
A Semantic Interface for Logic Grammars

Seiki Akama and Akira Ishikawa

We introduce a semantic interface into logic grammars to give a natural
link to the semantic component of natural language understanding
systems. The semantic interface contains five parameters, i.e. input, se­
mantic information, new devices, generator, and output. These parameters
specify the procedure of compiling a desired semantic theory into its corre­
sponding logic programs. The semantic interface can thus achieve a meta­
level representation of required semantic theories using a meta-program­
ming technique. We sketch how Montague semantics and discourse repre­
sentation theory can be simulated in a logic-based natural language un­
derstanding system.

1. Introduction

The close relationships between logic programming and natural language

understanding is testified by the early efforts in logic programming at de­

scribing the parsing of natural language sentences in logic. For one thing,

the syntax of logic programming languages is very close to that of context­

free grammars. For another, backward chaining in the resolution principle

resembles the behavior of top-down parsers. These insights gave rise to the

metamorphosis grammars of Colmerauer (1978), and the definite clause

grammars (DCGs) of Pereira and Warren (1980). These formalisms be­

long to what are now called logic grammars (Abramson (1984, 1988),

Abramson & Dahl (1989), Dahl (1981), Dahl & Saint-Dizier (1987), Pe­

reira (1983». Logic grammars in turn, have given a new insight into

grammatical formalisms, because they can be considered as a sort of meta­

grammar independent of any particular grammatical framework. The use

of logic grammars in natural language analysis has also been taken to offer

Language Research, Volume 27, Number 1, March 1991. 0254-4474/163-180 163

164 Seiki Akama and Akira Ishikawa

a clear declarative semantics based on first-order logic. Unfortunately, this

aspect of logic grammars has not been taken full advantage of. There

seems to be a gap between the expressive power of Horn clauses and what

should be captured by the semantic analysis of natural language. The in­

sights of logic grammars will not be fully appreciated unless their semantic

component is sufficiently enriched to be able to incorporate the current se­

mantic theories for natural language. This is the main consideration behind

our conception of what we term a semantic interface. In this paper, we in­

troduce a semantic interface into logic grammars to give a natural link to

the semantic component of natural language understanding systems. The

semantic interface contains five parameters, i.e. input, semantic informa­

tion, new devices, generator, and output. These parameters specify the pro­

cedure of compiling a desired semantic theory into its corresponding logic

programs. The semantic interface can thus achieve meta-level representa­

tions of required semantic theories using a meta-programming technique.

We sketch how Montague semantics and discourse representation theory

can be simulated in a logic-based natural language understanding system.

2. Logic Grammars

The first attempt at defining logic-based grammars is seen in the meta­

morphosis grammars of Colmerauer (1978). It is based on the idea that the

top-down parsing process can be identified with deduction in logic, or

resolution. Thus, various grammatical formal isms can be interpreted as

some sort of logic programs. A simplified version of Colmerauer's system

was later outlined by Pereira and Warren (1980), which is what we now

call definite clause grammars. Grammatical formalisms justified through

logic programming have since been called logic grammars. Some have been

devised out of particular linguistic motivations: extraposition grammars of

Pereira (1983), definite clause translataion grammars of Pereira (1983),

definite clause translation grammars of Abramson (1984, 1988) and discon­

tinuous grammars of Dahl and Saint-Dizier (1987). These grammars use

the expressive power of logic programming in order to formalize linguistic

phenomena. However, logic is only utilized as a meta-theory of the

syntactic theory required by logic grammar. Thus interaction with natural

A Semantic Interface for Logic Grammars 165

language semantics is scarce in such formalisms. Semantic aspects, howev­

er, should not be neglected if logic grammars are to be applied to natural

language understanding. As a typical example of logic grammars, we here

review Abramson's definite clause translation grammars briefly. Definite

clause translation grammars(DCTGs) are logic grammars based on the

idea of Knuth's attribute grammars. The main characteristic of DCTGs is

that it can specify both syntax and semantics by attaching to context-free

rules semantic information called attributes. For instance, the semantic

rules enable the parser to invoke procedures concerning extra tasks, e.g.

plurality checking and dictionary lookup. Syntactic processing is thus clev­

erly controlled by appropriate semantic rules. This mechanism is skilfully

supported by the inference engine of logic programming. In fact, the imple­

mentation of attribute grammars had been a fairly difficult task before we

had logic programming. A definite clause translation grammar rule is of

the form:

