
A Semantic Web Primer
Grigoris Antoniou and Frank van Harmelen

TLFeBOOK

TLFeBOOK

A

Semantic

Web

Primer

TLFeBOOK

TLFeBOOK

Cooperative Information Systems

Michael Papazoglou, Joachim W. Schmidt, and John Mylopoulos, editors

Advances in Object-Oriented Data Modeling
Michael P. Papazoglou, Stefano Spaccapietra, and Zahir Tari, editors, 2000

Workflow Management: Models, Methods, and Systems
Wil van der Aalst and Kees Max van Hee, 2002

A Semantic Web Primer
Grigoris Antoniou and Frank van Harmelen, 2004

TLFeBOOK

TLFeBOOK

A

Semantic

Web

Primer

Grigoris Antoniou

and

Frank van Harmelen

The MIT Press

Cambridge, Massachusetts

London, England

TLFeBOOK

TLFeBOOK

© 2004 Massachusetts Institute of Technology

All rights reserved. No part of this book may be reproduced in any form by any

electronic or mechanical means (including photocopying, recording, or information

storage and retrieval) without permission in writing from the publisher.

This book was set in 10/13 Palatino by the authors using LATEX 2ε.

Printed and bound in the United States of America.

Library of Congress Cataloging-in-Publication Data

Antoniou, G. (Grigoris)

A semantic Web primer/ Grigoris Antoniou and Frank van Harmelen.

p. cm.–(Cooperative information systems)

Includes bibliographical references and index.

ISBN 0-262-01210-3 (hc.: alk. paper)

1. Semantic Web. I. Van Harmelen, Frank. II. Title. III. Series.

TK5105.88815. A58 2004

025.04–dc22

2003065165

10 9 8 7 6 5 4 3 2 1

TLFeBOOK

TLFeBOOK

Dedicated to Konstantina

G.A.

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

Brief Contents

1 The Semantic Web Vision 1

2 Structured Web Documents in XML 23

3 Describing Web Resources in RDF 61

4 Web Ontology Language: OWL 109

5 Logic and Inference: Rules 151

6 Applications 179

7 Ontology Engineering 205

8 Conclusion and Outlook 223

A Abstract OWL Syntax 227

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

Contents

List of Figures xiii

Series Foreword xv

Preface xix

1 The Semantic Web Vision 1

1.1 Today’s Web 1

1.2 From Today’s Web to the Semantic Web: Examples 3

1.3 Semantic Web Technologies 7

1.4 A Layered Approach 16

1.5 Book Overview 19

1.6 Summary 19

Suggested Reading 20

2 Structured Web Documents in XML 23

2.1 Introduction 23

2.2 The XML Language 27

2.3 Structuring 31

2.4 Namespaces 43

2.5 Addressing and Querying XML Documents 45

2.6 Processing 49

2.7 Summary 55

Suggested Reading 57

Exercises and Projects 58

TLFeBOOK

TLFeBOOK

x Contents

3 Describing Web Resources in RDF 61

3.1 Introduction 61

3.2 RDF: Basic Ideas 63

3.3 RDF: XML-Based Syntax 69

3.4 RDF Schema: Basic Ideas 80

3.5 RDF Schema: The Language 84

3.6 RDF and RDF Schema in RDF Schema 91

3.7 An Axiomatic Semantics for RDF and RDF Schema 94

3.8 A Direct Inference System for RDF and RDFS 99

3.9 Querying in RQL 100

3.10 Summary 104

Suggested Reading 105

Exercises and Projects 106

4 Web Ontology Language: OWL 109

4.1 Introduction 109

4.2 The OWL Language 115

4.3 Examples 129

4.4 OWL in OWL 138

4.5 Future Extensions 144

4.6 Summary 146

Suggested Reading 146

Exercises and Projects 148

5 Logic and Inference: Rules 151

5.1 Introduction 151

5.2 Example of Monotonic Rules: Family Relationships 154

5.3 Monotonic Rules: Syntax 155

5.4 Monotonic Rules: Semantics 158

5.5 Nonmonotonic Rules: Motivation and Syntax 161

5.6 Example of Nonmonotonic Rules: Brokered Trade 163

5.7 Rule Markup in XML: Monotonic Rules 167

5.8 Rule Markup in XML: Nonmonotonic Rules 173

5.9 Summary 176

Suggested Reading 176

Exercises and Projects 177

TLFeBOOK

TLFeBOOK

Contents xi

6 Applications 179

6.1 Introduction 179

6.2 Horizontal Information Products at Elsevier 179

6.3 Data Integration at Audi 182

6.4 Skill Finding at Swiss Life 185

6.5 Think Tank Portal at EnerSearch 187

6.6 e-Learning 191

6.7 Web Services 194

6.8 Other Scenarios 199

Suggested Reading 201

7 Ontology Engineering 205

7.1 Introduction 205

7.2 Constructing Ontologies Manually 205

7.3 Reusing Existing Ontologies 209

7.4 Using Semiautomatic Methods 211

7.5 On-To-Knowledge Semantic Web Architecture 215

Suggested Reading 218

Project 218

8 Conclusion and Outlook 223

8.1 How It All Fits Together 223

8.2 Some Technical Questions 224

8.3 Predicting the Future 224

A Abstract OWL Syntax 227

Index 235

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

List of Figures

1.1 A hierarchy 11

1.2 Intelligent personal agents 15

1.3 A layered approach to the Semantic Web 18

2.1 Tree representation of an XML document 31

2.2 Tree representation of a library document 46

2.3 Tree representation of query 4 48

2.4 Tree representation of query 5 48

2.5 A template 52

2.6 XSLT as tree transformation 56

3.1 Graph representation of triple 65

3.2 A semantic net 65

3.3 Representation of a tertiary predicate 68

3.4 Representation of a tertiary predicate 78

3.5 A hierarchy of classes 82

3.6 RDF and RDFS layers 84

3.7 Subclass hierarchy of some modeling primitives of RDFS 87

3.8 Instance relationships of some modeling primitives of RDFS 87

3.9 Class hierarchy for the motor vehicles example 90

4.1 Subclass relationships between OWL and RDF/RDFS 115

4.2 Inverse properties 119

4.3 Classes and subclasses of the African wildlife ontology 129

4.4 Branches are parts of trees 129

4.5 Classes and subclasses of the printer ontology 133

TLFeBOOK

TLFeBOOK

xiv List of Figures

5.1 Monotonic rules DTD versus RuleML 172

6.1 Querying across data sources at Elsevier 181

6.2 Semantic map of part of the EnerSearch Web site 189

6.3 Semantic distance between EnerSearch authors 190

6.4 Browsing ontologically organized papers in Spectacle 191

6.5 Top level of the process ontology 198

7.1 Semantic Web knowledge management architecture 215

TLFeBOOK

TLFeBOOK

Series Foreword

The traditional view of information systems as tailor-made, cost-intensive

database applications is changing rapidly. The change is fueled partly by

a maturing software industry, which is making greater use of off-the-shelf

generic components and standard software solutions, and partly by the on-

slaught of the information revolution. In turn, this change has resulted in a

new set of demands for information services that are homogeneous in their

presentation and interaction patterns, open in their software architecture,

and global in their scope. The demands have come mostly from applica-

tion domains such as e-commerce and banking, manufacturing (including

the software industry itself), training, education, and environmental man-

agement, to mention just a few.

Future information systems will have to support smooth interaction with

a large variety of independent multi-vendor data sources and legacy applica-

tions, running on heterogeneous platforms and distributed information net-

works. Metadata will play a crucial role in describing the contents of such

data sources and in facilitating their integration.

As well, a greater variety of community-oriented interaction patterns will

have to be supported by next-generation information systems. Such inter-

actions may involve navigation, querying and retrieval, and will have to be

combined with personalized notification, annotation, and profiling mecha-

nisms. Such interactions will also have to be intelligently interfaced with

application software, and will need to be dynamically integrated into cus-

tomized and highly connected cooperative environments. Moreover, the

massive investments in information resources, by governments and busi-

nesses alike, call for specific measures that ensure security, privacy and ac-

curacy of their contents.

All these are challenges for the next generation of information systems.

We call such systems Cooperative Information Systems, and they are the focus

of this series.

TLFeBOOK

TLFeBOOK

xvi Series Foreword

In lay terms, cooperative information systems are servicing a diverse

mix of demands characterized by content—community—commerce. These de-

mands are originating in current trends for off-the-shelf software solutions,

such as enterprise resource planning and e-commerce systems.

A major challenge in building cooperative information systems is to de-

velop technologies that permit continuous enhancement and evolution of

current massive investments in information resources and systems. Such

technologies must offer an appropriate infrastructure that supports not only

development, but also evolution of software.

Early research results on cooperative information systems are becoming

the core technology for community-oriented information portals or gate-

ways. An information gateway provides a “one-stop-shopping” place for

a wide range of information resources and services, thereby creating a loyal

user community.

The research advances that will lead to cooperative information systems

will not come from any single research area within the field of Information

Technology. Database and knowledge-based systems, distributed systems,

groupware, and graphical user interfaces have all matured as technologies.

While further enhancements for individual technologies are desirable, the

greatest leverage for technological advancement is expected to come from

their evolution into a seamless technology for building and managing coop-

erative information systems.

The MIT Press Cooperative Information Systems series will cover this area

through textbooks, and research editions intended for the researcher and the

professional who wishes to remain up-to-date on current developments and

future trends.

The series will include three types of books:

• Textbooks or resource books intended for upper level undergraduate or

graduate level courses;

• Research monographs, which collect and summarize research results and

development experiences over a number of years;

• Edited volumes, including collections of papers on a particular topic.

Data in a data source are useful because they model some part of the real

world, its subject matter (or application, or domain of discourse). The problem

of data semantics is establishing and maintaining the correspondence between

a data source, hereafter a model, and its intended subject matter. The model

may be a database storing data about employees in a company, a database

TLFeBOOK

TLFeBOOK

xvii

schema describing parts, projects and suppliers, a Web site presenting infor-

mation about a university, or a plain text file describing the battle of Wa-

terloo. The problem has been with us since the development of the first

databases. However, the problem remained under control as long as the op-

erational environment of a database remained closed and relatively stable.

In such a setting, the meaning of the data was factored out from the database

proper and entrusted to the small group of regular users and application

programs.

The advent of the Web has changed all that. Databases today are made

available, in some form, on the Web where users, application programs, and

uses are open-ended and ever changing. In such a setting, the semantics of

the data has to be made available along with the data. For human users, this

is done through an appropriate choice of presentation format. For applica-

tion programs, however, this semantics has to be provided in a formal and

machine processable form. Hence the call for the Semantic Web.1

Not surprisingly, this call by Tim Berners-Lee has received tremendous at-

tention by researchers and practitioners alike. There is now an International

Semantic Web Conference series,2 a Web Semantic Journal published by Else-

vier,3 as well as industrial committees that are looking at the first generation

of standards for the Semantic Web.

The current book constitutes a timely publication, given the fast-moving

nature of Semantic Web concepts, technologies, and standards. The book of-

fers a gentle introduction to Semantic Web concepts, including XML, DTDs,

and XML schemas, RDF and RDFS, OWL, Logic, and Inference. Throughout,

the book includes examples and applications to illustrate the use of concepts.

We are pleased to include this book on the Semantic Web in the series on

Cooperative Information Systems. We hope that readers will find it interest-

ing, insightful, and useful.

John Mylopoulos Michael Papazoglou

jm@cs.toronto.edu M.P.Papazoglou@kub.nl

Dept. of Computer Science INFOLAB

University of Toronto P.O. Box 90153

Toronto, Ontario LE Tilburg

Canada The Netherlands

1. Tim Berners-Lee and Mark Fischetti, Weaving the Web: The Original Design and Ultimate Destiny
of the World Wide Web by Its Inventor (San Francisco: HarperCollins, 1999).
2. <http://iswc.semanticweb.org>
3. <http://www.semanticwebjournal.org>

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

Preface

The World Wide Web (WWW) has changed the way people communicate

with each other, how information is disseminated and retrieved, and how

business is conducted. The term Semantic Web comprises techniques that

promise to dramatically improve the current WWW and its use. This book is

about this emerging technology.

The success of each book should be judged against the authors’ aims. This

is an introductory textbook about the Semantic Web. Its main use will be to

serve as the basis for university courses about the Semantic Web. It can also

be used for self -study by anyone who wishes to learn about Semantic Web

technologies.

The question arises whether there is a need for a textbook, given that all

information is available online. We think there is a need because on the Web

there are too many sources of varying quality and too much information.

Some information is valid, some outdated, some wrong, and most sources

talk about obscure details. Anyone who is a newcomer and wishes to learn

something about the Semantic Web, or who wishes to set up a course on the

Semantic Web, is faced with these problems. This book is meant to help out.

A textbook must be selective in the topics it covers. Particularly in a field

as fast developing as this, a textbook should concentrate on fundamental

aspects that can reasonably be expected to remain relevant some time into

the future. But, of course, authors always have their personal bias.

Even for the topics covered, this book is not meant to be a reference work

that describes every small detail. Long books have already been written on

certain topics, such as XML. And there is no need for a reference work in

the Semantic Web area because all definitions and manuals are available on-

line. Instead, we concentrate on the main ideas and techniques and provide

enough detail to enable readers to engage with the material constructively

and to build applications of their own.

TLFeBOOK

TLFeBOOK

xx Preface

This way readers will be equipped with sufficient knowledge to easily get

the remaining details from other sources. In fact, an annotated list of refer-

ences is found at the end of each chapter.

Acknowledgments

We thank Jeen Broekstra, Michel Klein, and Marta Sabou for pioneering

much of this material in our course on Web-based knowledge representa-

tion at the Free University in Amsterdam, and Annette ten Teije, Zharko

Aleksovski and Wouter Jansweijer for critically reading early versions of the

manuscript.

We thank Christoph Grimmer and Peter Koenig for proofreading parts of

the book and assisting with the creation of the figures and with LaTeX pro-

cessing.

Also, we wish to thank the MIT Press people for their professional assis-

tance with the final preparation of the manuscript, and Christopher Manning

for his LATEX 2ε macros.

TLFeBOOK

TLFeBOOK

1 The Semantic Web Vision

1.1 Today’s Web

The World Wide Web has changed the way people communicate with each

other and the way business is conducted. It lies at the heart of a revolu-

tion that is currently transforming the developed world toward a knowledge

economy and, more broadly speaking, to a knowledge society.

This development has also changed the way we think of computers. Orig-

inally they were used for computing numerical calculations. Currently their

predominant use is for information processing, typical applications being

data bases, text processing, and games. At present there is a transition of

focus towards the view of computers as entry points to the information high-

ways.

Most of today’s Web content is suitable for human consumption. Even

Web content that is generated automatically from databases is usually

presented without the original structural information found in databases.

Typical uses of the Web today involve people’s seeking and making use of

information, searching for and getting in touch with other people, review-

ing catalogs of online stores and ordering products by filling out forms, and

viewing adult material.

These activities are not particularly well supported by software tools.

Apart from the existence of links that establish connections between docu-

ments, the main valuable, indeed indispensable, tools are search engines.

Keyword-based search engines, such as AltaVista, Yahoo, and Google, are

the main tools for using today’s Web. It is clear that the Web would not have

been the huge success it was, were it not for search engines. However, there

are serious problems associated with their use:

TLFeBOOK

TLFeBOOK

2 1 The Semantic Web Vision

• High recall, low precision. Even if the main relevant pages are retrieved,

they are of little use if another 28,758 mildly relevant or irrelevant doc-

uments were also retrieved. Too much can easily become as bad as too

little.

• Low or no recall. Often it happens that we don’t get any answer for our

request, or that important and relevant pages are not retrieved. Although

low recall is a less frequent problem with current search engines, it does

occur.

• Results are highly sensitive to vocabulary. Often our initial keywords do

not get the results we want; in these cases the relevant documents use dif-

ferent terminology from the original query. This is unsatisfactory because

semantically similar queries should return similar results.

• Results are single Web pages. If we need information that is spread over

various documents, we must initiate several queries to collect the relevant

documents, and then we must manually extract the partial information

and put it together.

Interestingly, despite improvements in search engine technology, the diffi-

culties remain essentially the same. It seems that the amount of Web content

outpaces technological progress.

But even if a search is successful, it is the person who must browse selected

documents to extract the information he is looking for. That is, there is not

much support for retrieving the information, a very time-consuming activ-

ity. Therefore, the term information retrieval, used in association with search

engines, is somewhat misleading; location finder might be a more appropri-

ate term. Also, results of Web searches are not readily accessible by other

software tools; search engines are often isolated applications.

The main obstacle to providing better support to Web users is that, at

present, the meaning of Web content is not machine-accessible. Of course,

there are tools that can retrieve texts, split them into parts, check the spelling,

count their words. But when it comes to interpreting sentences and extracting

useful information for users, the capabilities of current software are still very

limited. It is simply difficult to distinguish the meaning of

I am a professor of computer science.

from

I am a professor of computer science, you may think. Well, . . .

TLFeBOOK

TLFeBOOK

1.2 From Today’s Web to the Semantic Web: Examples 3

Using text processing, how can the current situation be improved? One so-

lution is to use the content as it is represented today and to develop increas-

ingly sophisticated techniques based on artificial intelligence and computa-

tional linguistics. This approach has been followed for some time now, but

despite some advances the task still appears too ambitious.

An alternative approach is to represent Web content in a form that is more

easily machine-processable1 and to use intelligent techniques to take advan-

tage of these representations. We refer to this plan of revolutionizing the Web

as the Semantic Web initiative. It is important to understand that the Seman-

tic Web will not be a new global information highway parallel to the existing

World Wide Web; instead it will gradually evolve out of the existing Web.

The Semantic Web is propagated by the World Wide Web Consortium

(W3C), an international standardization body for the Web. The driving force

of the Semantic Web initiative is Tim Berners-Lee, the very person who in-

vented the WWW in the late 1980s. He expects from this initiative the re-

alization of his original vision of the Web, a vision where the meaning of

information played a far more important role than it does in today’s Web.

The development of the Semantic Web has a lot of industry momentum,

and governments are investing heavily. The U.S. government has established

the DARPA Agent Markup Language (DAML) Project, and the Semantic

Web is among the key action lines of the European Union’s Sixth Framework

Programme.

