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Abstract Large-scale relational learning becomes crucial for handling the huge amounts of

structured data generated daily in many application domains ranging from computational

biology or information retrieval, to natural language processing. In this paper, we present

a new neural network architecture designed to embed multi-relational graphs into a flexi-

ble continuous vector space in which the original data is kept and enhanced. The network

is trained to encode the semantics of these graphs in order to assign high probabilities to

plausible components. We empirically show that it reaches competitive performance in link

prediction on standard datasets from the literature as well as on data from a real-world

knowledge base (WordNet). In addition, we present how our method can be applied to per-

form word-sense disambiguation in a context of open-text semantic parsing, where the goal

is to learn to assign a structured meaning representation to almost any sentence of free text,

demonstrating that it can scale up to tens of thousands of nodes and thousands of types of

relation.
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1 Introduction

Multi-relational data, which refers to graphs whose nodes represent entities and edges cor-

respond to relations that link these entities, plays a pivotal role in many areas such as rec-

ommender systems, the Semantic Web, or computational biology. Relations are modeled

as triplets of the form (subject, relation, object), where a relation either models the rela-

tionship between two entities or between an entity and an attribute value; relations are thus

of several types. Such data sources are equivalently termed multi-relational graphs. They

can also be represented by 3-dimensional tensors, for which each slice represents an adja-

cency matrix for one relation. Multi-relational graphs are popular tools for encoding data

via knowledge bases, semantic networks or any kind of database following the Resource

Description Framework (RDF) format. Hence, they are widely used in the Semantic Web

(Freebase, DBpedia, etc.)1 but also for knowledge management in bioinformatics (GeneOn-

tology, UMLS semantic network, etc.)2 or natural language processing (WordNet),3 to name

a few. Social networks can also be represented using RDF.

In spite of their appealing ability for representing complex data, multi-relational graphs

remain complicated to manipulate for several reasons. First, interactions are of multiple

types and heterogeneous (various frequencies, concerning different subsets of entities, etc.).

In addition, most databases have been built either collaboratively or (partly) automatically.

As a consequence, data is noisy and incomplete: relations can be missing or be invalid, there

can be redundancy among entities because several nodes actually refer to the same concept,

etc. Finally, most multi-relational graphs are of very large dimensions in terms of numbers

of entities and of relation types: Freebase contains more than 20 millions entities, DBpedia

is composed of 1 billion triplets linking around 4 millions entities, GeneOntology contains

more than 350k verified biological entities, etc. Conveniently represent, summarize or de-

noise this kind of data is now a central challenge in statistical relational learning (Getoor

and Taskar 2007).

In this paper, we propose a new model to learn multi-relational semantics, that is, to

encode multi-relational graphs into representations that capture the inherent complexity in

the data, while seamlessly defining similarities among entities and relations and providing

predictive power. Our work is based on an original energy function, which is trained to

assign low energies (i.e. high probabilities) to plausible triplets of a multi-relational graph.

This energy function, termed semantic matching energy, relies on a compact distributed

representation: all elements (entity and relation type) are represented into the same relatively

low (e.g. 50) dimensional embedding vector space. The embeddings are learnt by a neural

network whose particular architecture and training process force them to encompass the

original data structure. Unlike in previous work, in this model, relation types are modeled

similarly as entities. In this way, entities can also play the role of relation type, as in natural

language for instance, and this requires less parameters when the number of relation types

grows. We show empirically that this model achieves competitive results on benchmark tasks

of link prediction, i.e., generalizing outside of the set of given valid triplets.

We also demonstrate the flexibility and scalability of the semantic matching energy by

applying it for word-sense disambiguation (WSD). The model can successfully be trained

on various heterogeneous data sources (knowledge bases, free text, etc.), containing several

1Respect. available from freebase.com and dbpedia.org.

2Respect. available from geneontology.org and semanticnetwork.nlm.nih.gov.

3Available from wordnet.princeton.edu.

http://freebase.com
http://dbpedia.org
http://geneontology.org
http://semanticnetwork.nlm.nih.gov
http://wordnet.princeton.edu
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thousands of entities and of relation types, to jointly learn representations for words and

for senses (defined as entities of a lexical knowledge base, WordNet). On two different

evaluation test sets, the proposed approach outperforms both previous work for learning

with multi-relational data and standard methods for unsupervised WSD.

To summarize, the main contributions of this paper are threefold:

– an original model for encoding multi-relational data, which represents relation types and

entities in the same way, and is potentially able to scale up to larger numbers of relation

types than previous work;

– a training algorithm based on a ranking objective, which allows to learn on large numbers

of training samples and achieves competitive results on benchmarks of various dimen-

sions;

– an adaptation of the model for word-sense disambiguation, which consists of the first

successful direct application of relational embeddings of a knowledge base (WordNet)

for natural language processing.

Note that this paper extends a shorter version (Bordes et al. 2012), which first introduced

the model. However, the previous paper was only focused on the application to word-sense

disambiguation, whereas the present paper has a wider scope and considers more problems

involving multi-relational data. New elements are provided: a fresh (and cleaner) form of the

bilinear formulation, new experiments comparing to the state-of-the-art in link prediction,

entity ranking and WSD, a more comprehensive literature review, and more details on the

model formulation and the training procedure. We also provide a link to an open-source

implementation of the code and to the data used in this paper: http://goo.gl/bHWsK.

The paper is organized as follows. Section 2 presents a review of previous work on learn-

ing with multi-relational data. Section 3 introduces the semantic matching energy function

and Sect. 4 its training procedure. Extensive experimental results are given in Sect. 5. Fi-

nally, the application to WSD is described in Sect. 6 and Sect. 7 concludes and sketches

future work.

2 Previous work

Several methods have been explored to represent and encode multi-relational data, such as

clustering approaches. Hence, Kemp et al. (2006) introduced the Infinite Relational Model,

IRM, a nonparametric Bayesian model whose latent variables are used to discover mean-

ingful partitions among entities and relations. This model provides a great interpretability

of the data but suffers from a poor predictive power. Miller et al. (2009) refined this to al-

low entities to have a mixed cluster membership. Sutskever et al. (2009) proposed another

refinement with the Bayesian Tensor Clustered Factorization model, BCTF, in which the

nonparametric Bayesian framework is coupled with the learning, via collective matrix fac-

torization, of distributed representations for the entities and relation types. Other proposals

have consisted in improving the original model by adding first-order formulae with Markov

Logic. Hence, MRC, for Multiple Relation Clustering (Kok and Domingos 2007), performs

clustering of entities through several relation types simultaneously. Singla and Domingos

(2006) presented another model based on Markov logic for the task of entity resolution (i.e.

deciding whether two entities should be merged).

All these methods share the ability of providing an interpretation of the data but are

slow and do not scale to very large databases due to the high cost of inference. Models

based on tensor factorization can be faster and scale to larger data because of their contin-

uous and usually convex optimization. Standard methods like CANDECOMP/PARAFAC

http://goo.gl/bHWsK
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(CP) (Harshman and Lundy 1994) or those from (Tucker 1966) have been applied on multi-

relational graphs. Franz et al. (2009) used CP for ranking data from RDF knowledge bases.

Other directions have also been proposed derived from probabilistic matrix factorization for

multi-dimensional data (Chu and Ghahramani 2009) or by adapting dimensionality reduc-

tion techniques such as SVD (Speer et al. 2008; Cambria et al. 2009). Recently, Nickel et al.

(2011) presented RESCAL, an upgrade over previous tensor factorization methods, which

achieves strong predictive accuracies on various problems. RESCAL represents entities by

low dimensional vectors and relation types by low rank matrices, which are learnt using a

collective learning process similar to that of CP, but with some relaxed constraints. It has

achieved the best accuracies on many benchmarks of tensor factorization. RESCAL has been

applied to the knowledge base YAGO (Nickel et al. 2012) and hence showed to scale well

on data with large numbers of entities (few millions). However, RESCAL has never been

tested on data with large numbers of relation types (YAGO has 87 such types).

Some approaches described above (e.g. BCTF, RESCAL) end up with a distributed

representation of the entities and relation types obtained via factorizing or clustering the

original data. A slightly different line of work consists in focusing on learning such rep-

resentations, termed embeddings. This idea of learning embeddings has been success-

ful in natural language processing via the framework of language models (Bengio et al.

