connections of

the same type between a pair of nodes.

• RDF cannot qualify instances of relationships: no

attributes on relationships.

• A property graph of N nodes, p properties/node, r

relationships/node, l label/node, in RDF it will

contain: (p + r + l) * N triples.

A graph is a data structure composed of edges and vertices. A

graph database technology is an effective set of tools to model,

store, manipulate, query and manage graph data focusing on the

attributes, values and relationships between the entities in the

data model. Modeling objects such BIM IFC classes and GIS

CityGML elements and the relationships between them means

that everything can captured and represented in a corresponding

graph. Graph databases make an extensive use of graph entities

such as properties, nodes and edges (relationships). Data is

mainly stored in nodes while the relationships between the data

items is represented by edges between nodes. Graph databases

are now a viable alternative to relational database systems and it

has its applications in many fields in science and engineering

such as biology, chemistry, social networking, semantic web and

research engines.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

90

https://www.w3.org/TR/sparql11-results-csv-tsv/
https://www.w3.org/TR/sparql11-results-csv-tsv/
https://csvkit.readthedocs.io/en/1.0.3/
https://neo4j.com/docs/developer-manual/current/get-started/cypher/importing-csv-files-with-cypher/

3. GRAPH DATABASE MODELS

There are many supported graph types that can be utilized when

it comes to modeling and bringing GIS and BIM models together

into an integrated graph, one of these graph models is the

property graph. Property graphs are attributed, labeled, directed

multi-graphs provides a visual example of a property graph

which represents interactions between people and objects. A

benefit to the multi graph is that it is the most complex

implementation because every other type of graph consists of

subsets of the property graph implementation. This means a

property graph can effectively model all other graph types. The

graph database is optimized for the efficient processing of dense,

interrelated datasets. This design allows the construction of

predictive models, and detection of correlations and patterns.

This highly dynamic data model in which all nodes are connected

by relations allows for fast traversals along the edges between

vertices. A benefit is the fact that traversals are localized and do

not have to consider sets of unrelated data.

Several graph processing systems have been developed in the last

decade to meet the modern graph modelling and analysis tasks.

Doekemeijer (Doekemeijer & Varbanescu, 2014- PDS- 2014-

003) has declared that more than 80 systems have been

introduced in the period from 2004 to 2014, by academia and

industry sectors together. However, the currently available

systems can be divided into two main kinds, graph databases, and

graph processing. In this section and for the objectives of the

present study, we will express the concepts of graph database

systems in general, with a focus on Neo4j graph database system

particularly in some cases. However, all these efforts in the field

of graph modelling express the importance of graphs for real-

world scenarios. Angles (Angles & Gutierrez, February 2008)

summarized the advantages of using graphs as modelling

mechanism for data management as following:

1. Graphs enable users to model data exactly as they are

represented in the real-world scenario, this can

significantly enhance the operations on data. Thus,

graphs can keep all the information about an object in

a single node and display the related information by

relationships connected to it.

2. Queries can be developed based on the graph

structure. For instance, the finding of the shortest path

can be considered as sub graph from the original

graph.

3. Operationally, graphs can be stored efficiently within

databases using special graph storage structures, and

functional graph algorithms for application of specific

operations

Before deciding on the Graph database to use in this research

work, we have conducted literature review of current graph

databases along with testing and evaluations, the comparison is

typically done by using a set of common features or/and by

defining general model as a comparison base, the evaluation used

and presented in this section is oriented to evaluate the data

model provided by each graph databases, in terms of data

structure, query language and integrity constraints.

3.1 AllegroGraph: is a persistent Resource Description

Framework (RDF) graph database, it uses disk-based storage,

enabling it to scale very well while maintaining high

performance. AllegroGraph supports SPARQL, RDFS++, and

provides a Representational State Transfer (REST) protocol

architecture and can be used for geo-temporal reasoning and

social networking analysis.

3.2 DEX: this is a High-performance and scalable graph

database and mostly used in NoSQL applications, has an

architecture of three layers and a query engine. The API provides

application interface and the applications layer is used to extend

core capabilities.

3.3 VertexDB: this is another High-performance graph

database server that uses the HTTP protocol for requests and

Java Script Object Notation (JSON) for its response data format.

3.4 Infinitegraph: A distributed object database with

C++, java, C#, python. Infinitegraph is built on a highly scalable,

distributed database architecture where both data and processing

are distributed across the network. Infinitegraph can handle

large transactions efficiently.

