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Abstract

Human pose estimation from depth data has made sig-

nificant progress in recent years and commercial sensors

estimate human poses in real-time. However, state-of-the-

art methods fail in many situations when the humans are

partially occluded by objects. In this work, we introduce a

semantic occlusion model that is incorporated into a regres-

sion forest approach for human pose estimation from depth

data. The approach exploits the context information of oc-

cluding objects like a table to predict the locations of oc-

cluded joints. In our experiments on synthetic and real data,

we show that our occlusion model increases the joint esti-

mation accuracy and outperforms the commercial Kinect 2

SDK for occluded joints.

1. Introduction

Human pose estimation from depth data has made sig-

nificant progress in recent years. One success story is the

commercially available Kinect system [16], which is based

on [20] and provides high-quality body joints predictions in

real time. However, the system works under the assumption

that the humans can be well segmented. This assumption

is valid for gaming application for which the device was

developed. Many computer vision applications, however,

required human pose estimation in more general environ-

ments where objects often occlude some body parts. In this

case, the current SDK for Kinect 2 [14] fails to estimate the

partially occluded body parts. An example is shown in Fig-

ure 1(a) where the joints of the left leg of the person are

wrongly estimated.

In this work, we address the problem of estimating hu-

man pose in the context of occlusions. Since for most ap-

plications it is more practical to have always the entire pose

and not only the visible joints, we aim to predict the loca-

tions of all joints even if they are occluded. To this end, we

build on the work from [11], which estimates human pose

from depth data using a regression forest. Similar to the

SDK, [11] works well for visible body parts but it fails to

estimate the joint locations of partially occluded parts since

it does not model occlusions. We therefore extend the ap-

proach by an occlusion model. Objects, however, not only

occlude body parts but they also provide some information

about the expected pose. For instance, when a person is sit-

ting at a table as in Figure 1, some joints are occluded but

humans can estimate the locations of the occluded joints.

The same is true if the hands are occluded by a laptop or

monitor. In this case, humans can infer whether the per-

son is using the occluded keyboard and they can predict the

locations of the occluded hands.

We therefore introduce a semantic occlusion model that

exploits the semantic context of occluding objects to im-

prove human pose estimation from depth data. The model is

trained on synthetic data where we use motion capture data

and 3D models of furniture. For evaluation, we recorded a

dataset of poses with occlusions1. The dataset was recorded

from 7 subjects in 7 different rooms using the Kinect 2 sen-

sor. In our experiments, we evaluate the impact of synthetic

and real training data and show that our approach outper-

forms [11]. We also compare our approach with the com-

mercial pose estimation system that is part of Kinect 2. Al-

though the commercial system achieves a higher detection

rate for visible joints since it uses much more training data

and highly engineered post-processing, the detection accu-

racy for occluded joints of our approach is twice as high as

the accuracy of the Kinect 2 SDK.

2. Related Work

3D Human Pose Estimation. Human Pose Estimation is

a challenging problem in computer vision. It has applica-

tions in gaming, human computer interaction and security

scenarios. It has generated a lot of research surveyed in

[18]. There are variety of approaches that predict 3D human

1The dataset is available at http://www.vision.

rwth-aachen.de/data.
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(a) (b)

Figure 1: Comparison of Kinect 2 SDK and our approach. The SDK estimates the upper body correctly but the left leg is

wrongly estimated due to the occluding table (a). Given the bounding box, our approach exploits the context of the table and

predicts the left leg correctly (b).

pose from monocular RGB images [1, 3, 15]. However, a

major caveat of using RGB data for inferring 3D pose is that

the depth information is not available.

In recent years the availability of fast depth sensors has

significantly reduced the depth information problem and

further spurred the progress. Researchers have proposed

tracking based approaches [13, 17, 8, 9]. These approaches

work in real time but operate by tracking 3D pose from

frame to frame. They cannot re-initialize quickly and are

prone to tracking failures. Recently random forest based ap-

proaches [11, 20, 21, 23] have been proposed. They predict

the 3D pose in super real time from a single depth image

captured by Kinect. These approaches work on monocu-

lar depth images and therefore are more robust to tracking

failures. Some model based approaches [2, 26] have also

been proposed that fit a 3D mesh to image data to predict

the 3D pose. However, all these approaches require a well-

segmented person to predict the 3D pose and will fail for

occluded joints when the person is partially occluded by

objects. The closest to our method is approach from [11]

that uses regression forest to vote for the 3D pose and can

handle self-occlusions. Our approach on the other hand can

also handle occlusion from other objects.