Left-part:: = Right-part

< : > Attributes :: - Semantics. (2.1)

where the Left-part consists of a non-terminal, and the Right-part a con­

junction (possibly empty) of terminals (or non-terminals) and Prolog

terms enclosed in braces {and}. In the Right-part, if it is a non-terminal, a

logical variable NT may be attached to it by the operator, which will be in­

stantiated to the subtree of the parse ·tree corresponding to the sub-deriva­

tion of nt. The symbol <: > separates the syntactic and semantic portions of

a translation rule. Attributes:: -Semantics is read as: the Attributes of

the node corresponding to this use of the rule are specified by a term or a

conjunction of terms in Semantics. In summary, the syntax is described as

in DGGs and the semantics is added as Horn clauses attached to each node

of the parse tree. In this way, DCTs can handle syntax and semantics as

separate modules. Here are some sample rules of DCTGs (for more discus­

sion, see Abramson (1984, 1988)) :

Sentence:: =noun_phrase"N, verb_phrase"V,

{agree (N, V)}

<:>
logic(P) :: -Wlogic(x, PI, P),

V"logic(X, PI) (2.2)

166 Seiki Akama and Akira Ishikawa

Here logic (P) corresponds to the logic component of the syntactic catego­

ry P. The DCTG rule (2.2) shows the agreement of the noun phrase and

the verb phrase together with the semantic specification in the semantic

portion. The second example is a specification of the verb 'love' :

verb :: = [love]

<:>
agree (singular),

logic (transitive, X, Y, loves (X, Y»,

logic (intransitive, X, loves (X». (2.3)

By (2.2) we can check agreement of noun phrases and verb phrases with

respect to number. The third example is about the determiner 'every'. Con­

sider the next sentence:

Every man who loves loves Mary. (2.4)

where the noun phrase is "every man who loves" and the verb phrase

"loves Mary". A difficult problem with (2.4) is that the first verb 'love' is

interpreted in connection with the relative clause "who loves", say PI. We

here designate the verb applied to the noun as P2. Then the required DCTG

rule for 'every' is:

determiner :: = [every]

<:>
plurality (singular),

logic (X, PI, P2, for-all (X, implies (PI, P2». (2.5)

With this rule, the above sentence is translated as (2.6)

for-all (X, implies)

and (man (X),loves (X»,

loves (X, Mary» (2.6)

As we can see from the above examples, DCTGs offer better modularity

than DCGs because the syntactic part and the semantic part are clearly

separated within a rule. However, since semantic specification is closely

tied up with the expressive power of Horn clauses, it is not easy to incorpo­

rate such semantic theories as DRT, in which the underlying semantics is

clearly not first-order.

A Semantic Interface for Logic Grammars 167

3. Semantic Interface

In order to use logic grammars in logic-based natural language under­

standing, we have to be able to incorporate a really powerful semantic com­

ponent into the system based on a logic grammar. In other words, we need

a natural link which connects a logic grammar with a semantic theory

which is required for a particular purpose. Unfortunately, such a natural

link has not been identifiable in the current formalisms of logic grammars.

This may be because researchers in this field are content with the use of

first-order logic as their semantic basis. But first-order logic is not

adequate in expressing the semantics of natural language sentences

(Akama (1986». Most semantic phenomena seen in natural language are

beyond first-order logic and require certain higher-order logics. Thus, un­

less we provide a natural link to the semantic theories of natural language,

logic grammars cannot handle its semantics properly. Some people might

claim that some logic grammars are already equipped with a suitable se­

mantic component. This is not convincing, either. One reason for reviewing

DCTGs has been that this grammatical formalism comes closest to provid­

ing an interface to semantics. But its aim seems very restrictive. Since

DCTGs are closely related to attribute grammars, they can use semantic in­

formation while preforming syntactic processing. But the circumstances of

natural language understanding are more complicated. For example, dis­

course analysis requires pragmatic information during syntactic processing

to resolve anaphora, say by using world knowledge stored in a database.