1.2 From Today’s Web to the Semantic Web: Examples

1.2.1 Knowledge Management

Knowledge management concerns itself with acquiring, accessing, and

maintaining knowledge within an organization. It has emerged as a key

activity of large businesses because they view internal knowledge as an in-

tellectual asset from which they can draw greater productivity, create new

value, and increase their competitiveness. Knowledge management is par-

ticularly important for international organizations with geographically dis-

persed departments.

1. In the literature the term machine understandable is used quite often. We believe it is the wrong

word because it gives the wrong impression. It is not necessary for intelligent agents to under-
stand information; it is sufficient for them to process information effectively, which sometimes

causes people to think the machine really understands.

TLFeBOOK

TLFeBOOK

4 1 The Semantic Web Vision

Most information is currently available in a weakly structured form, for

example, text, audio, and video. From the knowledge management perspec-

tive, the current technology suffers from limitations in the following areas:

• Searching information. Companies usually depend on keyword-based

search engines, the limitations of which we have outlined.

• Extracting information. Human time and effort are required to browse the

retrieved documents for relevant information. Current intelligent agents

are unable to carry out this task in a satisfactory fashion.

• Maintaining information. Currently there are problems, such as inconsis-

tencies in terminology and failure to remove outdated information.

• Uncovering information. New knowledge implicitly existing in corpo-

rate databases is extracted using data mining. However, this task is still

difficult for distributed, weakly structured collections of documents.

• Viewing information. Often it is desirable to restrict access to certain in-

formation to certain groups of employees. “Views”, which hide certain

information, are known from the area of databases but are hard to realize

over an intranet (or the Web).

The aim of the Semantic Web is to allow much more advanced knowledge

management systems:

• Knowledge will be organized in conceptual spaces according to its mean-

ing.

• Automated tools will support maintenance by checking for inconsisten-

cies and extracting new knowledge.

• Keyword-based search will be replaced by query answering: requested

knowledge will be retrieved, extracted, and presented in a human-

friendly way.

• Query answering over several documents will be supported.

• Defining who may view certain parts of information (even parts of docu-

ments) will be possible.

TLFeBOOK

TLFeBOOK

1.2 From Today’s Web to the Semantic Web: Examples 5

1.2.2 Business-to-Consumer Electronic Commerce

Business-to-consumer (B2C) electronic commerce is the predominant com-

mercial experience of Web users. A typical scenario involves a user’s visiting

one or several online shops, browsing their offers, selecting and ordering

products.

Ideally, a user would collect information about prices, terms, and condi-

tions (such as availability) of all, or at least all major, online shops and then

proceed to select the best offer. But manual browsing is too time-consuming

to be conducted on this scale. Typically a user will visit one or a very few

online stores before making a decision.

To alleviate this situation, tools for shopping around on the Web are avail-

able in the form of shopbots, software agents that visit several shops, extract

product and price information, and compile a market overview. Their func-

tionality is provided by wrappers, programs that extract information from

an online store. One wrapper per store must be developed. This approach

suffers from several drawbacks.

The information is extracted from the online store site through keyword

search and other means of textual analysis. This process makes use of as-

sumptions about the proximity of certain pieces of information (for example,

the price is indicated by the word price followed by the symbol $ followed by

a positive number). This heuristic approach is error-prone; it is not always

guaranteed to work. Because of these difficulties only limited information

is extracted. For example, shipping expenses, delivery times, restrictions on

the destination country, level of security, and privacy policies are typically

not extracted. But all these factors may be significant for the user’s deci-

sion making. In addition, programming wrappers is time-consuming, and

changes in the online store outfit require costly reprogramming.

The Semantic Web will allow the development of software agents that can

interpret the product information and the terms of service.

• Pricing and product information will be extracted correctly, and delivery

and privacy policies will be interpreted and compared to the user require-

ments.

• Additional information about the reputation of online shops will be re-

trieved from other sources, for example, independent rating agencies or

consumer bodies.

• The low-level programming of wrappers will become obsolete.

TLFeBOOK

TLFeBOOK

6 1 The Semantic Web Vision

• More sophisticated shopping agents will be able to conduct automated

negotiations, on the buyer’s behalf, with shop agents.

1.2.3 Business-to-Business Electronic Commerce

Most users associate the commercial part of the Web with B2C e-commerce,

but the greatest economic promise of all online technologies lies in the area

of business-to-business (B2B) e-commerce.

Traditionally businesses have exchanged their data using the Electronic

Data Interchange (EDI) approach. However this technology is complicated

and understood only by experts. It is difficult to program and maintain, and

it is error-prone. Each B2B communication requires separate programming,

so such communications are costly. Finally, EDI is an isolated technology.

The interchanged data cannot be easily integrated with other business appli-

cations.

The Internet appears to be an ideal infrastructure for business-to-business

communication. Businesses have increasingly been looking at Internet-based

solutions, and new business models such as B2B portals have emerged. Still,

B2B e-commerce is hampered by the lack of standards. HTML (hypertext

markup language) is too weak to support the outlined activities effectively:

it provides neither the structure nor the semantics of information. The new

standard of XML is a big improvement but can still support communications

only in cases where there is a priori agreement on the vocabulary to be used

and on its meaning.

The realization of the Semantic Web will allow businesses to enter partner-

ships without much overhead. Differences in terminology will be resolved

using standard abstract domain models, and data will be interchanged using

translation services. Auctioning, negotiations, and drafting contracts will be

carried out automatically (or semiautomatically) by software agents.

1.2.4 Personal Agents: A Future Scenario

Michael had just had a minor car accident and was feeling some neck pain.

His primary care physician suggested a series of physical therapy sessions.

Michael asked his Semantic Web agent to work out some possibilities.

The agent retrieved details of the recommended therapy from the doctor’s

agent and looked up the list of therapists maintained by Michael’s health

insurance company. The agent checked for those located within a radius of 10

km from Michael’s office or home, and looked up their reputation according

TLFeBOOK

TLFeBOOK

1.3 Semantic Web Technologies 7

to trusted rating services. Then it tried to match available appointment times

with Michael’s calendar. In a few minutes the agent returned two proposals.

Unfortunately, Michael was not happy with either of them. One therapist

had offered appointments in two weeks’ time; for the other Michael would

have to drive during rush hour. Therefore, Michael decided to set stricter

time constraints and asked the agent to try again.

A few minutes later the agent came back with an alternative: A therapist

with an excellent reputation who had available appointments starting in two

days. However, there were a few minor problems. Some of Michael’s less im-

portant work appointments would have to be rescheduled. The agent offered

to make arrangements if this solution were adopted. Also, the therapist was

not listed on the insurer’s site because he charged more than the insurer’s

maximum coverage. The agent had found his name from an independent

list of therapists and had already checked that Michael was entitled to the

insurer’s maximum coverage, according to the insurer’s policy. It had also

negotiated with the therapist’s agent a special discount. The therapist had

only recently decided to charge more than average and was keen to find new

patients.

Michael was happy with the recommendation because he would have to

pay only a few dollars extra. However, because he had installed the Semantic

Web agent a few days ago, he asked it for explanations of some of its asser-

tions: how was the therapist’s reputation established, why was it necessary

for Michael to reschedule some of his work appointments, how was the price

negotiation conducted? The agent provided appropriate information.

Michael was satisfied. His new Semantic Web agent was going to make his

busy life easier. He asked the agent to take all necessary steps to finalize the

task.

1.3 Semantic Web Technologies

The scenarios outlined in section 1.2 are not science fiction; they do not re-

quire revolutionary scientific progress to be achieved. We can reasonably

claim that the challenge is an engineering and technology adoption rather

than a scientific one: partial solutions to all important parts of the problem

exist. At present, the greatest needs are in the areas of integration, standard-

ization, development of tools, and adoption by users. But, of course, further

technological progress will lead to a more advanced Semantic Web than can,

in principle, be achieved today.

TLFeBOOK

TLFeBOOK

8 1 The Semantic Web Vision

In the following sections we outline a few technologies that are necessary

for achieving the functionalities previously outlined.

1.3.1 Explicit Metadata

Currently, Web content is formatted for human readers rather than programs.

HTML is the predominant language in which Web pages are written (directly

or using tools). A portion of a typical Web page of a physical therapist might

look like this:

<h1>Agilitas Physiotherapy Centre</h1>

Welcome to the home page of the Agilitas Physiotherapy Centre.

Do you feel pain? Have you had an injury? Let our staff

Lisa Davenport, Kelly Townsend (our lovely secretary)

and Steve Matthews take care of your body and soul.

<h2>Consultation hours</h2>

Mon 11am - 7pm

Tue 11am - 7pm

Wed 3pm - 7pm

Thu 11am - 7pm

Fri 11am - 3pm<p>

But note that we do not offer consultation

during the weeks of the

State Of Origin games.

For people the information is presented in a satisfactory way, but machines

will have their problems. Keyword-based searches will identify the words

physiotherapy and consultation hours. And an intelligent agent might even be

able to identify the personnel of the center. But it will have trouble distin-

guishing therapists from the secretary, and even more trouble with finding

the exact consultation hours (for which it would have to follow the link to

the State Of Origin games to find when they take place).

The Semantic Web approach to solving these problems is not the devel-

opment of superintelligent agents. Instead it proposes to attack the problem

from the Web page side. If HTML is replaced by more appropriate languages,

then the Web pages could carry their content on their sleeve. In addition

to containing formatting information aimed at producing a document for

human readers, they could contain information about their content. In our

example, there might be information such as

TLFeBOOK

TLFeBOOK

1.3 Semantic Web Technologies 9

<company>

<treatmentOffered>Physiotherapy</treatmentOffered>

<companyName>Agilitas Physiotherapy Centre</companyName>

<staff>

<therapist>Lisa Davenport</therapist>

<therapist>Steve Matthews</therapist>

<secretary>Kelly Townsend</secretary>

</staff>

</company>

This representation is far more easily processable by machines. The term

metadata refers to such information: data about data. Metadata capture part

of the meaning of data, thus the term semantic in Semantic Web.

In our example scenarios in section 1.2 there seemed to be no barriers in the

access to information in Web pages: therapy details, calendars and appoint-

ments, prices and product descriptions, it seemed like all this information

could be directly retrieved from existing Web content. But, as we explained,

this will not happen using text-based manipulation of information but rather

by taking advantage of machine-processable metadata.

As with the current development of Web pages, users will not have to be

computer science experts to develop Web pages; they will be able to use tools

for this purpose. Still, the question remains why users should care, why they

should abandon HTML for Semantic Web languages. Perhaps we can give an

optimistic answer if we compare the situation today to the beginnings of the

Web. The first users decided to adopt HTML because it had been adopted

as a standard and they were expecting benefits from being early adopters.

Others followed when more and better Web tools became available. And

soon HTML was a universally accepted standard.

Similarly, we are currently observing the early adoption of XML. While not

sufficient in itself for the realization of the Semantic Web vision, XML is an

important first step. Early users, perhaps some large organizations interested

in knowledge management and B2B e-commerce, will adopt XML and RDF,

the current Semantic Web-related W3C standards. And the momentum will

lead to more and more tool vendors’ and end users’ adopting the technology.

This will be a decisive step in the Semantic Web venture, but it is also a

challenge. As we mentioned, the greatest current challenge is not scientific

but rather one of technology adoption.

TLFeBOOK

TLFeBOOK

10 1 The Semantic Web Vision

1.3.2 Ontologies

The term ontology originates from philosophy. In that context, it is used as

the name of a subfield of philosophy, namely, the study of the nature of ex-

istence (the literal translation of the Greek word Oντoλoγiα), the branch of

metaphysics concerned with identifying, in the most general terms, the kinds

of things that actually exist, and how to describe them. For example, the ob-

servation that the world is made up of specific objects that can be grouped

into abstract classes based on shared properties is a typical ontological com-

mitment.

However, in more recent years, ontology has become one of the many

words hijacked by computer science and given a specific technical meaning

that is rather different from the original one. Instead of “ontology” we now

speak of “an ontology”. For our purposes, we will uses T.R. Gruber’s defini-

tion, later refined by R. Studer: An ontology is an explicit and formal specification
of a conceptualization.

In general, an ontology describes formally a domain of discourse. Typi-

cally, an ontology consists of a finite list of terms and the relationships be-

tween these terms. The terms denote important concepts (classes of objects) of

the domain. For example, in a university setting, staff members, students,

courses, lecture theaters, and disciplines are some important concepts.

The relationships typically include hierarchies of classes. A hierarchy spec-

ifies a class C to be a subclass of another class C ′ if every object in C is also

included in C ′. For example, all faculty are staff members. Figure 1.1 shows

a hierarchy for the university domain.

Apart from subclass relationships, ontologies may include information

such as

• properties (X teaches Y)

• value restrictions (only faculty members can teach courses)

• disjointness statements (faculty and general staff are disjoint)

• specification of logical relationships between objects (every department

must include at least ten faculty members)

In the context of the Web, ontologies provide a shared understanding of a do-
main. Such a shared understanding is necessary to overcome differences in

terminology. One application’s zip code may be the same as another applica-

tion’s area code. Another problem is that two applications may use the same

TLFeBOOK

TLFeBOOK

1.3 Semantic Web Technologies 11

staff

administration

staff

technical
support

staff

research

staff

visiting

staffstaff
faculty
regular

academic
staff

students

undergraduate postgraduate

people

university

Figure 1.1 A hierarchy

term with different meanings. In university A, a course may refer to a degree

(like computer science), while in university B it may mean a single subject

(CS 101). Such differences can be overcome by mapping the particular ter-

minology to a shared ontology or by defining direct mappings between the

ontologies. In either case, it is easy to see that ontologies support semantic

interoperability .

Ontologies are useful for the organization and navigation of Web sites.

Many Web sites today expose on the left-hand side of the page the top levels

of a concept hierarchy of terms. The user may click on one of them to expand

the subcategories.

Also, ontologies are useful for improving the accuracy of Web searches.

The search engines can look for pages that refer to a precise concept in an on-

tology instead of collecting all pages in which certain, generally ambiguous,

keywords occur. In this way, differences in terminology between Web pages

and the queries can be overcome.

In addition, Web searches can exploit generalization/specialization infor-

mation. If a query fails to find any relevant documents, the search engine

may suggest to the user a more general query. It is even conceivable for the

engine to run such queries proactively to reduce the reaction time in case the

TLFeBOOK

TLFeBOOK

12 1 The Semantic Web Vision

user adopts a suggestion. Or if too many answers are retrieved, the search

engine may suggest to the user some specializations.

In Artificial Intelligence (AI) there is a long tradition of developing and us-

ing ontology languages. It is a foundation Semantic Web research can build

upon. At present, the most important ontology languages for the Web are

the following:

• XML provides a surface syntax for structured documents but imposes no

semantic constraints on the meaning of these documents.

• XML Schema is a language for restricting the structure of XML docu-

ments.

• RDF is a data model for objects (“resources”) and relations between them;

it provides a simple semantics for this data model; and these data models

can be represented in an XML syntax.

• RDF Schema is a vocabulary description language for describing prop-

erties and classes of RDF resources, with a semantics for generalization

hierarchies of such properties and classes.

• OWL is a richer vocabulary description language for describing prop-

erties and classes, such as relations between classes (e.g., disjointness),

cardinality (e.g. “exactly one”), equality, richer typing of properties, char-

acteristics of properties (e.g., symmetry), and enumerated classes.

1.3.3 Logic

Logic is the discipline that studies the principles of reasoning; it goes back to

Aristotle. In general, logic offers, first, formal languages for expressing know-

ledge. Second, logic provides us with well-understood formal semantics: in

most logics, the meaning of sentences is defined without the need to oper-

ationalize the knowledge. Often we speak of declarative knowledge: we

describe what holds without caring about how it can be deduced.

And third, automated reasoners can deduce (infer) conclusions from the

given knowledge, thus making implicit knowledge explicit. Such reason-

ers have been studied extensively in AI. Here is an example of an inference.

Suppose we know that all professors are faculty members, that all faculty

members are staff members, and that Michael is a professor. In predicate

logic the information is expressed as follows:

TLFeBOOK

TLFeBOOK

1.3 Semantic Web Technologies 13

prof(X) → faculty(X)

faculty(X) → staff(X)

prof(michael)

Then we can deduce the following:

faculty(michael)

staff(michael)

prof(X) → staff(X)

Note that this example involves knowledge typically found in ontologies.

Thus logic can be used to uncover ontological knowledge that is implicitly

given. By doing so, it can also help uncover unexpected relationships and

inconsistencies.

But logic is more general than ontologies. It can also be used by intelligent

agents for making decisions and selecting courses of action. For example, a

shop agent may decide to grant a discount to a customer based on the rule

loyalCustomer(X) → discount(5%)

where the loyalty of customers is determined from data stored in the cor-

porate database. Generally there is a trade-off between expressive power

and computational efficiency. The more expressive a logic is, the more com-

putationally expensive it becomes to draw conclusions. And drawing cer-

tain conclusions may become impossible if noncomputability barriers are

encountered. Luckily, most knowledge relevant to the Semantic Web seems

to be of a relatively restricted form. For example, our previous examples in-

volved rules of the form, “If conditions, then conclusion,” and only finitely

many objects needed to be considered. This subset of logic is tractable and is

supported by efficient reasoning tools.

An important advantage of logic is that it can provide explanations for

conclusions: the series of inference steps can be retraced. Moreover AI re-

searchers have developed ways of presenting an explanation in a human-

friendly way, by organizing a proof as a natural deduction and by grouping

a number of low-level inference steps into metasteps that a person will typ-

ically consider a single proof step. Ultimately an explanation will trace an

answer back to a given set of facts and the inference rules used.

Explanations are important for the Semantic Web because they increase

users’ confidence in Semantic Web agents (see the physiotherapy example in

TLFeBOOK

TLFeBOOK

14 1 The Semantic Web Vision

section 1.2.4). Tim Berners-Lee speaks of an “Oh yeah?” button that would

ask for an explanation.

Explanations will also be necessary for activities between agents. While

some agents will be able to draw logical conclusions, others will only have

the capability to validate proofs, that is, to check whether a claim made by

another agent is substantiated. Here is a simple example. Suppose agent

1, representing an online shop, sends a message “You owe me $80” (not in

natural language, of course, but in a formal, machine-processable language)

to agent 2, representing a person. Then agent 2 might ask for an explanation,

and agent 1 might respond with a sequence of the form

Web log of a purchase over $80

Proof of delivery (for example, tracking number of UPS)

Rule from the shop’s terms and conditions:

purchase(X, Item) ∧ price(Item,Price) ∧ delivered(Item,X)

→ owes(X, Price)

Thus facts will typically be traced to some Web addresses (the trust of which

will be verifiable by agents), and the rules may be a part of a shared com-

merce ontology or the policy of the online shop.

