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Institute of Applied Knowledge Processing
Johannes Kepler University Linz

Altenberger Straße 69, 4040 Linz, Austria
{ al | martin.bloechl | wolfram.woess } @jku.at

Abstract. In this contribution a system is presented, which provides access to
distributed data sources using Semantic Web technology. While it was primar-
ily designed for data sharing and scientific collaboration,it is regarded as a base
technology useful for many other Semantic Web applications. The proposed sys-
tem allows to retrieve data using SPARQL queries, data sources can register and
abandon freely, and all RDF Schema or OWL vocabularies can beused to de-
scribe their data, as long as they are accessible on the Web. Data heterogeneity is
addressed by RDF-wrappers like D2R-Server placed on top of local information
systems. A query does not directly refer to actual endpoints, instead it contains
graph patterns adhering to a virtual data set. A mediator finally pulls and joins
RDF data from different endpoints providing a transparent on-the-fly view to the
end-user.
The SPARQL protocol has been defined to enable systematic data access to re-
mote endpoints. However, remote SPARQL queries require theexplicit notion
of endpoint URIs. The presented system allows users to execute queries without
the need to specify target endpoints. Additionally, it is possible to execute join
and union operations across different remote endpoints. The optimization of such
distributed operations is a key factor concerning the performance of the overall
system. Therefore, proven concepts from database researchcan be applied.

1 Introduction

One of the best use cases for Semantic Web technology is probably large-scale data
integration across institutional and national boundaries. Compared to traditional ap-
proaches based on relational database systems, there are several aspects of the Semantic
Web, which makes it well suited for the integration of data from globally distributed,
heterogeneous, and autonomous data sources. In short, these are: a simple but powerful
and extensible data model which is the Resource DescriptionFramework (RDF), URIs
(or IRIs) used for global naming, and the possibility of reasoning based on Description
Logic.

In this paper a system is presented which is developed primarily for sharing data in
scientific communities. More precisely, the system is developed as part of the Austrian
Grid project to enable transparent access to distributed data for scientific collaboration.
The main project is calledSemantic Data Access Middleware for Grids (G-SDAM)



[16]. Because of the generic architecture of the mediator component, which is responsi-
ble for processing queries, and because of its supposed relevance for the Semantic Web
community, it has been detached from the rest of the Grid middleware. It is expected
that other Semantic Web applications will benefit from thisSemantic Web Integrator
and Query Engine (SemWIQ). The system cannot only be used for other data integra-
tion applications such as library repositories, directories, or various scientific archives
and knowledge bases, it could also be used to complement Semantic Web search en-
gines and Linked Data browsers (explained in Section 6).

The architecture of the data integration system is based on the following findings:
scientific data is usually structured1, regional or globally distributed, stored in hetero-
geneous formats, and sometimes access is restricted to authorized people. To provide
a transparent access to such kinds of data, a mediator-wrapper architecture is com-
monly used [29]. It basically consists of a mediator which isaccepting queries from
clients and then collects data translated by a number of wrappers attached to local data
sources. These wrappers use mappings to translate data fromthe underlying informa-
tion systems into a common schema which can be processed by the mediator. In the case
of virtual data integration, mappings are used for on-the-fly translation of data during
query processing. In the next section some related work willbe discussed.

The remainder of the paper is structured as follows. After the related work section,
the concept of the system and its architecture are described(Section 3). Details about
query federation and the implementation of the mediator arepresented (Section 4). A
sample scenario with sample queries and results are presented (Section 5). Optimization
concepts for distributed SPARQL queries and future work arediscussed (Section 6) and
finally, the conclusion can be found in Section 7.

2 Related Work

Related work can be divided into four main categories: (a) schema integration using
ontologies, (b) schema mapping, and translating source data to RDF, (c) distributed
query processing, and (d) similar projects addressing ontology-based data integration.