2003) where an embedding per word is learnt in an unsupervised fashion: it has been

shown that such representations can store key information about language (mostly syntac-

tic similarities) that helps to improve performance on standard NLP tasks (Bengio 2008;

Collobert et al. 2011). Bordes et al. (2010) adapted a related model to a small hand-crafted

knowledge base and text for language understanding. For multi-relational data, Linear Rela-

tional Embeddings (Paccanaro 2000; Paccanaro and Hinton 2001) learn a mapping from the

entities into a feature-space by imposing the constraint that relations in this feature-space

are modeled by linear operations. In other words, entities are modeled by real-valued vec-

tors and relations by matrices and parameters of both are learnt. This idea has been further

improved in the Structured Embeddings (SE) framework of Bordes et al. (2011).

Our work lies in the same research area, since we also aim at learning distributed rep-

resentations of multi-relational data, and we introduce several novel elements. First, unlike

previous work (including BCTF, RESCAL or SE) we do not represent a relation type differ-

ently than any entity (by a matrix for instance). In our model, a relation type is represented

by a vector (just like other entities) and shares the status and number of parameters of other

entities. This is convenient when the number of such types is large or when they can also

play the role of entities as we illustrate in Sect. 6 on a problem with more than 10k relation

types. Second, we do not use a training process based on tensor reconstruction (as RESCAL)

or on clustering (as BCTF), but on a predictive approach instead. The learning objective is

essentially asking the model to perform link or entity prediction (i.e. filling an empty spot

in a triple). This leads to an algorithm based on a ranking objective and using stochastic

gradient descent and backpropagation for updating the parameters, which has a low com-

putational complexity per epoch (independent on the number of entities and relation types).

Third, we show that our model is flexible and can be successfully trained via multi-tasking

on several heterogeneous sources. Finally, even if it is not presented in this paper, our ap-

proach could potentially be adapted to learn non-linear representations of multi-relational

data by adding non-linear transfer functions such as tanh or sigmoid to the neural network.

We empirically compare our model with IRM, BCTF, MRC, CP, RESCAL and SE on var-

ious tasks with very different properties in our experiments of Sects. 5 and 6. Even if the

best performing methods from earlier papers differ from one task to another, our proposed

approach is competitive for all of them. The closest counterparts are SE and RESCAL, but
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as we show experimentally, they are not able to handle large-scale multi-relational data as

we propose, and either break or are outperformed when data dimensions grows (number of

entities and/or of relation types). Note that, while preparing the final version of this work,

Jenatton et al. (2012) introduced a method partly inspired by our approach, which achieves

interesting performances.

3 Semantic matching energy function

This section introduces our model designed to embed multi-relational data into fully dis-

tributed representations via a custom energy function.

3.1 Notations

This work considers multi-relational databases as graph models. The data structure is defined

by a set of nodes and a set of links. To each individual node of the graph corresponds an

element of the database, which we term an entity, and each link defines a relation between

entities. Relations are directed and there are typically several different kinds of relations.

Let C denote the dictionary which includes all entities and relation types, and let R ⊂ C be

the subset of entities which are relation types. In the remainder of the paper, a relation is

denoted by a triplet (lhs, rel, rhs), where lhs is the left entity, rhs the right one and rel the

type of relation between them.

3.2 Main ideas

The main ideas behind our semantic matching energy function are the following.

– Named symbolic entities (entities and relation types) are associated with a d-dimensional

vector space, termed the “embedding space”, following previous work in neural language

models (Bengio 2008). The ith entity is assigned a vector Ei ∈ R
d . Note that more general

mappings from an entity to its embedding are possible.4

– The semantic matching energy value associated with a particular triplet (lhs, rel, rhs) is

computed by a parametrized function E that starts by mapping all symbols to their em-

beddings and then combines them in a structured fashion. Our model is termed “semantic

matching” because E relies on a matching criterion computed between both sides of the

triplet.

– The energy function E is optimized to be lower for training examples than for other possi-

ble configurations of symbols. Hence the semantic energy function can distinguish plau-

sible combinations of entities from implausible ones, and can be used, for instance, to

answer questions, e.g. corresponding to a triplet (lhs, rel, ?) with a missing rhs, by choos-

ing among the possible entities a rhs with a relatively lower energy. See Lecun et al.

(2006) for a review of energy-based learning.

4For example, if entities are not symbols but structured objects, such as images (Weston et al. 2010), which

have attributes represented in a vector x, then the embedding for entity x could be obtained via a parametrized

function e that maps x to Ex = eθ (x), with θ learned by gradient-based learning and back-propagating the

training criterion into θ .
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Fig. 1 Semantic matching

energy function. A triple of

entities (lhs, rel, rhs) is first

mapped to its embeddings Elhs ,

Erel and Erhs . Then Elhs and

Erel are combined using glef t (.)

to output Elhs(rel) (similarly

Erhs(rel) = gright (Erhs ,Erel)).

Finally the energy

E ((lhs, rel, rhs)) is obtained by

matching Elhs(rel) and Erhs(rel)
with the h(.) function

Our approach is inspired by the framework introduced by Bordes et al. (2011) as well as

by recent work of Bottou (2011). Our main motivation is to conceive a model where enti-

ties and relation types would share the same kind of representation. Embedding all symbols

defining a multi-relational graph into the same space amounts to deleting the usual con-

ceptual difference between entities (lhs and rhs) and relation types. This modeling is more

natural when entities can act as rel as well as lhs or rhs. In Sect. 6, we apply our method to

natural language data, where relation types typically correspond to verbs. Since verbs may

also occur in lhs or rhs, it is reasonable to share the same representation, and this can ease

learning representations of verbs appearing rarely as relation type. Our choice to encode

symbols by vectors helps too by causing the overall number of tunable parameters to learn

to remain low, especially when the cardinality of R grows.

3.3 Neural network parametrization

The energy function E (denoted SME) is encoded using a neural network, whose parallel

architecture is based on the intuition that the relation type should first be used to extract

relevant components from each argument’s embedding, and put them in a space where they

can then be compared (see Fig. 1). Hence, pairs (lhs, rel) and (rel, rhs) are first combined

separately and then, these semantic combinations are matched.

(1) Each symbol of the input triplet (lhs, rel, rhs) is mapped to its embedding Elhs , Erel and

Erhs ∈ R
d .

(2) The embeddings Elhs and Erel respectively associated with the lhs and rel argu-

ments are used to construct a new relation-dependent embedding Elhs(rel) for the lhs

in the context of the relation type represented by Erel , and similarly for the rhs:

Elhs(rel) = glef t (Elhs,Erel) and Erhs(rel) = gright (Erhs,Erel), where glef t and gright are

parametrized functions whose parameters are tuned during training. Even if it remains

low-dimensional, nothing forces the dimension of Elhs(rel) and Erhs(rel), which we de-

note p, to be equal to d , the one of the entity embedding space.

(3) The energy is computed by “matching” the transformed embeddings of the left-hand

side and right-hand side: E ((lhs, rel, rhs)) = h(Elhs(rel),Erhs(rel)), where h can be a

simple operator such as a dot product or a more complex function whose parameters

are learnt.
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With this formulation, E is not able to handle variable-size arguments for lhs or rhs (like

tuples of entities). However, it can be adapted to it by adding a pooling stage between steps

(1) and (2) as we show in Sect. 6.1.

Different types of parametrizations can be used for the g and h functions. We chose to

use a dot product for the output h function because it is simple and has shown to work well

in related work (e.g. in Weston et al. 2010). For the g functions, we studied two options, one

linear and the other bilinear, which lead to two versions of SME detailed below:

– Linear form (denoted SME(linear) in the following), in this case g functions are simply

linear layers:

Elhs(rel) = glef t (Elhs,Erel) = Wl1E
⊺

lhs + Wl2E
⊺

rel + b
⊺

l ,

Erhs(rel) = gright (Erhs,Erel) = Wr1E
⊺

rhs + Wr2E
⊺

rel + b⊺

r

with Wl1, Wl2, Wr1, Wr2 ∈ R
p×d (weights), bl , br ∈ R

p (biases) and E⊺ denotes the

transpose of E. This leads to the following form for the energy:

E
(

(lhs, rel, rhs)
)

= −
(

Wl1E
⊺

lhs + Wl2E
⊺

rel + b
⊺

l

)⊺(

Wr1E
⊺

rhs + Wr2E
⊺

rel + b⊺

r

)

. (1)

– Bilinear form (denoted SME(bilinear) in the following), in this case g functions are using

3-modes tensors as core weights:

Elhs(rel) = glef t (Elhs,Erel) =
(

Wl×̄3E
⊺

rel

)

E
⊺

lhs + b
⊺

l ,

Erhs(rel) = gright (Erhs,Erel) =
(

Wr×̄3E
⊺

rel

)

E
⊺

rhs + b⊺

r

with Wl , Wr ∈ R
p×d×d (weights) and bl , br ∈ R

p (biases). ×̄3 denotes the n-mode vector-

tensor product along the 3rd mode, which, for U,V ∈ R
d and W ∈ R

p×d×d , is defined as

(lower cased letters denote vector/tensor elements):

∀i ∈ 1, . . . p,
((

W ×̄3V
⊺
)

U⊺
)

i
=

d
∑

j=1

d
∑

k=1

wijkvkuj .

