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We introduce a semantic interface into logic grammars to give a natural 
link to the semantic component of natural language understanding 
systems. The semantic interface contains five parameters, i.e. input, se­
mantic information, new devices, generator, and output. These parameters 
specify the procedure of compiling a desired semantic theory into its corre­
sponding logic programs. The semantic interface can thus achieve a meta­
level representation of required semantic theories using a meta-program­
ming technique. We sketch how Montague semantics and discourse repre­
sentation theory can be simulated in a logic-based natural language un­
derstanding system. 

1. Introduction 

The close relationships between logic programming and natural language 

understanding is testified by the early efforts in logic programming at de­

scribing the parsing of natural language sentences in logic. For one thing, 

the syntax of logic programming languages is very close to that of context­

free grammars. For another, backward chaining in the resolution principle 

resembles the behavior of top-down parsers. These insights gave rise to the 

metamorphosis grammars of Colmerauer (1978), and the definite clause 

grammars (DCGs) of Pereira and Warren (1980). These formalisms be­

long to what are now called logic grammars (Abramson (1984, 1988), 

Abramson & Dahl (1989), Dahl (1981), Dahl & Saint-Dizier (1987), Pe­

reira (1983». Logic grammars in turn, have given a new insight into 

grammatical formalisms, because they can be considered as a sort of meta­

grammar independent of any particular grammatical framework. The use 

of logic grammars in natural language analysis has also been taken to offer 
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a clear declarative semantics based on first-order logic. Unfortunately, this 

aspect of logic grammars has not been taken full advantage of. There 

seems to be a gap between the expressive power of Horn clauses and what 

should be captured by the semantic analysis of natural language. The in­

sights of logic grammars will not be fully appreciated unless their semantic 

component is sufficiently enriched to be able to incorporate the current se­

mantic theories for natural language. This is the main consideration behind 

our conception of what we term a semantic interface. In this paper, we in­

troduce a semantic interface into logic grammars to give a natural link to 

the semantic component of natural language understanding systems. The 

semantic interface contains five parameters, i.e. input, semantic informa­

tion, new devices, generator, and output. These parameters specify the pro­

cedure of compiling a desired semantic theory into its corresponding logic 

programs. The semantic interface can thus achieve meta-level representa­

tions of required semantic theories using a meta-programming technique. 

We sketch how Montague semantics and discourse representation theory 

can be simulated in a logic-based natural language understanding system. 

2. Logic Grammars 

The first attempt at defining logic-based grammars is seen in the meta­

morphosis grammars of Colmerauer (1978). It is based on the idea that the 

top-down parsing process can be identified with deduction in logic, or 

resolution. Thus, various grammatical formal isms can be interpreted as 

some sort of logic programs. A simplified version of Colmerauer's system 

was later outlined by Pereira and Warren (1980), which is what we now 

call definite clause grammars. Grammatical formalisms justified through 

logic programming have since been called logic grammars. Some have been 

devised out of particular linguistic motivations: extraposition grammars of 

Pereira (1983), definite clause translataion grammars of Pereira (1983), 

definite clause translation grammars of Abramson (1984, 1988) and discon­

tinuous grammars of Dahl and Saint-Dizier (1987). These grammars use 

the expressive power of logic programming in order to formalize linguistic 

phenomena. However, logic is only utilized as a meta-theory of the 

syntactic theory required by logic grammar. Thus interaction with natural 
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language semantics is scarce in such formalisms. Semantic aspects, howev­

er, should not be neglected if logic grammars are to be applied to natural 

language understanding. As a typical example of logic grammars, we here 

review Abramson's definite clause translation grammars briefly. Definite 

clause translation grammars(DCTGs) are logic grammars based on the 

idea of Knuth's attribute grammars. The main characteristic of DCTGs is 

that it can specify both syntax and semantics by attaching to context-free 

rules semantic information called attributes. For instance, the semantic 

rules enable the parser to invoke procedures concerning extra tasks, e.g. 

plurality checking and dictionary lookup. Syntactic processing is thus clev­

erly controlled by appropriate semantic rules. This mechanism is skilfully 

supported by the inference engine of logic programming. In fact, the imple­

mentation of attribute grammars had been a fairly difficult task before we 

had logic programming. A definite clause translation grammar rule is of 

the form: 