While schema integration is not a new topic in general (an overview can be found in
[4]), ontology matching and alignment is rather new2 [25]. The presented system uses
OWL DL ontologies for the global data model and an extended version of SPARQL for
processing queries. When integrating data sources of a specific (scientific) domain, it
is required to create global ontologies that are expressiveenough to describe all data
that will be provided. Because data is usually not stored as RDF graphs originally,
schema integration has to be done over arbitrary data models. This is a difficult task
which is related to a fairly new discipline calledmodel management [18]. On the other
hand, ontologies have already been developed over the past years for several domains
(e.g. medicine, biology, chemistry, environmental science). These can be reused and

1 Apart from data which is shared before being analyzed, as forinstance data collected at CERN
which is distributed across Europe. But this is for scalability reasons, there is no data integra-
tion taking place.

2 Starting with 2004, there is an annual workshop as part of theInternational Semantic Web
Conference (ISWC):http://oaei.ontologymatching.org.
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combined freely because of the modular nature of RDF which isbased on namespaces
identified by globally unique IRIs. Thus, the current process is finding associations
between concepts of local data models and existing ontologies. For this process tools
can help but for the creation of meaningful mappings expertswill be needed.

Concerning the second topic (b), only mapping frameworks that allow manual or
(semi-)automatic mapping from arbitrary data models to RDFare relevant. And since
SPARQL is used for global queries at the mediator, these mappings have to support
on-the-fly data access based on SPARQL. There are a few frameworks that support this
[21, 22, 7]3. Because the mapping language used by D2R-Server [7] is mostpowerful, it
was chosen as a wrapper for relational database systems. Forother information systems
or protocols like LDAP, FTP, IMAP, etc. or CSV files and spreadsheets stored in file
systems, it is possible to adapt the D2R wrapping engine. This has successfully been
done for the library protocol standard OAI-PMH (Open Archives Initiative Protocol for
Metadata Harvesting) in the context of a library integration system developed at the
University of Vienna [12].

A powerful capability of the presented system is the possibility to execute binary op-
erations across distributed data sources. These operations are involved when matching
multiple basic graph patterns, optional patterns, or alternatives. It is possible because
the system is completely based on a pipelined query processing workflow. However, op-
timization of distributed query plans is a pre-condition inorder to supply results as fast
as possible. It seems that the discussion about federating SPARQL queries and query
optimization in general is gaining importance in the community. Because shipping data
over the internet is more expensive than most of the local operations, other policies and
algorithms have to be used than for local queries. In [23] blocking of remote sub-queries
has been described reflecting a common approach in distributed query processing which
is called row blocking [9]. The re-ordering of binary operations (especially joins) is one
of the most complex tasks in a distributed scenario. Some early conceptual ideas have
been presented in [15], but further research and experiments will be required (Section
6).

Lessons learned from the development of the D2R wrapper showed that people
are demanding for real data integration: “Mapping to RDF is not enough” [6]. Re-
cently, several approaches addressing ontology-based data integration have been pro-
posed. Some of them were initiated in an inter-disciplinarysetting (e.g. biomedical
[20]). Because of the large number of application scenariosrelated work will concen-
trate on implementations and systems. In [24] a concept-based data integration system
is described which was developed to integrate data about cultural assets. Although RDF
ontologies are used to describe these assets, query processing is based on XML and a
special query language called CQuery. Web services are usedas a common gateway be-
tween the mediator and data sources and XSLT is used to map XMLdata to the global
structure. The authors also presented several optimization techniques like push-down of
selections or cashing of results at the mediator. Two other projects based on RDF and
SPARQL areFeDeRate [22] andDARQ [3]. The first one, FeDeRate, just adds support
to SPARQL for remote sub-queries using named graph patterns. Thus, it can be seen

3 A more comprehensive list is collected athttp://esw.w3.org/topic/RdfAndSql(Dec10,
2007).
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as a multi-database language because endpoints have to be specified explicitly. DARQ,
which is an acronym forDistributed ARQ, provides access to multiple, distributed ser-
vice endpoints and is probably related most closely to the presented system. However,
there are some important differences. Setting up DARQ requires the user to explicitly
supply a configuration file which includes endpoint descriptions. These descriptions
include: capabilities in the form of lists of RDF property IRIs which are used at the
endpoint for data descriptions, cardinalities for instances, and selectivities. But these
statistics are no longer representative when the corresponding data is changed. The sys-
tem presented here uses a concept-based approach based on DLontologies, however
the idea is similar: data source selection is based on type information instead of RDF
properties only. Furthermore, a dynamic catalog is used storing meta data and statistics
about available endpoints. These statistics are automatically gathered by a monitoring
service. It has to be said that DARQ was only the prototype of arather small project at
HP Labs which unfortunately has not been continued yet.