This leads to the following form for the energy:

E
(

(lhs, rel, rhs)
)

= −
((

Wl×̄3E
⊺

rel

)

E
⊺

lhs + b
⊺

l

)⊺((

Wr×̄3E
⊺

rel

)

E
⊺

rhs + b⊺

r

)

. (2)

3.4 Discussion

We can notice that Eq. (1), defining the energy for SME(linear), can be re-written as (bias

terms are removed for clarity):

E
(

(lhs, rel, rhs)
)

= −ElhsW̃1E
⊺

rhs − ElhsW̃2E
⊺

rel − ErelW̃3E
⊺

rhs − ErelW̃4E
⊺

rel,

with W̃1 = W
⊺

l1Wr1, W̃2 = W
⊺

l1Wr2, W̃3 = W
⊺

l2Wr1 and W̃4 = W
⊺

l2Wr2 ∈ R
d×d . Hence, the en-

ergy can be decomposed into three terms coding for pairs (lhs, rhs), (lhs, rel) and (rel, rhs),

and an additional quadratic term for rel. This shows that SME(linear) actually represents a

triplet as a combination of pairwise interactions (similar to what is captured by bigrams).

Similarly, Eq. (2), defining the energy for SME(bilinear) can be re-written as:

E
(

(lhs, rel, rhs)
)

= −ElhsW̃ (rel)E
⊺

rhs,
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with W̃ (rel) = (Wl×̄3E
⊺

rel)
⊺(Wr×̄3E

⊺

rel) ∈ R
d×d . In this case, the energy is composed of

a single term, which depends on all three entities, with a central role for rel. Hence,

SME(bilinear) represents a triplet through 3-way interactions (similar to what is captured

by a trigram). The choice between a linear or a bilinear form for g leads to a very different

formulation overall.

The trigram formulation can model ternary interactions but requires more parameters.

SME(bilinear) has O(ned + nrd + pd2) parameters while SME(linear) has only O(ned +

nrd + pd), with ne the number of entities (never being a relation type), nr the number of

relation types, d the low-level embedding dimension and p the dimension of the higher-

level relation-dependent representation (with both p and d much smaller than ne and nr ).

Still, both formulations can scale up to large numbers of relation types (nr ≫ 1) without

requiring too many parameters, contrary to previous methods such as RESCAL and SE,

which entail O(ned + nrd
2) parameters. This property comes from our original choice of

modeling rel in the same way as lhs and rhs, using vectors. Interestingly, we can remark

that, in Eq. (2), Wl×̄3E
⊺

rel and Wr×̄3E
⊺

rel act as a pair of matrices coding for rel: this can be

seen as a distributed or factorized version of what RESCAL or SE proposed.

4 Training

This section details the training procedure for the semantic matching energy function, SME.

4.1 Training criterion

We are given a training set D containing m triplets x = (xlhs, xrel, xrhs), where

xlhs ∈ C , xrel ∈ R, and xrhs ∈ C . We recall that the energy of a triplet is denoted E (x) =

E (xlhs, xrel, xrhs). Ideally, we would like to perform maximum likelihood over P (x) ∝

e−E(x) but this is intractable. The approach we follow here has already been used suc-

cessfully in ranking settings (Collobert et al. 2011; Weston et al. 2010) and corresponds to

performing two approximations. First, like in pseudo-likelihood we only consider one input

at a time given the others, e.g. lhs given rel and rhs, which makes normalization tractable.

Second, instead of sampling a negative example from the model posterior,5 we use a ranking

criterion (based on uniformly sampling a negative example, in a way that is reminiscent of

Noise Contrastive Estimation (Gutmann and Hyvärinen 2010)).

Intuitively, if one of the elements of a given triplet were missing, then we would like

the model to be able to predict the correct entity. The objective of training is to learn the

semantic energy function E such that it can successfully rank the training samples x below

all other possible triplets:

E (x) < E
(

(i, xrel, xrhs)
)

∀i ∈ C : (i, xrel, xrhs) /∈ D, (3)

E (x) < E
(

(xlhs, j, xrhs)
)

∀j ∈ R : (xlhs, k, xrhs) /∈ D, (4)

E (x) < E
(

(xlhs, xrel, k)
)

∀k ∈ C : (xlhs, xrel, j) /∈ D. (5)

5In an energy-based model such as the Boltzmann machine, the gradient of the negative log-likelihood is

equal to the gradient of the energy of a positive example (observed and valid) minus the expected value of

the gradient of a negative example (sampled from the model). In the case of pseudo-likelihood training one

would consider conditional likelihoods P(xi |x1, . . . , xi−1, xi+1, . . . , xd ), and only the xi part of the positive

example needs to be resampled for constructing the negative example, using this same posterior.
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Towards achieving this, the following stochastic criterion is minimized:

∑

x∈D

∑

x̃∼Q(x̃|x)

max
(

E (x) − E (x̃) + 1,0
)

(6)

where Q(x̃|x) is a corruption process that transforms a training example x into a corrupted

negative example. Note that max(E (x) − E (x̃) + 1,0) is similar in shape to the negative

log-likelihood − log e−E(x)

e−E(x)+e−E(x̃) = − log sigmoid(E (x̃) − E (x)), which corresponds to the

probability of sampling x given that only x and x̃ are considered. In the experiments, Q only

changes one of the three members of the triplet (as in a pseudo-likelihood setup), replacing it

by an entity uniformly sampled either from R if the replaced entity is a relation type, or from

C/R otherwise. We do not actually check if the negative example is in D. Note that this is not

necessary because if we have the symmetry Q((ã, b, c)|(a, b, c)) = Q((a, b, c)|(ã, b, c))

etc. for all elements of the triplet, and it is true here, then the expected contribution to the

total expected gradient due to cases where x̃ ∈ D is 0. This is because if we consider only

the pairs x, x̃ ∈ D, the average over D of the gradients ∂E(x)

∂θ
equals the average over D of

the gradients ∂E(x̃)

∂θ
, by our symmetry assumption.

4.2 Ranking algorithm

To train the parameters of the energy function E we loop over all of the training data re-

sources and use stochastic gradient descent (Robbins and Monro 1951). That is, we iterate

the following steps:

1. Select a positive training triplet xi = (lhsi, reli, rhsi) at random from D.

2. Select at random resp. constraint (3), (4) or (5).

3. Create a negative triplet x̃ by sampling one entity either from R to replace reli or from

C/R to replace lhsi or rhsi .

4. If E (xi) > E (x̃) − 1, make a stochastic gradient step to minimize (6).

5. Enforce the constraint that each embedding is normalized, ‖Ei‖ = 1,∀i.

The gradient step requires a learning rate λ. The constant 1 in step 4 is the margin as is

commonly used in many margin-based models such as SVMs (Boser et al. 1992). The nor-

malization in step 5 helps remove scaling freedoms from the model, makes the impact of

the margin actually effective and regularizes the optimization objective, preventing weights

to collapse or diverge.

Each update of the model parameters is carried out by backpropagation. Its computational

complexity is dominated by the cost of the n-mode vector-tensor product for SME(bilinear):

O(pd2), and by the cost of the matrix product for SME(linear): O(pd). Therefore, to per-

form one epoch over D, the bilinear form requires in the order of O(mpd2) operations and

the linear form in the order of O(mpd). Note that this is independent of the number of

entities or relation types.