3.5 Hypergraphdb: An extensible, portable, distributed,

embeddable, open-source data storage mechanism used mostly

for knowledge representation, Artificial Intelligence (AI) and

semantic web projects, it can also be used as an embedded

object-oriented database for Java projects of all sizes.

3.6 Sones: Has a modular and well-designed for graph-

oriented database logic, it provides an interface for using the

database object efficiently. This graph database provides support

for high-level data abstraction concepts for graphs and has own

query language and an underlying distributed file system.

3.7 Infogrid: An open source java-based web graph

database and web-oriented functions to web applications. it can

be used as a standalone graph database or in addition to the other

projects like user interface RESTful maps and content of a

Graph Database to browser-accessible allowing developers to

define individual objects and sub-graphs rendering.

3.8 FlockDB: A distributed graph database for storing

adjacency lists, it is simpler than other graph databases. It scales

horizontally and is designed for on-line, low-latency, high

throughput environments such as web-sites.

3.9 Trinity: A graph database and graph designed to

support large graphs, it has a set of utility tools and management

tools built to be an efficient graph store and online query

processing.

3.10 OrientDB: An open source NoSQL database

management system to support schema-less, schema-full and

schema-mixed modes and SQL as a query language. It uses

indexing algorithm providing both fast insertions and ultra-fast

lookups. It is also a transactional database and web ready,

supporting HTTP, RESTful protocol, and JSON.

3.11 G-store: this graph database exploits the structure of

the graph to derive a data placement optimization on disk for

access patterns found in graph queries. It has its own built-in

query engine that supports depth-first traversal, reachability

testing, shortest path search, and shortest path tree search.

3.12 Cloudgraph: This is fully transactional .NET graph

database providing a fast and scalable graph database that is both

easy to deploy and maintain. It traverses graph with graph query

language (GQL) and supports schema-less hypergraphs and key-

value pairs. It is used for managing mainly web data.

3.13 Bigdata: this is an open source graph database. The

Bigdata architecture provides a high-performance platform for

data intensive distributed computing, indexing, and a high-level

query on commodity clusters. It also provides SPARQL query

language for fast load and query.

3.14 Neo4j: A high-performance NoSQL graph database

with all the features of a mature and robust database Neo4j is the

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

91

most popular graph database, it is particularly developed for

Java applications, but it also supports Python. Neo4j is an open

source project available to public. The graph model in Neo4j

consists of (1) Property (key- value pair) can be added to both

node and edge; (2) Only edges can be associated with a type, (3)

Edges can be specified as directed or undirected. Neo4j uses an

index mechanism. Neo4j implements an object-oriented API, a

native disk-based storage manager for graphs, and a framework

for graph traversals with many features such as:

a) Intuitive: to use graph model of data representation.

b) Reliable: fully transactional and upholds the database

ACID properties.

c) Durable and Embeddable: using a custom disk-based

and native storage engine with few java jar files.

d) Massively scalable: up to billions of

nodes/relationships and properties.

e) Highly available: when distributed across machines

f) Expressive: with a powerful, readable declarative

graph query language.

g) Fast: with powerful transversal framework for high

speed graph queries.

h) Simple: accessible through REST API interface or any

other object-oriented Java API.

i) Indexed: indexes are based on apache Lucene, and

supports secondary indexes.

j) Cross platform, straight forward setup and

configuration, open source and well documented.

k) GPL (General Public License) for community, and

AGPL for enterprise and developers.

l) Use Cypher: is a declarative graph query language

that allows for expressive and efficient querying and

updating of property graphs.

In this paper we are using the Neo4j Graph database to create,

manipulate and maintain massive IFC and CityGML graphs.

Neo4J is a native, high performance graph database built

specially for storing and processing graphs. It takes advantage of

connections between data stored in nodes and edge, thus speeding

up queries by ignoring data that are not connected to relevant

nodes. It is a fully ACID (Atomicity, Consistency, Isolation,

Durability) transactional database. Neo4j stores graph data items

in properties, nodes and relationships.

a) Properties: Flat data are stored in properties, every

property must exist inside a node or a relationship,

where they are uniquely identified by their respective

names, meaning that no two words, no two properties

have the same name in a node or relationship,

properties in graphs correspond to column values in an

equivalent relational database.

b) Node: Nodes are central entities in Neo4j. A node can

contain an arbitrary number of labels and properties.

Labelled nodes are indexed and be retrieved using one

of their assigned labels (schemas indexing). Nodes are

linked together by relationships. Graph nodes

correspond to rows in entity tables from an equivalent

relational database.

c) Relationship: Relationships connect nodes together.