This kind of information cannot be treated in DCTGs. All logic grammars

seem to suffer from the same difficulty. Even if we refine the formalisms of

logic grammars for particular linguistic phenomena, the fundamental diffi­

culty will not go away. The semantic interface is a meta-level representa­

tion of an interface for converting the logical forms generated by the

syntax of a logic grammar into forms to be used as input to a particular se­

mantic theory. It is independent of any logic grammar and can be connect­

ed with any semantic theory. This means that we can implement existing

semantic theories within the framework of logic programming. In a sequen­

tial processing of natural language sentences, we first input a sentence to

the syntactic component. Next the syntactic output is fed into the semantic

component to produce the semantic form. The semantic interface can link

168 Seiki Akama and Akira Ishikawa

both components through meta-Ievel control. A natural language sentence

is analyzed by the logic grammar to give a logical representation in Horn

clauses. We call it a quasi-logical form. But the form is not always appropri­

ate as a semantic representation and we treat it as a syntactic form writ­

ten in a logic program. Before it is sent to the semantic component, we

need to know what the semantic theory is, e.g. Montague semantics and

discourse representation theory. Particular devices may be required for

each semantic theory, e.g., lambda abstraction, meaning postulates in the

case of Montague semantics. They have to be defined meta-theoretically in

the case of a non-Horn-clause theory. When the semantic theory is decid­

ed, the meta-interpreter called generator compiles the quasi-logical form

into a corresponding logical form. The resulting logical form is the output

of the semantic interface which reflects the idea of the particular semantic

theory. In using the semantic interface, we need not write complex pro­

grams to accommodate a particular semantic theory we use. Instead, we

just specify the meta-rules for compiling quasi-logical forms into logical

forms according to the characteristics of the semantic theory. But it is not

easy to directly specify the logic programs for a semantic theory because

its descriptive power may be higher-order. The semantic interface makes it

possible to reinterpret such a theory in logic programs by means of suitable

meta-Ievel control. Thus we can connect a logic grammar with an existing

semantic theory for natural language by simulating the semantics as meta­

program. Meta-programming in logic programming is originally due to

Bowen and Kowalski (1982), also see Bowen (1982). The basic philosophy

of meta -programming is that program can be dealt with as a first-class ob­

ject. In other words, programs are considered to be data.

It implies that some programs can become input to other programs. This

enables us to control the behavior of programs. In logic programming, this

sort of idea can be implemented in various ways. For instance, the Bowen

and Kowalski amalgamation (1982) consists in a meta-Ievel formulation of

the Horn clause theory in which the meta-theory is based on SLD

resolution. The point of amalgamation is that both object-language and

meta-Ianguage are interchangeable by the so-called reflection principle,

guaranteeing efficiency in computing. Meta-programming has various ap­

plication, e.g. dynamic change and partial computation. Our semantic inter-

A Semantic Interface for Logic Grammars 169

face is also formalized on this idea. The semantic interface is defined by

means of a meta-predicate 'semantic interface' which takes five parame­

ters, i.e. input, semantic information, new devices, generator and output. It

is described as follows:

semantic-interface (i, s, n, g, 0)

: : - input (i),

semantic-information (s),

new-devices (n),

generator (g),

output (0). (3.1)

The input for the first parameter of the semantic interface is in a quasi-log­

ical form. This implies that the input is any Horn clause logic program, but

the semantic specification of sentences is not so obvious. If we want to use

a particular semantic theory, then devices specific to the theory may be

needed for its implementation. This specification is done using the third pa­

rameter. Since such devices are not always formalizable in first-order for­

mulas, they are introduced as meta-programs using a generator which out­

puts logical forms to be used in the semantics. The semantic interface will

give a clarifying perspective on the arrangement of natural language un­

derstanding. We will have the following a,s a general schema of logic-based

natural language understanding.

NL Understanding

= Syntax + Semantic Interface + Semantics (3.2)

If we assume the semantic interface as a metaprogram, the situation is

more appropriately represented as follows:

NL U ndertanding

= Semantic-interface (Syntax, Semantics) (3.3)