Matrix E contains the representations of the entities and is learnt via a multi-task learning

procedure (Caruana 1995; Collobert and Weston 2008) because the same embedding matrix

is used for all relation types (each corresponding to a different distribution of entities, i.e.,

a different task). As a result, the embedding of an entity contains factorized information

coming from all the relations in which the entity is involved as lhs, rhs or even rel. For

each entity, the model is forced to learn how an entity interacts with other entities in many

different ways. One can think of the elements ei,j of each embedding vector Ei as learned

attributes for entity i or relation type i. Different tasks may demand different attributes, so
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that entities that have a common behavior6 in some way will get the same values for some

of their attributes. If the same attributes can be useful for several tasks, then statistical power

is gained through parameter sharing, and transfer of information between tasks can happen,

making the data of some task informative for generalizing properly on another task.

4.3 Implementation details

All the code for the experiments has been implemented in Python and using the Theano

library (Bergstra et al. 2010). Training is carried out using mini-batches (we create 200

mini-batches for each dataset, independent of its size). All hyperparameter values are set

using a validation set. The dimension of the embeddings (d) and the dimension of the out-

put space of g functions (p) are selected among {10,25,100}. There is a different learn-

ing rate for the embedding matrix E and for the parameters of g. It is chosen among

{0.03,0.01,0.003,0.001,0.0003} for E and among {3.,1.,0.3,0.1,0.03} for g. Training

stops using early stopping on the validation set error (or after a maximum of 2,000 epochs).

5 Empirical evaluation

This section proposes an experimental comparison of SME with current state-of-the-art

methods for learning representations of multi-relational data.

5.1 Datasets

In order to evaluate against existing methods, we performed experiments on benchmarks

from the literature. Kinships and UMLS are fully observed, i.e. for each relation type and

each potential pair of entities it has been observed whether the given triplet is valid or not.

They are also sparse, i.e. only a small fraction of triplets are valid. We also illustrate the

properties of our model on Nations and WordNet , which are partially observed: we only

observe some valid triplets in the case of WordNet and some valid or invalid triplets for

Nations. The rest is unknown, that is, missing triplets can be valid or not. And of course,

in that case only a tiny fraction of potential triplets are observed. We describe all datasets

below, with some statistics displayed in Table 1.

Table 1 Statistics of datasets used in our experiments. The top two are fully observed, very sparse i.e. only

a small minority of relations are valid and hence are used in a cross-validation scheme. Only a fraction of

relations are observed in Nations and WordNet

Dataset Nb. of relation types Nb. of entities Nb. of observed relations % valid relations in obs. ones

UMLS 49 135 893,025 0.76

Kinships 26 104 281,216 3.84

Nations 56 14 11,191 22.9

WordNet 18 40,943 151,442 100

6E.g., appear in semantically similar contexts, i.e., in instances containing the same entities or ones with

close-by values of their embedding.
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Table 2 Relation types of WordNet used in our experiments

WordNet

_hypernym, _hyponym, _instance_hyponym, _instance_hypernym, _related_form,

_has_part, _part_of, _member_has_part, _member_part_of, _also_see, _attribute,

_synset_domain_region, _synset_domain_usage, _synset_domain_topic, _verb_group,

_member_of_domain_region, _member_of_domain_usage, _member_of_domain_topic

UMLS This dataset contains data from the Unified Medical Language System semantic

work gathered by McCray (2003). This consists in a graph with 135 entities and 49 re-

lation types. The entities are high-level concepts like ‘Disease or Syndrome’, ‘Diagnostic

Procedure’, or ‘Mammal’. The relations represent verbs depicting causal influence between

concepts like ‘affect’ or ‘cause’.

Nations This dataset groups 14 countries (Brazil, China, Egypt, etc.) with 56 binary

relation types representing interactions among them like ‘economic_aid’, ‘treaties’ or

‘rel_diplomacy’, and 111 features describing each country. See Rummel (1999) for details.

Kinships Australian tribes are renowned among anthropologists for the complex relational

structure of their kinship systems. This dataset, created by Denham (1973), focuses on the

Alyawarra, a tribe from Central Australia. 104 tribe members were asked to provide kinship

terms for each other. This results in a graph of 104 entities and 26 relation types, each of

them depicting a different kinship term, such as Adiadya or Umbaidya. See Denham (1973)

or Kemp et al. (2006) for more details.

WordNet This knowledge base is designed to produce intuitively usable dictionary and

thesaurus, and supports automatic text analysis. It encompasses comprehensive knowledge

within its graph structure, whose entities (termed synsets) correspond to senses, and relation

types define lexical relations between those senses. We considered all the entities that were

connected with the relation types given in Table 2, although we did remove some entities

for which we have too little information: we filtered out the synsets appearing in less that

15 triplets. We obtain a graph with 40,943 synsets and 18 relations types. Examples of

triplets are (_score_NN_1, _hypernym, _evaluation_NN_1) or (_score_NN_2, _has_part,

_musical_notation_NN_1). As WordNet is composed of words with different meanings, we

describe its entities by the concatenation of the word, its part-of-speech tag (‘NN’ for noun,

‘VB’ for verb, ‘JJ’ for adjective and ‘RB’ for adverb) and a digit indicating which sense it

refers to i.e. _score_NN_1 is the entity encoding the first meaning of the noun “score”. This

version of WordNet is different from that used in Bordes et al. (2011) because the original

data has been preprocessed differently: this version contains less entities but more relation

types.

5.2 Link prediction

The link prediction task consists in predicting whether two entities should be connected by

a given relation type. This is useful for completing missing values of a graph, forecasting

the behavior of a network, etc. but also to assess the quality of a representation. We evaluate

our model on UMLS, Nations and Kinships, following the setting introduced in Kemp et al.

(2006): data tensors are split in ten folds of valid configurations using (lhs, rel, rhs) triplets as

statistical units, and experiments are performed by cross-validation. The standard evaluation
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Table 3 Link prediction.

Comparisons of area under the

precision-recall curve (AUC)

computed in a 10-fold

cross-validation setting between

two versions of SME (this paper)

and previously published

algorithms (SE, RESCAL, CP,

BCTF, MRC, IRM) on UMLS,

Nations and Kinships. Emb. is an

unstructured version of SME.

Best performing methods, with a

significant difference with the

rest, are indicated in bold

Method UMLS Nations Kinships

SME(linear) 0.979 ± 0.003 0.777 ± 0.025 0.149 ± 0.003

SME(bilinear) 0.985 ± 0.003 0.865 ± 0.015 0.894 ± 0.011

Emb. 0.035 ± 0.002 0.345 ± 0.025 0.038 ± 0.001

SE 0.983 ± 0.004 0.869 ± 0.016 0.913 ± 0.006

RESCAL 0.98 0.84 0.95

CP 0.95 0.83 0.94

BCTF 0.98 n/a 0.90

MRC 0.98 0.75 0.85

IRM 0.70 0.75 0.66

metric is area under the precision-recall curve (AUC). For our own models, we used one of

the nine training folds for validation. Table 3 presents results of SME along with those of

RESCAL, BCTF, MRC, IRM and CP, which have been extracted from Kemp et al. (2006),

Kok and Domingos (2007), Sutskever et al. (2009), Nickel et al. (2011) and that of SE,

which we computed ourselves. Table 3 also displays performance of an unstructured version

of SME, termed Emb.: in this case, the score of a triplet (lhs, rel, rhs) is simply determined

by the dot product between lhs and rhs embeddings, without any influence of the relation

type.

The linear formulation of SME is outperformed by SME(bilinear) on all three tasks. The

largest differences for Nations and Kinships indicate that, for these problems, a joint inter-

action between both lhs, rel and rhs is crucial to represent the data well: relations cannot

be simply decomposed as a sum of bigrams. This is particularly true for the complex kin-

ship systems of the Alyawarra. On the contrary, interactions within the UMLS network can

be represented by simply considering the various (entity, entity) and (entity, relation type)

bigrams. Compared to other methods, SME(bilinear) performs similarly to SE, RESCAL,

BCTF and MRC on UMLS and similarly to SE on Nations. It is worth noting than, on Na-

tions, SE and SME(bilinear) perform better by a vast margin. On Kinships, it is outper-

formed by RESCAL and CP: on this dataset with complex ternary interactions, the training

process of these tensor factorization methods, based on reconstruction, seems to be benefi-

cial compared to our predictive approach. Simply representing a relation by a vector might

also be detrimental w.r.t. using matrices, but SME reaches similar performance as SE (using

matrices and a predictive training process). Still, compared to MRC, which is not using a

matrix-based encoding, SME(bilinear) remains highly competitive. As expected, Emb. per-

forms poorly, outlining the crucial influence of rel for correctly modeling such data.