Left-part:: = Right-part 

< : > Attributes :: - Semantics. (2.1) 

where the Left-part consists of a non-terminal, and the Right-part a con­

junction (possibly empty) of terminals (or non-terminals) and Prolog 

terms enclosed in braces {and}. In the Right-part, if it is a non-terminal, a 

logical variable NT may be attached to it by the operator, which will be in­

stantiated to the subtree of the parse ·tree corresponding to the sub-deriva­

tion of nt. The symbol <: > separates the syntactic and semantic portions of 

a translation rule. Attributes:: -Semantics is read as: the Attributes of 

the node corresponding to this use of the rule are specified by a term or a 

conjunction of terms in Semantics. In summary, the syntax is described as 

in DGGs and the semantics is added as Horn clauses attached to each node 

of the parse tree. In this way, DCTs can handle syntax and semantics as 

separate modules. Here are some sample rules of DCTGs (for more discus­

sion, see Abramson (1984, 1988)) : 

Sentence:: =noun_phrase"N, verb_phrase"V, 

{agree (N, V)} 

<:> 
logic(P) :: -Wlogic(x, PI, P), 

V"logic(X, PI) (2.2) 
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Here logic (P) corresponds to the logic component of the syntactic catego­

ry P. The DCTG rule (2.2) shows the agreement of the noun phrase and 

the verb phrase together with the semantic specification in the semantic 

portion. The second example is a specification of the verb 'love' : 

verb :: = [love] 

<:> 
agree (singular), 

logic (transitive, X, Y, loves (X, Y», 

logic (intransitive, X, loves (X». (2.3) 

By (2.2) we can check agreement of noun phrases and verb phrases with 

respect to number. The third example is about the determiner 'every'. Con­

sider the next sentence: 

Every man who loves loves Mary. (2.4) 

where the noun phrase is "every man who loves" and the verb phrase 

"loves Mary". A difficult problem with (2.4) is that the first verb 'love' is 

interpreted in connection with the relative clause "who loves", say PI. We 

here designate the verb applied to the noun as P2. Then the required DCTG 

rule for 'every' is: 

determiner :: = [every] 

<:> 
plurality (singular), 

logic (X, PI, P2, for-all (X, implies (PI, P2». (2.5) 

With this rule, the above sentence is translated as (2.6) 

for-all (X, implies) 

and (man (X),loves (X», 

loves (X, Mary» (2.6) 

As we can see from the above examples, DCTGs offer better modularity 

than DCGs because the syntactic part and the semantic part are clearly 

separated within a rule. However, since semantic specification is closely 

tied up with the expressive power of Horn clauses, it is not easy to incorpo­

rate such semantic theories as DRT, in which the underlying semantics is 

clearly not first-order. 
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3. Semantic Interface 

In order to use logic grammars in logic-based natural language under­

standing, we have to be able to incorporate a really powerful semantic com­

ponent into the system based on a logic grammar. In other words, we need 

a natural link which connects a logic grammar with a semantic theory 

which is required for a particular purpose. Unfortunately, such a natural 

link has not been identifiable in the current formalisms of logic grammars. 

This may be because researchers in this field are content with the use of 

first-order logic as their semantic basis. But first-order logic is not 

adequate in expressing the semantics of natural language sentences 

(Akama (1986». Most semantic phenomena seen in natural language are 

beyond first-order logic and require certain higher-order logics. Thus, un­

less we provide a natural link to the semantic theories of natural language, 

logic grammars cannot handle its semantics properly. Some people might 

claim that some logic grammars are already equipped with a suitable se­

mantic component. This is not convincing, either. One reason for reviewing 

DCTGs has been that this grammatical formalism comes closest to provid­

ing an interface to semantics. But its aim seems very restrictive. Since 

DCTGs are closely related to attribute grammars, they can use semantic in­

formation while preforming syntactic processing. But the circumstances of 

natural language understanding are more complicated. For example, dis­

course analysis requires pragmatic information during syntactic processing 

to resolve anaphora, say by using world knowledge stored in a database. 