Virtuoso [21], a comprehensive data integration software developedby OpenLink
Software, is also capable of processing distributed queries. Because Virtuoso is also a
native quad store, the strength of this software is its scalability and performance. Beside
the commercial edition, there is also an open source versionavailable. A relatively new
application also provided by OpenLink is theOpenLink Data Spaces platform, which
is promoted as being able to integrate numerous heterogeneous data from distributed
endpoints. Finally, there is also a commercial-only software package, calledSemantic
Discovery System [8], claiming to be able to integrate all kinds of data from distributed
sources based on SPARQL with optimal performance. Because no resource materials
could be found about the internals the software has not been tested further.

3 Concept and Architecture

For the implementation of SemWIQ the Jena2 RDF library developed at HP Labs [14]
is used. Since the system is based on the mediator-wrapper approach [29], its architec-
ture depicted in Fig. 1 looks similar to other mediator-based systems. Clients establish
a connection to the mediator and request data by submitting SPARQL queries (1). Pat-
terns in suchglobal queries adhere to a virtual graph which refers to classes andprop-
erties from arbitrary RDFS or OWL vocabularies. As long as these vocabularies are
accessible on the Web according to theBest Practice Recipes for Publishing RDF Vo-
cabularies [19], they can be used by data sources to describe provided data. The parser
(2), which is part of Jena (ARQ2), calculates a canonical query plan which is modified
by the federator/optimizer component (3). Query federation and optimization is tightly
coupled and will be described in Section 4. The federator analyzes the query and scans
the catalog for relevant registered data sources. The output of the federator/optimizer is
an optimized global query plan which is forwarded to the query execution engine (4).
The query execution engine processes the global plan which includes remote sub-plans
executed at wrapper endpoints (5). Currently, the SPARQL protocol is used between
mediator and wrapper endpoints and sub-plans are thereforeserialized back into lexical
queries. This is a first approach, but it is limited and does not allow for sophisticated
optimization strategies as will be discussed later in Section 6.
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Fig. 1. Mediator-Wrapper architecture of SemWIQ.

Any data source must use a SPARQL-capable wrapper to providelocal data unless
it is a native RDF data source supporting the SPARQL protocol. As explained earlier
there are several wrappers available for relational database systems of which D2R has
been chosen because of its powerful mapping language. Usually, a wrapper is placed as
close as possible to the local information system to be able to benefit from local query
processing capabilities. However, it may occur that a data source cannot be extended
by a wrapper (e.g. web service endpoints or generally, when there is no control over the
remote system). For such cases, the mediator provides a local wrapper container (6).
A wrapper inside the container may process a sub-plan and issue native access oper-
ations to the actual remote endpoint. The catalog (7) storesdescriptions and statistics
about registered data sources and a local RDF cache (8) will be used in future to cache
triples for global join operations and recurring queries. The registration component is
currently a simple REST-based service. A data source can register itself at the mediator
by sending a HTTP POST request with an RDF document attached.It specifies the end-
point URI and meta data as for example the providingVirtual Organization (VO) and a
contact person4. De-registration is currently not implemented. If the endpoint becomes
unavailable, it is automatically removed from the catalog so it has to register again.
The extension of the registration service is one part of future work. The monitoring
component (9) is periodically fetching statistics from registered data sources.