In (3.3), the semantic interface is used as the control component of a logic

grammar and its semantics. At this point, let us look at some advantages

involved in the use of the semantic interface in logic grammars. First, it en­

ables us to implement existing semantic theories in logic grammars without

getting bogged in the non-trivial features of these theories not expressible

170 Seiki Akama and Akira Ishikawa

in first-order theory. Our framework mimicks these features in Horn claus­

es at the meta-Ievel, with the generator handling new devices for the se­

mantic theory by compiling them into appropriate logic programs. In the

next section, we will look at some concrete examples. Second, the semantic

interface makes it easier to coordinate the components of a natural lan­

guage understanding system. In other words, any combination of a logic

grammar and a semantic framework can be achieved in this setting. From

a practical point of view, this is desirable, because logic grammars are, in

general, designed to focus on some particular linguistic phenomena, and so

the corresponding semantic component is more or less dependent on the for­

malism of the logic grammar. As we have argued, the semantic interface

can specify the semantics geared to the given logic grammar. In contrast,

current logic grammars seem to fail to tell how to connect them with their

semantic component. Third, ad hoc solutions to providing a logic grammar

with its semantic component can be avoided through the use of the seman­

tic interface. Certain special aspects of semantics may be treated as built-in

mechanisms in logic programming. This, however, adds to the non-logical

aspects of the systems. Rather, we should be able to delineate the semantic

component in more consistent ways. Our approach aims to achieve this

through a meta-Ievel representation of the semantic theory.

4. Simulation of Current Semantic Theories

In this section, we describe how to simulate two current semantic theor­

ies by using our semantic interface. The examples given are Montague Se­

mantics (MS) of Montague (1974) and discourse representation theory

(DRT) of Kamp (1982) and Hein (1982).

4. 1. Montague Semantics

Montague semantics (MS) is one of the most successful approaches to

natural language semantics based on formal logic. The most important fea­

ture of MS is that it is a compositional semantics for natural language in the

sense that the meaning of a sentence is interpreted as a function of its

parts. Montague combined a categorial grammar with in tensional logic (IL)

to achieve compositionality in giving the logical form to a sentence. Anoth-

A Semantic Interface for Logic Grammars 171

er notable feature is its use of a higher-order logic as the basis of natural

language analysis. Lambda reduction with its corresponding interpretation

plays the most crucial role in the compositional semantics. The truth condi­

tions of the resulting logical form are determined in an appropriate model

by semantic rules. This is the basic scenario of MS. To utilize IL, we are

bound to give a computatinally reasonable account of possible-worlds se­

mantics. In fact, there have been several methods proposed to establish it,

but none of such efforts seems conclusive enough to be applied to natural

language understanding. Without IL, we at least have to give up formaliza­

tion of certain important issues, such as modality and tense. This is, howev­

er, a topic for modal logic programming, and we do not go further into it

here (cf. Akama and Kawamori (1988) for some observations). In any

case, we cannot avoid formulation of intensionality in the semantics for

natural language. To deal with intensionality, we must support such mecha­

nisms as found in lambda calculus, although it is not necessary to faithfully

adopt Montague's formulation of intension and extension. What we need at

least is to be able to represent higher-order notions. One way of fulfilling

this is the use of higher-order logic. Unfortunately, higher-order logic has

some undesirable features. For one thing, it is a non-trivial task to develop

a theorem-proving technique for higher-order logic. For example, unifica­

tion in second-order logic is known to be undecidable. In addition, any for­

malization of second-order logic is in general incomplete. These defects pre­

vent us from utilizing higher-order logic for natural language understand­

ing. There are two possible ways to overcome these shortcomings. The first

line of solution is to provide higher-order logic by restricting it to a

computationally feasible fragment of higher-order logic. For instance, A­

Prolog of Nadathur (1987) uses the Horn clause counterpart of higher­

order logic. An alternative solution is a meta-Ievel simulation of higher­

order logic in Horn clauses by means of meta-Ievel control. We have cho­

sen the latter solution because the semantic interface is based on ordinary

first-order logic programming, whereas the former requires an extension of

the syntax of logic programming. Higher-order concepts are of special im­

portance for MS, since they play vital roles in the translation of natural

language sentences in MS, with the help of lambda calculus. Thus, in order

to incorporate MS into logic grammars, we have to formalize lambda calcu-

172 Seiki Akama and Akira Ishikawa

Ius within logic programmmg. Some authors, such as D. H. D. Warren

(1982) and D. S. Warren (1983) attempted to introduce lambda

abstraction into logic programming, but their solutions seem rather ad hoc.