This kind of information cannot be treated in DCTGs. All logic grammars 

seem to suffer from the same difficulty. Even if we refine the formalisms of 

logic grammars for particular linguistic phenomena, the fundamental diffi­

culty will not go away. The semantic interface is a meta-level representa­

tion of an interface for converting the logical forms generated by the 

syntax of a logic grammar into forms to be used as input to a particular se­

mantic theory. It is independent of any logic grammar and can be connect­

ed with any semantic theory. This means that we can implement existing 

semantic theories within the framework of logic programming. In a sequen­

tial processing of natural language sentences, we first input a sentence to 

the syntactic component. Next the syntactic output is fed into the semantic 

component to produce the semantic form. The semantic interface can link 
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both components through meta-Ievel control. A natural language sentence 

is analyzed by the logic grammar to give a logical representation in Horn 

clauses. We call it a quasi-logical form. But the form is not always appropri­

ate as a semantic representation and we treat it as a syntactic form writ­

ten in a logic program. Before it is sent to the semantic component, we 

need to know what the semantic theory is, e.g. Montague semantics and 

discourse representation theory. Particular devices may be required for 

each semantic theory, e.g., lambda abstraction, meaning postulates in the 

case of Montague semantics. They have to be defined meta-theoretically in 

the case of a non-Horn-clause theory. When the semantic theory is decid­

ed, the meta-interpreter called generator compiles the quasi-logical form 

into a corresponding logical form. The resulting logical form is the output 

of the semantic interface which reflects the idea of the particular semantic 

theory. In using the semantic interface, we need not write complex pro­

grams to accommodate a particular semantic theory we use. Instead, we 

just specify the meta-rules for compiling quasi-logical forms into logical 

forms according to the characteristics of the semantic theory. But it is not 

easy to directly specify the logic programs for a semantic theory because 

its descriptive power may be higher-order. The semantic interface makes it 

possible to reinterpret such a theory in logic programs by means of suitable 

meta-Ievel control. Thus we can connect a logic grammar with an existing 

semantic theory for natural language by simulating the semantics as meta­

program. Meta-programming in logic programming is originally due to 

Bowen and Kowalski (1982), also see Bowen (1982). The basic philosophy 

of meta -programming is that program can be dealt with as a first-class ob­

ject. In other words, programs are considered to be data. 

It implies that some programs can become input to other programs. This 

enables us to control the behavior of programs. In logic programming, this 

sort of idea can be implemented in various ways. For instance, the Bowen 

and Kowalski amalgamation (1982) consists in a meta-Ievel formulation of 

the Horn clause theory in which the meta-theory is based on SLD 

resolution. The point of amalgamation is that both object-language and 

meta-Ianguage are interchangeable by the so-called reflection principle, 

guaranteeing efficiency in computing. Meta-programming has various ap­

plication, e.g. dynamic change and partial computation. Our semantic inter-
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face is also formalized on this idea. The semantic interface is defined by 

means of a meta-predicate 'semantic interface' which takes five parame­

ters, i.e. input, semantic information, new devices, generator and output. It 

is described as follows: 

semantic-interface (i, s, n, g, 0) 

: : - input (i), 

semantic-information (s), 

new-devices (n), 

generator (g), 

output (0). (3.1) 

The input for the first parameter of the semantic interface is in a quasi-log­

ical form. This implies that the input is any Horn clause logic program, but 

the semantic specification of sentences is not so obvious. If we want to use 

a particular semantic theory, then devices specific to the theory may be 

needed for its implementation. This specification is done using the third pa­

rameter. Since such devices are not always formalizable in first-order for­

mulas, they are introduced as meta-programs using a generator which out­

puts logical forms to be used in the semantics. The semantic interface will 

give a clarifying perspective on the arrangement of natural language un­

derstanding. We will have the following a,s a general schema of logic-based 

natural language understanding. 

NL Understanding 

= Syntax + Semantic Interface + Semantics (3.2) 

If we assume the semantic interface as a metaprogram, the situation is 

more appropriately represented as follows: 

NL U ndertanding 

= Semantic-interface (Syntax, Semantics) (3.3) 