To summarize, on these 3 benchmarks with moderate sizes, our method is either state-

of-the-art (represented mainly by SE and RESCAL) or very close to it, and can be consid-

ered as the best performing method on average. However, SME is primarily designed for

large-scale conditions and we show in the following that it outperforms RESCAL when the

number of entities increases (in Sect. 5.3) and SE when the number of relation types does

(in Sect. 6.4.1).

5.3 Entity ranking

Performing an evaluation based on link prediction for WordNet is problematic because only

positive triplets are observed. Hence, in this case, there is no negative triplet but only un-

known ones for which it is impossible to state whether they are valid or not. For this setting,
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Table 4 Entity ranking on

WordNet. Comparisons between

two versions of SME (this paper)

and SE, RESCAL and Emb., an

unstructured version of SME.

Mean/median predicted rank and

precision@10 (p@10, in %) are

computed on the test set. Best

performances are indicated in

bold, worst in italic

Method Rank (median / mean) p@10

SME(linear) 5 / 559 6.51

SME(bilinear) 8 / 526 5.47

Emb. 26 / 317 3.51

SE 3 / 1011 6.85

RESCAL 12 / 893 4.76

for which we only have access to positive training and test examples, AUC is not a satis-

fying metric anymore. Hence, we evaluate our model on this data using the ranking setting

proposed in Bordes et al. (2011) and described below, which allows an analysis on positive

samples only.

We measure the mean and median predicted ranks and the prediction@10, computed with

the following procedure. For each test triplet, the left entity is removed and replaced by each

of the entities of the dictionary in turn. Energies of those corrupted triplets are computed by

the model and sorted by ascending order and the rank of the correct synset is stored. This

whole procedure is also repeated when removing the right-hand argument instead. We report

the mean and median of those predicted ranks and the precision@10 (or p@10), which is

the proportion of ranks within 1 and 10, divided by 10. WordNet data was split in training,

validation and test sets with 141,442 observed triplets for training, 5,000 for validation and

5,000 for testing.

Table 4 presents comparative results on the test set, together with the performance of

Emb., SE and RESCAL, which we all computed. No method is able to perform best for all

metrics. SE obtains a low median rank and the best p@10, but has the worst mean rank.

This indicates an instability: SE works very well for most examples but can be terrible in

some cases. In the original paper introducing SE, Bordes et al. (2011) proposed to stack a

Kernel Density Estimator (KDE) on top of the structured embeddings to improve stability.

However, throughout this paper, when we refer to SE, we mean without KDE, because this

makes a fairer comparison. We could also stack KDE on top of SME but this involves a very

expensive extra-cost, that forbids any large-scale ambition. Emb. performs quite well and

reaches the best mean rank indicating that, on WordNet, the influence of the relation type is

not crucial to get a fair rough estimate of the likely lhs given rhs, and vice-versa. Still, Emb.

does not solve the task of handling multi-relational data, since it simply ignores the relation

types. This seems to be fine on this task, but it was terrible on those of the previous section.

SME is the only method able to perform well for all metrics (while never reaching on

top). In particular, SME(linear) is very close to SE in median rank and p@10 while being

much better in mean rank: it does not seem to suffer from instability issues. It is hard on

WordNet to be accurate on average (low mean rank) and still have a large proportion of

examples very well ranked (low median rank) and SME appears to be the best for this com-

promise. RESCAL performs consistently worse than SME. We tried very hard to make the

code provided by the authors work as well as possible: to behave properly, the model re-

quires large latent dimensions d but this slows it down a lot. Results of Table 4 have been

obtained with d = 2000 and a training time of almost 2 days (compared to around 4 h for

SME).
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Fig. 2 Entity embeddings. Plots of representations (matrix E), learnt by SME(linear) (top) and SME(bilinear)

(bottom), for 115 countries selected from WordNet and projected in 2D by t-SNE. SME(linear) encoded

geographical similarities within the embeddings

5.4 Entity embeddings

The matrix E factorizes information from all relations in which the entity appears. We pro-

pose here to illustrate the kind of semantics captured by the representations.

We selected 115 entities from WordNet corresponding to countries from all over the

world and to U.S. states. We selected this subset because we know that there exist an under-

lying structure among them. Then, we projected the corresponding embeddings learnt by the

linear and bilinear versions of SME and created 2D plots using t-SNE (van der Maaten and

Hinton 2008). They are given in Fig. 2: a different color is used for each continent; suffixes

depicting POS tag and sense indices have been removed for clarity.

The representations learnt by the linear model seem to nicely reflect the geographical

semantics, hence encoding the “part-of” information contained in WordNet: nice clusters

are formed for each continent. To assess more objectively the quality of this plot, Fig. 3

proposes the one obtained for the same entities with the Lesk similarity measure of the
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Fig. 3 Pairwise similarities. A pairwise similarity matrix of 115 countries from WordNet is computed with

the Lesk measure of Wordnet::Similarity and projected in 2D by t-SNE

WordNet::Similarity package (Banerjee and Pedersen 2002).7 We tried several measures

and chose Lesk because it gave the best result. Comparing both plots tends to indicate that

embeddings learnt by SME(linear) could be used to form a very decent similarity measure

on WordNet. But, the comparison is not fair because the Lesk measure does not only rely on

the WordNet graph but is also improved using glosses (i.e. definitions). Performing the same

experiment with WordNet::Similarity measures based only on the graph gives much worse

results. SME seems able to nicely capture the multi-relational semantics of the WordNet

graph, without any other source of information.

The picture changes with the representations learnt by the bilinear models: the plot (bot-

tom of Fig. 2) is much harder to interpret and suggests that the interactions occurring in the

SME(bilinear) neural network are more complex, with a more invasive role for the relation

type. This intuition is confirmed by the plots of Fig. 4. They still display t-SNE projections

of representations of the same models for the same entities but not taken at the same level in

the network. In this case, we projected the representations obtained by the embeddings when

combined with the embedding of the relation type _part_of by the glef t function. In other

words, these are plots of Elhs(rel). The top plot corresponds to the linear model and resem-

ble to the one of Fig. 2: as expected, the linear glef t does not have a dramatic effect on the

embedding landscape. The bottom plot, depicting SME(bilinear), is much more interesting

because it shows that what was messy at the root level is much more organized: clusters are

now formed for continents with the one corresponding to U.S. states further apart from the

countries. Embeddings of SME(bilinear) are more interpretable given a relation type. The

bilinear g functions drastically modify the distances within the embedding space depending

on the relation type, as we expect that it should.

This last remark indicates that, by encoding data with SME(bilinear), one can expect

that similarities between two entities existing given one relation (i.e. short distances be-

tween their transformed embeddings) would not automatically translate into a similarity

between them for any relation type. This kind of behavior seems much harder to reproduce

7Freely available from wn-similarity.sourceforge.net.

http://wn-similarity.sourceforge.net
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Fig. 4 Entity-relation embeddings. Plots of Elhs(rel) representations, learnt by SME(linear) (top) and

SME(bilinear) (bottom), with 115 countries selected from WordNet as lhs and _part_of as rel, projected

in 2D by t-SNE. SME(linear) and SME(bilinear) encoded geographical similarities at this stage

for SME(linear), where a similarity between entities seems to exist independent of the re-

lation. This could explain the bad performance of this model on Kinships, where correct

associations highly depend on the relation types. Still, drastic relations like antonymy re-

main unlikely to be well encoded by SME(bilinear), this might require to add non-linearities

to the model or to use larger sparse representations (to code for orthogonality among enti-

ties).

6 Application for word-sense disambiguation

We have introduced a new neural network architecture for learning multi-relational seman-

tics. Its stochastic learning process and its distributed representation of entities and relations

allow it to scale to large graphs in terms of nodes and link types. In this section, we illustrate
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Fig. 5 Open-text semantic parsing on simple sentences. To parse an input sentence (0.), a preprocessing

(lemmatization, POS, chunking, SRL) is first performed (1.) to clean data and uncover the MR structure.