This is partly because these approaches have no theoretical justification. In

contrast, we intend to install it at the meta-Ievel. Our strategy is to simu­

late the devices of lambda calculus in first-order logic. It is possible to han­

dle ,a-reduction in logic programming using the following meta-predicate

'reduce' :

reduce (function, argument, result) (4.1)

where 'result' is obtained by ,a-reduction of 'function' with 'argument', see

Pereira and Shieber (1988). By means of (4.1), we can carry out

Montagovian compositional semantics. for example, consider the next DCG

rule:

s (S) :: -np (NP), vp (VP) (4.2)

Here, the notation is obvious. As is well-known, Montague's semantic rule

for(4.2) is :

NP (VP) (4.3)

In MS (4.3) can be interpreted by lambda reduction according to an appro­

priate semantic rule. We write this in the following way:

s (S) ::- np (NP), vp (VP),

{reduce (NP, VP, S)} (4.4)

We here follow Montague's semantic rule based on the idea that noun

phrases are to be generalized quantifiers, as opposed to the application VP

(NP). Montague's translation of the determiner 'every' is represented as

follows:

det «X/P)/(X/Q)/ ALL(X, P -'> Q»)-'> [every] (4.5)

Here the symbol '/' corresponds to 'A' in lambda calculus. Clearly, the de­

scription of lambda terms in logic programs is less elegant because of the

modifications of its syntax. We here encode (4.5) in the syntax similar to

that of ,l-Prolog as follows:

A Semantic Interface for Logic Grammars 173

det (P IQI ALL(X/(P(X)~ Q(X)) ~ [every] (4.6)

This is the usual representation in MS. Now, we show the semantic inter­

face of MS with a device for lambda abstraction:

semantic-interface (i, s, n, g, 0)

: : - input (i),

semantic-information (MS),

new-devices (lambda-operator '/'),

generator (g),

output (0). (4.7)

Here the output is produced from the input in a quasi-logical form by

using the desired generator. Consider the case of the above example, where

the input is 'every' and the output is (4.6) for DCG. (4.6) is in a quasi -logi­

cal form which, in turn, is interpreted by the generator g :

generator (g)

: : -reduce (every, N, NP),

reduce (P IQ, P, Q) (4.8)

As is seen in this example, the semantic interface can manipulate new de­

vices required for a particular semantic theory by compiling them into logic

programs through specifications of the generator. In this way, we can ac­

commodate lambda calculus without revising the whole syntax of logic pro­

gramming as in A-Prolog. The method shown above in this semantic inter­

face is, of course, not the only way to realize lambda calculus. For example,

unification in logic programming is so powerful that it can treat the higher­

order mechanisms in MS. And such a built-in device is very close to that

used in the so-called unification-based grammars in Pereira and Shieber

(1988). It would deserve special attention. We have seen that the semantic

interface enables us to simulate lambda abstraction, which is essential in

MS. The user of logic grammars thus need not take account of this non­

trivial feature of MS in his programs. This is an advantage of introducing

the semantic interface. It should be noticed that the simulation of lambda

calculus cannot deal with all the characteristics of MS which are helpful to

natural language semantics. For example, meaning postulates are vital to

semantic interpretation in MS for selecting the most suitable model. For the

174 Seiki Akama and Akira Ishikawa

full implementation of MS, there is still a lot of to be worked out. The read­

er is referred to van Benthem (1986) for recent trends in formal semantics

for natural language.

4. 2. Discourse Representation Theory

It is natural to consider extending the idea of MS to pragmatics. But

such an extension is very difficult to establish since it involves formalizing

partial information about the world. In this respect, Kamp's discourse

respresentation theory (DRT) offers one of the most promising formalisms

for discourse analysis. DRT includes two main devices for representing the

semantics of natural language: an algorithm for translating natural lan­

guage sentences into representations called DRSs, and mapping from the

representations to a first-order model for determining their truth-condi­

tions. It should be emphasized that the essense of DRT does not lie in DRSs

themselves, but in their partial interpretation in terms of classical models.

More formally, a DRS is a partially ordered set of DRs, each of which is a

pair <U, Con), where U is a set of discourse referents and Con is a set of

constraints. A DRS for a discourse D may be constructed by DRS construc­

tion rules which are applied in parallel to syntactic rules. Thus a DRs can

be interpreted as a partial possible world in which a set of discourse refer­

ents are specified along with the relations they stand in. This implies that

more information enables us to introduce new discourse referents, making

the meaning of the discourse more precise. For the interpretation of dis­

course, DRT has another important notion called embedding. An embedding

is a mapping of partial models to a total model, connecting the abstract rep­

resentations with a total world, i.e. real world. Truth-conditions are thus

definable within a first-order model. In other words, a discourse D is shown

to be true in a model M given its DRS K if there is a proper embedding of K

in M. Thus, we can obtain information about a discourse from a series of

DRSs (or Heim's files) and know its truth-conditions from a proper embed­

ding. Therefore, meaning in DRT consists in a stage of DRSs, i.e. it is a se­

quence of embeddings. Now, we present the semantic interface for DRT.