In (3.3), the semantic interface is used as the control component of a logic 

grammar and its semantics. At this point, let us look at some advantages 

involved in the use of the semantic interface in logic grammars. First, it en­

ables us to implement existing semantic theories in logic grammars without 

getting bogged in the non-trivial features of these theories not expressible 
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in first-order theory. Our framework mimicks these features in Horn claus­

es at the meta-Ievel, with the generator handling new devices for the se­

mantic theory by compiling them into appropriate logic programs. In the 

next section, we will look at some concrete examples. Second, the semantic 

interface makes it easier to coordinate the components of a natural lan­

guage understanding system. In other words, any combination of a logic 

grammar and a semantic framework can be achieved in this setting. From 

a practical point of view, this is desirable, because logic grammars are, in 

general, designed to focus on some particular linguistic phenomena, and so 

the corresponding semantic component is more or less dependent on the for­

malism of the logic grammar. As we have argued, the semantic interface 

can specify the semantics geared to the given logic grammar. In contrast, 

current logic grammars seem to fail to tell how to connect them with their 

semantic component. Third, ad hoc solutions to providing a logic grammar 

with its semantic component can be avoided through the use of the seman­

tic interface. Certain special aspects of semantics may be treated as built-in 

mechanisms in logic programming. This, however, adds to the non-logical 

aspects of the systems. Rather, we should be able to delineate the semantic 

component in more consistent ways. Our approach aims to achieve this 

through a meta-Ievel representation of the semantic theory. 

4. Simulation of Current Semantic Theories 

In this section, we describe how to simulate two current semantic theor­

ies by using our semantic interface. The examples given are Montague Se­

mantics (MS) of Montague (1974) and discourse representation theory 

(DRT) of Kamp (1982) and Hein (1982). 

4. 1. Montague Semantics 

Montague semantics (MS) is one of the most successful approaches to 

natural language semantics based on formal logic. The most important fea­

ture of MS is that it is a compositional semantics for natural language in the 

sense that the meaning of a sentence is interpreted as a function of its 

parts. Montague combined a categorial grammar with in tensional logic (IL) 

to achieve compositionality in giving the logical form to a sentence. Anoth-
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er notable feature is its use of a higher-order logic as the basis of natural 

language analysis. Lambda reduction with its corresponding interpretation 

plays the most crucial role in the compositional semantics. The truth condi­

tions of the resulting logical form are determined in an appropriate model 

by semantic rules. This is the basic scenario of MS. To utilize IL, we are 

bound to give a computatinally reasonable account of possible-worlds se­

mantics. In fact, there have been several methods proposed to establish it, 

but none of such efforts seems conclusive enough to be applied to natural 

language understanding. Without IL, we at least have to give up formaliza­

tion of certain important issues, such as modality and tense. This is, howev­

er, a topic for modal logic programming, and we do not go further into it 

here (cf. Akama and Kawamori (1988) for some observations). In any 

case, we cannot avoid formulation of intensionality in the semantics for 

natural language. To deal with intensionality, we must support such mecha­

nisms as found in lambda calculus, although it is not necessary to faithfully 

adopt Montague's formulation of intension and extension. What we need at 

least is to be able to represent higher-order notions. One way of fulfilling 

this is the use of higher-order logic. Unfortunately, higher-order logic has 

some undesirable features. For one thing, it is a non-trivial task to develop 

a theorem-proving technique for higher-order logic. For example, unifica­

tion in second-order logic is known to be undecidable. In addition, any for­

malization of second-order logic is in general incomplete. These defects pre­

vent us from utilizing higher-order logic for natural language understand­

ing. There are two possible ways to overcome these shortcomings. The first 

line of solution is to provide higher-order logic by restricting it to a 

computationally feasible fragment of higher-order logic. For instance, A­

Prolog of Nadathur (1987) uses the Horn clause counterpart of higher­

order logic. An alternative solution is a meta-Ievel simulation of higher­

order logic in Horn clauses by means of meta-Ievel control. We have cho­

sen the latter solution because the semantic interface is based on ordinary 

first-order logic programming, whereas the former requires an extension of 

the syntax of logic programming. Higher-order concepts are of special im­

portance for MS, since they play vital roles in the translation of natural 

language sentences in MS, with the help of lambda calculus. Thus, in order 

to incorporate MS into logic grammars, we have to formalize lambda calcu-
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Ius within logic programmmg. Some authors, such as D. H. D. Warren 

(1982) and D. S. Warren (1983) attempted to introduce lambda 

abstraction into logic programming, but their solutions seem rather ad hoc. 