In Neo4j graph database, relationships are directed and

thus point from a start to an end node. However,

relationships can be traversed in both direction. Each

relationship has type (like a node) and can contain an

arbitrary number of properties. Graph relationships

correspond to foreign keys in an equivalent relational

database.

The simplest possible graph is s single Node, a record that has

named values referred to as Properties. A node could start with

a single property and grow to a few millions, it makes sense to

distribute the data into multiple nodes organized with explicit

relationships.

For performance and maintenance purposes Neo4j introduced

schema for graphs consisting of indices and constraints

Index: To enable efficient querying of graph data, Neo4j creates

redundant copy of graph entities and stores it is a database

storage, this copy is called index. An index can be created

automatically for properties of all nodes of the same label

(schema indexing) or manually for nodes of different labels

(legacy indexing).

Figure 4. Graph node and relationship.

The drawbacks of indices are the additional required storage and

slower disk read/write, therefore, indices should be only used

when the number of queries requested on a given property

exceeds that of modification operations.

Constraint: Another aspect of graph schema is constraint on

nodes and relationships. Neo4j allows unique and existence

constraints on nodes properties as well as existence constraints

on relationships properties, in case of unique constraints, an

index is implicitly created for affected data.

4. BIM-GIS INTEGRATED GRAPH DATABASE

4.1 IFC Graph Model

The standard Industry Foundation Classes (IFC) defines a rich

object model for describing and sharing building models. In

addition to the modeling of building components, the

relationships between those are of peculiar interest. These

relations are described by pointer structures between

components. These models can only be insufficiently mapped to

relational databases because of their heterogeneous structure.

Therefore, graph databases will be tested for their ability to

efficiently store of IFC models. In addition, the usefulness of the

provided database query system is examined.

The IFC model is composed of IFC entities built up in a

hierarchical order, where each IFC entity includes a fixed number

of IFC attributes, with any number of additional IFC properties,

the IFC attributes are the main identifiers of the entities, while

the names of these attributes are fixed, having been defined by

BuildingSmart as part of the IFC standard code (Ali Ismail and

al., 2017).

The IFC data schema has three fundamental entity types

described and shown here:

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

92

https://lucene.apache.org/core/
https://neo4j.com/licensing/
https://neo4j.com/developer/cypher-query-language/
https://www.buildingsmart.org/

a) Objects are generalization of anything (or item)

b) Relations are the generalization of all relationships

among things (or items)

c) Properties are the generalization of all characteristics

(either types or partial types i.e. property sets) that may

be assigned to objects.

That corresponds to the one of the following classes (Figure 5)

IfcPropertyDefinition: Describes all characteristics that may

attach to objects. Thus, valuable information can be shared

among multiple object instances. However, it may express the

occurrence information of the actual object in the project context,

in case that it is attached to a single object instance.

IfcObjectDefinition: Stands for all handled objects or process.

Where, all physical items and products such as roofs, windows,

and slabs that can be touched and seen are classified as

IfcObjectDefinition.

IfcRelationship: Summarizes all the relationships among

objects. This can enable users saving relationship specific

properties directly at the relationship object and avoid

duplication of relationship semantics from the object attributes.

The abstract objectified relationship IfcRelationship and its

subtype relationships are responsible for connectivity among

objects, in which several properties can be attached to each

relationship.

Figure 5. IFC IMG diagram

The BIM models contains huge amount of information and

complex relationships between their elements, this information

could remain inaccessible due to lack of suitable data

management thus converting BIM models into an effective

information retrievable model based on property graph database

could significantly facilitate the exploration and analyzing the

BIM highly connected data workflows, for an automatic

transformation of IFC schema and IFC models into IFC object

graph database, though RDF transformation then to graph data

model using graph theory concepts to explore, manage and

analyze all information inside the BIM models by:

1. Running queries for information retrieval and data

mining.

2. Explore topology analysis of the model Integrated

framework for BIM models and linking with any other

additional project related information.

Knowing that RDF graph is a set of triples (Subject, predicate,

object) where both the subject and the predicate are resources and

the object can be either another resource or a literal, the only

particularity about literals is that they cannot be the subject of

another triple, in a tree structure they are the nodes and they are

uniquely identified. To map RDF model into a graph database

model we need to set the following rules:

• Rule 1: Subjects of triples are modes to nodes in Neo4j

GraphDB, the node representing an RDF resource will

be labeled resource.