For logic to be useful on the Web it must be usable in conjunction with

other data, and it must be machine-processable as well. Therefore, there

is ongoing work on representing logical knowledge and proofs in Web lan-

guages. Initial approaches work at the level of XML, but in the future rules

and proofs will need to be represented at the level of RDF and ontology lan-

guages, such as DAML+OIL and OWL.

1.3.4 Agents

Agents are pieces of software that work autonomously and proactively. Con-

ceptually they evolved out of the concepts of object-oriented programming

and component-based software development.

A personal agent on the Semantic Web (figure 1.2) will receive some tasks

and preferences from the person, seek information from Web sources, com-

municate with other agents, compare information about user requirements

and preferences, select certain choices, and give answers to the user. An

example of such an agent is Michael’s private agent in the physiotherapy

example of section 1.2.4.

TLFeBOOK

TLFeBOOK

1.3 Semantic Web Technologies 15

User

Present in
web browser

Search
engine

docs
www

User

Personal agent

Intelligent

services

infrastructure

Today In the future

WWW
docs

Figure 1.2 Intelligent personal agents

It should be noted that agents will not replace human users on the Seman-

tic Web, nor will they necessarily make decisions. In many, if not most, cases

their role will be to collect and organize information, and present choices for

the users to select from, as Michael’s personal agent did in offering a selec-

tion between the two best solutions it could find, or as a travel agent does

that looks for travel offers to fit a person’s given preferences.

Semantic Web agents will make use of all the technologies we have out-

lined:

• Metadata will be used to identify and extract information from Web

sources.

• Ontologies will be used to assist in Web searches, to interpret retrieved

information, and to communicate with other agents.

• Logic will be used for processing retrieved information and for drawing

conclusions.

Further technologies will also be needed, such as agent communication lan-

guages. Also, for advanced applications it will be useful to represent for-

TLFeBOOK

TLFeBOOK

16 1 The Semantic Web Vision

mally the beliefs, desires, and intentions of agents, and to create and main-

tain user models. However, these points are somewhat orthogonal to the

Semantic Web technologies. Therefore they are not discussed further in this

book.

1.3.5 The Semantic Web versus Artificial Intelligence

As we have said, most of the technologies needed for the realization of the

Semantic Web build upon work in the area of artificial intelligence. Given

that AI has a long history, not always commercially successful, one might

worry that, in the worst case, the Semantic Web will repeat AI’s errors: big

promises that raise too high expectations, which turn out not to be fulfilled

(at least not in the promised time frame).

This worry is unjustified. The realization of the Semantic Web vision does

not rely on human-level intelligence; in fact, as we have tried to explain, the

challenges are approached in a different way. The full problem of AI is a

deep scientific one, perhaps comparable to the central problems of physics

(explain the physical world) or biology (explain the living world). So seen,

the difficulties in achieving human-level Artificial Intelligence within ten or

twenty years, as promised at some points in the past, should not have come

as a surprise.

But on the Semantic Web partial solutions will work. Even if an intelligent

agent is not able to come to all conclusions that a human user might draw, the

agent will still contribute to a Web much superior to the current Web. This

brings us to another difference. If the ultimate goal of AI is to build an intel-

ligent agent exhibiting human-level intelligence (and higher), the goal of the

Semantic Web is to assist human users in their day-to-day online activities.

It is clear that the Semantic Web will make extensive use of current AI tech-

nology and that advances in that technology will lead to a better Semantic

Web. But there is no need to wait until AI reaches a higher level of achieve-

ment; current AI technology is already sufficient to go a long way toward

realizing the Semantic Web vision.

1.4 A Layered Approach

The development of the Semantic Web proceeds in steps, each step building

a layer on top of another. The pragmatic justification for this approach is that

it is easier to achieve consensus on small steps, whereas it is much harder

to get everyone on board if too much is attempted. Usually there are sev-

TLFeBOOK

TLFeBOOK

1.4 A Layered Approach 17

eral research groups moving in different directions; this competition of ideas

is a major driving force for scientific progress. However, from an engineer-

ing perspective there is a need to standardize. So, if most researchers agree

on certain issues and disagree on others, it makes sense to fix the points of

agreement. This way, even if the more ambitious research efforts should fail,

there will be at least partial positive outcomes.

Once a standard has been established, many more groups and companies

will adopt it, instead of waiting to see which of the alternative research lines

will be successful in the end. The nature of the Semantic Web is such that

companies and single users must build tools, add content, and use that con-

tent. We cannot wait until the full Semantic Web vision materializes — it may

take another ten years for it to be realized to its full extent (as envisioned

today, of course).

In building one layer of the Semantic Web on top of another, two principles

should be followed:

• Downward compatibility. Agents fully aware of a layer should also be

able to interpret and use information written at lower levels. For exam-

ple, agents aware of the semantics of OWL can take full advantage of

information written in RDF and RDF Schema.

• Upward partial understanding. On the other hand, agents fully aware of a

layer should take at least partial advantage of information at higher levels.

For example, an agent aware only of the RDF and RDF Schema semantics

can interpret knowledge written in OWL partly, by disregarding those

elements that go beyond RDF and RDF Schema.

Figure 1.3 shows the “layer cake” of the Semantic Web (due to Tim Berners-

Lee), which describes the main layers of the Semantic Web design and vision.

At the bottom we find XML, a language that lets one write structured Web

documents with a user-defined vocabulary. XML is particularly suitable for

sending documents across the Web.

RDF is a basic data model, like the entity-relationship model, for writing

simple statements about Web objects (resources). The RDF data model does

not rely on XML, but RDF has an XML-based syntax. Therefore, in figure 1.3,

it is located on top of the XML layer.

RDF Schema provides modeling primitives for organizing Web objects into

hierarchies. Key primitives are classes and properties, subclass and subprop-

erty relationships, and domain and range restrictions. RDF Schema is based

on RDF.

TLFeBOOK

TLFeBOOK

18 1 The Semantic Web Vision

Figure 1.3 A layered approach to the Semantic Web

RDF Schema can be viewed as a primitive language for writing ontolo-

gies. But there is a need for more powerful ontology languages that expand

RDF Schema and allow the representations of more complex relationships

between Web objects. The Logic layer is used to enhance the ontology lan-

guage further and to allow the writing of application-specific declarative

knowledge.

The Proof layer involves the actual deductive process as well as the repre-

sentation of proofs in Web languages (from lower levels) and proof valida-

tion.

Finally, the Trust layer will emerge through the use of digital signatures and

other kinds of knowledge, based on recommendations by trusted agents or

on rating and certification agencies and consumer bodies. Sometimes “Web

of Trust” is used to indicate that trust will be organized in the same dis-

tributed and chaotic way as the WWW itself. Being located at the top of the

pyramid, trust is a high-level and crucial concept: the Web will only achieve

its full potential when users have trust in its operations (security) and in the

quality of information provided.

TLFeBOOK

TLFeBOOK

1.5 Book Overview 19

1.5 Book Overview

In this book we concentrate on the Semantic Web technologies that have

reached a reasonable degree of maturity.

In Chapter 2 we discuss XML and related technologies. XML introduces

structure to Web documents, thus supporting syntactic interoperability. The

structure of a document can be made machine-accessible through DTDs and

XML Schema. We also discuss namespaces; accessing and querying XML

documents using XPath; and transforming XML documents with XSLT.

In Chapter 3 we discuss RDF and RDF Schema. RDF is a language in

which we can express statements about objects (resources); it is a standard

data model for machine-processable semantics. RDF Schema offers a number

of modeling primitives for organizing RDF vocabularies in typed hierarchies.

Chapter 4 discusses OWL, the current proposal for a Web ontology lan-

guage. It offers more modeling primitives, compared to RDF Schema, and

has a clean, formal semantics.

Chapter 5 is devoted to rules, both monotonic and nonmonotonic, in the

framework of the Semantic Web. While this layer has not yet been fully de-

fined, the principles to be adopted are quite clear, so it makes sense to present

them.

Chapter 6 discusses several application domains and explains the benefits

that they will draw from the materialization of the Semantic Web vision.

Chapter 7 describes the development of ontology-based systems for the

Web and contains a miniproject that employs much of the technology de-

scribed in this book.

Finally, chapter 8 discusses briefly a few issues which are currently under

debate in the Semantic Web community.

1.6 Summary

• The Semantic Web is an initiative that aims at improving the current state

of the World Wide Web.

• The key idea is the use of machine-processable Web information.

• Key technologies include explicit metadata, ontologies, logic and infer-

encing, and intelligent agents.

• The development of the Semantic Web proceeds in layers.

TLFeBOOK

TLFeBOOK

20 1 The Semantic Web Vision

Suggested Reading

An excellent introductory article, from which, among others, the scenario in

section 1.2.4 was adapted.

• T. Berners-Lee, J. Hendler, and O. Lassila. The Semantic Web. Scientific
American 284 (May 2001): 34-43.

An inspirational book about the history (and the future) of the Web is

• T. Berners-Lee, with M. Fischetti. Weaving the Web. San Francisco: Harper,

1999.

Many introductory articles on the Semantic Web are available online. Here

we list a few:

• T. Berners-Lee. Semantic Web Road Map. September 1998.

<http://www.w3.org/DesignIssues/Semantic.html>.

• T. Berners-Lee. Evolvability. March 1998.

<http://www.w3.org/DesignIssues/Evolution.html>.

• T. Berners-Lee. What the Semantic Web Can Represent. September 1998.

<http://www.w3.org/DesignIssues/RDFnot.html>.

• E. Dumbill. The Semantic Web: A Primer. November 1, 2000.

<http://www.xml.com/pub/a/2000/11/01/semanticweb/>.

• F. van Harmelen and D. Fensel. Practical Knowledge Representation for

the Web. <http://www.cs.vu.nl/∼frankh/postscript/IJCAI99-III.html>.

• J. Hendler. Agents and the Semantic Web. IEEE Intelligent Systems 16

(March-April 2001): 30-37.

Preprint at <http://www.cs.umd.edu/users/hendler/AgentWeb.html>.

• S. Palmer. The Semantic Web, Taking Form.

<http://infomesh.net/2001/06/swform/>.

• S. Palmer. The Semantic Web: An Introduction.

<http://infomesh.net/2001/Swintro/>.

• A. Swartz. The Semantic Web in Breadth.

<http://logicerror.com/semanticWeb-long>.

TLFeBOOK

TLFeBOOK

Suggested Reading 21

• A. Swartz and J. Hendler. The Semantic Web: A Network of Content for

the Digital City. <http://blogspace.com/rdf/SwartzHendler.html>.

• R. Jasper and A. Tyler. The Role of Semantics and Inference in the Seman-

tic Web: A Commercial Challenge.

<http://www.semanticweb.org/SWWS/program/position/

soi-jasper.pdf>.

There are several courses on the Semantic Web that have extensive material

online:

• F. van Harmelen et al. Web-Based Knowledge Representation.

<http://www.cs.vu.nl/∼marta/wbkr.html>.

• J. Heflin. The Semantic Web.

<http://www.cse.lehigh.edu/∼heflin/courses/semweb/>.

• A. Sheth. Semantic Web.

<http://lsdis.cs.uga.edu/SemWebCourse/index.html>.

• H. Boley, S. Decker, and M. Sintek. Tutorial on Knowledge Markup Tech-

niques. <http://www.dfki.uni-kl.de/km/knowmark/>.

A number of Web sites maintain up-to-date information about the Semantic

Web and related topics:

• <http://www.SemanticWeb.org>.

• <http://www.w3.org/2001/sw/>.

• <http://www.ontology.org>.

There is a good selection of research papers providing technical information

on issues relating to the Semantic Web:

• D. Fensel, J. Hendler, H. Lieberman and W. Wahlster, eds. Spinning the
Semantic Web. Cambridge, MA: MIT Press, 2003.

• J. Davies, D. Fensel and F. van Harmelen, eds. Towards the Semantic Web:
Ontology-Driven Knowledge Management. New York: Wiley, 2002.

• The conference series of the International Semantic Web Conference (see

<http://www.semanticweb.org/>).

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

2 Structured Web Documents in XML

2.1 Introduction

Today HTML (hypertext markup language) is the standard language in

which Web pages are written. HTML, in turn, was derived from SGML (stan-

dard generalized markup language), an international standard (ISO 8879) for

the definition of device- and system-independent methods of representing

information, both human- and machine-readable. Such standards are impor-

tant because they enable effective communication, thus supporting techno-

logical progress and business collaboration. In the WWW area, standards

are set by the W3C (World Wide Web Consortium); they are called recom-
mendations, in acknowledgment of the fact that in a distributed environment

without central authority, standards cannot be enforced.

Languages conforming to SGML are called SGML applications. HTML is

such an application; it was developed because SGML was considered far too

complex for Internet-related purposes. XML (extensible markup language) is

another SGML application, and its development was driven by shortcomings

of HTML. We can work out some of the motivations for XML by considering

a simple example, a Web page that contains information about a particular

book.

<h2>Nonmonotonic Reasoning: Context-Dependent

Reasoning</h2>

<i>by V. Marek and M. Truszczynski</i>

Springer 1993

ISBN 0387976892

A typical XML representation of the the same information might look like

this:

TLFeBOOK

TLFeBOOK

24 2 Structured Web Documents in XML

<book>

<title>

Nonmonotonic Reasoning: Context-Dependent Reasoning

</title>

<author>V. Marek</author>

<author>M. Truszczynski</author>

<publisher>Springer</publisher>

<year>1993</year>

<ISBN>0387976892</ISBN>

</book>

Before we turn to differences between the HTML and XML representations,

let us observe a few similarities. First, both representations use tags, such as

<h2> and </year>. Indeed both HTML and XML are markup languages:

they allow one to write some content and provide information about what

role that content plays.

Like HTML, XML is based on tags. These tags may be nested (tags within

tags). All tags in XML must be closed (for example, for an opening tag

<title> there must be a closing tag </title>), whereas in HTML some

tags, such as
, may be left open. The enclosed content, together with

its opening and closing tags, is referred to as an element. (The recent devel-

opment of XHTML has brought HTML more in line with XML: any valid

XHTML document is also a valid XML document, and as a consequence,

opening and closing tags in XHTML are balanced).

A less formal observation is that human userss can read both HTML and

XML representations quite easily. Both languages were designed to be easily

understandable and usable by humans. But how about machines? Imagine

an intelligent agent trying to retrieve the names of the authors of the book

in the previous example. Suppose the HTML page could be located with

a Web search (something that is not at all clear; the limitations of current

search engines are well documented). There is no explicit information as to

who the authors are. A reasonable guess would be that the authors’ names

appear immediately after the title or immediately follow the word by. But

there is no guarantee that these conventions are always followed. And even

if they were, are there two authors, “V. Marek” and “M. Truszczynski”, or just

one, called “V. Marek and M. Truszczynski”? Clearly, more text processing is

needed to answer this question, processing that is open to errors.

The problems arise from the fact that the HTML document does not con-

tain structural information, that is, information about pieces of the document

and their relationships. In contrast, the XML document is far more easily ac-

TLFeBOOK

TLFeBOOK

2.1 Introduction 25

cessible to machines because every piece of information is described. More-

over, their relations are also defined through the nesting structure. For exam-

ple, the <author> tags appear within the <book> tags, so they describe

properties of the particular book. A machine processing the XML document

would be able to deduce that the author element refers to the enclosing

book element, rather than having to infer this fact from proximity considera-

tions, as in HTML. An additional advantage is that XML allows the definition

of constraints on values (for example, that a year must be a number of four

digits, that the number must be less than 3,000). XML allows the representation
of information that is also machine-accessible.

Of course, we must admit that the HTML representation provides more

than the XML representation: the formatting of the document is also de-

scribed. However, this feature is not a strength but a weakness of HTML:

it must specify the formatting; in fact, the main use of an HTML document is

to display information (apart from linking to other documents). On the other

hand, XML separates content from formatting. The same information can be

displayed in different ways, without requiring multiple copies of the same

content; moreover, the content may be used for purposes other than display.

Let us now consider another example, a famous law of physics. Consider

the HTML text

<h2>Relationship force-mass</h2>

<i>F = M × a</i>

and the XML representation

<equation>

<meaning>Relationship force-mass</meaning>

<leftside>F</leftside>

<rightside>M × a</rightside>

</equation>

If we compare the HTML document to the previous HTML document, we

notice that both use basically the same tags. That is not surprising, since

they are predefined. In contrast, the second XML document uses completely

different tags from the first XML document. This observation is related to

the intended use of representations. HTML representations are intended to

display information, so the set of tags is fixed: lists, bold, color, and so on.

In XML we may use information in various ways, and it is up to the user to

define a vocabulary suitable for the application. Therefore, XML is a metalan-
guage for markup: it does not have a fixed set of tags but allows users to define tags
of their own.

TLFeBOOK

TLFeBOOK

26 2 Structured Web Documents in XML

Just as people cannot communicate effectively if they don’t use a common

language, applications on the WWW must agree on common vocabularies

if they need to communicate and collaborate. Communities and business

sectors are in the process of defining their specialized vocabularies, creat-

ing XML applications (or extensions; thus the term extensible in the name of

XML). Such XML applications have been defined in various domains, for

example, mathematics (MathML), bioinformatics (BSML), human resources

(HRML), astronomy (AML), news (NewsML), and investment (IRML).

Also, the W3C has defined various languages on top of XML, such as SVG

and SMIL. This approach has also been taken for RDF (see chapter 3).

It should be noted that XML can serve as a uniform data exchange format
between applications. In fact, XML’s use as a data exchange format between

applications nowadays far outstrips its originally intended use as document

markup language. Companies often need to retrieve information from their

customers and business partners, and update their corporate databases ac-

cordingly. If there is not an agreed common standard like XML, then special-

ized processing and querying software must be developed for each partner

separately, leading to technical overhead; moreover, the software must be

updated every time a partner decides to change its own database format.