This is partly because these approaches have no theoretical justification. In 

contrast, we intend to install it at the meta-Ievel. Our strategy is to simu­

late the devices of lambda calculus in first-order logic. It is possible to han­

dle ,a-reduction in logic programming using the following meta-predicate 

'reduce' : 

reduce (function, argument, result) (4.1) 

where 'result' is obtained by ,a-reduction of 'function' with 'argument', see 

Pereira and Shieber (1988). By means of (4.1), we can carry out 

Montagovian compositional semantics. for example, consider the next DCG 

rule: 

s (S) :: -np (NP), vp (VP) (4.2) 

Here, the notation is obvious. As is well-known, Montague's semantic rule 

for(4.2) is : 

NP (VP) (4.3) 

In MS (4.3) can be interpreted by lambda reduction according to an appro­

priate semantic rule. We write this in the following way: 

s (S) ::- np (NP), vp (VP), 

{reduce (NP, VP, S)} ( 4.4) 

We here follow Montague's semantic rule based on the idea that noun 

phrases are to be generalized quantifiers, as opposed to the application VP 

(NP). Montague's translation of the determiner 'every' is represented as 

follows: 

det «X/P)/(X/Q)/ ALL(X, P -'> Q»)-'> [every] (4.5 ) 

Here the symbol '/' corresponds to 'A' in lambda calculus. Clearly, the de­

scription of lambda terms in logic programs is less elegant because of the 

modifications of its syntax. We here encode (4.5) in the syntax similar to 

that of ,l-Prolog as follows: 
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det (P IQI ALL(X/(P(X)~ Q(X)) ~ [every] ( 4.6) 

This is the usual representation in MS. Now, we show the semantic inter­

face of MS with a device for lambda abstraction: 

semantic-interface (i, s, n, g, 0) 

: : - input (i), 

semantic-information (MS), 

new-devices (lambda-operator '/'), 

generator (g), 

output (0). (4.7) 

Here the output is produced from the input in a quasi-logical form by 

using the desired generator. Consider the case of the above example, where 

the input is 'every' and the output is (4.6) for DCG. (4.6) is in a quasi -logi­

cal form which, in turn, is interpreted by the generator g : 

generator (g) 

: : -reduce (every, N, NP), 

reduce (P IQ, P, Q) (4.8) 

As is seen in this example, the semantic interface can manipulate new de­

vices required for a particular semantic theory by compiling them into logic 

programs through specifications of the generator. In this way, we can ac­

commodate lambda calculus without revising the whole syntax of logic pro­

gramming as in A-Prolog. The method shown above in this semantic inter­

face is, of course, not the only way to realize lambda calculus. For example, 

unification in logic programming is so powerful that it can treat the higher­

order mechanisms in MS. And such a built-in device is very close to that 

used in the so-called unification-based grammars in Pereira and Shieber 

(1988). It would deserve special attention. We have seen that the semantic 

interface enables us to simulate lambda abstraction, which is essential in 

MS. The user of logic grammars thus need not take account of this non­

trivial feature of MS in his programs. This is an advantage of introducing 

the semantic interface. It should be noticed that the simulation of lambda 

calculus cannot deal with all the characteristics of MS which are helpful to 

natural language semantics. For example, meaning postulates are vital to 

semantic interpretation in MS for selecting the most suitable model. For the 
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full implementation of MS, there is still a lot of to be worked out. The read­

er is referred to van Benthem (1986) for recent trends in formal semantics 

for natural language. 

4. 2. Discourse Representation Theory 

It is natural to consider extending the idea of MS to pragmatics. But 

such an extension is very difficult to establish since it involves formalizing 

partial information about the world. In this respect, Kamp's discourse 

respresentation theory (DRT) offers one of the most promising formalisms 

for discourse analysis. DRT includes two main devices for representing the 

semantics of natural language: an algorithm for translating natural lan­

guage sentences into representations called DRSs, and mapping from the 

representations to a first-order model for determining their truth-condi­

tions. It should be emphasized that the essense of DRT does not lie in DRSs 

themselves, but in their partial interpretation in terms of classical models. 