• Rule 2: Predicates of triples are mapped to nodes

properties in Neo4j GraphDB if the object of the triple

is a literal

• Rule 3: Predicates of triple are mapped to

relationships in Neo4j GraphDB if the object of the

triple is a resource.

Given that IFC source model is an EXPRESS based entity-

relationship model while EXPRESS is a standard data modeling

language for product data, IFC is best for representing a model

that is a collection of objects related to each other. Therefore,

using this model as a data source for our BIM-GIS integrated

information model, the resulting model should enable

applications to retrieve specific objects based on their relation to

other objects in the model. The relations between IFC entities in

the graph database can be traced back to the connections found

within a building and can be extended to its surrounding when

CityGML elements are within the extended query.

4.2 CityGML Graph Model

CityGML is an open source data model and XML based format

for the storage and the exchange of 3D city models, it is an

application schema for the Geography Markup language version

3.1.1 (also known as GML3), the extensible international

standard for spatial data exchange issued by OGC (Open

Geospatial Consortium) and the ISO TC211. Most of common

city objects and features, such as buildings, water, vegetation,

traffic, terrain, bridges, etc. can be all described in CityGML.

CityGML is capable not only for including 3D geometry and

graphical appearances but also 3D topologies and semantic

properties of city objects and features in five levels of details,

namely from LOD0 to LOD4.

Figure 6. CityGML elements translation and export process

Knowing that even SPARQL query language can perform many

kinds of queries on CityGML triples, it does not have spatial

queries implemented, therefore we had to use GeoSPARQL in

some of workflow transformations. GeoSPARQL defines

vocabularies for representing geospatial data in RDF and

provides an extension tools to SPARQL for processing

Geospatial data, it allowed us to define geometric data in RDF

triple-store and perform spatial queries and analytics, an example

to of a GeoSPARQL to Find all features that feature my:A

contains, where spatial calculations are based on

my:hasExactGeometry. These types of queries are imbedded

with other queries from BIM triples to extract and output a set of

RDF triples to feed the application as a source data, we can notice

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

93

simplicity and the flexibility of designing queries based on

application requirements.

4.3 IFC-CityGML Integrated Model

The application of graphs has become an important technique to

describe several scenarios in the real-world. One of the

applications of graphs is to provide a simplified description of

scenarios datasets in a way that produce a useful understanding

of a complicated data. This has led to the birth of a special form

of graph model, the so-called labelled property graph (Robinson,

Webber, & Eifrem, 2015 "Second Edition"). Labelled property

graphs are like simple graphs; consist of nodes and relationships

which are often expressed as vertices and edges. However,

labelled property graphs provide additional characteristics to

facilitate graph understanding, where, nodes could have a single

or multiple label; in addition, they could have properties (key-

value pairs). Relationships can also be named and contain

properties while connecting each two nodes as start and end node.

By using RDF graph as a common framework for the description

of BIM and CityGML related elements, it is possible to use query

language SPARQL from semantic web technologies to retrieve

specific information from the integrated model. The proposed

methodology introduces a workflow to develop and build an

integrated information graph model using a transformation

pipeline from IFC and CityGML RDF schemas, in this workflow

the translation is semi-automatic and done achieved through a

succession of processes from RDF representation to graph

database schema as shown in the diagram below (Figure 11).

Figure 7. IFC-CityGML to graph database (Neo4j)

conversion workflow

This approach a single graph Neo4j database to store various IFC

and CityGML models integrated into one database model where

each node (object) has attributes from either IFC or CityGML or

from both resulting from the RDF integrated model created

before extraction and import into Neo4j described in Figure 8,

this way queries and analytics are not limited to one source

model, this will allow to merge, and integrate different

architecture, Engineering and construction (AEC) models from

BIM with Geospatial domain of knowledge. By using semantic

representation as a common framework for the description of

BIM and GIS objects, it is possible to use semantic web

technologies (A.Hadi. Hor, Jadidi, A., & Sohn, G., 2016). such

as query language SPARQL to execute queries of IFC elements

associated with corresponding elements from CityGML based on

pre-defined vocabularies, relationships from integrated

ontological model.

Figure 8. BIM-GIS integration infrastructure (ontological

model)

Once the objects of the integrated graph model are imported into

graph database, the attributes of the similar objects will be

enhanced with each other attributes, topological and geometrical

properties as described for the ifcSlab from BIM) and Slab from

GIS seen in the Figure 9.

The mapping of IFC and CityGML into Meta Graph Model

representing all IFC classes and CityGML elements, their

attributes and relationships is completed through cypher scripts

with LOAD CSV clauses and commands to validate data quality.