4 G-SDAM, mentioned in the introduction, uses theGrid Security Infrastructure (GSI) to au-
thenticate requests and Virtual Organizations. Within SemWIQ virtually anybody can register
a data source.
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3.1 Catalog and Monitoring

The catalog is implemented as a fast in-memory Jena graph. Itis currently persisted
into a file when the mediator shuts down. However, since the Jena assembler API is
used, it is just a matter of changing a configuration file to persist the whole catalog
into a database. Beside the endpoint URI and description, itstores statistics gathered
by the monitoring component. Because the optimization concepts explained later are
not fully implemented in the current prototype, the statistics are rather simple. They are
also used for data source selection by the federator. The currently used catalog vocab-
ulary is described byhttp://semwiq.faw.uni-linz.ac.at/core/2007-10-24/
catalog.owl.

The monitoring service is designed for simplicity and easy adoption. No configura-
tion is required at remote data sources. They just need to register and the mediator will
do the rest. It fetches data using an extended SPARQL syntax implemented in ARQ2
which allows for aggregate queries. The following pseudo-algorithm and queries are
used to fetch a list of classes and the number of instances a data sources provides for
each class as well as a list of properties and their occurrences:

foreach (DataSource as ds) {

SELECT DISTINCT ?c WHERE { [] a ?c }

foreach (solution mapping for ?c as c)

addConceptCount(ds, c, (SELECT COUNT (*) WHERE { ?s a <c> }))

SELECT DISTINCT ?p WHERE { [] ?p [] }

foreach (solution mapping for ?p as p)

addPropertyCount(ds, p, (SELECT COUNT(*) WHERE { ?s <p> ?o }))

}

TheCOUNT(*) statement is currently not part of the SPARQL recommendation and
thus, there are a few different proprietary syntaxes around for aggregate functions. It
would be better to use distinct counting, however this wouldbreak compatibility with
Virtuoso and also DBpedia [2] as a consequence.

3.2 Wrapping Data to RDF

Most structured data is currently stored in relational database systems (RDBMS). How-
ever, especially in the scientific community file-based dataformats are also very popular
because sharing and interchange is often easier when havinga file. While newer file-
based data formats are often based on XML, there are several legacy formats around like
FITS for instance, theFlexible Image Transport System endorsed by NASA and the In-
ternational Astronomical Union. It can be compared to JPEG files including EXIF data.
In terms of a RDBMS, this would be a record with several fields next to the BLOB or
file path/URI where the image is stored. Because often tools already exist which enable
the import from legacy data like FITS files into a RDBMS, a wrapper for these infor-
mation systems is most important. D2R-Server [7] has been chosen because it uses a
powerful mapping language. Later on, additional wrappers will be added for other in-
formation systems, protocols like LDAP, FTP, IMAP, etc. andCSV files or spreadsheets
stored in file systems. D2R-Server also provides a good basisfor the implementation of
further wrappers.
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The mapping language used by D2R can be seen as a global-as-view approach.
Starting with global classes and properties defined using RDF Schema or OWL, a view
is defined which maps tables and attributes from the databaseto the global concepts.
Regarding query optimization, D2R relies on the optimizer of the local database man-
agement system. At the scale of the complete mediator-baseddata integration system,
the wrapper more or less breaks the query processing pipeline. The optimizer at the me-
diator can currently not take into account special indices of local database systems. To
benefit from these – which would decrease response time and lower memory consump-
tion – it will be required to introduce a special protocol instead of the SPARQL protocol
which is able to communicate capabilities and estimated costs during plan optimization.
Functional mappings as well as translation tables are both supported by D2R. Scientific
data sets often use varying scales and metrics. A functionalmapping can transform
data accordingly. A translation table can be used for varying nominal scales or naming
schemes.

3.3 Vocabularies

Depending on the data an endpoint provides, different vocabularies to describe them
may be used. There are many vocabularies around created for social software like
Friend-of-a-Friend (foaf), Description-of-a-Project (doap), Semantically-Interlinked
Online Communities (sioc), etc. and also several scientific communities have created
more or less suitable ontologies which can be used to describe data. If there are no ap-
plicable vocabularies available for a specific domain, usually a small group of people
will introduce a new one and publish them according to [19]. For instance, an ontology
for solar observation which is used by the prototype scenario developed together with
the Kanzelhöhe Solar Observatory.