More formally, a DRS is a partially ordered set of DRs, each of which is a 

pair <U, Con), where U is a set of discourse referents and Con is a set of 

constraints. A DRS for a discourse D may be constructed by DRS construc­

tion rules which are applied in parallel to syntactic rules. Thus a DRs can 

be interpreted as a partial possible world in which a set of discourse refer­

ents are specified along with the relations they stand in. This implies that 

more information enables us to introduce new discourse referents, making 

the meaning of the discourse more precise. For the interpretation of dis­

course, DRT has another important notion called embedding. An embedding 

is a mapping of partial models to a total model, connecting the abstract rep­

resentations with a total world, i.e. real world. Truth-conditions are thus 

definable within a first-order model. In other words, a discourse D is shown 

to be true in a model M given its DRS K if there is a proper embedding of K 

in M. Thus, we can obtain information about a discourse from a series of 

DRSs (or Heim's files) and know its truth-conditions from a proper embed­

ding. Therefore, meaning in DRT consists in a stage of DRSs, i.e. it is a se­

quence of embeddings. Now, we present the semantic interface for DRT. 

There are perhaps two possible methods for implementing it. One is to iden­

tifya DRS with a database and run a query to verify whether it is a logical 

consequence of the database in view of DRT. The other is to encode Kamp's 



A Semantic Interface for Logic Grammars 175 

theory faithfully in logic programs. The latter type of approach was in fact 

explored in Sedgbo (1988) with a logical description system SYLOG. The 

choice betwen these two depends on the user's design policy. But something 

crucial from a theoretical point of view is also involved. For example, the 

(declarative) semantics of logic programming is not compatible with the se­

mantics of DRT since DRT requires non-classical semantics. From a practi­

cal point of view, the former is more promising. As explained above, a DR 

is more promising. As explained above, a DR is represented as a pair of a 

set of discourse referents and a set of constraints. At first glance, discourse 

referents may seem to correspond to variables and constraints to clauses in 

logic programming. It is, however, not possible to reduce them to their 

counterparts in first-order logic. The reason is that such a reduction cannot 

capture the dynamic aspect of models for DRT, which is not congenial to 

the static formulation of first-order models. This is because the interpreta­

tion of certain logical symbols in DRT differs from that in first-order logic. 

It is thus necessary to codify DRSs for semantic processing. After the 

above consideration, we specify DRT by means of the following semantic 

interface: 

semantic-interface (i, s, n, g, 0) 

: : -input (i), 

semantic-information (DRT,), 

new-devices (DRS), 

generator (g), 

output (0). (4.9) 

Since nothing important hinges on the distinction between DRs and DRSs 

in the subsequent exposition, we just conflate the two. Our interpretation of 

DRS is descibed in the following way: 

DRS (d) :: - discourse-referent (d-r), 

constraint (c), link (d, d') (4.10) 

where 'd-r' and 'c' denote lists of discourse referents and constraints, 

respectively. The link predicate relates one DRS to another DRS and it de­

notes an increase of information about the discourse. This is what Kamp 

called accessibility. The intuitive meaning of this relation is as follows :If 
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we have more information, it is possible to obtain DRSs closer to first-order 

models. A proper embedding means that the truth-conditions for DRSs 

(partial models) can be reinterpreted as those in first-order (total)models. 

It thus enables us to define truth in DRT in logic programs using the predi­

cate 'link' : 

database (p) : :-DRS (d), link (d, P) (4.11 ) 

where P is a database. DRs are fragments of P with respect to a given dis­

course. With this interpretation, we incorporate the following metarule : 

demo (P, A) :: -demo (DRS(d), A), link (d,p) ( 4.12) 

The meta-rule in (4.12) connects the provability in DRT with that in logic 

programming concerning whether query A succeeds on database P. It is a 

plausible identification in that logic programming queries effect the same 

interpretation although they assume classical provability. Let us look at 

how the semantic interface is used to induce DRSs. Given a set of sentenc­

es each with its analysis tree indicating the outermost rules for the compo­

nent phrases, the generator converts them into the corresponding complets 

DRS. 

s(np(every(man), vp(owns, np(a(donkey») (4.13) 

We expect a quasi-logical form such as in (4.13). The DRS construction 

rules correspond to category symbols and terminal symbols with logical im­

port such as "every", "if", "a", etc. Instead of (4.10), we use the next rep­

resentation for DRSs. 

drs (i, d-r, cl, c2, 1) ( 4.14) 

where "i" is the index of the DRS, "d-r" is the list of discourse referents, 

"cl" is the list of unprocessed conditions, "c2" is that of processed condi­

tions, and "1" is the link predicate. The distinction between unprocessed 

conditions and processed conditions is necessary for the purpose of DRS 

construction because, given a quasi-logical form like (4.13), the construc­

tion of a complete DRS proceeds step by step by reducing relevant category 

and terminal symbols. 

construct (drs(D1), PI, P4) 
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:: - update (drs(Dl'), PI, P2), 

augment ([drs(D2), drs (D3)], P2, P3), 

construct (drs (D3), P3, P4). 