Occlusion Handling. Explicit occluder handling has

been used in recent years to solve different problems in

computer vision. Girshick et al. [12] use grammar models

with explicit occluder templates to reason about occluded

people. The occlusion patterns needs to be specially de-

signed in the grammer. Ghiasi et al. [10] automatically

learn the different part-level occlusion patterns from data

to reason about occlusion in people-people interactions by

using flexible mixture of parts [25]. Wang et al. [24] use

patch based Hough forests to learn object-object occlusions

patterns. In facial landmarks localization, recently some

regression based approaches have been proposed that also

incorporate occlusion handling for localizing occluded fa-

cial landmarks [4, 27]. However, these approaches only use

the information from non-occluded landmarks in contrast to

our approach that also uses the information from occluding

objects. Similar to [10, 24] our approach also learns the oc-

clusions from data, however our approach learns occlusions

for people-objects interactions in contrast to [10] that learns

occlusions for people-people interactions and the occluding

objects in our approach are classified purely on appearance

at test time and does not incorporate any knowledge about

distance from the object they are occluding as in [24].

3. Semantic Occlusion Model

In this work, we propose to integrate additional knowl-

edge about occluding objects into a 3D pose estimation

framework from depth data to improve the pose estimation

accuracy for occluded joints. To this end, we build on a re-

gression framework for pose estimation that is based on re-

gression forests [11]. We briefly discuss regression forests

for pose estimation in Section 3.1. In Section 3.2 we extend

the approach for explicitly handling occlusions. In particu-

lar, we predict the semantic label of an occluding object at

test time and then use it as context to predict the position of

an invisible joint.



3.1. Regression Forests for Human Pose Estimation

Random Forests have been used in recent years for vari-

ous regression tasks, e.g., for regressing the 3D human pose

from a single depth image [11, 20, 21, 23], estimating the

2D human pose from a single image [7], or for predicting

facial features [6]. In this section, we briefly describe the

approach [11], which will be our baseline.

Regression forests belong to the family of random forests

and are ensembles of T regression trees. In the context of

human pose estimation from a depth image, they take an

input pixel q in a depth image D and predict the probabil-

ity distribution over the locations of all joints in the image.

Each tree t in the forest consists of split and leaf nodes. At

each split node a binary split function φγ(q,D) 7→ {0, 1} is

stored, which is parametrized by γ and evaluates a pixel lo-

cation q in a depth image D. In this work, we use the depth

comparison features from [20]:

φγ(q,D) =

{

1 if D
(

q + u
D(q)

)

−D
(

q + v
D(q)

)

> τ

0 otherwise.
(1)

where the parameters γ = (u, v, τ) denote the offsets u, v

from pixel q, which are scaled by the depth at pixel q to

make the features robust to depth changes. The threshold

converts the depth difference into a binary value. Depend-

ing on the value of φγ(q,D), (q,D) is send to the left or

right child of the node.

During training each such split function is selected from

a randomly generated pool of splitting functions. This

set is evaluated on the set of training samples Q =
{(q,D, c, {Vj})}, each consisting of a sampled pixel q in

a sampled training image D, a class label c for the limb the

pixel belongs to, and for each joint j the 3D offset vectors

Vj = qj − q between pixel q and the joint position qj in the

image D.

Each sampled splitting function φ, partitions the train-

ing data at the current node into the two subsets Q0(φ) and

Q1(φ). The quality of a splitting function is then measured

by the information gain:

φ∗ = argmax
φ

g(φ), (2)

g(φ) = H(Q)−
∑

s∈{0,1}

|Qs(φ)|

|Q|
H(Qs(φ)), (3)

H(Q) = −
∑

c

p(c|Q) log(p(c|Q)), (4)

where H(Q) is the Shannon entropy and p(c|Q) the empiri-

cal distribution of the class probabilities computed from the

set Q. The training procedure continues recursively until

the maximum allowed depth for a tree is reached.