A major design goal is to remain flexible and keep the setup process as simple as
possible. Initially it was assumed to introduce a collaborative management system for
globally used ontologies including versioning support. However, finding a consensus
on collaboratively developed ontologies is a difficult, time-consuming, and sometimes
frustrating process. It is often better to design vocabularies bottom-up than rounding
up as many people as possible and following a top-down approach. Now, everybody
can re-use and publish new vocabularies as long as they are accessible on the Web. The
registered SPARQL endpoint will be queried by the monitoring service as described
and automatically fetch required vocabularies from the Web.

3.4 Authentication and Data Provenance

Scientific data is often only shared inside a community wherepeople know each other.
To restrict access to a data source the Grid-enabled middleware G-SDAM uses theGrid
Security Infrastructure. It is based on a PKI (Private Key Infrastructure) and each per-
son using the service requires a Grid certificate issued by a central or regional authority.
Data sources are usually provided byVirtual Organizations, a concept introduced by
the Grid community [11]. For granting access on a data sourceto specific persons, tools
supplied by current Grid middleware like Globus Toolkit or gLite can be used. Because
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there are also components available for billing of used Gridresources, it may be pos-
sible in future to buy and sell scientific data over G-SDAM. Regarding the SemWIQ
project, there is currently no support for fine-grained access control. Only the mediator
may be secured by SSL and HTTP Basic Authentication which is actually up to the
system administrator.

Another important aspect when sharing scientific data – which also may become
more and more an issue when the Semantic Web takes off – is data provenance. For
any data integration software, it is very important to know where data is coming from.
Within SemWIQ this can be achieved by a convention. Upon registration the data source
has to supply an instance of typecat:DataSource5. This instance must be identified
by a fully-qualified IRI representing the data source. For each instance returned by the
data source, a link to this IRI must be created using thecat:origin-property. The
mediator will always bind this value to the magic variable? origin. If this variable is
added in the projection list, it will appear in the result set. If it is not specified or if the
asterisk wildcard is used, it will not occur in the result set.

4 Federating SPARQL Queries

With the SPARQL Working Draft of March 2007 a definition of SPARQL [28, Section
12] was added which introduces a common algebra and semantics for query process-
ing. Query plans can now be written using a prefix syntax similar to that of LISP. In this
section the federator will be described. Since the mediatoris based on Jena, it also uses
ARQ for parsing global SPARQL queries. The idea of concept-based data integration
is that every data item has at least one asserted type. For a global query, the media-
tor requires type information for each subject variable in order to be able to retrieve
instances. This implies that there are several restrictions to standard SPARQL:

– All subjects must be variables and for each subject variableits type must be ex-
plicitly or implicitly (through DL constraints) defined. A BGP like {?s :p ?o} is
not allowed unless there is another triple telling the type for ?s. For instance, the
BGP {?s :p ?o ; rdf:type <some-type>} is valid. In a future version, when
DESCRIBE-queries are supported, it may become valid to constraint the subject term
to an IRI.

– For virtual data integration it is not required to have multiple graphs. A query may
only contain the default graph pattern. Furthermore, federation is done by the me-
diator and not explicitly by the user (this can be done withFeDeRate [22]).

– Currently onlySELECT-queriesare supported, but support forDESCRIBE is planned.
SupportingDESCRIBEmay be useful to get further information to an already known
record, however the mediator has to go through all data sources.

All other features of SPARQL like matching group graph patterns, optional graph
patterns, alternative graph patterns, filters, and solution modifiers are supported but
they still require further optimization. To demonstrate the federation algorithm, Query

5 The prefixcat is generally used for the namespacehttp://semwiq.faw.uni-linz.ac.
at/core/2007-10-24/catalog.owl#
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2 shown in Fig. 2 is taken as an example. Firstly, ARQ parses the query string and
generates the canonical plan:

(project (?dt ?groups ?spots ?r ?fn ?ln)

(filter (&& (= ?fn "Wolfgang") (= ?ln "Otruba"))

(BGP

(triple ?s rdf:type sobs:SunspotRelativeNumbers)

(triple ?s sobs:dateTime ?dt)

(triple ?s sobs:groups ?groups)

(triple ?s sobs:spots ?spots)