Once all classes and attributes are mapped into nodes and

connected using various relationships like ‘has_property’ to

connect a class node with direct attributes or ‘subtype_of’ to

connect the class with its corresponding element in CityGML and

with its own sub-class resulting into a complete integrated graph

model with all classes and elements stored a unified property

graph in which the relationships for referenced, inversed and

derived attributes for IFC classes will be created automatically

including geospatial relationships from CityGML elements, the

next step will consist in creating relationships between graph

nodes and their connected information and dropping redundant

relationships in the unified integrated model and using property

normalization and non-direct attributes of BIM classes and GIS

elements of the same object can be assigned as direct nodes

attributes, further each node (object) can be assigned a set of

labels of its parent class/element, them running pre-defined

queries for the purpose of classification and normalization of

objects representing building elements with accordance to their

object type and property sets.

Figure 9. Enhanced attributes of BIM-GIS information using

Graph Database

There are two aspects of interacting with Neo4j graphs querying

datasets and manipulating graphs, for that purpose Neo4j

provides its own declarative query language named Cypher and

bolt protocol (Java Core API), in this paper we focused on using

Cypher which is a declarative graph query language that allows

for expressive and efficient querying and updating of property

graphs, it is relatively simple and powerful query language.

Complicated graph databases queries can easily be expressed

through Cypher, However, different keywords such as MATCH,

WHERE and RETURN are used to from queries, these are some

of the examples to replace attribute and relations in a BIM class.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

94

5. SYSTEM DESIGN ARCHITECTURE AND

IMPLEMENTATION

The system architectured for a complete BIM-GIS integrated

semantic model from a RDF representation to a graph database

platform on Neo4j is represented in the diagram in Figure 10. It

consists of four modules (1) Data sources consisting of BIM and

GIS models in IFC and CityGML formats respectively, (2) Data

translation from native formats followed with a RDF graph

matching using Sematic Alignment Techniques, (3) BIM-GIS

integrated model management console and providing a user

interface to store, maintain and manage Graph datasets, and (4)

Application : this is a web based application hosted using web

based services hosted on a cloud platform.The datasets used are

BIM and GIS models which we have pre-estimated, the amount

of triples and number of nodes of each of the models was tested

in this implementation.

After importing the integrated model into Neo4j graph database,

a management console (also available as a web service) can be

used to run queries for data retrieval, advanced analysis and

graph data mining algorithms of BIM-GIS integrated graph

model, these queries could be ranging from complex queries like

the ones used for facilities management, emergency evacuation,

evaluating inventories, cost estimation, and shortest path to the

simplest like finding element’s information and indoor

navigation paths.

Using Neo4j REST API import/export capabilities of graph data

to multiple file format such as JSON format which has been used

as an input facilitating connection to the BIMServer

(http://bimserver.org/), using BIM Server JSON API

(https://github.com/opensourceBIM/BIMserver/wiki/JSON-

Queries). Through BIM Server, the data of the integrated

semantic model represented in JSON file format that can be

streamed to any of these file formats 3D Colloda, ifcXML, KML,

etc. or as web REST or SOAP services such as REST or SOAP

services, for the sake of this proof of concept, the model is

streamed out to an IFC based schema for the purpose of

comparison to check the number of the classes that have been

carried out during the process workflow and to extract the

multipatch geometries used in re-constructing and creating a

scene Layer Package (SLPK), which is an optimized data format

for visualizing a large amounts of three-dimensional data

allowing the new model to be published on ArcGIS cloud

platform as a web scene layer on ArcGIS Online cloud platform

that can also be embedded with other features layers from

ArcGIS Server. The resulting web services are then consumed

into a Unity3D game engine application to help simulate an

intelligent urban mobility (as shown in Figure 12), which beside

the ability to identify individual objects from BIM and GIS, the

application can also extract and filter combined attributes and

metadata information that can be extracted and filtered from the

integrated BIM and GIS domains such as the attributes of the

Door object (Figure 12.c) where the information was originated

from BIM and GIS.