177 

(4.15) 

(4.15) shows the construct predicate which reduces "every". "PI" to "P4" 

are the different stages of the database, which is both updated and aug­

mented by this rule. The rule is triggered by the unprocessed condition "s 

(np(every(A», B)" in Dl. The condition becomes a processed condition in 

Dl' along with "implies (D2, D3)". The two new DRSs get recorded in the 

database. In D2, a discourse referent is introduced along with a processed 

condition "member (x, A)", indicating that x has the property denoted by 

"A". In D3, an unprocessed condition "s (x, B)" is introduced and becomes 

the trigger of a further application of a construction rule. Since DRT is a 

theory of discourse semantics/pragmatics, the input to the semantic inter­

face is a set of quasi-logical forms corresponding to a discourse. As a 

result, the generator for DRT must be defined recursively. 

generator (DRT, [ ], complete_DRSs, complete_DRSs). 

generator (DRT, [q-lf I rest], DRSs1, DRSs3) 

:: - construct (drs (i, d-r, cl ([q-lf]), c2, 1), DRSs1 DRSs2), 

generator (DRT, rest, DRSs2, DRSs3). (4.16) 

In (4.16), the second argument of "generator" is a set of quasi-logical forms. 

The DRSs for the entire discourse are to be obtained as "compleLDRSs". 

To achieve (4.12) more precisely, we must explore its connections with 

the declarative semantics for logic programming especially to some three­

valued semantics as in Fitting (1985). This is, however, beyond the con­

fines of this paper. A detailed account of discourse anaphora is omitted 

here, and the reader should consult Kamp (1982). An alternative founda­

tion of partial semantics can be outlined on the basis of a partial approach 

to possible-worlds semantics. This line of research was done in data logic of 

Veltman (1985) and Landman (1986). A logic programming formalization 

of data logic was given in Akama and Kawamori (1988). As an intriguing 

theory of discourse semantics, we should also mention situation semantics of 

Barwise and Perry(1983), which reflects a different viewpoint on partiali­

ty. The semantic interface can also provide a reasonable way to realize sit 
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uation semantics in logic programming. We hope to report on such a proj­

ect elsewhere. We have shown how to interpret two of the recent theories 
of natural language semantics in logic programming. As you see, the se­

mantic interfaces for these two theories are considerably different. MS 

needs to have higher-order mechanisms, which requires logic programming 

to include lambda calculus in logic programming. Thus the role played by 
the semantic interface is rather marginally restricted to providing a techni­

cal apparatus. On the other hand, DRT requires us to reinterpret first-order 

logic in a partial setting. Namely, we have to simulate the meta-theory for 

DRT in a slightly different way from the meta-theory for first-order logic. 

Without a semantic interface, implementation of DRT would be difficult 

although its basis is first-order logic. These facts imply that the semantic 

interface gives us various levels of representations of meta-theory for natu­

ral language semantics. In this sense, our proposed method would be seen 
as a fruitful application of meta-programming in logic programming. 

5. Conclusion 

This paper has introduced an approach called the semantic interface to 
incorporating the contemporary semantic theories for natural language into 

logic grammar. The semantic interface offers a new perspective on logic 

grammars in that they can be seen as generalizations of natural language 

semantics as well as its syntax. Such a comprehensive approach to natural 
language understanding seems possible only if we base logic grammars 
with the proposed semantic interface. There is still much work to be done 

when one applies the semantic interface to other semantics theories than 
treated in this paper. But the semantic interface is the key to a unified 
treatment of syntax and semantics. The semantic interface can also be used 

to elaborate the idea of semantically constrained parsing developed by 

Akama and Ishikawa (1989), by specifying the interaction between syntax 
and semantics via the semantic interface. It is expected that the semantic 

interface will contribute to confirming the fundamental methodological 
unity of logic-based natural language understanding systems. 
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