(triple ?s sobs:rValue ?r)

(triple ?s obs:byObserver ?obs)

(triple ?obs rdf:type obs:Observer)

(triple ?obs person:firstName ?fn)

(triple ?obs person:lastName ?ln)

)))

For better readability namespace prefixes are still used forprinting plans. Next, the
federator transforms this plan according to the following Java-like algorithm:

visit(opBGP) by visiting plan bottom-up {

Hashtable<Var, BasicPattern> sg = createSubjectGroups(opBGP); // group by subjs

Op prev = null;

// iterate over subject groups

Iterator <Node> i = sg.keySet().iterator();

while (i.hasNext()) {

Node subj = i.next();

String type = getType(sg, subj); //+does static caching of already known types

OpBGP newBGP = new OpBGP((BasicPattern)sg.get(subj));

Op prevU = null;

// look for sites storing instances of determined type...

Iterator <DataSource> dit = catalog.getAvailable(type);

while(dit.hasNext()) {

DataSource ds = dit.next();

Op newDS = new OpService(Node.createURI(

ds.getServiceEndpoint()), newBGP.copy());

prevU = (prevU==null) ? newDS : new OpUnion(prevU, newDS);

}

prev = (prev==null) ? prevU : OpJoin.create(prev, prevU);

}

if (prev == null) return opBGP; // no data sources found

else return prev;

}

Because there are two registered data sources providing instances ofobs:Observer
andsobs:SunspotRelativeNumbers the resulting (un-optimized) query plan is:

(project (?dt ?groups ?spots ?r ?fn ?ln)

(filter (&& (= ?fn "Wolfgang") (= ?ln "Otruba"))

(join

(union

(service <http://keas.kso.ac.at:8002/sparql>

(BGP

(triple ?s rdf:type sobs:SunspotRelativeNumbers)

(triple ?s sobs:dateTime ?dt)

(triple ?s sobs:groups ?groups)

(triple ?s sobs:spots ?spots)

(triple ?s sobs:rValue ?r)

(triple ?s obs:byObserver ?obs)

))

(service <http://solarscience.msfc.nasa.gov:8004/sparql>
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(BGP

(triple ?s rdf:type sobs:SunspotRelativeNumbers)

(triple ?s sobs:dateTime ?dt)

(triple ?s sobs:groups ?groups)

(triple ?s sobs:spots ?spots)

(triple ?s sobs:rValue ?r)

(triple ?s obs:byObserver ?obs)

))

)

(union

(service <http://keas.kso.ac.at:8002/sparql>

(BGP

(triple ?obs rdf:type obs:Observer)

(triple ?obs person:firstName ?fn)

(triple ?obs person:lastName ?ln)

))

(service <http://solarscience.msfc.nasa.gov:8004/sparql>

(BGP

(triple ?obs rdf:type obs:Observer)

(triple ?obs person:firstName ?fn)

(triple ?obs person:lastName ?ln)

))

)

)))

It can be seen that there is a new operator which is not part of official SPARQL:
service6. The implementation of this operator in the query executionengine serializes
sub-plans back into SPARQL and uses the protocol to execute it on the endpoint speci-
fied by the first parameter. In the next step, the query plan is handed on to the optimizer
for which currently only the concepts discussed in Section 6exist.

5 Sample Queries and Results

For the following sample queries, real-world data of sunspot observations recorded at
Kanzelhöhe Solar Observatory (KSO) have been used. The observatory is also a partner
in the Austrian Grid project. In the future, the system presented should replace the
current archive CESAR (Central European Solar ARchives), which is a collaboration
between KSO, Hvar Observatory Zagreb, Croatia, and the Astronomical Observatory
Trieste, Italy. Because of the flexible architecture other observation sites can easily take
part in future. The tests where performed with the followingsetup: the mediator (and
also the test client) where running on a 2.16 GHz Intel Core 2 Duo with 2 GB memory
and a 2 MBit link to the remote endpoints. All endpoints wheresimulated on the same
physical host running two AMD Opteron CPUs at 1.6 GHz and 2 GB memory. Local
host entries were used to simulate the SPARQL endpoints described in Table 1. The
NASA endpoint is imaginary. The table only shows registereddata sources which are
relevant for the sample queries. The statistics shown were collected by the monitoring
service.