At each leaf node l, the probabilities over 3D offset vec-

tors Vj to each joint j, i.e., pj(V |l) are computed from the

training samples Q arriving at l. To this end, the vectors

Vj are clustered by mean-shift with a Gaussian Kernel with

bandwidth b and for each joint only the two largest clusters

are kept for efficiency. If Vljk is the mode of the kth clus-

ter for joint j at leaf node l, then the probability pj(V |l) is

approximated by

pj(V |l) ∝
∑

k∈K

wljk · exp

(

−

∥

∥

∥

∥

V − Vljk

b

∥

∥

∥

∥

2

2

)

(5)

where the weight of a cluster wljk is determined by the

number of offset vectors that ended in the cluster. Cluster

centers with ‖Vljk‖ > λj are removed since these corre-

spond often to noise [11].

For pose estimation, pixels q from a depth image D are

sampled and pushed through each tree in the forest until

they reach a leaf node l. For each pixel q, votes for the

absolute location of a joint j are computed by xj = q+Vljk.

In addition a confidence value that takes the depth of the

pixel q into account is computed by wj = wljk · D2(q).
The weighted votes for a joint j are collected for all pixels

q and form the set Xj = {(xj , wj)}. The probability of the

location of a joint j in image D is then approximated by

pj(x|D) ∝
∑

(xj ,wj)∈Xj

wj · exp

(

−

∥

∥

∥

∥

x− xj

bj

∥

∥

∥

∥

2

2

)

(6)

where bj is the bandwidth of the Gaussian Kernel learned

separately for each joint j. As for training, the votes are

clustered and only the clusters with the highest summed

weights wj are used to predict the joint location.

3.2. Occlusion Aware Regression Forests (OARF)

In order to handle occlusions, we propose Occlusion

Aware Regression Forests (OARF) that build on the re-

gression forest framework described in Section 3.1. They

predict additionally the class label of an occluding object

at test time and then use this semantic knowledge about

the occluding object as context to improve the pose es-

timation of occluded joints. To this end, we use an ex-

tended set of training samples Qext = Q ∪ Qocc, where

Qocc = {(qocc, D, cocc, {Vjocc})}, is a set of occluding ob-

ject pixels where each pixel qocc is sampled from a training

image D, has a class label cocc and a set of of offset vectors

{Vjocc} to each joint of interest j.

During training we use the depth comparison features

described in Section 3.1 for selecting a binary split func-

tion φγ(q,D) at each split node in each tree. To select bi-

nary split functions that can distinguish between occluding

objects and body parts we minimize the Shannon entropy

H(Q) over extended set of class labels cext = c ∪ cocc :

H(Q) = −
∑

cext

p(cext|Q) log(p(cext|Q)), (7)



To use the semantic knowledge about occluding object as

an additional clue for prediction of occluded joints, we also

store at a leaf node l the probabilities over 3D offset vectors

Vjocc to each joint j, i.e., pj(Vocc|l) that are computed from

the training samples Qocc arriving at l by using the mean

shift procedure described in Section 3.1. The probability

pj(Vocc|l) is approximated by

pj(Vocc|l) ∝
∑

k∈K

wljk · exp

(

−

∥

∥

∥

∥

Vocc − Vljocck

b

∥

∥

∥

∥

2

2

)

(8)

The inference procedure is similar to standard regression

forest inference. At test time pixels qocc from occluding

objects in a test image D are also pushed through each tree

in the forest until they reach a leaf node l and cast a vote

xjocc = qocc + Vljocck with confidence wjocc for each joint

j. The weighted votes for each joint j form the set Xj =
{(xj , wj) ∪ (xjocc, wjocc)}. The final joint position is then

predicted by using the mean shift procedure described in

Section 3.1.

4. Training Data

Gathering real labeled training data for 3D human pose

estimation from depth images is expensive. To overcome

this, [20] generated a large synthetic database of depth im-

ages of people covering a wide variety of poses together

with pixel annotations of body parts. For generating such a

database, a large motion capture corpus of general human

activities has been recorded. The body poses of the cor-

pus were then retargeted to textured body meshes of vary-

ing sizes. Since the dataset is not publicly available, we

captured our own dataset.