Then, to each lemma is assigned a corresponding WordNet synset (2.), hence defining a complete meaning

representation (3.)

these appealing properties by applying our model for learning to carry out all-words word-

sense disambiguation on knowledge extracted from free text with semantic role labeling

(SRL), with a view to performing open-text semantic parsing.

Semantic parsing (Mooney 2004) aims at building systems able to read text and express

its meaning in a formal representation i.e. able to interpret statements expressed in natural

language. The purpose of a semantic parser is to analyze the structure of sentence meaning

and, formally, this consists of mapping a natural language sentence into a logical meaning

representation (MR). Open-text semantic parsing consists of learning to associate a MR to

any kind of natural language.

SME could make an interesting piece of a SRL system, especially for producing MRs

of the following form: relation(subject,object), i.e. relations with subject and object argu-

ments, where each component of the resulting triplet refers to a disambiguated entity, via

the following two-stages process: (1) SRL step predicts the semantic structure, and (2) a

disambiguation step assigns a corresponding entity to each relevant word, so as to minimize

an energy given to the whole input. Even if such a SRL system using SME would not be able

to cover the whole range of sentences and solve the highly complex problem of open-text

semantic parsing, it could make a useful tool. Its process is illustrated in Fig. 5 and detailed

in the next section. Our focus is on the application of SME for Step (2), which is an all-words

WSD step on extracted knowledge.

6.1 Methodology

This section details how SME could be inserted into a simple open-text semantic parsing sys-

tem. In this framework, MRs are simple logical expressions REL(A0, . . . ,An), where REL

is the relation symbol, and A0, . . . ,An are its arguments. Note that several such forms can be

recursively constructed to build more complex structures. The goal is to parse open-domain

raw text so a large set of relation types and arguments should be considered. Hence, Word-

Net is used for defining REL and Ai arguments as proposed in Shi and Mihalcea (2004),

using the version introduced in Sect. 5.1. This results in a dictionary of 70,116 words that

can be mapped to 40,943 possible entities. The simplified semantic parsing process consists

of two stages.

Step (1): MR structure inference The first stage consists in preprocessing the text and

inferring the structure of the MR. For this stage we use standard approaches, the major

novelty of our work lies in applying SME for step (2).

We use the SENNA software8 (Collobert et al. 2011) to perform part-of-speech (POS)

tagging, chunking, lemmatization9 and SRL. In the following, we call a lemma the concate-

nation of a lemmatized word and a POS tag (such as _score_NN or _accompany_VB). Note

8Freely available from ml.nec-labs.com/senna/.

9Lemmatization is not carried out with SENNA but with the NLTK toolkit (nltk.org) and transforms a word

into its canonical or base form.

http://ml.nec-labs.com/senna/
http://nltk.org
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the absence of an integer suffix, which distinguishes a lemma from a WordNet synset: a

lemma is allowed to be semantically ambiguous. The SRL step consists in assigning a se-

mantic role label to each grammatical argument associated with a verb for each proposition.

As a simplification, only sentences that match the template (subject, verb, direct object)

are considered here. Each of the three elements of the template is associated with a tuple

of lemmatized words (i.e. with a multi-word phrase) and SRL is used to structure the sen-

tence into the (lhs = subject, rel = verb, rhs = object) template. The order is not necessarily

subject / verb / direct object in the raw text (e.g. in passive sentences). Clearly, the subject-

verb-object composition causes the resulting MRs to have a straightforward structure (with

a single relation), but this pattern is common and a good choice to test our ideas at scale.

Learning to infer more elaborate grammatical patterns and MR structures is left as future

work: we chose here to focus on handling the large scale of the set of entities.

To summarize, this step starts from a sentence and either rejects it or outputs a triplet of

lemma tuples, one tuple for the subject, one for the relation or verb, and one for the direct

object. To complete our semantic parse (or MR), lemmas must be converted into WordNet

synsets, that is, we still have to perform disambiguation, which takes place in step (2).

Step (2): Detection of MR entities This second step aims at identifying each semantic

entity expressed in a sentence. Given a relation triplet (lhslem, rellem, rhslem) where each

element of the triplet is associated with a tuple of lemmas, a corresponding triplet (lhssyn,

relsyn, rhssyn) is produced, where the lemmas are replaced by synsets. This step is a form of

all-words WSD in a particular setup, i.e., w.r.t. the logical form of the semantic parse from

Step (1). This can be either straightforward (some lemmas such as _television_program_NN

or _world_war_ii_NN correspond to a single synset) or very challenging (_run_VB can be

mapped to 33 different synsets and _run_NN to 10). Hence, in this proposed framework,

MRs correspond to triplets of synsets (lhssyn, relsyn, rhssyn), which can be reorganized to the

form relsyn(lhssyn, rhssyn), as shown in Fig. 5.

Since the model is structured around triplets, MRs and WordNet relations are cast into

the same scheme. For example, the WordNet relation (_ score_NN_2, _has_part, _musi-

cal_notation_NN_1) fits the same pattern as our MRs, with the relation type _has_part play-

ing the role of the verb, and the same entities being present in WordNet relations and MRs.

The semantic matching energy function is trained to assign energies to triplets of lemmas

and synsets. It is important to notice that such triplets involve a large number of relation

types because any verb (under a lemma or a synset form) can act like it. Hence, our data,

detailed in Sect. 6.2.1, contains more than 16,000 relation types.

The architecture introduced in Sect. 3.3 cannot be applied directly. Indeed, here E must be

able to handle variable-size arguments, since for example there could be multiple lemmas

in the subject part of the sentence. Hence, we add a pooling stage between steps (1) and

(2) (of Sect. 3.3). The embeddings associated with all the symbols (synsets or lemmas)

within the same tuple are aggregated by a pooling function π (we used the mean but other

plausible candidates include the sum, the max, and combinations of several such element-

wise statistics, such as in Hamel et al. (2011)). This re-defines Elhs , Erel and Erhs as follows:

Elhs = π(Elhs1
,Elhs2

, . . .),

Erel = π(Erel1 ,Erel2 , . . .),

Erhs = π(Erhs1
,Erhs2

, . . .),

where lhsj denotes the j -th individual element of the left-hand side tuple, etc.
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Table 5 Multiple data sources used for learning representations of 37,141 lemmas and 40,943 synsets. “La-

beled” indicates when triplets consist of text lemmas for which the corresponding synsets are known. The

total number of observed training triplets is 3,328,703 and the total number of relation types appearing in

those triplets is around 10,000

Dataset Train. size Test size Labeled Symbols

WordNet 146,442 5,000 No synsets

ConceptNet 11,332 0 No lemmas

Wikipedia 2,146,131 10,000 No lemmas

Extended WordNet 42,957 5,000 Yes lemmas + synsets

Unambig. Wikipedia 981,841 0 Yes lemmas + synsets

We use this slightly modified semantic matching energy function to solve the WSD step.

We label a triplet of lemmas ((lhslem
1 , lhslem

2 , . . .), (rellem1 , . . .), (rhslem
1 , . . .)) with synsets in a

greedy fashion, one lemma at a time. For labeling lhslem
2 for instance, we fix all the remaining

elements of the triplet to their lemma and select the synset leading to the lowest energy:

lhs
syn

2 = argminS∈C(syn|lem)E
((

lhslem
1 , S, . . .

)

,
(

rellem1 , . . .
)

,
(

rhslem
1 , . . .

))

with C(syn|len) the set of allowed synsets to which lhslem
2 can be mapped. We repeat that

for all lemmas. We always use lemmas as context, and never the already assigned synsets.

Future work should investigate more advanced inference schemes, which would probably be

iterative and would gradually refine the estimated set of synsets taking into account their mu-

tual agreement. Nevertheless, this is an efficient process as it only requires the computation

of a small number of energies, equal to the number of senses for a lemma, for each position

of a sentence. However, it requires good representations (i.e. good embedding vectors Ei )

for synsets and lemmas because they are used jointly to perform disambiguation.

6.2 Multi-task training

This section describes how we adapted the training scheme presented in Sect. 4 for learning

embeddings for synsets and lemmas using various data sources.

6.2.1 Multiple data resources

In order to endow the model with as much common-sense knowledge as possible, the fol-

lowing heterogeneous data sources are combined. Their statistics are summarized in Table 5.