There are perhaps two possible methods for implementing it. One is to iden­

tifya DRS with a database and run a query to verify whether it is a logical

consequence of the database in view of DRT. The other is to encode Kamp's

A Semantic Interface for Logic Grammars 175

theory faithfully in logic programs. The latter type of approach was in fact

explored in Sedgbo (1988) with a logical description system SYLOG. The

choice betwen these two depends on the user's design policy. But something

crucial from a theoretical point of view is also involved. For example, the

(declarative) semantics of logic programming is not compatible with the se­

mantics of DRT since DRT requires non-classical semantics. From a practi­

cal point of view, the former is more promising. As explained above, a DR

is more promising. As explained above, a DR is represented as a pair of a

set of discourse referents and a set of constraints. At first glance, discourse

referents may seem to correspond to variables and constraints to clauses in

logic programming. It is, however, not possible to reduce them to their

counterparts in first-order logic. The reason is that such a reduction cannot

capture the dynamic aspect of models for DRT, which is not congenial to

the static formulation of first-order models. This is because the interpreta­

tion of certain logical symbols in DRT differs from that in first-order logic.

It is thus necessary to codify DRSs for semantic processing. After the

above consideration, we specify DRT by means of the following semantic

interface:

semantic-interface (i, s, n, g, 0)

: : -input (i),

semantic-information (DRT,),

new-devices (DRS),

generator (g),

output (0). (4.9)

Since nothing important hinges on the distinction between DRs and DRSs

in the subsequent exposition, we just conflate the two. Our interpretation of

DRS is descibed in the following way:

DRS (d) :: - discourse-referent (d-r),

constraint (c), link (d, d') (4.10)

where 'd-r' and 'c' denote lists of discourse referents and constraints,

respectively. The link predicate relates one DRS to another DRS and it de­

notes an increase of information about the discourse. This is what Kamp

called accessibility. The intuitive meaning of this relation is as follows :If

176 Seiki Akama and Akira Ishikawa

we have more information, it is possible to obtain DRSs closer to first-order

models. A proper embedding means that the truth-conditions for DRSs

(partial models) can be reinterpreted as those in first-order (total)models.

It thus enables us to define truth in DRT in logic programs using the predi­

cate 'link' :

database (p) : :-DRS (d), link (d, P) (4.11)

where P is a database. DRs are fragments of P with respect to a given dis­

course. With this interpretation, we incorporate the following metarule :

demo (P, A) :: -demo (DRS(d), A), link (d,p) (4.12)

The meta-rule in (4.12) connects the provability in DRT with that in logic

programming concerning whether query A succeeds on database P. It is a

plausible identification in that logic programming queries effect the same

interpretation although they assume classical provability. Let us look at

how the semantic interface is used to induce DRSs. Given a set of sentenc­

es each with its analysis tree indicating the outermost rules for the compo­

nent phrases, the generator converts them into the corresponding complets

DRS.

s(np(every(man), vp(owns, np(a(donkey») (4.13)

We expect a quasi-logical form such as in (4.13). The DRS construction

rules correspond to category symbols and terminal symbols with logical im­

port such as "every", "if", "a", etc. Instead of (4.10), we use the next rep­

resentation for DRSs.

drs (i, d-r, cl, c2, 1) (4.14)

where "i" is the index of the DRS, "d-r" is the list of discourse referents,

"cl" is the list of unprocessed conditions, "c2" is that of processed condi­

tions, and "1" is the link predicate. The distinction between unprocessed

conditions and processed conditions is necessary for the purpose of DRS

construction because, given a quasi-logical form like (4.13), the construc­

tion of a complete DRS proceeds step by step by reducing relevant category

and terminal symbols.

construct (drs(D1), PI, P4)

A Semantic Interface for Logic Grammars

:: - update (drs(Dl'), PI, P2),

augment ([drs(D2), drs (D3)], P2, P3),

construct (drs (D3), P3, P4).