In this chapter, section 2.2 describes the XML language in more detail,

and section 2.3 describes the structuring of XML documents. In relational

databases, the structure of tables must be defined. Similarly, the structure of

an XML document must be defined. This can be done by writing a DTD (doc-

ument data definition), the older approach, or an XML schema, the modern

approach that will gradually replace DTDs.

Section 2.4 describes namespaces, which support the modularization of

DTDs and XML schemas. Section 2.5 is devoted to the accessing and query-

ing of XML documents, using XPath. Finally, section 2.6 shows how XML

documents can be transformed to be displayed (or for other purposes), using

XSL and XSLT.

TLFeBOOK

TLFeBOOK

2.2 The XML Language 27

2.2 The XML Language

An XML document consists of a prolog, a number of elements, and an optional

epilog (not discussed here).

2.2.1 Prolog

The prolog consists of an XML declaration and an optional reference to ex-

ternal structuring documents. Here is an example of an XML declaration:

<?xml version="1.0" encoding="UTF-16"?>

It specifies that the current document is an XML document, and defines the

version and the character encoding used in the particular system (such as

UTF-8, UTF-16, and ISO 8859-1). The character encoding is not mandatory,

but its specification is considered good practice. Sometimes we also specify

whether the document is self-contained, that is, whether it does not refer to

external structuring documents:

<?xml version="1.0" encoding="UTF-16" standalone="no" ?>

A reference to external structuring documents looks like this:

<!DOCTYPE book SYSTEM "book.dtd">

Here the structuring information is found in a local file called book.dtd.

Instead, the reference might be a URL. If only a locally recognized name or

only a URL is used, then the label SYSTEM is used. If, however, one wishes

to give both a local name and a URL, then the label PUBLIC should be used

instead.

2.2.2 Elements

XML elements represent the “things” the XML document talks about, such

as books, authors, and publishers. They compose the main concept of XML

documents. An element consists of an opening tag, its content, and a closing
tag. For example,

<lecturer>David Billington</lecturer>

Tag names can be chosen almost freely; there are very few restrictions. The

most important ones are that the first character must be a letter, an under-

score, or a colon; and that no name may begin with the string “xml” in any

combination of cases (such as “Xml” and “xML”).

TLFeBOOK

TLFeBOOK

28 2 Structured Web Documents in XML

The content may be text, or other elements, or nothing. For example,

<lecturer>

<name>David Billington</name>

<phone>+61-7-3875 507</phone>

</lecturer>

If there is no content, then the element is called empty. An empty element

like

<lecturer></lecturer>

can be abbreviated as

<lecturer/>

2.2.3 Attributes

An empty element is not necessarily meaningless, because it may have some

properties in terms of attributes. An attribute is a name-value pair inside the

opening tag of an element:

<lecturer name="David Billington" phone="+61-7-3875 507"/>

Here is an example of attributes for a nonempty element:

<order orderNo="23456" customer="John Smith"

date="October 15, 2002">

<item itemNo="a528" quantity="1"/>

<item itemNo="c817" quantity="3"/>

</order>

The same information could have been written as follows, replacing at-

tributes by nested elements:

<order>

<orderNo>23456</orderNo>

<customer>John Smith</customer>

<date>October 15, 2002</date>

<item>

<itemNo>a528</itemNo>

<quantity>1</quantity>

</item>

TLFeBOOK

TLFeBOOK

2.2 The XML Language 29

<item>

<itemNo>c817</itemNo>

<quantity>3</quantity>

</item>

</order>

When to use elements and when attributes is often a matter of taste. How-

ever, note that attributes cannot be nested.

2.2.4 Comments

A comment is a piece of text that is to be ignored by the parser. It has the

form

<!-- This is a comment -->

2.2.5 Processing Instructions (PIs)

PIs provide a mechanism for passing information to an application about

how to handle elements. The general form is

<?target instruction ?>

For example,

<?stylesheet type="text/css" href="mystyle.css"?>

PIs offer procedural possibilities in an otherwise declarative environment.

2.2.6 Well-Formed XML Documents

An XML document is well-formed if it is syntactically correct. Some syntactic

rules are

• There is only one outermost element in the document (called the root ele-
ment).

• Each element contains an opening and a corresponding closing tag.

• Tags may not overlap, as in

<author><name>Lee Hong</author></name>.

• Attributes within an element have unique names.

• Element and tag names must be permissible.

TLFeBOOK

TLFeBOOK

30 2 Structured Web Documents in XML

2.2.7 The Tree Model of XML Documents

It is possible to represent well-formed XML documents as trees; thus trees

provide a formal data model for XML. This representation is often instruc-

tive. As an example, consider the following document:

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE email SYSTEM "email.dtd">

<email>

<head>

<from name="Michael Maher"

address="michaelmaher@cs.gu.edu.au"/>

<to name="Grigoris Antoniou"

address="grigoris@cs.unibremen.de"/>

<subject>Where is your draft?</subject>

</head>

<body>

Grigoris, where is the draft of the paper

you promised me last week?

</body>

</email>

Figure 2.1 shows the tree representation of this XML document. It is an or-

dered labeled tree:

• There is exactly one root.

• There are no cycles.

• Each node, other than the root, has exactly one parent.

• Each node has a label.

• The order of elements is important.

However, whereas the order of elements is important, the order of attributes

is not. So, the following two elements are equivalent:

<person lastname="Woo" firstname="Jason"/>

<person firstname="Jason" lastname="Woo"/>

This aspect is not represented properly in the tree. In general, we would

require a more refined tree concept; for example, we should also differenti-

ate between the different types of nodes (element node, attribute node etc.).

TLFeBOOK

TLFeBOOK

2.3 Structuring 31

body

Grigoris,
where is the
draft of the
paper you
promised me
last week?

email

Root

from

name address

Michael michaelmaher@
Maher cs.gu.edu.au

head

Where is
your draft?

subject

name address

to

Antoniou
Grigoris grigoris@

cs.unibremen.de

Figure 2.1 Tree representation of an XML document

However, here we use graphs as illustrations, so we do not go into further

detail.

Figure 2.1 also shows the difference between the root (representing the

XML document), and the root element, in our case the email element. This

distinction will play a role when we discuss addressing and querying XML

documents in section 2.5.

2.3 Structuring

An XML document is well-formed if it respects certain syntactic rules. How-

ever, those rules say nothing specific about the structure of the document.

Now, imagine two applications that try to communicate, and that they wish

to use the same vocabulary. For this purpose it is necessary to define all

the element and attribute names that may be used. Moreover, the structure

should also be defined: what values an attribute may take, which elements

may or must occur within other elements, and so on.

In the presence of such structuring information we have an enhanced pos-

sibility of document validation. We say that an XML document is valid if it

TLFeBOOK

TLFeBOOK

32 2 Structured Web Documents in XML

is well-formed, uses structuring information, and respects that structuring

information.

There are two ways of defining the structure of XML documents: DTDs,

the older and more restricted way, and XML Schema, which offers extended

possibilities, mainly for the definition of data types.

2.3.1 DTDs

External and Internal DTDs

The components of a DTD can be defined in a separate file (external DTD) or

within the XML document itself (internal DTD). Usually it is better to use ex-

ternal DTDs, because their definitions can be used across several documents;

otherwise duplication is inevitable, and the maintenance of consistency over

time becomes difficult.

Elements

Consider the element

<lecturer>

<name>David Billington</name>

<phone>+61-7-3875 507</phone>

</lecturer>

from the previous section. A DTD for this element type1 looks like this:

<!ELEMENT lecturer (name,phone)>

<!ELEMENT name (#PCDATA)>

<!ELEMENT phone (#PCDATA)>

The meaning of this DTD is as follows:

• The element types lecturer, name, and phone may be used in the doc-

ument.

• A lecturer element contains a name element and a phone element, in

that order.

1. The distinction between the element type lecturer and a particular element of this type,

such as David Billington, should be clear. All particular elements of type lecturer (re-

ferred to as lecturer elements) share the same structure, which is defined here.

TLFeBOOK

TLFeBOOK

2.3 Structuring 33

• A name element and a phone element may have any content. In DTDs,

#PCDATA is the only atomic type for elements.

We express that a lecturer element contains either a name element or a

phone element as follows:

<!ELEMENT lecturer (name|phone)>

It gets more difficult when we wish to specify that a lecturer element con-

tains a name element and a phone element in any order. We can only use the

trick

<!ELEMENT lecturer ((name,phone)|(phone,name))>

However, this approach suffers from practical limitations (imagine ten ele-

ments in any order).

Attributes

Consider the element

<order orderNo="23456" customer="John Smith"

date="October 15, 2002">

<item itemNo="a528" quantity="1"/>

<item itemNo="c817" quantity="3"/>

</order>

from the previous section. A DTD for it looks like this:

<!ELEMENT order (item+)>

<!ATTLIST order

orderNo ID #REQUIRED

customer CDATA #REQUIRED

date CDATA #REQUIRED>

<!ELEMENT item EMPTY>

<!ATTLIST item

itemNo ID #REQUIRED

quantity CDATA #REQUIRED

comments CDATA #IMPLIED>

Compared to the previous example, a new aspect is that the item element

type is defined to be empty. Another new aspect is the appearance of + after

item in the definition of the order element type. It is one of the cardinality
operators:

TLFeBOOK

TLFeBOOK

34 2 Structured Web Documents in XML

?: appears zero times or once

*: appears zero or more times

+: appears one or more times

No cardinality operator means exactly once.

In addition to defining elements, we have to define attributes. This is done

in an attribute list. The first component is the name of the element type to

which the list applies, followed by a list of triplets of attribute name, attribute

type, and value type. An attribute name is a name that may be used in an

XML document using a DTD.

Attribute Types

They are similar to predefined data types, but the selection is very limited.

The most important types are

• CDATA, a string (sequence of characters)

• ID, a name that is unique across the entire XML document

• IDREF, a reference to another element with an ID attribute carrying the

same value as the IDREF attribute

• IDREFS, a series of IDREFs

• (v1| . . . |vn), an enumeration of all possible values

The selection is not satisfactory. For example, dates and numbers cannot be

specified; they have to be interpreted as strings (CDATA); thus their specific

structure cannot be enforced.

Value Types

There are four value types:

• #REQUIRED. The attribute must appear in every occurrence of the ele-

ment type in the XML document. In the previous example, itemNo and

quantity must always appear within an item element.

• #IMPLIED. The appearance of the attribute is optional. In the example,

comments are optional.

TLFeBOOK

TLFeBOOK

2.3 Structuring 35

• #FIXED "value". Every element must have this attribute, which has

always the value given after #FIXED in the DTD. A value given in an XML

document is meaningless because it is overridden by the fixed value.

• "value". This specifies the default value for the attribute. If a specific

value appears in the XML document, it overrides the default value. For

example, the default encoding of the e-mail system may be “mime”, but

“binhex” will be used if specified explicitly by the user.

Referencing

Here is an example for the use of IDREF and IDREFS. First we give a DTD:

<!ELEMENT family (person*)>

<!ELEMENT person (name)>

<!ELEMENT name (#PCDATA)>

<!ATTLIST person

id ID #REQUIRED

mother IDREF #IMPLIED

father IDREF #IMPLIED

children IDREFS #IMPLIED>

An XML element that respects this DTD is the following:

<family>

<person id="bob" mother="mary" father="peter">

<name>Bob Marley</name>

</person>

<person id="bridget" mother="mary">

<name>Bridget Jones</name>

</person>

<person id="mary" children="bob bridget">

<name>Mary Poppins</name>

</person>

<person id="peter" children="bob">

<name>Peter Marley</name>

</person>

</family>

TLFeBOOK

TLFeBOOK

36 2 Structured Web Documents in XML

Readers should study the references between persons.

A Concluding Example

As a final example we give a DTD for the email element from the section

2.2.7:

<!ELEMENT email (head,body)>

<!ELEMENT head (from,to+,cc*,subject)>

<!ELEMENT from EMPTY>

<!ATTLIST from

name CDATA #IMPLIED

address CDATA #REQUIRED>

<!ELEMENT to EMPTY>

<!ATTLIST to

name CDATA #IMPLIED

address CDATA #REQUIRED>

<!ELEMENT cc EMPTY>

<!ATTLIST cc

name CDATA #IMPLIED

address CDATA #REQUIRED>

<!ELEMENT subject (#PCDATA)>

<!ELEMENT body (text,attachment*)>

<!ELEMENT text (#PCDATA)>

<!ELEMENT attachment EMPTY>

<!ATTLIST attachment

encoding (mime|binhex) "mime"

file CDATA #REQUIRED>

We go through some interesting parts of this DTD:

• A head element contains a from element, at least one to element, zero or

more cc elements, and a subject element, in that order.

• In from, to, and cc elements the name attribute is not required; the ad-

dress attribute on the other hand is always required.

• A body element contains a text element, possibly followed by a number

of attachment elements.

• The encoding attribute of an attachment element must have either the

value “mime” or “binhex”, the former being the default value.

TLFeBOOK

TLFeBOOK

2.3 Structuring 37

We conclude with two more remarks on DTDs. Firstly, a DTD can be inter-

preted as an Extended Backus-Naur Form (EBNF). For example, the declara-

tion

<!ELEMENT email (head,body)>

is equivalent to the rule

email ::= head body

which means that an e-mail consists of a head followed by a body. And

second, recursive definitions are possible in DTDs. For example,

<!ELEMENT bintree ((bintree root bintree)|emptytree)>

defines binary trees: a binary tree is the empty tree, or consists of a left sub-

tree, a root, and a right subtree.

2.3.2 XML Schema

XML Schema offers a significantly richer language for defining the structure

of XML documents. One of its characteristics is that its syntax is based on

XML itself. This design decision provides a significant improvement in read-

ability, but more important, it also allows significant reuse of technology. It

is no longer necessary to write separate parsers, editors, pretty printers, and

so on, to obtain a separate syntax, as was required for DTDs; any XML will

do. An even more important improvement is the possibility of reusing and

refining schemas. XML Schema allows one to define new types by extend-

ing or restricting already existing ones. In combination with an XML-based

syntax, this feature allows one to build schemas from other schemas, thus

reducing the workload. Finally, XML Schema provides a sophisticated set of

data types that can be used in XML documents (DTDs were limited to strings

only).

An XML schema is an element with an opening tag like

<xsd:schema

xmlns:xsd="http://www.w3.org/2000/10/XMLSchema"

version="1.0">

The element uses the schema of XML Schema found at the W3C Web site.

It is, so to speak, the foundation on which new schemas can be built. The

prefix xsd denotes the namespace of that schema (more on namespaces in

the next section). If the prefix is omitted in the xmlns attribute, then we are

using elements from this namespace by default:

TLFeBOOK

TLFeBOOK

38 2 Structured Web Documents in XML

<schema

xmlns="http://www.w3.org/2000/10/XMLSchema"

version="1.0">

In the following we omit the xsd prefix.

Now we turn to schema elements. Their most important contents are

the definitions of element and attribute types, which are defined using data

types.

Element Types

The syntax of element types is

<element name=". . ."/>

and they may have a number of optional attributes, such as types,

type=". . ." (more on types later)

or cardinality constraints

• minOccurs="x", where x may be any natural number (including zero)

• maxOccurs="x", where x may be any natural number (including zero)

or unbounded

minOccurs and maxOccurs are generalizations of the cardinality operators

?, *, and +, offered by DTDs. When cardinality constraints are not provided

explicitly, minOccurs and maxOccurs have value 1 by default.

Here are a few examples.

<element name="email"/>

<element name="head" minOccurs="1" maxOccurs="1"/>

<element name="to" minOccurs="1"/>

Attribute Types

The syntax of attribute types is

<attribute name=". . ."/>

and they may have a number of optional attributes, such as types,

TLFeBOOK

TLFeBOOK

2.3 Structuring 39

type=". . ."

or existence (corresponds to #OPTIONAL and #IMPLIED in DTDs),

use="x", where x may be optional or required.

or a default value (corresponds to #FIXED and default values in DTDs)

use="x" value=". . .", where x may be default or fixed

Here are examples:

<attribute name="id" type="ID" use="required"/>

<element name="speaks" type="Language" use="default"

value="en"/>

Data Types

We have already recognized the very restricted selection of data types as

a key weakness of DTDs. XML Schema provides powerful capabilities for

defining data type. First there is a variety of built-in data types. Here we list a

few:

• Numerical data types, including integer, Short, Byte, Long, Float,

Decimal

• String data types, including string, ID, IDREF, CDATA, Language

• Date and time data types, including time, Date, Month, Year

There are also user-defined data types, comprising simple data types, which can-

not use elements or attributes, and complex data types, which can use elements

and attributes. We discuss complex types first, deferring discussion of simple

data types until we talk about restriction. Complex types are defined from

already existing data types by defining some attributes (if any) and using

• sequence, a sequence of existing data type elements, the appearance of

which in a predefined order is important

• all, a collection of elements that must appear, but the order of which is

not important

• choice, a collection of elements, of which one will be chosen.

TLFeBOOK

TLFeBOOK

40 2 Structured Web Documents in XML

Here is an example:

<complexType name="lecturerType">

<sequence>

<element name="firstname" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="lastname" type="string"/>

</sequence>

<attribute name="title" type="string" use="optional"/>

</complexType>

The meaning is that an element in an XML document that is declared to be

of type lecturerType may have a title attribute; it may also include any

number of firstname elements and must include exactly one lastname

element.

Data Type Extension

Already existing data types can be extended by new elements or attributes.

As an example, we extend the lecturer data type.

<complexType name="extendedLecturerType">

<extension base="lecturerType">

<sequence>

<element name="email" type="string"

minOccurs="0" maxOccurs="1"/>

</sequence>

<attribute name="rank" type="string" use="required"/>

</extension>

</complexType>

In this example, lecturerType is extended by an email element and a

rank attribute. The resulting data type looks like this:

<complexType name="extendedLecturerType">

<sequence>

<element name="firstname" type="string"

minOccurs="0" maxOccurs="unbounded"/>

<element name="lastname" type="string"/>

<element name="email" type="string"

minOccurs="0" maxOccurs="1"/>

</sequence>

<attribute name="title" type="string" use="optional"/>

TLFeBOOK

TLFeBOOK

2.3 Structuring 41

<attribute name="rank" type="string" use="required"/>

</complexType>

A hierarchical relationship exists between the original and the extended type.

Instances of the extended type are also instances of the original type. They may

contain additional information, but neither less information, nor information

of the wrong type.