6. EVALUATION AND CONCLUSION

In this paper, we discussed and presented a complete study with

a complete implementation of an integration pipeline of

integrated BIM-GIS semantic model. an approach to combine

data models and instance data from BIM and GIS domains to

provide a comprehensive graph data model with data analysis and

mining capabilities using a graph database platform. The

methodology and concepts were illustrated by the representation

of a building model in both IFC and the CityGML and their

translation with linkage into a unified integrated semantic model

by applying semantic web technologies (RDF representation)

then an extraction and import into a graph database system using

SPARQL and Cypher scripting providing a promising future of

data and application integration methods by adding more data

sources by handling properties, attributes and relationships very

effectively. In a semantically oriented integration based on RDF

datasets and graph databases as presented in this research we

applied many IFC and CityGML schemas and models to explore

all capabilities of CityGML and IFC based graphs for advanced

analytics and data filtering of a unified AEC-Geospatial models.

Figure 10. System design architecture

In our future research works we will target developing more

cross-platform applications and web application for editing BIM-

GIS information stored and managed in the graph databases and

creating procedures in extracting graph datasets that can be

exported as sub-models or merging models, exploring an cloud

based web services integration based architecture using specified

API to provide scalability, collaboration, flexibility and

automatic, instant updates to models and supporting hardware

and software resources. We also would like to investigate

performance evaluation of queries execution plans metrics when

running data import and data retrieval queries to make them much

faster compared with solely using of Cypher commands and

followed with a benchmark to compare the performance with

other existing query approaches and we will also investigate

developing tools in the graph database to validate geometries

coming from any source data.

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

95

http://bimserver.org/
https://github.com/opensourceBIM/BIMserver/wiki/JSON-Queries
https://github.com/opensourceBIM/BIMserver/wiki/JSON-Queries

A semantic based BIM-GIS integration using graph data

modeling tools as developed and presented in this work are

considered great for managing information and creating

workflows involving BIM and GIS components, however it will

need deep understanding not only of BIM and GIS domains of

knowledge data structure and schema characteristics but also

graph mathematics, graph databases structure and tools therefore

advanced data queries have to be written graph databases experts

with help from BIM and GIS practitioners.

Figure 11. Authoring, publishing and consuming web

service on Unity3D game Engine

(a) (b)

(c)

Figure 12. Outputs of BIM-GIS integrated model on Unity3D.

(a) Bergeron building only (b) York University campus

(c) attributes of Door object.

REFERENCES

A.Hadi. Hor, Jadidi, A., & Sohn, G. (2016). Bim-Gis Integrated
Geospatial Information Model Using Semantic Web and Rdf
Graphs. ISPRS Annals of Photogrammetry, Remote Sensing and
Spatial Information Sciences, III-4(July), 73–79.
https://doi.org/10.5194/isprsannals-III-4-73-2016

Angles, R., & Gutierrez, C. (2008). Survey of Graph Database

Models. ACM Computing Surveys, 40(1).

Ismail, A., Nahar, A., & Scherer, R. (2017). Application of graph
databases and graph theory concepts for advanced analysing of
BIM models based on IFC standard. 24th International Workshop
on Intelligent Computing in Engineering (EG-ICE 2017), At
Nottingham, UK, (July), 1–12.

Doekemeijer, N., & Varbanescu, A. (2014). A Survey of Parallel

Graph Processing Frameworks. Delft: Parallel and Distributed

Systems Group- Delft University of Technology.

Hughes, J. (2016). ECE 3020 Mathematical Foundations of

Computer Engineering. Atlanta: Lecture notes from Georgia

Institute of Technology.

Isaac, S., Sadeghpour, F., & Navon, R. (2013). Analyzing

Building Information using Graph Theory. International

Association for Automation and Robotics in Construction

(IAARC)- 30th ISARC, (S. 1013-1020). Montreal.

Khalili, A., & Chua, D. (2015). IFC-Based Graph Data Model for

Topological Queries on Building Elements. American Society of

Civil Engineers, Vol.29 Issue3. Robinson, I., Webber, J., &

Eifrem, E. (2015). Graph Databases. Sebastopol: O’Reilly
Media.

Tauscher, E., Bargstädt, H.-J., & Smarsly, K. (2016). Generic

BIM queries based on the IFC object model using graph theory.

The 16th International Conference on Computing in Civil and

Building Engineering. Osaka,Japan. Wilson, R. (1996).

Introduction to Graph Theory (Fourth edition Ausg.). Harlow-

England: Longman Group Ltd

ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume IV-4, 2018

ISPRS TC IV Mid-term Symposium “3D Spatial Information Science – The Engine of Change”, 1–5 October 2018, Delft, The Netherlands

This contribution has been peer-reviewed. The double-blind peer-review was conducted on the basis of the full paper.

https://doi.org/10.5194/isprs-annals-IV-4-89-2018 | © Authors 2018. CC BY 4.0 License.

96