177

(4.15)

(4.15) shows the construct predicate which reduces "every". "PI" to "P4"

are the different stages of the database, which is both updated and aug­

mented by this rule. The rule is triggered by the unprocessed condition "s

(np(every(A», B)" in Dl. The condition becomes a processed condition in

Dl' along with "implies (D2, D3)". The two new DRSs get recorded in the

database. In D2, a discourse referent is introduced along with a processed

condition "member (x, A)", indicating that x has the property denoted by

"A". In D3, an unprocessed condition "s (x, B)" is introduced and becomes

the trigger of a further application of a construction rule. Since DRT is a

theory of discourse semantics/pragmatics, the input to the semantic inter­

face is a set of quasi-logical forms corresponding to a discourse. As a

result, the generator for DRT must be defined recursively.

generator (DRT, [], complete_DRSs, complete_DRSs).

generator (DRT, [q-lf I rest], DRSs1, DRSs3)

:: - construct (drs (i, d-r, cl ([q-lf]), c2, 1), DRSs1 DRSs2),

generator (DRT, rest, DRSs2, DRSs3). (4.16)

In (4.16), the second argument of "generator" is a set of quasi-logical forms.

The DRSs for the entire discourse are to be obtained as "compleLDRSs".

To achieve (4.12) more precisely, we must explore its connections with

the declarative semantics for logic programming especially to some three­

valued semantics as in Fitting (1985). This is, however, beyond the con­

fines of this paper. A detailed account of discourse anaphora is omitted

here, and the reader should consult Kamp (1982). An alternative founda­

tion of partial semantics can be outlined on the basis of a partial approach

to possible-worlds semantics. This line of research was done in data logic of

Veltman (1985) and Landman (1986). A logic programming formalization

of data logic was given in Akama and Kawamori (1988). As an intriguing

theory of discourse semantics, we should also mention situation semantics of

Barwise and Perry(1983), which reflects a different viewpoint on partiali­

ty. The semantic interface can also provide a reasonable way to realize sit

178 Seiki Akama and Akira Ishikawa

uation semantics in logic programming. We hope to report on such a proj­

ect elsewhere. We have shown how to interpret two of the recent theories
of natural language semantics in logic programming. As you see, the se­

mantic interfaces for these two theories are considerably different. MS

needs to have higher-order mechanisms, which requires logic programming

to include lambda calculus in logic programming. Thus the role played by
the semantic interface is rather marginally restricted to providing a techni­

cal apparatus. On the other hand, DRT requires us to reinterpret first-order

logic in a partial setting. Namely, we have to simulate the meta-theory for

DRT in a slightly different way from the meta-theory for first-order logic.

Without a semantic interface, implementation of DRT would be difficult

although its basis is first-order logic. These facts imply that the semantic

interface gives us various levels of representations of meta-theory for natu­

ral language semantics. In this sense, our proposed method would be seen
as a fruitful application of meta-programming in logic programming.

5. Conclusion

This paper has introduced an approach called the semantic interface to
incorporating the contemporary semantic theories for natural language into

logic grammar. The semantic interface offers a new perspective on logic

grammars in that they can be seen as generalizations of natural language

semantics as well as its syntax. Such a comprehensive approach to natural
language understanding seems possible only if we base logic grammars
with the proposed semantic interface. There is still much work to be done

when one applies the semantic interface to other semantics theories than
treated in this paper. But the semantic interface is the key to a unified
treatment of syntax and semantics. The semantic interface can also be used

to elaborate the idea of semantically constrained parsing developed by

Akama and Ishikawa (1989), by specifying the interaction between syntax
and semantics via the semantic interface. It is expected that the semantic

interface will contribute to confirming the fundamental methodological
unity of logic-based natural language understanding systems.

Reference

Abramson, H. (1984) 'Definite Clause Translation Grammars,' Proc. 0/
IEEE 1st Symposium on Logic Programming, 233-241.

A Semantic Interface for Logic Grammars 179

Abramson, H. (1988) 'Metarules and an Approach to Conjunction in Defi­

nite Clause Translation Grammars,' Proc. of 5th International

Conference and Symposium on Logic Programming, 233-248, MIT

Press, Cambridge.

Abramson, H. and Dahl, V. (1989) Logic Grammars, Springer, Berlin.