Data Type Restriction

An existing data type may also be restricted by adding constraints on certain

values. For example, new type and use attributes may be added, or the

numerical constraints of minOccurs and maxOccurs tightened.

It is important to understand that restriction is not the opposite process

from extension. Restriction is not achieved by deleting elements or attributes.

Therefore, the following hierarchical relationship still holds: Instances of the
restricted type are also instances of the original type. They satisfy at least the

constraints of the original type, and some new ones.

As an example, we restrict the lecturer data type as follows:

<complexType name="restrictedLecturerType">

<restriction base="lecturerType">

<sequence>

<element name="firstname" type="string"

minOccurs="1" maxOccurs="2"/>

</sequence>

<attribute name="title" type="string" use="required"/>

</restriction>

</complexType>

The tightened constraints are shown in boldface. Readers should compare

them with the original ones.

Simple data types can also be defined by restricting existing data types.

For example, we can define a type dayOfMonth that admits values from 1

to 31 as follows:

<simpleType name="dayOfMonth">

<restriction base="integer">

<minInclusive value="1"/>

<maxInclusive value="31"/>

</restriction>

</simpleType>

TLFeBOOK

TLFeBOOK

42 2 Structured Web Documents in XML

It is also possible to define a data type by listing all the possible values. For

example, we can define a data type dayOfWeek as follows:

<simpleType name="dayOfWeek">

<restriction base="string">

<enumeration value="Mon"/>

<enumeration value="Tue"/>

<enumeration value="Wed"/>

<enumeration value="Thu"/>

<enumeration value="Fri"/>

<enumeration value="Sat"/>

<enumeration value="Sun"/>

</restriction>

</simpleType>

A Concluding Example

Here we define an XML schema for e-Mail, so that it can be compared to

the DTD provided on page 36.

<element name="email" type="emailType"/>

<complexType name="emailType">

<sequence>

<element name="head" type="headType"/>

<element name="body" type="bodyType"/>

</sequence>

</complexType>

<complexType name="headType">

<sequence>

<element name="from" type="nameAddress"/>

<element name="to" type="nameAddress"

minOccurs="1" maxOccurs="unbounded"/>

<element name="cc" type="nameAddress"

minOccurs="0" maxOccurs="unbounded"/>

<element name="subject" type="string"/>

</sequence>

</complexType>

<complexType name="nameAddress">

<attribute name="name" type="string" use="optional"/>

<attribute name="address" type="string" use="required"/>

</complexType>

TLFeBOOK

TLFeBOOK

2.4 Namespaces 43

<complexType name="bodyType">

<sequence>

<element name="text" type="string"/>

<element name="attachment" minOccurs="0"

maxOccurs="unbounded">

<complexType>

<attribute name="encoding" use="default"

value="mime">

<simpleType>

<restriction base="string">

<enumeration value="mime"/>

<enumeration value="binhex"/>

</restriction>

</simpleType>

</attribute>

<attribute name="file" type="string"

use="required"/>

</complexType>

</element>

</sequence>

</complexType>

Note that some data types are defined separately and given names, while

others are defined within other types and defined anonymously (the types

for the attachment element and the encoding attribute). In general, if a

type is only used once, it makes sense to define it anonymously for local use.

However, this approach reaches its limitations quickly if nesting becomes too

deep.

2.4 Namespaces

One of the main advantages of using XML as a universal (meta) markup lan-

guage is that information from various sources may be accessed; in technical

terms, an XML document may use more than one DTD or schema. But since

each structuring document was developed independently, name clashes ap-

pear inevitable. If DTD A and DTD B define an element type e in different

ways, a parser that tries to validate an XML document in which an e element

appears must be told which DTD to use for validation purposes.

TLFeBOOK

TLFeBOOK

44 2 Structured Web Documents in XML

The technical solution is simple: disambiguation is achieved by using a

different prefix for each DTD or schema. The prefix is separated from the

local name by a colon:

prefix:name

As an example, consider an (imaginary) joint venture of an Australian uni-

versity, say, Griffith University, and an American university, say, University

of Kentucky, to present a unified view for online students. Each university

uses its own terminology, and there are differences. For example, lecturers

in the United States are not considered regular faculty, whereas in Australia

they are (in fact, they correspond to assistant professors in the United States).

The following example shows how disambiguation can be achieved.

<?xml version="1.0" encoding="UTF-16"?>

<vu:instructors

xmlns:vu="http://www.vu.com/empDTD"

xmlns:gu="http://www.gu.au/empDTD"

xmlns:uky="http://www.uky.edu/empDTD">

<uky:faculty

uky:title="assistant professor"

uky:name="John Smith"

uky:department="Computer Science"/>

<gu:academicStaff

gu:title="lecturer"

gu:name="Mate Jones"

gu:school="Information Technology"/>

</vu:instructors>

So, namespaces are declared within an element and can be used in that ele-

ment and any of its children (elements and attributes). A namespace decla-

ration has the form:

xmlns:prefix="location"

where location is the address of the DTD or schema. If a prefix is not speci-

fied, as in

xmlns="location"

then the location is used by default. For example, the previous example is

equivalent to the following document:

TLFeBOOK

TLFeBOOK

2.5 Addressing and Querying XML Documents 45

<?xml version="1.0" encoding="UTF-16"?>

<vu:instructors

xmlns:vu="http://www.vu.com/empDTD"

xmlns="http://www.gu.au/empDTD"

xmlns:uky="http://www.uky.edu/empDTD">

<uky:faculty

uky:title="assistant professor"

uky:name="John Smith"

uky:department="Computer Science"/>

<academicStaff

title="lecturer"

name="Mate Jones"

school="Information Technology"/>

</vu:instructors>

2.5 Addressing and Querying XML Documents

In relational databases, parts of a database can be selected and retrieved us-

ing query languages such as SQL. The same is true for XML documents, for

which there exist a number of proposals for query languages, such as XQL,

XML-QL, and XQuery.

The central concept of XML query languages is a path expression that spec-

ifies how a node, or a set of nodes, in the tree representation of the XML

document can be reached. We introduce path expressions in the form of

XPath because they can be used for purposes other than querying, namely,

for transforming XML documents.

XPath is a language for addressing parts of an XML document. It operates

on the tree data model of XML and has a non-XML syntax. The key concepts

are path expressions. They can be

• Absolute (starting at the root of the tree); syntactically they begin with

the symbol /, which refers to the root of the document, situated one level

above the root element of the document;

• Relative to a context node.

Consider the following XML document:

<?xml version="1.0" encoding="UTF-16"?>

<!DOCTYPE library PUBLIC "library.dtd">

<library location="Bremen">

TLFeBOOK

TLFeBOOK

46 2 Structured Web Documents in XML

author

title title title

bookbookbookname

Artificial
Intelligence

Smart
William

Computation
of

Theory
Web

Modern

Sevices

Artificial
Intelligence

Wise
Henry Cynthia

Singleton

author

title title

bookbookname

library

root

name

author

title

book

location

Bremen

Revised
Technology
Browser

Web

Semantic
The

Figure 2.2 Tree representation of a library document

<author name="Henry Wise">

<book title="Artificial Intelligence"/>

<book title="Modern Web Services"/>

<book title="Theory of Computation"/>

</author>

<author name="William Smart">

<book title="Artificial Intelligence"/>

</author>

<author name="Cynthia Singleton">

<book title="The Semantic Web"/>

<book title="Browser Technology Revised"/>

</author>

</library>

Its tree representation is shown in figure 2.2.

In the following we illustrate the capabilities of XPath with a few examples

of path expressions.

1. Address all author elements.

/library/author

This path expression addresses all author elements that are children of

the library element node, which resides immediately below the root.

TLFeBOOK

TLFeBOOK

2.5 Addressing and Querying XML Documents 47

Using a sequence /t1/ . . . /tn, where each ti+1 is a child node of ti, we

define a path through the tree representation.

2. An alternative solution for the previous example is

//author

Here // says that we should consider all elements in the document and

check whether they are of type author. In other words, this path expres-

sion addresses all author elements anywhere in the document. Because

of the specific structure of our XML document, this expression and the

previous one lead to the same result; however, they may lead to different

results, in general.

3. Address the location attribute nodes within library element nodes.

/library/@location

The symbol @ is used to denote attribute nodes.

4. Address all title attribute nodes within book elements anywhere in the

document, which have the value “Artificial Intelligence” (see

figure 2.3).

//book/@title="Artificial Intelligence"

5. Address all books with title “Artificial Intelligence” (see figure

2.4).

//book[@title="Artificial Intelligence"]

We call a test within square brackets a filter expression. It restricts the set of

addressed nodes.

Note the difference between this expression and the one in query 4. Here

we address book elements the title of which satisfies a certain condition.

In query 4 we collected title attribute nodes of book elements. A com-

parison of figures 2.3 and 2.4 illustrates the difference.

6. Address the first author element node in the XML document.

//author[1]

TLFeBOOK

TLFeBOOK

48 2 Structured Web Documents in XML

author

title title title

bookbookbookname

location

Henry

Computation
of

Theory
Web

Modern

Sevices

Artificial
Intelligence

Wise

Bremen

name

Artificial
Intelligence

Smart
William

name

author

title

book

library

root

book

Revised
Technology
Browser

Web

Semantic
The

Cynthia
Singleton

book

titletitle

author

Figure 2.3 Tree representation of query 4

author

title title title

bookbookbookname

location

Bremen

Computation
of

Theory
Web

Modern

Sevices

Artificial
Intelligence

Wise
Henry

name

Artificial
Intelligence

Smart
William

name

author

title

book

library

root

book

Revised
Technology
Browser

Web

Semantic
The

Cynthia
Singleton

author

title title

book

Figure 2.4 Tree representation of query 5

TLFeBOOK

TLFeBOOK

2.6 Processing 49

7. Address the last book element within the first author element node in

the document.

//author[1]/book[last()]

8. Address all book element nodes without a title attribute.

//book[not @title]

These examples are meant to give a feeling of the expressive power of path

expressions. In general, a path expression consists of a series of steps, sep-

arated by slashes. A step consists of an axis specifier, a node test, and an

optional predicate.

• An axis specifier determines the tree relationship between the nodes to be

addressed and the context node. Examples are parent, ancestor, child (the

default), sibling, attribute node. // is such an axis specifier; it denotes

descendant or self.

• A node test specifies which nodes to address. The most common node tests

are element names (which may use namespace information), but there

are others. For example, * addresses all element nodes, comment() all

comment nodes, and so on.

• Predicates (or filter expressions) are optional and are used to refine the set of

addressed nodes. For example, the expression [1] selects the first node,

[position()=last()] selects the last node, [position() mod 2 =

0] the even nodes, and so on.

We have only presented the abbreviated syntax, XPath actually has a more

complicated full syntax. References are found at the end of this chapter.

2.6 Processing

So far we have not provided any information about how XML documents

can be displayed. Such information is necessary because unlike HTML doc-

uments, XML documents do not contain formatting information. The advan-

tage is that a given XML document can be presented in various ways, when

different style sheets are applied to it. For example, consider the XML element

TLFeBOOK

TLFeBOOK

50 2 Structured Web Documents in XML

<author>

<name>Grigoris Antoniou</name>

<affiliation>University of Bremen</affiliation>

<email>ga@tzi.de</email>

</author>

The output might look like the following, if a style sheet is used:

Grigoris Antoniou

University of Bremen

ga@tzi.de

Or it might appear as follows, if a different style sheet is used:

Grigoris Antoniou

University of Bremen

ga@tzi.de

Style sheets can be written in various languages, for example, in CSS2 (cas-

cading style sheets level 2). The other possibility is XSL (extensible stylesheet

language).

XSL includes both a transformation language (XSLT) and a formatting lan-

guage. Each of these is, of course, an XML application. XSLT specifies rules

with which an input XML document is transformed to another XML doc-

ument, an HTML document, or plain text. The output document may use

the same DTD or schema as the input document, or it may use a completely

different vocabulary.

XSLT (XSL transformations) can be used independently of the format-

ting language. Its ability to move data and metadata from one XML rep-

resentation to another makes it a most valuable tool for XML-based applica-

tions. Generally XSLT is chosen when applications that use different DTDs or

schemas need to communicate. XSLT is a tool that can be used for machine-

processing of content without any regard to displaying the information for

people to read. Despite this fact, in the following we use XSLT only to display

XML documents.

One way of defining the presentation of an XML document is to trans-

form it into an HTML document. Here is an example. We define an XSLT

document that will be applied to the author example.

TLFeBOOK

TLFeBOOK

2.6 Processing 51

<?xml version="1.0" encoding="UTF-16"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/author">

<html>

<head><title>An author< /title></head>

<body bgcolor="white">

<xsl:value-of select="name"/>

<xsl:value-of select="affiliation"/>

<i><xsl:value-of select="email"/></i>

</body>

</html>

</xsl:template>

</xsl:stylesheet>

The output of this style sheet, applied to the previous XML document, pro-

duces the following HTML document (which now defines the presentation):

<html>

<head><title>An author< /title></head>

<body bgcolor="white">

Grigoris Antoniou

University of Bremen

<i>ga@tzi.de</i>

</body>

</html>

Let us make a few observations. XSLT documents are XML documents. So

XSLT resides on top of XML (that is, it is an XML application). The XSLT

document defines a template; in this case an HTML document, with some

placeholders for content to be inserted (see figure 2.5).

In the previous XSLT document, xsl:value-of retrieves the value of

an element and copies it into the output document. That is, it places some

content into the template.

Now suppose we had an XML document with details of several authors. It

would clearly be a waste of effort to treat each author element separately. In

such cases, a special template is defined for author elements, which is used

by the main template. We illustrate this approach referring to the following

input document:

TLFeBOOK

TLFeBOOK

52 2 Structured Web Documents in XML

<html>

<head><title>An author</title></head>

<body bgcolor="white">

 ...

 ...

 <i>...</i>

</body>

</html>

Figure 2.5 A template

<authors>

<author>

<name>Grigoris Antoniou</name>

<affiliation>University of Bremen</affiliation>

<email>ga@tzi.de</email>

</author>

<author>

<name>David Billington</name>

<affiliation>Griffith University</affiliation>

<email>david@gu.edu.net</email>

</author>

</authors>

We define the following XSLT document:

<?xml version="1.0" encoding="UTF-16"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<html>

<head><title>Authors< /title></head>

<body bgcolor="white">

<xsl:apply-templates select="authors"/>

<!-- Apply templates for AUTHORS children -->

</body>

</html>

</xsl:template>

TLFeBOOK

TLFeBOOK

2.6 Processing 53

<xsl:template match="authors">

<xsl:apply-templates select="author"/>

</xsl:template>

<xsl:template match="author">

<h2><xsl:value-of select="name"/></h2>

Affiliation:<xsl:value-of select="affiliation"/>

Email: <xsl:value-of select="email"/>

<p>

</xsl:template>

</xsl:stylesheet>

The output produced is

<html>

<head><title>Authors< /title></head>

<body bgcolor="white">

<h2>Grigoris Antoniou</h2>

Affiliation: University of Bremen

Email: ga@tzi.de

<p>

<h2>David Billington</h2>

Affiliation: Griffith University

Email: david@gu.edu.net

<p>

</body>

</html>

The xsl:apply-templates element causes all children of the context

node to be matched against the selected path expression. For example, if the

current template applies to / (that is, if the current context node is the root),

then the element xsl:apply-templates applies to the root element, in

this case, the authors element (remember that / is located above the root

element). And if the current context node is the authors element, then the

element xsl:apply-templates select="author" causes the template

for the author elements to be applied to all author children of the au-

thors element.

It is good practice to define a template for each element type in the doc-

ument. Even if no specific processing is applied to certain elements, in our

example authors, the xsl:apply-templates element should be used.

TLFeBOOK

TLFeBOOK

54 2 Structured Web Documents in XML

That way, we work our way from the root to the leaves of the tree, and all

templates are indeed applied.

Now we turn our attention to attributes. Suppose we wish to process the

element

<person firstname="John" lastname="Woo"/>

with XSLT. Let us attempt the easiest task imaginable, a transformation of

the element to itself. One might be tempted to write

<xsl:template match="person">

<person

firstname="<xsl:value-of select="@firstname">"

lastname="<xsl:value-of select="@lastname">"/>

</xsl:template>

However, this is not a well-formed XML document because tags are not al-

lowed within the values of attributes. But the intention is clear; we wish to

add attribute values into the template. In XSLT, data enclosed in curly brack-

ets take the place of the xsl:value-of element. The correct way to define

a template for this example is as follows:

<xsl:template match="person">

<person

firstname="{@firstname}"

lastname="{@lastname}"/>

</xsl:template>

Finally we give a transformation example from one XML document to an-

other, which does not specify the display. Again we use the authors docu-

ment as input and define an XSLT document as follows:

<?xml version="1.0" encoding="UTF-16"?>

<xsl:stylesheet version="1.0"

xmlns:xsl="http://www.w3.org/1999/XSL/Transform">

<xsl:template match="/">

<?xml version="1.0" encoding="UTF-16"?>

<authors>

<xsl:apply-templates select="authors"/>

</authors>

</xsl:template>

TLFeBOOK

TLFeBOOK

2.7 Summary 55

<xsl:template match="authors">

<author>

<xsl:apply-templates select="author"/>

</author>

</xsl:template>

<xsl:template match="author">

<name><xsl:value-of select="name"/></name>

<contact>

<institution>

<xsl:value-of select="affiliation"/>

</institution>

<email><xsl:value-of select="email"/></email>

</contact>

</xsl:template>

</xsl:stylesheet>

The output document should be obvious. We present its tree representation

in figure 2.6 to illustrate the tree transformation character of XSLT.

2.7 Summary

• XML is a metalanguage that allows users to define markup for their doc-

uments using tags.

• Nesting of tags introduces structure. The structure of documents can be

enforced using schemas or DTDs.

• XML separates content and structure from formatting.

• XML is the de facto standard for the representation of structured informa-

tion on the Web and supports machine processing of information.

• XML supports the exchange of structured information across different ap-

plications through markup, structure, and transformations.

• XML is supported by query languages.

Some points discussed in subsequent chapters include

• The nesting of tags does not have standard meaning.