The queries are shown in Fig. 2. Query 1 retrieves the first name, the last name,
and optionally the e-mail address of scientists who have done observations. Query 2
retrieves all observations ever recorded by Mr. Otruba. This query is used to show a

6 Special thanks to Andy Seaborne, who implemented this extension after an e-mail discussion
about federation of queries in July 2007.
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Sunspot observations at KSO instances
endpoint: <http://keas.kso.ac.at:8002/sparql>
sobs:SunspotRelativeNumbers 9973
sobs:SunExposure 288
sobs:SolarObservationInstrument 7
sobs:Detector 9
obs:Observer 17
Sunspot observations by NASA (imaginary) instances
endpoint: <http://solarscience.msfc.nasa.gov:8004/sparql>
sobs:SunspotRelativeNumbers 89
obs:Observer 1

Table 1.Endpoints registered when processing samples queries.

distributed join and filter. Query 3 retrieves all sunspot observations recorded in March
1969. Query 4 shows how the mediator’s catalog can be accessed. It will list all data
sources currently available, theVirtual Organization, and the contact person. The plan
transformation for Query 2 has been described in the previous section. In Table 2 the
response time for the 1st solution, the total execution time(median of 10 samples),
and the returned solution mappings are shown. The improvement of the performance is
currently on top of the agenda. The results presented in thispaper were generated from
a prototype not using any optimization of distributed queryplans.

Query # 1st solution total time solutions
1 162 ms 1.4 s 10
2 290 ms 3.8 s 1,272
3 1,216 ms 37.8 s 43
4 74 ms 0.2 s 6

Table 2.Test results for Query 1–4 and catalog status depicted in Table 1

Because ARQ is using a pipelining concept the response time is very good, even
when data has to be retrieved from a remote data source. The reasons why Query 2 and
especially Query 3 come off so badly will be discussed in the next section.

6 Optimizations and Future Work

For a mediator, minimizing response time is usually more important than maximizing
throughput. Because ARQ is pipelined, response time is verygood. However, shipping
data is costly, so another goal is the minimization of the amount of data transfered.
When using the REST-based SPARQL protocol a second requirement is to minimize
the number of required requests. Query 2 and 3 show bad performance mainly because
of bad join ordering and not pushing down filters to local sub-plans.
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SELECT ?obs ?fname ?lname ?em

WHERE

{ ?obs a obs:Observer ;

person:lastName ?lname ;

person:firstName ?fname .

OPTIONAL

{ ?obs person:email ?em .}

}

Query 1

SELECT ?dt ?groups ?spots ?r ?fn ?ln

WHERE

{ ?s a sobs:SunspotRelativeNumbers;

sobs:dateTime ?dt ;

sobs:groups ?groups ;

sobs:spots ?spots ;

sobs:rValue ?r ;

obs:byObserver ?obs .

?obs a obs:Observer ;

person:firstName ?fn ;

person:lastName ?ln .

FILTER ( ?fn = "Wolfgang" &&

?ln = "Otruba" )

}

Query 2

SELECT *

WHERE

{ ?s a sobs:SunspotRelativeNumbers;

sobs:groups ?groups ;

sobs:spots ?spots ;

sobs:rValue ?r ;

obs:description ?desc;

obs:byObserver ?obs ;

sobs:dateTime ?dt .

FILTER ( ?dt >=

"1969-03-01T00:00:00"ˆˆxsd:dateTime

&& ?dt <

"1969-04-01T00:00:00"ˆˆxsd:dateTime )

}

Query 3

SELECT * WHERE {

?ds a cat:DataSource .

?ds cat:maintainedBy ?vom .

?vom a cat:VOMember .

?vom person:firstName ?fn .

?vom person:lastName ?ln .

OPTIONAL { ?vom person:email ?e } .