Akama, S. (1986) 'Methodology and Verifiability in Montague Grammar,'

Proc. of COLING '86, August, Bonn, West Germany, 88-90.
Akama, S. and Ishikawa, A. (1989) 'Semantically Constrained Parsing and

Logic Programing,' H. Abramson and M. H. Rogers (eds.),

Meta-Programming in Logic Programing, 157-168, MIT Press,

Cambridge.
Akama, S. and Kawamori, M. (1988) 'Data Semantics in Logic Program­

ming Framework,' V. Dahl and P. Saint-Dizzier (eds.), Natural

Language Understanding and Logic Programing, IT, 135-151,

North-Holland, Amsterdam.

Barwise, J. and Perry, J. (1983) Situations and Attitudes, MIT Press, Cam­
bridge.

Bowen, K. A. (1985) 'Meta-Ievel Programming and Knowledge Represen­

tation,' New Generation Computing 3, 359-383.
Bowen, K. A. and Kowalski, R. A. (1982) 'Amalgamating Language and

Metalanguage in Logic Programming,' K. L. Clark and S. A.

Tarnlund (eds.), Logic Programming, 153 -172, Academic Press,

New York.
Comerauer, A. (1978) 'Metamorphosi,s Grammars,' L. Bold (ed.), Natural

language Communication with Computers, 133-189, Lecture
Notes in Computer Science 63, Springer, Berlin.

Dahl, V. (1981) 'Translating Spanish into Logic through Logic,' Computa­

tional Linguistics 7,149-164.

Dahl, V. and Saint-Dizier, P. (1987) Constrained Discontinuous Grammars-a

Linguistically Motivated Tool for Processing Language, Simon
Fraser University.

Fitting, M. (1985) 'A Kripke-Kleene Semantics for Logic Programs,' Jour­

nal of Logic Programming 4,295-312.

Heim, I. (1982) The Semantics of Definite and Indefinite Noun Phrases, Ph.

D. thesis, University of Massachusetts, Amherst.

Kamp. H. (1982) 'A Theory of Truth and Semantic Representation,' J.
Groenendijk, Th. Janssen and M. Stokhof (eds.) Truth, Inter­

pretations and Information, 1-41, Forris, Amsterdam.

180 Seiki Akama and Akira Ishikawa

Landman, F. (1986) Toward a Theory of Information, Foris, Dordrecht.
Montague, R. (1974) Formal Philosophy, R. H. Thomason (ed.), Yale Uni·

versity Press, new Haven.

Nadathur, G. (1987) A Higher-Order Logic as the Basis for Logic Program­

ming, Ph. D. thesis, University of Pennsylvania.

Pereira, F. (1983) 'Logic for Natural Language Analysis,' SRI Technical

Report 275.

Pereira, F. and Shieber, S. M. (1988) Prolog and Natural-Language Analy­

sis, CSLI Lecture Notes 10, Stanford University.
Pereira, F. and Warren, D. H. D. (1980) 'Definite Clause Grammars for

Language Analysis - A Survey of the Formalism and a Com­

parison with Augmented Transition Networks,' Artificial Intel­

ligence 13, 231-278.

Sait-Dizier, P. (1986) 'An Approach to Natural Alnguage Semantics in

Logic Programming,' Journal of Logic Programming 4,329-356.

Sedogbo, C. (1988) 'SYLOG: A DRT System in Prolog,' V. Dahl and P.
Saint-Dizier (eds.), Natural Language Understanding and Logic

Programming, IT. 185-201. North-Holland, Amsterdam.

Van Benthem, J. (1986) Essays in Logical Semantics, Reidel, Dordrecht.
Veltman, F. (1985) Logic for Conditionals, Ph. D. thesis, University of

Amsterdam.
Warren, D. H. D. (1982) 'Higher-Order Extensions to Prolog : Are They

Needed?,' Machine Intelligence 10, 441-454, ElIis Horwood,

Chichester.
Warren, D. S. (1983) 'Using A-Calculus to Represent Meanings in Logic

Grammar,' Proc. of 21st Annual Meeting of the ACL, 52-56.

Dr. Seiki Akama

Fujitsu, Ltd.
3-9-8 Shin-Yokohama

Y okohama 2'22

Japan

Prof. Akira Ishikawa
Department of English Language and Studies

Sophia University
7 Kioi-cho, Chiyoda-ku, Tokyo, 102

Japan

	A Semantic Interface for Logic Grammars
	1. Introduction
	2. Logic Grammars
	3. Semantic Interface
	4. Simulation of Current Semantic Theories
	5. Conclusion