Synthetic Data. We follow the same procedure. To this

end, we use the motion capture data for sitting and stand-

ing poses from the publicly available CMU motion cap-

ture database [5]. We retarget the poses to 6 textured body

meshes using Poser [19], a commercially available anima-

tion package, and generate a synthetic dataset of 1’110

depth images of humans in different sitting and standing

poses from different viewpoints. For each depth image, we

also have a pixel-wise body part labeling and the 3D joint

positions. The depth maps and body part labels are shown

in Figure 2(a-b). For the occluding objects, we use the pub-

licly available 3D models of tables and laptops from the

Sweet Home 3D Furniture Library [22]. We render the ob-

ject together with the humans as shown in Figure 2(c). The

compositions are randomized under the constraints that the

tables and feet are on the ground plane, the laptops on the

tables and the distance between the humans and the objects

is between 3-5 cm. For each composition, we compute the

occluded body parts (Figure 2(d)) and the depth and class

labels with occluding object classes Figure 2(e-f).

Real Data. We also recorded a dataset using the Kinect

2 sensor. The dataset contains depth images of humans in

different sitting and standing poses without occlusions as

shown in Figure 2(a). The 3D poses are obtained by the

Kinect SDK and we discarded images were the SDK failed.

This resulted in 2’552 images. The pixel-wise segmenta-

tion of the body parts is obtained by the closest geodesic

distance of a surface point to the skeleton as shown in Fig-

ure 2(b). The composition with synthetic 3D objects is done

as for the synthetic data.

5. Experiments and Results

In this section we describe in detail the experimental set-

tings used to evaluate our method and report quantitative

and qualitative results. For comparison, we consider three

approaches:

1. The approach [11] described in Section 3.1 is our base-

line. It is trained on the training data without occluding

objects shown in Figure 2(a-b).

2. The occlusion aware regression forest (OARF W se-

mantics) described in Section 3.2 is trained with the

semantic labels of occluding objects shown in Fig-

ure 2(e-f).

3. To show the impact of the semantic information of the

occluding objects, we also train an OARF by assigning

all occluding objects a single label and not the labels

of the object classes (OARF W/O semantics).

Training. We train all forests with the same parameters.

For each training depth image, we sample 1000 pixel loca-

tions. The other parameters are used as in [11], i.e., the re-

gression forests consist of 3 trees with maximum depth 20.

For each splitting node, we sample 2000 depth comparison

features and use b = 0.05m.

Testing. For testing our approach, we use synthetic and

real data. The real dataset is recorded in different indoor en-

vironments, offices and living rooms, and consists of seven

sequences of different subjects in different sitting and stand-

ing poses. From each sequence, we select a set of unique

poses thus providing us with a total of 1000 images. We

split the 1000 images into test and validation set with 800

and 200 images, respectively. While bj were set as pro-

posed in [11], we observed that the values for λj proposed

in [11] are not optimal for our baseline. We therefore esti-

mate them on the validation set. The synthetic test set con-

sists of 440 images of 2 subjects. The subjects, occluding

objects and the poses in both test sets are different from the

ones in the training set. We report quantitative results on

real and synthetic test sets for the 15 body joint positions of

our skeleton.



(a) (b) (c) (d) (e) (f)

Figure 2: Procedure for generating depth images with pixel level ground truth body parts labels and occluding objects masks

with class labels. Synthetic data (top row) and real data (bottom row): (a) Rendered or captured and segmented depth image.

(b) Body part labels at pixel level. (c) Depth data with object. (d) Occluded body parts. (e) Segmented depth map with

occluding objects. (f) Combined labels of body parts and occluding objects.

Method Mean Average Precision

Baseline 44%
OARF W/O semantics 48%
OARF W semantics 54%

Table 1: Mean average precision of the 3D body joints pre-

dictions on the synthetic test set by using the evaluation

measure from [20] with a distance threshold of 10 cm. The

results show that integrating semantic knowledge about oc-

cluding objects provides a significant improvement over the

baseline.

Synthetic Test Data. For quantitative evaluation on syn-

thetic data, we use the evaluation measure from [20] with

a distance threshold of 10 cm and report the mean average

precision over the 3D body joints predictions in Table 1. In-

tegrating the additional knowledge about occluding objects

without object class labels alone provides 4% improvement

over the baseline. When we also integrate semantic knowl-

edge about occluding objects then this provides a significant

improvement of 10% over the baseline. This shows that oc-

clusion handling is beneficial for pose estimation, but also

that the semantic context of occluding objects contains im-

portant information about joint locations.