TLFeBOOK

TLFeBOOK

56 2 Structured Web Documents in XML

name affilation email

author

Grigoris
Antoniou

University
of Bremen

ga@tzi.de

name affilation email

author

David
Billington

Griffith david@gu.edu.net
University

root

authors

name

author author

contact

emailinstitute

Griffith
University

david@gu.edu.net

name

David
Billington

contact

emailinstitute

University
of Bremen

ga@tzi.de

root

authors

Grigoris
Antoniou

Figure 2.6 XSLT as tree transformation

TLFeBOOK

TLFeBOOK

Suggested Reading 57

• The semantics of XML documents is not accessible to machines, only to

people.

• Collaboration and exchange are supported if there is an underlying

shared understanding of the vocabulary. XML is well-suited for close col-

laboration, where domain- or community-based vocabularies are used. It

is not so well-suited for global communication.

Suggested Reading

Generally the official W3C documents are found at <http://www.w3.org>.

Here we give a few of the most important links, together with some other

useful references.

• T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, eds. Extensible

Markup Language (XML) 1.0, 2nd ed, W3C Recommendation, October

6, 2000. <http://www.w3.org/TR/REC-xml>.

• T. Bray, D. Hollander, A. Layman, eds. Namespaces in XML, January 14,

1999. <http://www.w3.org/TR/REC-xml-names/>.

• J. Clark, S. DeRose, eds. XML Path Language (XPath) Version 1.0, W3C

Recommendation, November 16, 1999.

<http://www.w3.org/TR/xpath>.

• S. Adler et al. Extensible Stylesheet Language (XSL) Version 1.0, W3C

Recommendation, October 15, 2001. <http://www.w3.org/TR/xsl/>.

• J. Clark, ed. XSL Transformations (XSLT) Version 1.0, W3C Recommenda-

tion, November 16, 1999. <http://www.w3.org/TR/xslt>.

Recent trends in XML querying may be found at

• <http://www.w3.org/XML/Query.html>.

XML has attracted a lot of attention in industry, and many books covering

the technicalities in depth exist. Two books for further reading on XML are

• E. R. Harold. XML Bible, 2nd ed. New York: Wiley (Hungry Minds), 2001.

• D. Mercer. XML: A Beginner’s Guide. New York: McGraw Hill (Osborne),

2001.

TLFeBOOK

TLFeBOOK

58 2 Structured Web Documents in XML

There are several sites with teaching material on XML and related technolo-

gies:

• <http://www.xml.com>, where the following papers may be found:

– N. Walsh. A Technical Introduction to XML. October 3, 1998.

– T. Bray. XML Namespaces by Example. January 19, 1999.

– E. van der Vlist. Using W3C XML Schema. October 17, 2001.

– G. Holman. What Is XSLT? (I): The Context of XSL Transformations

and the XML Path Language. August 16, 2000.

• <http://www.w3schools.com>

• <http://www.topxml.com>

• <http://www.zvon.org>

• <http://www.xslt.com>

Exercises and Projects

2.1 In our e-mail example we specified the body of an e-mail to contain

exactly one text and a number of attachments. Modify the schema to

allow for an arbitrary number of texts and attachments in any order.

2.2 Search the Web for XML applications, with keywords such as “XML

DTD” or “XML schema”.

2.3 Read the official W3C documents on namespaces, XPath, XSL, and

XSLT. Identify some issues that were not covered in this chapter, in

particular, the general notation and capabilities of XPath. Write small

documents that use these new aspects.

2.4 In this chapter, we did not cover links, a crucial ingredient of Web

pages. XLink provides linking capabilities that go beyond HTML links.

Check out XLink on the official W3C pages. Note that simple links can

be created as follows:

<mylink xmlns:xlink=http://www.w3.org/1999/xlink"

xlink:type="simple" xlink:href="target.html">

Click here </mylink>

TLFeBOOK

TLFeBOOK

Exercises and Projects 59

2.5 Discuss the relevance of XSLT for defining views on Web sites (“views”

hide certain parts of Web sites and display only those parts meant for

the particular user’s viewing).

2.6 Draw a comparison between document markup using XML and using

TeX/LaTeX, also between XML transformations and BibTeX.

For the following projects you are asked to “design a vocabulary”. This

includes designing a vocabulary, writing a corresponding DTD or schema,

writing sample XML documents, and transforming these documents into

HTML and viewing them in a Web browser.

2.7 Design a vocabulary to model (parts of) your workplace. For example,

if you are at a university, design a vocabulary about courses, teaching

staff, rooms, publications, and so on.

2.8 For one of your hobbies, design a vocabulary for exchanging informa-

tion with others who share your interest.

2.9 Perhaps you read books of certain categories? Design a vocabulary for

describing them and communicating about them with other people.

2.10 Are you an investor? Design a vocabulary about available investment

options and their properties (for example, risk, return, investor age,

investor character).

2.11 Do you like cooking? Design a vocabulary about foods, tastes, and

recipes.

2.12 For each of the above vocabularies, consider writing a second XSL style

sheet, this time not translating the XML to HTML but instead to a

different markup language, such as WML, the markup language for

WAP-enabled mobile telephones. Such a style sheet should be geared

toward displaying the information on small mobile devices with lim-

ited bandwidth and limited screen space. You could use one of the

freely available WAP simulators to display the results.

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

3 Describing Web Resources in RDF

3.1 Introduction

XML is a universal metalanguage for defining markup. It provides a uni-

form framework, and a set of tools like parsers, for interchange of data and

metadata between applications. However, XML does not provide any means

of talking about the semantics (meaning) of data. For example, there is no

intended meaning associated with the nesting of tags; it is up to each appli-

cation to interpret the nesting. Let us illustrate this point using an example.

Suppose we want to express the following fact:

David Billington is a lecturer of Discrete Mathematics.

There are various ways of representing this sentence in XML. Three possibil-

ities are

<course name="Discrete Mathematics">

<lecturer>David Billington</lecturer>

</course>

<lecturer name="David Billington">

<teaches>Discrete Mathematics</teaches>

</lecturer>

<teachingOffering>

<lecturer>David Billington</lecturer>

<course>Discrete Mathematics</course>

</teachingOffering>

TLFeBOOK

TLFeBOOK

62 3 Describing Web Resources in RDF

Note that the first two formalizations include essentially an opposite nesting

although they represent the same information. So there is no standard way

of assigning meaning to tag nesting.

Although often called a “language” (and we commit this sin ourselves

in this book), RDF is essentially a data-model. Its basic building block is an

object-attribute-value triple, called a statement. The preceding sentence about

Billington is such a statement. Of course, an abstract data model needs a con-

crete syntax in order to be represented and transmitted, and RDF has been

given a syntax in XML. As a result, it inherits the benefits associated with

XML. However, it is important to understand that other syntactic represen-

tations of RDF, not based on XML, are also possible; XML-based syntax is not

a necessary component of the RDF model.

RDF is domain-independent in that no assumptions about a particular do-

main of use are made. It is up to users to define their own terminology in a

schema language called RDF Schema (RDFS). The name RDF Schema is now

widely regarded as an unfortunate choice. It suggests that RDF Schema has a

similar relation to RDF as XML Schema has to XML, but in fact this is not the

case. XML Schema constrains the structure of XML documents, whereas RDF

Schema defines the vocabulary used in RDF data models. In RDFS we can

define the vocabulary, specify which properties apply to which kinds of ob-

jects and what values they can take, and describe the relationships between

objects. For example, we can write

Lecturer is a subclass of academic staff member.

This sentence means that all lecturers are also academic staff members. It is

important to understand that there is an intended meaning associated with

“is a subclass of”. It is not up to the application to interpret this term; its in-

tended meaning must be respected by all RDF processing software. Through

fixing the semantics of certain ingredients, RDF/RDFS enables us to model

particular domains.

We illustrate the importance of RDF Schema with an example. Consider

the following XML elements:

<academicStaffMember>Grigoris Antoniou</academicStaffMember>

<professor>Michael Maher</professor>

<course name="Discrete Mathematics">

<isTaughtBy>David Billington</isTaughtBy>

</course>

TLFeBOOK

TLFeBOOK

3.2 RDF: Basic Ideas 63

Suppose we want to collect all academic staff members. A path expression

in Xpath might be

//academicStaffMember

The result is only Grigoris Antoniou. While correct from the XML viewpoint,

this answer is semantically unsatisfactory. Human readers would have also

included Michael Maher and David Billington in the answer because

• All professors are academic staff members (that is, professor is a sub-

class of academicStaffMember).

• Courses are only taught by academic staff members.

This kind of information makes use of the semantic model of the particular

domain, and cannot be represented in XML or in RDF but is typical of know-

ledge written in RDF Schema. Thus RDFS makes semantic information machine-
accessible, in accordance with the Semantic Web vision.

In this chapter, sections 3.2 and 3.3 discuss RDF: the basic ideas of RDF and

its XML-based syntax, and sections 3.4 and 3.5 introduce the basic concepts

and the language of RDF Schema.

Section 3.6 shows the definition of some elements of the namespaces of

RDF and RDF Schema. Section 3.7 presents an axiomatic semantics for RDF

and RDFS. This semantics uses predicate logic and formalizes the intuitive

meaning of the modeling primitives of the languages.

Section 3.8 provides a direct semantics based on inference rules, and sec-

tion 3.9 is devoted to the querying of RDF/RDFS documents using RQL.

3.2 RDF: Basic Ideas

The fundamental concepts of RDF are resources, properties and statements.

3.2.1 Resources

We can think of a resource as an object, a “thing” we want to talk about.

Resources may be authors, books, publishers, places, people, hotels, rooms,

search queries, and so on. Every resource has a URI, a Universal Resource

Identifier. A URI can be a URL (Unified Resource Locator, or Web address)

or some other kind of unique identifier; note that an identifier does not nec-

essarily enable access to a resource. URI schemes have been defined not only

TLFeBOOK

TLFeBOOK

64 3 Describing Web Resources in RDF

for web-locations but also for such diverse objects as telephone numbers,

ISBN numbers and geographic locations. There has been a long discussion

about the nature of URIs, even touching philosophical questions (for exam-

ple, what is an appropriate unique identifier for a person?), but we will not

go into into detail here. In general, we assume that a URI is the identifier of

a Web resource.

3.2.2 Properties

Properties are a special kind of resources; they describe relations between

resources, for example “written by”, “age”, “title”, and so on. Properties in

RDF are also identified by URIs (and in practice by URLs). This idea of using

URIs to identify “things” and the relations between is quite important. This

choice gives us in one stroke a global, worldwide, unique naming scheme.

The use of such a scheme greatly reduces the homonym problem that has

plagued distributed datarepresentation until now.

3.2.3 Statements

Statements assert the properties of resources. A statement is an object-

attribute-value triple, consisting of a resource, a property, and a value. Val-

ues can either be resources or literals. Literals are atomic values (strings), the

structure of which we do not discuss further.

3.2.4 Three Views of a Statement

An example of a statement is

David Billington is the owner of the Web page
http://www.cit.gu.edu.au/∼db.

The simplest way of interpreting this statement is to use the definition and

consider the triple

(“David Billington”, http://www.mydomain.org/site-owner,

http://www.cit.gu.edu.au/∼db).

We can think of this triple (x, P, y) as a logical formula P (x, y), where the

binary predicate P relates the object x to the object y. In fact, RDF offers only
binary predicates (properties). Note that the property “site-owner” and one of

TLFeBOOK

TLFeBOOK

3.2 RDF: Basic Ideas 65

www.cit.gu.edu.au/~db David Billington
site−owner

Figure 3.1 Graph representation of triple

www.cit.gu.edu.au/~db David Billington

www.cit.gu.edu.au/~arock/defeasible/Defeasible.cgiAndrew Rock

site−owner

uses

phone

site−owner

3875 507

Figure 3.2 A semantic net

the two objects are identified by URLs, whereas the other object is simply

identified by a string.

A second view is graph-based. Figure 3.1 shows the graph corresponding

to the preceding statement. It is a directed graph with labeled nodes and

arcs; the arcs are directed from the resource (the subject of the statement) to

the value (the object of the statement). This kind of graph is known in the

Artificial Intelligence community as a semantic net .

As we already said, the value of a statement may be a resource. Therefore,

it may be linked to other resources. Consider the following triples:

(http://www.cit.gu.edu.au/∼db, http://www.mydomain.org/site-

owner,

“David Billington”)

(“David Billington”, http://www.mydomain.org/phone, “3875507”)

(“David Billington”, http://www.mydomain.org/uses,

http://www.cit.gu.edu.au/∼arock/defeasible/Defeasible.cgi)

(“www.cit.gu.edu.au/∼arock/defeasible/Defeasible.cgi”,

http://www.mydomain.org/site-owner, “Andrew Rock”)

The graphic representation is found in figure 3.2.

Graphs are a powerful tool for human understanding. But the Semantic

Web vision requires machine-accessible and machine-processable represen-

tations.

TLFeBOOK

TLFeBOOK

66 3 Describing Web Resources in RDF

Therefore, there is a third representation possibility based on XML. Ac-

cording to this possibility, an RDF document is represented by an XML ele-

ment with the tag rdf:RDF. The content of this element is a number of de-
scriptions, which use rdf:Description tags. Every description makes a

statement about a resource, which is identified in one of three different ways:

• an about attribute, referencing an existing resource

• an ID attribute, creating a new resource

• without a name, creating an anonymous resource

We will discuss the XML-based syntax of RDF in section 3.3, here we just

show the representation of our first statement:

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:mydomain="http://www.mydomain.org/my-rdf-ns">

<rdf:Description rdf:about="http://www.cit.gu.edu.au/~db">

<mydomain:site-owner>

David Billington

</mydomain:site-owner>

</rdf:Description>

</rdf:RDF>

The first line specifies that we are using XML. In the following examples we

omit this line, but keep in mind that it must be present in any RDF document

with XML-based syntax.

The rdf:Description element makes a statement about the resource

http://www.cit.gu.edu.au/∼db. Within the description the property

is used as a tag, and the content is the value of the property.

The descriptions are given in a certain order, in other words the XML syn-

tax imposes a serialization. The order of descriptions (or resources) is not
significant according to the abstract model of RDF. This again shows that the

graph model is the real data model of RDF and that XML is just a possible

serial representation of the graph.

TLFeBOOK

TLFeBOOK

3.2 RDF: Basic Ideas 67

3.2.5 Reification

In RDF it is possible to make statements about statements, such as

Grigoris believes that David Billington is the creator of the Web page

http://www.cit.gu.edu.au/∼db.

This kind of statement can be used to describe belief or trust in in other state-

ments, which is important in some kinds of applications. The solution is to

assign a unique identifier to each statement, which can be used to refer to the

statement. RDF allows this using, a reification mechanism (see section 3.3.6).

The key idea is to introduce an auxiliary object, say, belief1, and relate it

to each of the three parts of the original statement through the properties

subject, predicate and object. In the preceding example the subject of belief1
would be David Billington, the predicate would be creator, and the object

http://www.cit.gu.edu.au/∼db. Note that this rather cumbersome approach is

necessary because there are only triples in RDF; therefore we cannot add an

identifier directly to a triple (then it would be a quadruple).

3.2.6 Data Types

Consider the telephone number “3875507”. A program reading this RDF

data model cannot know if the literal “3875507” is to be interpreted as an

integer (an object on which it would make sense to, say, divide it by 17)

or as a string, or indeed if it is a integer, whether it is in decimal or octal

representation. A program can only know how to interpret this resource if

the application is explicitly given the information that the literal is intended

to represent a number, and which number the literal is supposed to represent.

The common practice in programming languages or database systems is to

provide this kind of information by associating a data type with the literal,

in this case, a data type like decimal or integer. In RDF, typed literals are used

to provide this kind of information.
Using a typed literal, we could describe David Billington’s age as being

the integer number 27 using the triple:

(“David Billington”, http://www.mydomain.org/age,

“27”^^http://www.w3.org/2001/XMLSchema#integer)

This example shows two things: the use of the ^^-notation to indicate the

type of a literal,1 and the use of data types that are predefined by XML

1. This notation will take a different form in the XML-based syntax described in section 3.3.

TLFeBOOK

TLFeBOOK

68 3 Describing Web Resources in RDF

player1

player2

chessGame

Z

Y

X

referee

Figure 3.3 Representation of a tertiary predicate

Schema. Strictly speaking, the use of any externally defined data typing

scheme is allowed in RDF documents, but in practice, the most widely used

data typing scheme will be the one by XML Schema. XML Schema predefines

a large range of data types, including Booleans, integers and floating-point

numbers, times and dates.

3.2.7 A Critical View of RDF

We have already pointed out that RDF uses only binary properties. This

restriction seems quite serious because often we use predicates with more

than two arguments. Luckily, such predicates can be simulated by a number

of binary predicates. We illustrate this technique for a predicate referee with

three arguments. The intuitive meaning of referee(X, Y, Z) is:

X is the referee in a chess game between players Y and Z.

We now introduce a new auxiliary resource chessGame and the binary pred-

icates ref, player1, and player2. Then we can represent referee(X, Y, Z) as fol-

lows:

ref(chessGame, X)

player1(chessGame, Y)

player2(chessGame, Z)

The graphic representation is shown in figure 3.3. Although the solution is

sound, the problem remains that the original predicate with three arguments

was simpler and more natural.

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 69

Another problem with RDF has to do with the handling of properties. As

mentioned, properties are special kinds of resources. Therefore, properties

themselves can be used as the object in an object-attribute-value triple (state-

ment). While this possibility offers flexibility, it is rather unusual for model-

ing languages, and can be confusing for modelers.

Also, the reification mechanism is quite powerful and appears misplaced

in a simple language like RDF. Making statements about statements intro-

duces a level of complexity that is not necessary for a basic layer of the Se-

mantic Web. Instead, it would have appeared more natural to include it in

more powerful layers, which provide richer representational capabilities.

Finally, the XML-based syntax of RDF is well suited for machine process-

ing but is not particularly human-friendly.

In summary, RDF has its idiosyncrasies and is not an optimal modeling

language. However, we have to live with the fact that it is already a de facto

standard. In the history of technology, often the better technology was not

adopted. For example, the video system VHS was probably the technically

weakest of the three systems that were available on the market at one time

(the others were Beta and Video 2000), not to mention hardware and software

standards in personal computing, which were arguably not adopted because

of their technical merit.

On the positive side, it is true that RDF has sufficient expressive power

(at least as a basis on which more layers can be built). And ultimately the

Semantic Web will not be programmed in RDF, but rather with user-friendly

tools that will automatically translate higher representations into RDF. Using

RDF offers the benefit that information maps unambiguously to a model.