On overall, this large-scale complex data groups 78,084 entities (37,141 lemmas and 40,943

synsets) and 9,560 relation types (4,077 encoded by verb synsets, 5,448 by verb lemmas, 18

for WordNet and 17 for ConceptNet) into 3,328,703 observed training triplets (and 20,000

for testing). Note that the actual number of triplets used for training our system is much

larger than that, because we generate negative triplets (by perturbing observed ones) during

the learning phase (see Sect. 6.2.2).

WordNet (WN) Already described in Sect. 5, this is the main resource, defining the dictio-

nary of 40,943 entities. WordNet contains only relations between synsets. However, the dis-

ambiguation process needs embeddings for synsets and for lemmas. Following Havasi et al.

(2010), we created two other versions of this dataset to leverage WN in order to also learn

lemma embeddings: “Ambiguated” WN and “Bridge” WN. In “Ambiguated” WN synset
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entities of each triplet are replaced by one of their corresponding lemmas. “Bridge” WN is

designed to teach the model about the connection between synset and lemma embeddings,

thus in its relations the lhs or rhs synset is replaced by a corresponding lemma. Sampling

training examples from WN involves actually sampling from one of its three versions, re-

sulting in a triplet involving synsets, lemmas or both.

ConceptNet This common-sense knowledge base (Liu and Singh 2004) groups lemmas

or groups of lemmas, which are linked together with rich semantic relations such as

(_kitchen_table_NN, _used_for, _eat_VB _ breakfast_NN). It is based on lemmas and not

synsets, and it does not make distinctions between different senses of a word. Only triplets

containing lemmas from the WN dictionary are kept, to finally obtain a total of 11,332 train-

ing triplets.

Wikipedia This resource is simply raw text meant to provide knowledge to the model in

an unsupervised fashion. In this work 50,000 Wikipedia articles were considered, although

many more could be used. Using the protocol of Step (1) of Sect. 6.1, we created a total of

2,146,131 triplets of lemmas. Imperfect training triplets (containing a mix of lemmas and

synsets) are produced by performing the disambiguation step on one of the lemmas. This is

equivalent to MAP (Maximum A Posteriori) training, i.e., we replace an unobserved latent

variable by its mode according to a posterior distribution (i.e. to the minimum of the energy

function, given the observed variables). We have used the 50,000 articles to generate more

than 3M examples.

EXtended WordNet (XWN) XWN (Harabagiu and Moldovan 2002) is built from Word-

Net glosses, syntactically parsed and with content words semantically linked to WN synsets.

Using the protocol of Step (1) of Sect. 6.1, we processed these sentences and collected

47,957 lemma triplets for which the synset MRs were known. We removed 5,000 of these

examples to use them as an evaluation set for the word-sense disambiguation task. With

the remaining 42,957 examples, we created unambiguous training triplets to help the per-

formance of the disambiguation algorithm: for each lemma in each triplet, a new triplet is

created by replacing the lemma by its true corresponding synset and by keeping the other

members of the triplet in lemma form (to serve as examples of lemma-based context). This

led to a total of 786,105 training triplets, from which 10k were removed for validation.

Unambiguous Wikipedia (Wku) We added to this training set some triplets extracted from

the Wikipedia corpus which were modified with the following trick: if one of its lemmas

corresponds unambiguously to a synset, and if this synset maps to other ambiguous lemmas,

we create a new triplet by replacing the unambiguous lemma by an ambiguous one. Hence,

we know the true synset in that ambiguous context. This allowed to create 981,841 additional

triplets with supervision.

6.2.2 Training procedure

The training algorithm described in Sect. 4 was used for all the data sources except XWN

and Wku. In those two cases, positive triplets are composed of lemmas (as context) and of

a disambiguated lemma replaced by its synset. Unlike for Wikipedia, this is labeled data, so

we are certain that this synset is the valid sense. Hence, to increase training efficiency and

yield a more discriminant disambiguation, in step 3 of the ranking algorithm with probability
1
2

we either sample randomly from the set of all entities or we sample randomly from the
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set of remaining candidate synsets corresponding to this disambiguated lemma (i.e. the set

of its other meanings).

During training, we sequentially alternate between all sources, performing an update of

the model parameters with one mini-batch of examples each time. Sizes of mini-batches

differ between sources because we decided to split each source into 50 mini-batches. We

always loop over sources in the same order. Training is stopped after 8,000 epochs on

all sources (or 7 computation days). There is one learning rate for the g functions and

another for the embeddings: their values are set using a grid search, choosing among

{3.,1.,0.3,0.1,0.03,0.01} and {0.03,0.01,0.003,0.001,0.0003,0.0001} respectively. The

model selection criterion is the mean rank from the entity ranking task on the WordNet

validation set. Dimensions of embeddings and of the g output space are equal for these

experiments and set to 50 (i.e. d = p = 50).

6.3 Related work

The application of SME to WSD is related to work on vector-based models of word meaning

(Lund and Burgess 1996; Landauer and Dumais 1997) and neural language models (Bengio

2008; Collobert et al. 2011), in the sense that we learn a vector representation for each lemma

to disambiguate. More precisely, it is connected to models aiming at composing such vec-

tor embeddings for obtaining phrase or context representations (Mitchell and Lapata 2008),

via tensor products (Smolensky 1990) or matrix operations (Paccanaro and Hinton 2001;

Socher et al. 2012). However, besides that many of these methods would not scale to the

problems introduced here, there exist a major difference with our work: we aim at learn-

ing jointly representations for words (lemmas) and senses (synsets), considering structures

within language (via SRL triplets) and within a knowledge base (via WordNet triplets) to-

gether. To the best of our knowledge, this is the first attempt of mixing relational embed-

dings of a knowledge base and word embeddings. Note that the original architecture of SME

could be adapted for recursively learning phrase representations as proposed by Socher et al.

(2012) but this is beyond the scope of this paper.

Our approach is also connected to previous work targeting to improve WSD by us-

ing extra-knowledge by either automatically acquiring examples (Martinez et al. 2008) or

by connecting different knowledge bases (Havasi et al. 2010), but uses a totally different

method.

Finally, our ambition towards open-text semantic parsing is related to previous work by

Shi and Mihalcea (2004), who proposed a rule-based system for open-text semantic parsing

using WordNet and FrameNet (Baker et al. 1998) and by Giuglea and Moschitti (2006),

who proposed a model to connect WordNet, VerbNet and PropBank (Kingsbury and Palmer

2002) for semantic parsing using tree kernels. Poon and Domingos (2009, 2010) introduced

a method based on Markov-Logic Networks for unsupervised semantic parsing that can

be also used for information acquisition. However, instead of connecting MRs to an exist-

ing ontology as done here, it constructs a new ontology and does not leverage pre-existing

knowledge.

6.4 Experiments

To assess the performance w.r.t. the multi-task training and the diverse data sources, we

evaluated models trained with several combinations of data sources. WN denotes SME mod-

els trained on WordNet, “Ambiguated” WordNet and “Bridge” WordNet, while ALL denotes

models are trained on all sources.
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Table 6 Relation type ranking on Wikipedia. Comparisons between two versions of SME (this paper) and

SE. Mean/median predicted rank and precision@10 (p@10, in %) are computed on the test set. Best perfor-

mances are indicated in bold

Method Rank (median / mean) p@10

SME(linear) 92 / 267 1.951

SME(bilinear) 97 / 286 1.862

SE 118 / 283 0.882

6.4.1 Entity ranking

We first evaluated SME(linear), SME(bilinear), SE and RESCAL in ranking on Wikipedia

(Wk) because this dataset offers a test-bed with many types of relation (5,448). The goal of

the task was to rank the correct rel given a pair of (lhs, rhs), because this is much easier than

ranking lhs or rhs that contain multiple lemmas. All methods has only been trained on the

Wk training set of 2,146,131 observed lemma triplets and evaluated on the corresponding

test set of 10k triplets. Hence, we measure the mean and median predicted ranks and the

prediction@10, computed with the following procedure. For each test triplet, the relation

type is removed and replaced by each of the relation types of the dictionary in turn. Energies

of those corrupted triplets are computed by the model and sorted by ascending order and the

rank of the correct type is stored. Table 6 reports the average and median of those predicted

ranks and the precision@10 (or p@10). Results clearly indicate the advantage of using SME

on data with large numbers of relation types, compared to SE. There is no result for RESCAL

because we have not been able to run it on Wk. This confirms that SME is the method of

choice when dealing with large-scale multi-relational data.