?ds cat:providedBy ?vo . }

Query 4

Fig. 2. Sample queries

6.1 Optimization of Distributed Query Plans

The following optimization concepts are currently7 being implemented: push-down of
filter expressions, push-down of optional group patterns (becoming left-joins), push-
down of local joins whenever possible, and optimization through global join and union
re-ordering which is a rather complex task. A holistic approach for finding optimal plans
based onIterative Dynamic Programming (IDP) [10] will require heavy modifications
to ARQ which should also be discussed in the future. By contrast to implementing static
optimization algorithms based on general assumptions, IDPsystematically enumerates
all possible (equivalent) plans and prunes those with high cost as early as possible dur-
ing the iteration. At a second stage the implementation of the new service-operator
as part of the query execution engine will be extended to support row blocking to re-
duce the amount of HTTP requests. Some of the algorithms proposed by the database
community can be re-used for SPARQL query processing. It is expected that query fed-
eration and optimization of distributed SPARQL queries will become more important in
future to be able to manage large distributed data stores. Discussions about theBillion
Triples Challenge 2008 [1] indicate a need for scalable base technology which is not
limited to local RDF data management.

7 i.e. at the time of writing this contribution – results are expected to be available for the confer-
ence in June 2008 and will be published later on.
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In a highly optimized mediator-wrapper system like Garlic [17] or Disco [26], each
wrapper provides several operators reflecting local data access and processing capabil-
ities. For instance, an endpoint could support a distributed join operation with another
remote node and joins could even be executed in parallel. Exploiting local capabilities
would require heavy changes to the current query execution process.

6.2 Future Work

Other future work will be the support forDESCRIBE-queries and IRIs as subjects. In
future the mediator should also use a OWL-DL reasoner to infer additional types for
subject nodes specified in the query pattern. Currently, types have to be explicitly spec-
ified for each BGP (more precisely for the first occurrence: the algorithm caches al-
ready known types). OWL-DL constraints like for example a qualified cardinality re-
striction onobs:byObserver with owl:allValuesFrom obs:Observer would al-
low the mediator to deduce types of other nodes in the query pattern. Supporting sub-
sumption queries like{ ?p a p:Person } returning all resources that have a sub-type
of p:Person may considerably inflate the global query plan. Such queriesshould be
supported in future, when global plan optimization has beenimplemented.

6.3 The Role of Mediators in the Web of Data

As mentioned in the introduction, mediators like SemWIQ canbe used to complement
Semantic Web search engines and the web of Linked Data [5]. While the traditional
hypertext web is separated into theSurface Web and the – for search engines hardly
reachable –Deep Web [13], this separation disappears when browsing through Linked
Data. The problem which remains is the fact that the so-called Deep Web is huge.
Endpoints in the Web of data may expose large data stores and archives to the public
and it will be hard for search engines to index all of these data efficiently. Sindice [27],
for instance, is a Semantic Web crawler which is also able to crawl over SPARQL
endpoints. However, their authors admitted that this feature is not used at the moment,
because of the danger of getting lost in suchblack holes. Fig. 3 shows how SemWIQ can
be embedded between a cloud of SPARQL endpoints. The registration component could
be extended by a crawler which is autonomously registering new SPARQL endpoints
which use RDF Schema or OWL vocabularies to describe their data (e.g. endpoints with
D2R). A vocabulary browser which is visualizing all the vocabularies used by registered
SPARQL endpoints including freetext search for concepts can be provided to users to
examine the virtual data space. Compared to a search engine like Sindice, the mediator
allows declarative queries over the complete data space. Tomaintain its scalibility, it
is also possible to use multiple mediators at different locations which may synchronize
catalog metadata and statistics over a peer-to-peer overlay network.

7 Conclusion

In this contribution a mediator-based system for virtual data integration based on Se-
mantic Web technology has been presented. The system is primarily developed for shar-
ing scientific data, but because of its generic architecture, it is supposed to be used
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Fig. 3. SemWIQ

for many other Semantic Web applications. In this paper query federation based on
SPARQL and Jena/ARQ has been demonstrated in detail and several concepts forquery
optimization which is currently on the agenda have been discussed. Additional contribu-
tions can be expected after the implementation of additional features mentioned before.
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