And since it is likely that RDF will become a standard, the benefits of drafting

data in RDF can be seen as similar to drafting information in HTML in the

early days of the Web.

3.3 RDF: XML-Based Syntax

An RDF document consists of an rdf:RDF element, the content of which is

a number of descriptions. For example, consider the domain of university

courses and lecturers at Griffith University in the year 2001.

<!DOCTYPE owl [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

]>

TLFeBOOK

TLFeBOOK

70 3 Describing Web Resources in RDF

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:xsd="http://www.w3.org/2001/XLMSchema#"

xmlns:uni="http://www.mydomain.org/uni-ns#">

<rdf:Description rdf:about="949352">

<uni:name>Grigoris Antoniou</uni:name>

<uni:title>Professor</uni:title>

</rdf:Description>

<rdf:Description rdf:about="949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

<uni:age rdf:datatype="&xsd;integer">27</uni:age>

</rdf:Description>

<rdf:Description rdf:about="949111">

<uni:name>Michael Maher</uni:name>

<uni:title>Professor</uni:title>

</rdf:Description>

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy>David Billington</uni:isTaughtBy>

</rdf:Description>

<rdf:Description rdf:about="CIT1112">

<uni:courseName>Concrete Mathematics</uni:courseName>

<uni:isTaughtBy>Grigoris Antoniou</uni:isTaughtBy>

</rdf:Description>

<rdf:Description rdf:about="CIT2112">

<uni:courseName>Programming III</uni:courseName>

<uni:isTaughtBy>Michael Maher</uni:isTaughtBy>

</rdf:Description>

<rdf:Description rdf:about="CIT3112">

<uni:courseName>Theory of Computation</uni:courseName>

<uni:isTaughtBy>David Billington</uni:isTaughtBy>

</rdf:Description>

<rdf:Description rdf:about="CIT3116">

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 71

<uni:courseName>Knowledge Representation</uni:courseName>

<uni:isTaughtBy>Grigoris Antoniou</uni:isTaughtBy>

</rdf:Description>

</rdf:RDF>

Let us make a few comments. First, the namespace mechanism of XML is

used, but in an expanded way. In XML namespaces are only used for dis-

ambiguation purposes. In RDF external namespaces are expected to be RDF

documents defining resources, which are then used in the importing RDF

document. This mechanism allows the reuse of resources by other people

who may decide to insert additional features into these resources. The result

is the emergence of large, distributed collections of knowledge.

Second, the rdf:about attribute of the element rdf:Description is

strictly speaking equivalent meaning to that of an ID attribute, but it is often

used to suggest that the object about which a statement is made has already

been “defined” elsewhere. Formally speaking, a set of RDF statements to-

gether simply forms a large graph, relating things to other things through

properties, and there is no such thing as “defining” an object in one place

and referring to it elsewhere. Nevertheless, in the serialized XML syntax, it is

sometimes useful (if only for human readability) to suggest that one location

in the XML serialization is the “defining” location, while other locations state

“additional” properties about an object that has been “defined” elsewhere.

In fact the preceding example is slightly misleading. If we wanted to be

absolutely correct, we should replace all occurrences of course and staff ID’s,

such as 949352 and CIT3112, by references to the external namespace, for

example

<rdf:Description

rdf:about="http://www.mydomain.org/uni-ns/#CIT3112">

We have refrained from doing so to improve readability of our initial exam-

ple because we are primarily interested here in the ideas of RDF. However,

readers should be aware that this would be the precise way of writing a cor-

rect RDF document.

The content of rdf:Description elements are called property elements.

For example, in the description

<rdf:Description rdf:about="CIT3116">

<uni:courseName>Knowledge Representation</uni:courseName>

<uni:isTaughtBy>Grigoris Antoniou</uni:isTaughtBy>

</rdf:Description>

TLFeBOOK

TLFeBOOK

72 3 Describing Web Resources in RDF

the two elements uni:courseName and uni:isTaughtBy both define

property-value pairs for CIT3116. The preceding description corresponds

to two RDF statements.

Third, the attribute rdf:datatype="&xsd;integer" is used to indi-

cate the data type of the value of the age property. Even though the age

property has been defined to have "&xsd;integer" as its range, it is still

required to indicate the type of the value of this property each time it is used.

This is to ensure that an RDF processor can assign the correct type of the

property value even if it has not seen the corresponding RDF Schema defini-

tion before (a scenario that is quite likely to occur in the unrestricted World

Wide Web).

Finally, the property elements of a description must be read conjunctively.

In the preceding example, the subject is called “Knowledge Representation”

and is taught by Grigoris Antoniou.

3.3.1 The rdf:resource Attribute

The preceding example was not satisfactory in one respect: the relationships

between courses and lecturers were not formally defined but existed implic-

itly through the use of the same name. To a machine, the use of the same

name may just be a coincidence: for example, the David Billington who

teaches CIT3112 may not be the same person as the person with ID 949318

who happens to be called David Billington. What we need instead is a for-

mal specification of the fact that, for example, the teacher of CIT1111 is the

staff member with number 949318, whose name is David Billington. We can

achieve this effect using an rdf:resource attribute:

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy rdf:resource="949318"/>

</rdf:Description>

<rdf:Description rdf:about="949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Description>

We note that in case we had defined the resource of the staff member with ID

number 939318 in the RDF document using the ID attribute instead of the

about attribute, we would have had to use a # symbol in front of 949318 in

the value of rdf:resource:

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 73

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy rdf:resource="#949318"/>

</rdf:Description>

<rdf:Description rdf:ID="#949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Description>

The same is true for externally defined resources: For example, we refer to
the externally defined resource CIT1111 by using

http://www.mydomain.org/uni-ns/#CIT1111

as the value of rdf:about, where www.mydomain.org/uni-ns/ is the

URI where the definition of CIT1111 is found. In other words, a descrip-

tion with an ID defines a fragment URI, which can be used to reference the

defined description.

3.3.2 Nested Descriptions

Descriptions may be defined within other descriptions. For example, we may

replace the descriptions of the previous example with the following, nested

description:

<rdf:Description rdf:about="CIT1111">

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy>

<rdf:Description rdf:about="949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Description>

</uni:isTaughtBy>

</rdf:Description>

Other courses, such as CIT3112, can still refer to the new resource 949318. In

other words, although a description may be defined within another descrip-

tion, its scope is global.

3.3.3 The rdf:type Element

In our examples so far, the descriptions fall into two categories: courses and

lecturers. This fact is clear to human readers, but has not been formally de-

TLFeBOOK

TLFeBOOK

74 3 Describing Web Resources in RDF

clared anywhere, so it is not accessible to machines. In RDF it is possible to

make such statements using the rdf:type element. Here are a couple of

descriptions that include typing information.

<rdf:Description rdf:about="CIT1111">

<rdf:type rdf:resource="&uni;course"/>

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy rdf:resource="949318"/>

</rdf:Description>

<rdf:Description rdf:about="949318">

<rdf:type rdf:resource="&uni;lecturer"/>

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Description>

Note that rdf:type allows us to introduce some structure to the RDF docu-

ment. More structuring possibilities are introduced later in this chapter when

we discuss RDF Schema.

3.3.4 Abbreviated Syntax

It is possible to abbreviate the syntax of RDF documents. The simplification

rules are

1. Childless property elements within description elements may be replaced

by XML attributes, as in XML.

2. For description elements with a typing element we can use the name spec-

ified in the rdf:type element instead of rdf:Description.

For example, the description

<rdf:Description rdf:ID="CIT1111">

<rdf:type rdf:resource="&uni;course"/>

<uni:courseName>Discrete Mathematics</uni:courseName>

<uni:isTaughtBy rdf:resource="#949318"/>

</rdf:Description>

is (according to rule 1 applied to uni:courseName) equivalent to

<rdf:Description rdf:ID="CIT1111"

uni:courseName="Discrete Mathematics">

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 75

<rdf:type rdf:resource="&uni;course"/>

<uni:isTaughtBy rdf:resource="#949318"/>

</rdf:Description>

and also (by rule 2) to

<uni:course rdf:ID="CIT1111"

uni:courseName="Discrete Mathematics">

<uni:isTaughtBy rdf:resource="#949318"/>

</uni:course>

Keep in mind that these three representations are just syntactic variations of

the same RDF statement. That is, they are equivalent according to the RDF

data model, although they have different XML syntax.

3.3.5 Container Elements

Container elements are used to collect a number of resources or attributes

about which we want to make statements as a whole. In our example, we may

wish to talk about the courses given by a particular lecturer. Three types of

containers are available in RDF:

rdf:Bag an unordered container, which may contain multiple occurrences

(not true for a set). Typical examples are members of the faculty board

and documents in a folder — examples where an order is not imposed.

rdf:Seq an ordered container, which may contain multiple occurrences.

Typical examples are the modules of a course, items on an agenda, an

alphabetized list of staff members — examples where an order is imposed.

rdf:Alt a set of alternatives. Typical examples are the document home

and mirrors, and translations of a document in various languages.

The content of container elements are elements which are named rdf:_1,

rdf:_2, and so on. Let us reformulate our entire RDF document.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:uni="http://www.mydomain.org/uni-ns#">

<uni:lecturer rdf:about="949352"

uni:name="Grigoris Antoniou"

uni:title="Professor">

TLFeBOOK

TLFeBOOK

76 3 Describing Web Resources in RDF

<uni:coursesTaught>

<rdf:Bag>

<rdf:_1 rdf:resource="CIT1112"/>

<rdf:_2 rdf:resource="CIT3116"/>

</rdf:Bag>

</uni:coursesTaught>

</uni:lecturer>

<uni:lecturer rdf:about="949318"

uni:name="David Billington"

uni:title="Associate Professor">

<uni:coursesTaught>

<rdf:Bag>

<rdf:_1 rdf:resource="CIT1111"/>

<rdf:_2 rdf:resource="CIT3112"/>

</rdf:Bag>

</uni:coursesTaught>

</uni:lecturer>

<uni:lecturer rdf:about="949111"

uni:name="Michael Maher"

uni:title="Professor">

<uni:coursesTaught rdf:resource="CIT2112"/>

</uni:lecturer>

<uni:course rdf:about="CIT1111"

uni:courseName="Discrete Mathematics">

<uni:isTaughtBy rdf:resource="949318"/>

</uni:course>

<uni:course rdf:about="CIT1112"

uni:courseName="Concrete Mathematics">

<uni:isTaughtBy rdf:resource="949352"/>

</uni:course>

<uni:course rdf:about="CIT2112"

uni:courseName="Programming III">

<uni:isTaughtBy rdf:resource="949111"/>

</uni:course>

<uni:course rdf:about="CIT3112"

uni:courseName="Theory of Computation">

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 77

<uni:isTaughtBy rdf:resource="949318"/>

</uni:course>

<uni:course rdf:about="CIT3116"

uni:courseName="Knowledge Representation">

<uni:isTaughtBy rdf:resource="949352"/>

</uni:course>

</rdf:RDF>

Instead of rdf:_1, rdf:_2 . . . it is possible to write rdf:li. We use this

syntactic variant in the following example. Suppose the course CIT1111 is

taught by either Grigoris Antoniou or David Billington:

<uni:course rdf:about="CIT1111"

uni:courseName="Discrete Mathematics">

<uni:lecturer>

<rdf:Alt>

<rdf:li rdf:resource="949352"/>

<rdf:li rdf:resource="949318"/>

</rdf:Alt>

</uni:lecturer>

</uni:course>

The container elements have an optional ID attribute, with which the con-

tainer can be identified and referred to:

<uni:lecturer rdf:about="949318"

uni:name="David Billington"

uni:title="Associate Professor">

<uni:coursesTaught>

<rdf:Bag rdf:ID="DBcourses">

<rdf:_1 rdf:resource="CIT1111"/>

<rdf:_2 rdf:resource="CIT3112"/>

</rdf:Bag>

</uni:coursesTaught>

</uni:lecturer>

A typical application of container elements is the representation of predi-

cates with more than two arguments. We reconsider the example referee(X, Y,
Z), where X is the referee of a chess game between players Y and Z. One so-

lution is to distinguish the referee X from the players Y and Z. The graphic

representation is found in figure 3.4. The solution in XML-based syntax looks

like this:

TLFeBOOK

TLFeBOOK

78 3 Describing Web Resources in RDF

X

Y

Z

rdf:_2

rdf:_1

Figure 3.4 Representation of a tertiary predicate

<referee rdf:about=". . .#X">

<players>

<rdf:Bag>

<rdf:li rdf:resource=". . .#Y"/>

<rdf:li rdf:resource=". . .#Z"/>

</rdf:Bag>

</players>

</referee>

Note that rdf:Bag defines an anonymous auxiliary resource. We chose to

use a bag because we assumed that no distinction between the players is

made. If order were important, say the first-named player has White and the

second Black, we would use a sequence instead.

A limitation of these containers is that there is no way to close them, to

say “these are all the members of the container”. This is because, while one

graph may describe some of the members, there is no way to exclude the

possibility that there is another graph somewhere that describes additional

members. RDF provides support for describing groups containing only the

specified members, in the form of RDF collections. An RDF collection is a

group of things represented as a list structure in the RDF graph. This list

structure is constructed using a predefined collection vocabulary consisting

of the predefined type rdf:List, the predefined properties rdf:first

and rdf:rest, and the predefined resource rdf:nil. This allows us to

write

TLFeBOOK

TLFeBOOK

3.3 RDF: XML-Based Syntax 79

<rdf:Description rdf:about="CIT2112">

<uni:isTaughtBy>

<rdf:List>

<rdf:first>

<rdf:Description rdf:about="949111"/>

</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first>

<rdf:Description rdf:about="949352"/>

</rdf:first>

<rdf:rest>

<rdf:List>

<rdf:first>

<rdf:Description rdf:about="949318"/>

</rdf:first>

<rdf:rest>

<rdf:Description rdf:about="&rdf;nil"/>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</rdf:rest>

</rdf:List>

</uni:isTaughtBy>

</rdf:Description>

This states that CIT2112 is taught by teachers identified as the resources

949111, 949352, and 949318, and nobody else (indicated by the termina-

tor symbol nil). A shorthand syntax for this has been defined, using the

“Collection” value for the rdf:parseType attribute:

<rdf:Description rdf:about="CIT2112">

<uni:isTaughtBy rdf:parseType="Collection">

<rdf:Description rdf:about="949111"/>

<rdf:Description rdf:about="949352"/>

<rdf:Description rdf:about="949318"/>

</uni:isTaughtBy>

</rdf:Description>

TLFeBOOK

TLFeBOOK

80 3 Describing Web Resources in RDF

3.3.6 Reification

As we have said, sometimes we wish to make statements about other state-

ments. To do so we must be able to refer to a statement using an identifier.

RDF allows such reference through a reification mechanism which turns a

statement into a resource. For example, the description

<rdf:Description rdf:about="949352">

<uni:name>Grigoris Antoniou</uni:name>

</rdf:Description>

reifies as

<rdf:Statement rdf:about="StatementAbout949352">

<rdf:subject rdf:resource="949352"/>

<rdf:predicate rdf:resource="&uni;name"/>

<rdf:object>Grigoris Antoniou</rdf:object>

</rdf:Statement>

Note that rdf:subject, rdf:predicate, and rdf:object allow us to

access the parts of a statement.

The ID of the statement can be used to refer to it, as can be done for any

description. We can either write an rdf:Description if we don’t want to

talk about it further, or an rdf:Statement if we wish to refer to it.

If more than one property element is contained in a description element,

the elements correspond to more than one statement. These statements can

either be placed in a bag and referred to as an entity, or they can reify sepa-

rately (see exercise 3.1).

3.4 RDF Schema: Basic Ideas

RDF is a universal language that lets users describe resources using their

own vocabularies. RDF does not make assumptions about any particular

application domain, nor does it define the semantics of any domain. Is it up

to the user to do so in RDF Schema (RDFS).

3.4.1 Classes and Properties

How do we describe a particular domain? Let us consider the domain of

courses and lecturers at Griffith University. First we have to specify the

“things” we want to talk about. Here we make a first, fundamental distinc-

tion. On one hand, we want to talk about particular lecturers, such as David

TLFeBOOK

TLFeBOOK

3.4 RDF Schema: Basic Ideas 81

Billington, and particular courses, such as Discrete Mathematics; we have

already done so in RDF. But we also want to talk about courses, first-year

courses, lecturers, professors, and so on. What is the difference? In the first

case we talk about individual objects (resources), in the second we talk about

classes that define types of objects.

A class can be thought of as a set of elements. Individual objects that

belong to a class are referred to as instances of that class. We have al-

ready defined the relationship between instances and classes in RDF using

rdf:type.

An important use of classes is to impose restrictions on what can be stated

in an RDF document using the schema. In programming languages, typing
is used to prevent nonsense from being written (such as A + 1, where A is an

array; we lay down that the arguments of + must be numbers). The same is

needed in RDF. After all, we would like to disallow statements such as

Discrete Mathematics is taught by Concrete Mathematics.

Room MZH5760 is taught by David Billington.

The first statement is nonsensical because we want courses to be taught by

lecturers only. This imposes a restriction on the values of the property “is

taught by”. In mathematical terms, we restrict the range of the property.

The second statement is nonsensical because only courses can be taught.

This imposes a restriction on the objects to which the property can be applied.

In mathematical terms, we restrict the domain of the property.

3.4.2 Class Hierarchies and Inheritance

Once we have classes we would also like to establish relationships between

them. For example, suppose that we have classes for

staff members assistant professors

academic staff members administrative staff members

professors technical support staff members

associate professors

These classes are not unrelated to each other. For example, every professor is

an academic staff member. We say that “professor” is a subclass of “academic

staff member”, or equivalently, that “academic staff member” is a superclass
of “professor”. The subclass relationship defines a hierarchy of classes, as

shown in figure 3.5. In general, A is a subclass of B if every instance of A is

also an instance of B. There is no requirement in RDF Schema that the classes

TLFeBOOK

TLFeBOOK

82 3 Describing Web Resources in RDF

staff
member

administration
staff member member

technical
support staffacademic

staff member

professor
associate
professor professor

assistant

Figure 3.5 A hierarchy of classes

together form a strict hierarchy. In other words, a subclass graph as in figure

3.5 need not be a tree. A class may have multiple superclasses. If a class A is

a subclass of both B1 and B2, this simply means that every instance of A is

both an instance of B1 and an instance of B2.