Real Test Data. For real test data, it is difficult to get 3D

ground truth body joint positions. For the quantitative eval-

uation, we therefore manually labeled the 2D body joint

positions. Since manual annotations of the 2D positions

of body joints, especially occluded joints, in depth images

are sometimes noisy, we used the mean annotations of three

different annotators as ground truth. For the quantitative

evaluation on the test data, we use the evaluation measure

Setting Average Detection Accuracy(%)

Occluded Non Occluded All

Joints Joints Joints

Synthetic Data

Baseline 22.17 50.51 44.54

OARF W/O semantics 24.36 52.57 46.62

OARF W semantics 25.42 52.43 46.73

Real Data

Baseline 25.42 46.21 41.82

OARF W/O semantics 28.26 49.72 45.19

OARF W semantics 31.12 51.69 47.94

Real + Synthetic Data

Baseline 28.62 55.02 49.45

OARF W/O semantics 32.60 55.50 50.66

OARF W semantics 35.77 56.01 51.72

Kinect SDK 18.13 66.36 56.94

Table 2: Average detection accuracy of 2D body joint pre-

dictions on the real test set measured by the evaluation mea-

sure from [7] with an error threshold of 0.1 of upper body

size.

from [7] with an error threshold of 0.1 of upper body size to

report average detection accuracy over 2D body joint pre-

dictions.

In Table 2, the results for the baseline, OARF with and

without semantics are reported. We also evaluate the impact

of the synthetic and real training data. The results show that

the synthetic training data is not as good as the real training

data. However, if we combine real and synthetic data we

get another boost of performance. For all three training set-

tings, the numbers support the results of the synthetic test



set. The baseline is improved by occlusion handling and

semantic occlusion handling achieves the best result of the

three methods. The semantic occlusion model mainly im-

proves the accuracy of occluded joints, but there is also a

slight improvement of non-occluded joints. Without occlu-

sion handling, objects close to joints introduce some noisy

votes that can result in wrong estimates. The occlusion han-

dling reduces this effect. We also compared our results to

the Kinect SDK. The Kinect SDK achieves a higher over-

all accuracy since it is trained on much more training data

and the SDK includes additional post-processing, which is

not part of our baseline. However, our approach achieves a

much better accuracy for the occluded joints.

Table 3 presents detailed quantitative results for 11 body

joints that are occluded in the real test set. The results are

reported for OARF trained on real and synthetic data and for

the Kinect SDK. The results show that for most joints our

model achieves a better accuracy than the Kinect SDK and

adding semantic knowledge provides further improvements.

There are only three joints, namely the right elbow and the

ankles, with a low accuracy. This can be explained by the

training data that contains only few examples where these

joints are occluded.

Qualitative Results. We show some qualitative results on

our real test set in Figure 3 and a few failure cases in Figure

4. The top row shows the body joints predicted by OARF

with the semantic occlusion model, the middle row shows

the body joints predicted by OARF without the semantic

occlusion model and the bottom row shows the body joints

predicted by the Kinect SDK.

6. Conclusion

In this paper, we have proposed an approach that inte-

grates additional knowledge about occluding objects into

an existing 3D pose estimation framework from depth data.

We have shown that occluding objects not only need to be

detected to avoid noisy estimates, but also that the seman-

tic information of occluding objects is a valuable source for

predicting occluded joints. Although our experiments al-

ready indicate the potential of the approach and outperform

a commercial SDK already for occluded joints, the overall

performance can still be boosted by increasing the variety

of objects and poses in the training data.
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Joint Per Joint Detection Accuracy(%)

OARF OARF Kinect SDK

W semantics W/O semantics

Spine 77.51 73.9 42.57

Left Elbow 76.47 73.53 47.06

Right Elbow 17.5 10.53 71.93

Left Hand 47.59 36.55 28.28

Right Hand 59.38 39.58 18.23

Left Hip 50.53 48.76 10.60

Right Hip 75.42 71.25 22.08

Left Knee 31.64 31.64 22.60

Right Knee 27.27 29.09 12.73

Left Ankle 3.87 4.9 5.15

Right Ankle 5.44 5.07 7.88

Average 35.77 32.60 18.13

Table 3: Per joint detection accuracy of 11 occluded body

joints in our real test set by using the evaluation measure

from [7] with an error threshold of 0.1 of upper body size.

The results are reported for OARF with and without seman-

tics and for the Kinect SDK.
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Figure 4: Example failure cases for occluded joints from our Real Test Set. OARF with semantics (top row), OARF without

semantics (middle row) and Kinect SDK (bottom row).
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