6.4.2 Word-sense disambiguation

Performance on WSD is assessed on two test sets: the XWN test set and a subset of English

All-words WSD task of SensEval-3.10 For the latter, we processed the original data using

the protocol of Step (1) of Sect. 6.1 and obtained a total of 208 words to disambiguate

(out of ≈2000 originally). We compare with results obtained by Emb., which uses the same

embeddings as SME, but without the structure of its energy function. The performance of

SE and of the most frequent sense for a given lemma (MFS) as well as of the standard Lesk

algorithm are also evaluated. MFS frequencies have been obtained from WordNet, which

provides such information (in cntlist files). We attempted to adapt RESCAL to this task,

but the code took too long to converge with the whole set or even a reduced set of relation

types. We implemented a version of Lesk by following the work of Banerjee and Pedersen

(2002), which performs WSD based on the WordNet::Similarity package. Hence, a triplet

of lemmas is labeled with the triplet of synsets which exhibit the highest cumulated Lesk

similarity measure (according to WordNet::Similarity): this cumulated measure is computed

as the sum of Lesk similarities of all pairs of synsets composing the triplet. Finally, we

report the F1-score of Gamble (Decadt et al. 2004), winner of Senseval-3, on our subset of

its data.11

10More details at www.senseval.org/senseval3.

11A side effect of our preprocessing of SensEval-3 data is that our subset contains mostly frequent words. This

is easier for MFS than for Gamble because Gamble is efficient on rare terms. Hence, Gamble performs worse

http://www.senseval.org/senseval3
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Table 7 Word-sense

disambiguation results. F1-scores

(in %) of different versions of

SME (linear/bilinear, with

different data sources, combined

with the most frequent sense

(MFS) information or not) are

compared on XWN and a subset

of SensEval-3, with previous

work SE; Emb., the unstructured

version of SME; Lesk, a standard

WSD method; Gamble, the

algorithm that won SensEval-3

on the full test set; and Random,

which chooses uniformly among

allowed synsets. Best performing

methods, with a significant

difference, are indicated in bold

Method XWN SensEval3

SME(linear) ALL + MFS 72.3 65.9

ALL 66.0 44.7

WN 31.6 29.3

SME(bilinear) ALL + MFS 72.1 68.3

ALL 67.1 49.5

WN 29.6 28.4

SE ALL + MFS 68.9 68.3

ALL 51.9 47.1

Emb. ALL + MFS 68.7 69.2

ALL 39.2 40.4

Lesk 70.2 50.5

Gamble n/a 66.4

MFS 67.2 67.8

Random 26.7 29.6

F1 scores are presented in Table 7. The difference between models learnt on ALL and on

WN indicates that the information from Wikipedia, XWN and Wku is crucial (+35 %) and

yields performance equivalent to that of MFS(a strong baseline in WSD) on the XWN test

set. Performance of the model trained on WN alone are roughly equivalent to that of Random.

This confirms that knowledge from WordNet and free text are difficult to combine. Still, it is

interesting to see that SME is able to train on these various sources and to somewhat capture

information from them all. Emb., without the structure taking the relation type into account,

performs very poorly. SE is affected by the large number of relation types: on XWN, it

remains 15 % below SME. It can not learn proper matrix representations (d2 parameters) for

all verbs involved as relation types, especially for the rare ones. SME does not undergo this

problem.

Performance can be greatly improved by combining models trained on the ALL sources

and the MFS score. To do so, we converted the frequency information into an energy by

taking minus the log frequency and used it as an extra energy term. The total energy function

is used for disambiguation. This yields the results denoted by ALL + MFS which achieve

the best results of all the methods tried. On the XWN test set, the difference in performance

between SME(linear) and SME(bilinear) is not statistically significant but their gap with Lesk

is (according to a χ2 test at the 0.05 level). For SensEval-3, differences between F1 scores

of SME(linear), SME(bilinear) (with ALL + MFS), Gamble and MFS are not statistically

significant (χ2 test—0.05 level). Emb. and SE can also be upgraded using MFS information.

On SensEval-3, this makes them to equal the best performance. However, on XWN (a better

indicator), they remain significantly outperformed by SME. Our method seems to be the best

for encoding supportive information to that of MFS: combined with SME, MFS’s F1-score

increases by 5 %.

than during the challenge and seems to be outperformed by MFS. However, performance of both systems are

statistically equivalent.
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Table 8 Predicted triplets reported by SME(bilinear) trained on all data sources (ALL), by ReVerb and using

the Lesk measure from Wordnet::Similarity

SME(bilinear) ReVerb Lesk

lhs _army_NN_1 army _army_NN_1

rel _attack_VB_1 attacked _attack_VB_1

top ranked rhs _troop_NN_4 the city _army_unit_NN_1

_armed_service_NN_1 the village _army_corps_NN_1

_ship_NN_1 Israel _invade_VB_1

_territory_NN_1 Poland _military_unit_NN_1

_military_unit_NN_1 force _armed_service_NN_1

top ranked lhs _business_firm_NN_1 People _monetary_system_NN_1

_person_NN_1 Players _money_supply_NN_1

_family_NN_1 Interest _currency_NN_1

_payoff_NN_3 Work _monetary_standard_NN_1

_card_game_NN_1 Students _monetary_resource_NN_1

rel _earn_VB_1 earn _earn_VB_1

rhs _money_NN_1 money _money_NN_1

6.4.3 WordNet enrichment

WordNet uses a limited number of relation types (18 in our version), and does not consider

most verbs as relations. Thanks to our multi-task training and unified representation for MRs

and WordNet relations, our model is potentially able to generalize to such relations that do

not exist in WordNet originally.

As illustration, predicted lists of synsets for relation types that do not exist in WordNet

are given in Table 8. We also compare with lists returned by ReVerb (Fader et al. 2011)

(an information extraction tool having extracted information from millions of web pages,12

to be compared with our 50k Wikipedia articles + knowledge bases). Lists from both sys-

tems seem to reflect common sense. However, contrary to our system, ReVerb does not

disambiguate different senses of a lemma, and thus it cannot connect its knowledge to an

existing resource to enrich it. We also provide the lists predicted by the Lesk measure of

Wordnet::Similarity, where the score of a WordNet synset is simply defined as the sum of

its similarity measures with both input synsets. The predictions are semantically related but

they do not reflect the triplet structure because semantic roles of lhs, rel or rhs do not mean

anything for Lesk.

7 Conclusion

This paper presented SME, a new energy-based model for learning multi-relational seman-

tics. This method encodes multi-relational graphs or tensors into a flexible continuous vector

space in which the original data is stored and enhanced. We empirically showed that SME:

(i) is highly competitive with the state-of-the-art methods for modeling multi-relational data,

12See the online ReVerb demo at http://openie.cs.washington.edu/.

http://openie.cs.washington.edu/
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(ii) outperforms them in large-scale conditions, (iii) can be successfully trained on graphs

with tens of thousands of entities and thousands of kinds of relation (more than 100k entities,

10k relation types and 3.5M training triplets). This is the only method able to be efficient on

all the different datasets considered in this paper.

In addition, we presented how SME could be applied to perform WSD using a dic-

tionary of more than 70,000 words based on WordNet. Our system, trained on Word-

Net and free text (and other sources), can capture the deep semantics of sentences in

its energy function, which, combined with most frequent sense information, leads to

improvement in disambiguation over standard methods. Future work could explore the

capabilities of such systems further including more general sentence structures, other

semantic tasks, and more evolved grammars, e.g. with FrameNet (Baker et al. 1998;

Coppola and Moschitti 2010).

An interesting extension of the model presented here extends its applicability to domains

where the objects of interest are not all symbolic (i.e., from a finite set). In that case, one

cannot associate a free parameter (its embedding vector) to each possible object. An example

of such objects are image patches, which are generally described by a “raw” feature vector.

We could learn a mapping from this raw feature space to the embedding space, where the

symbolic objects are mapped (in a similar fashion as WSABIE Weston et al. 2010). Whereas

for discrete object, one can view the object’s embedding as the product of the embedding

matrix by a one-hot vector (with a 1 at the position associated with the object symbol),

for continuous objects, in the linear mapping case, the “embedding matrix” maps the raw

features (richer than one-hot) to the embedding vector. In this way, relations could involve

both discrete and continuous objects. Such extensions are possible because of the flexibility

and scalability, that models based on embeddings like SME or WSABIE offer for dealing

with multimodal inputs.
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