A hierarchical organization of classes has a very important practical sig-

nificance, which we outline now. Consider the range restriction

Courses must be taught by academic staff members only.

Suppose Michael Maher were defined as a professor. Then, according to the

preceding restriction, he is not allowed to teach courses. The reason is that

there is no statement specifying that Michael Maher is also an academic staff

member. It would be counterintuitive to overcome this difficulty by adding

that statement to our description. Instead we would like Michael Maher to

inherit the ability to teach from the class of academic staff members. Exactly

this is done in RDF Schema.

By doing so, RDF Schema fixes the semantics of “is a subclass of”. Now

it is not up to an application to interpret “is a subclass of”; instead its in-

tended meaning must be used by all RDF processing software. By making

such semantic definitions RDFS is a (still limited), language for defining the

TLFeBOOK

TLFeBOOK

3.4 RDF Schema: Basic Ideas 83

semantics of particular domains. Stated another way, RDF Schema is a prim-

itive ontology language.

Classes, inheritance, and properties are, of course, known in other fields of

computing, for example in object-oriented programming. But while there are

many similarities, there are differences, too. In object-oriented programming,

an object class defines the properties that apply to it. To add new properties

to a class means to modify the class.

However, in RDFS, properties are defined globally, that is, they are not

encapsulated as attributes in class definitions. It is possible to define new

properties that apply to an existing class without changing that class.

On one hand, this is a powerful mechanism with far-reaching conse-

quences: we may use classes defined by others and adapt them to our re-

quirements through new properties. On the other hand, this handling of

properties deviates from the standard approach that has emerged in the area

of modeling and object-oriented programming. It is another idiosyncratic

feature of RDF/RDFS.

3.4.3 Property Hierarchies

We saw that hierarchical relationships between classes can be defined. The

same can be done for properties. For example, “is taught by” is a subproperty
of “involves”. If a course c is taught by an academic staff member a, then

c also involves a. The converse is not necessarily true. For example, a may

be the convener of the course, or a tutor who marks student homework but

does not teach c.

In general, P is a subproperty of Q if Q(x, y) whenever P (x, y).

3.4.4 RDF versus RDFS Layers

As a final point, we illustrate the different layers involved in RDF and RDFS

using a simple example. Consider the RDF statement

Discrete Mathematics is taught by David Billington.

The schema for this statement may contain classes such as lecturers, acade-

mic staff members, staff members, first-year courses, and properties such as

is taught by, involves, phone, employee id. Figure 3.6 illustrates the layers of

RDF and RDF Schema for this example. In this figure, blocks are properties,

ellipses above the dashed line are classes, and ellipses below the dashed line

are instances.

TLFeBOOK

TLFeBOOK

84 3 Describing Web Resources in RDF

involves

isTaugthBy

Academic

Staff
Member

Assistant

Professor

Course

Member

Staff

Literal

phoneid

David BillingtonDiscrete Mathematics
isTaughtBy

Professor
Associate

RDFS

RDF

subPropertyOf

range

range

domain

domain

subClassOf

subClassOf

range range

domaindomain

subClassOf

typetype

Professor

subClassOf

Figure 3.6 RDF and RDFS layers

The schema in figure 3.6 is itself written in a formal language, RDF

Schema, that can express its ingredients: subClassOf, Class, Property,

subPropertyOf, Resource, and so on. Next we describe the language of

RDF Schema in more detail.

3.5 RDF Schema: The Language

RDF Schema provides modeling primitives for expressing the information

described in section 3.4. One decision that must be made is what formal lan-

TLFeBOOK

TLFeBOOK

3.5 RDF Schema: The Language 85

guage to use. It should not be surprising that RDF itself will be used: the

modeling primitives of RDF Schema are defined using resources and prop-

erties. This choice can be justified by looking at figure 3.6: we presented this

figure as displaying a class/property hierarchy plus instances, but it is, of

course, itself simply a labeled graph that can be encoded in RDF. Remember

that RDF allows one to express any statement about any resource, and that

anything that has a URI can be a resource. So, if we wish to say that the class

“lecturer” is a subclass of “academic staff member”, we may

1. define resources lecturer, academicStaffMember, and subClassOf

2. define subClassOf to be a property

3. write the triple (subClassOf,lecturer,academicStaffMember)

All these steps are within the capabilities of RDF. So, an RDFS document (that

is an RDF schema) is just an RDF document, and we use the XML-based

syntax of RDF. In particular, all syntactic definitions of section 3.3 must be

followed.

Now we define the modeling primitives of RDF Schema.

3.5.1 Core Classes

The core classes are

rdfs:Resource, the class of all resources.

rdfs:Class, the class of all classes.

rdfs:Literal, the class of all literals (strings). At present, literals form

the only “data type” of RDF/RDFS.

rdf:Property, the class of all properties.

rdf:Statement, the class of all reified statements.

For example, a class lecturer can be defined as follows:

<rdfs:Class rdf:ID="lecturer">

. . .

</rdfs:Class>

TLFeBOOK

TLFeBOOK

86 3 Describing Web Resources in RDF

3.5.2 Core Properties for Defining Relationships

The core properties for defining relationships are

rdf:type, which relates a resource to its class (see section 3.3.3). The re-

source is declared to be an instance of that class.

rdfs:subClassOf, which relates a class to one of its superclasses; all in-

stances of a class are instances of its superclass. Note that a class may be

a subclass of more than one class. As an example, the class femalePro-

fessor may be a subclass of both female and professor.

rdfs:subPropertyOf, which relates a property to one of its superprop-

erties.

Here is an example stating that all lecturers are staff members:

<rdfs:Class rdf:about="lecturer">

<rdfs:subClassOf rdf:resource="staffMember"/>

</rdfs:Class>

Note that rdfs:subClassOf and rdfs:subPropertyOf are transitive,

by definition. Also, it is interesting that rdfs:Class is a subclass of

rdfs:Resource (every class is a resource), and rdfs:Resource is an in-

stance of rdfs:Class (rdfs:Resource is the class of all resources, so it is

a class!). For the same reason, every class is an instance of rdfs:Class.

3.5.3 Core Properties for Restricting Properties

The core properties for restricting properties are

rdfs:domain, which specifies the domain of a property P , that is, the class

of those resources that may appear as subjects in a triple with predicate

P . If the domain is not specified, then any resource can be the subject.

rdfs:range, which specifies the range of a property P , that is, the class of

those resources that may appear as values in a triple with predicate P .

Here is an example, stating that phone applies to staff members only and

that its value is always a literal.

<rdf:Property rdf:ID="phone">

<rdfs:domain rdf:resource="#staffMember"/>

<rdfs:range rdf:resource="&rdf;Literal"/>

</rdf:Property>

TLFeBOOK

TLFeBOOK

3.5 RDF Schema: The Language 87

rdfs:ConstraintProperty

rdfs:Class rdf:Propertyrdfs:ConstraintResource

rdfs:Resource

Figure 3.7 Subclass hierarchy of some modeling primitives of RDFS

rdfs:Resource rdfs:Class

rdf:Property

rdfs:ConstraintResource rdfs:Literal rdfs:domain rdfs:range

rdfs:ConstraintProperty

Figure 3.8 Instance relationships of some modeling primitives of RDFS

In RDF Schema there are also

rdfs:ConstraintResource, the class of all constraints

rdfs:ConstraintProperty, which contains all properties that define

constraints. It has only two instances, rdfs:domain and rdfs:range.

It is defined to be a subclass of rdfs:ConstraintResource and

rdf:Property

Figures 3.7 and 3.8 show the relationships between core modeling primitives

in RDFS.

TLFeBOOK

TLFeBOOK

88 3 Describing Web Resources in RDF

3.5.4 Useful Properties for Reification

The following are some useful propoerties for reification (see section 3.3.6):

rdf:subject, which relates a reified statement to its subject

rdf:predicate, which relates a reified statement to its predicate

rdf:object, which relates a reified statement to its object

3.5.5 Container Classes

As mentioned in section 3.3.5, the container elements are

rdf:Bag, the class of bags

rdf:Seq, the class of sequences

rdf:Alt, the class of alternatives.

rdfs:Container, which is a superclass of all container classes, including

the three preceding ones.

3.5.6 Utility Properties

A resource may be defined and described in many places on the Web. The

following properties allow us to define links to those addresses:

rdfs:seeAlso relates a resource to another resource that explains it

rdfs:isDefinedBy is a subproperty of rdfs:seeAlso and relates a re-

source to the place where its definition, typically an RDF schema, is found.

Often it is useful to provide more information, intended for human readers.

This can be done with the following properties:

rfds:comment. Comments, typically longer text, can be associated with a

resource.

rdfs:label. A human-friendly label (name) is associated with a resource.

Among other purposes, it may serve as the name of a node in a graphic

representation of the RDF document.

TLFeBOOK

TLFeBOOK

3.5 RDF Schema: The Language 89

3.5.7 Example: A University

We refer to the courses and lecturers example, and provide a conceptual

model of the domain, that is, an ontology.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="lecturer">

<rdfs:comment>

The class of lecturers

All lecturers are academic staff members.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="academicStaffMember">

<rdfs:comment>

The class of academic staff members

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#staffMember"/>

</rdfs:Class>

<rdfs:Class rdf:ID="staffMember">

<rdfs:comment>The class of staff members</rdfs:comment>

</rdfs:Class>

<rdfs:Class rdf:ID="course">

<rdfs:comment>The class of courses</rdfs:comment>

</rdfs:Class>

<rdf:Property rdf:ID="involves">

<rdfs:comment>

It relates only courses to lecturers.

</rdfs:comment>

<rdfs:domain rdf:resource="#course"/>

<rdfs:range rdf:resource="#lecturer"/>

</rdf:Property>

<rdf:Property rdf:ID="isTaughtBy">

<rdfs:comment>

Inherits its domain ("course") and range ("lecturer")

TLFeBOOK

TLFeBOOK

90 3 Describing Web Resources in RDF

motorVehicle

passengerVehicle

van truck

miniVan

Figure 3.9 Class hierarchy for the motor vehicles example

from its superproperty "involves"

</rdfs:comment>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</rdf:Property>

<rdf:Property rdf:ID="phone">

<rdfs:comment>

It is a property of staff members

and takes literals as values.

</rdfs:comment>

<rdfs:domain rdf:resource="#staffMember"/>

<rdfs:range rdf:resource="&rdf;Literal"/>

</rdf:Property>

</rdf:RDF>

3.5.8 Example: Motor Vehicles

Here we present a simple ontology of motor vehicles. The class relationships

are shown in figure 3.9.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

TLFeBOOK

TLFeBOOK

3.6 RDF and RDF Schema in RDF Schema 91

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="motorVehicle"/>

<rdfs:Class rdf:ID="van">

<rdfs:subClassOf rdf:resource="#motorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="truck">

<rdfs:subClassOf rdf:resource="#motorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="passengerVehicle">

<rdfs:subClassOf rdf:resource="#motorVehicle"/>

</rdfs:Class>

<rdfs:Class rdf:ID="miniVan">

<rdfs:subClassOf rdf:resource="#passengerVehicle"/>

<rdfs:subClassOf rdf:resource="#van"/>

</rdfs:Class>

</rdf:RDF>

3.6 RDF and RDF Schema in RDF Schema

Now that we know the main components of the RDF and RDFS languages,

it may be instructive to look at the definitions of RDF and RDFS. These defi-

nitions are expressed in the language of RDF Schema. One task is to see how

easily they can be read now that the meaning of each component has been

clarified.

The following definitions are just part of the full language specification.

The remaining parts are found in the namespaces specified in rdf:RDF.

3.6.1 RDF

<?xml version="1.0" encoding="UTF-16"?>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Statement"

rdfs:comment="The class of triples consisting of a

TLFeBOOK

TLFeBOOK

92 3 Describing Web Resources in RDF

predicate, a subject and an object

(that is, a reified statement)"/>

<rdfs:Class rdf:ID="Property"

rdfs:comment="The class of properties"/>

<rdfs:Class rdf:ID="Bag"

rdfs:comment="The class of unordered collections"/>

<rdfs:Class rdf:ID="Seq"

rdfs:comment="The class of ordered collections"/>

<rdfs:Class rdf:ID="Alt"

rdfs:comment="The class of collections of alternatives"/>

<rdf:Property rdf:ID="predicate"

rdfs:comment="Identifies the property used in a statement

when representing the statement

in reified form">

<rdfs:domain rdf:resource="#Statement"/>

<rdfs:range rdf:resource="#Property"/>

</rdf:Property>

<rdf:Property rdf:ID="subject"

rdfs:comment="Identifies the resource that a statement is

describing when representing the statement

in reified form">

<rdfs:domain rdf:resource="#Statement"/>

</rdf:Property>

<rdf:Property rdf:ID="object"

rdfs:comment="Identifies the object of a statement

when representing the statement

in reified form"/>

<rdf:Property rdf:ID="type"

rdfs:comment="Identifies the class of a resource.

The resource is an instance

of that class."/>

</rdf:RDF>

TLFeBOOK

TLFeBOOK

3.6 RDF and RDF Schema in RDF Schema 93

3.6.2 RDF Schema

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#">

<rdfs:Class rdf:ID="Resource"

rdfs:comment="The most general class"/>

<rdfs:Class rdf:ID="comment"

rdfs:comment="Use this for descriptions">

<rdfs:domain rdf:resource="#Resource"/>

<rdfs:range rdf:resource="#Literal"/>

</rdfs:Class>

<rdfs:Class rdf:ID="Class"

rdfs:comment="The concept of classes.

All classes are resources">

<rdfs:subClassOf rdf:resource="#Resource"/>

</rdfs:Class>

<rdf:Property rdf:ID="subClassOf">

<rdfs:domain rdf:resource="#Class"/>

<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:ID="subPropertyOf">

<rdfs:domain rdf:resource="&rdf;Property"/>

<rdfs:range rdf:resource="&rdf;Property"/>

</rdf:Property>

</rdf:RDF>

The namespaces do not provide the full definition of RDF and RDF Schema.

Consider, for example, rdfs:subClassOf. The namespace specifies only

that it applies to classes and has a class as a value. The meaning of being

a subclass, namely, that all instances of one class are also instances of its

superclass, is not expressed anywhere. In fact, it cannot be expressed in an

RDF document. If it could, there would be no need for defining RDF Schema.

We provide a formal semantics in the next section. Of course, RDF parsers

and other software tools for RDF (including query processors) must be aware

of the full semantics.

TLFeBOOK

TLFeBOOK

94 3 Describing Web Resources in RDF

3.7 An Axiomatic Semantics for RDF and RDF Schema

In this section we formalize the meaning of the modeling primitives of RDF

and RDF Schema. Thus we capture the semantics of RDF and RDFS.

The formal language we use is predicate logic, universally accepted as the

foundation of all (symbolic) knowledge representation. Formulas used in the

formalization are referred to as axioms.

By describing the semantics of RDF and RDFS in a formal language like

logic we make the semantics unambiguous and machine accessible. Also, we

provide a basis for reasoning support by automated reasoners manipulating

logical formulas.

3.7.1 The Approach

All language primitives in RDF and RDF Schema are represented by con-

stants: Resource, Class, Property, subClassOf , and so on. A few predefined

predicates are used as a foundation for expressing relationships between the

constants.

An auxiliary theory of lists is used. It has function symbols

nil (empty list)

cons(x, l) (adds an element to the front of the list)

first(l) (returns the first element)

rest(l) (returns the rest of the list)

and predicate symbols

item(x, l) (tests if an element occurs in the list)

list(l) (tests whether l is a list)

Lists are used to represent containers in RDF. They are also needed to capture

the meaning of certain constructs (such as cardinality constraints) in richer

ontology languages.
Most axioms provide typing information. For example,

Type(subClassOf, Property)

says that subClassOf is a property. We use predicate logic with equality.

Variable names begin with ?. All axioms are implicitly universally quanti-

fied.

TLFeBOOK

TLFeBOOK

3.7 An Axiomatic Semantics for RDF and RDF Schema 95

Here we show the definition of most elements of RDF and RDF Schema.

The axiomatic semantics of the full languages is found in an online docu-

ment; see reference (Fikes and McGuinness 2001).

3.7.2 Basic Predicates

The basic precicates are

PropV al(P,R, V), a predicate with three arguments, which is used to rep-

resent an RDF statement with resource R, property P and value V

Type(R, T), short for PropV al(type,R, T), which specifies that the resource

R has the type T

Type(?r, ?t) ←→ PropV al(type, ?r, ?t)

3.7.3 RDF

An RDF statement (triple) (P,R, V) is represented as PropV al(P,R, V).

Classes

In our language we have constants Class, Resource, Property, Literal. All

classes are instances of Class, that is, they have the type Class:

Type(Class, Class)

Type(Resource, Class)

Type(Property, Class)

Type(Literal, Class)

Resource is the most general class: every object is a resource. Therefore,

every class and every property is a resource:

Type(?p, Property) −→ Type(?p, Resource)

Type(?c, Class) −→ Type(?c,Resource)

Finally, the predicate in an RDF statement must be a property:

PropV al(?p, ?r, ?v) −→ Type(?p, Property)

TLFeBOOK

TLFeBOOK

96 3 Describing Web Resources in RDF

The type Property

type is a property:

Type(type, Property)

Note that it is equivalent to PropV al(type, type, Property): the type of type

is Property. type can be applied to resources and has a class as its value:

Type(?r, ?c) −→ (Type(?r, Resource) ∧ Type(?c, Class))

The Auxiliary FuncProp Property

A functional property is a property that is a function: it relates a resource to

at most one value. Functional properties are not a concept of RDF but are

used in the axiomatization of other primitives.

The constant FuncProp represents the class of all functional properties. P

is a functional property if, and only if, it is a property, and there are no x, y1,

and y2 such that P (x, y1), P (x, y2), and y1 �= y2.

Type(?p, FuncProp) ←→

(Type(?p, Property) ∧ ∀?r∀?v1∀?v2

(PropV al(?p, ?r, ?v1) ∧ PropV al(?p, ?r, ?v2) −→?v1 =?v2))

Reified Statements

The constant Statement represents the class of all reified statements. All

reified statements are resources, and Statement is an instance of Class:

Type(?s, Statement) −→ Type(?s,Resource)

Type(Statement, Class)

A reified statement can be decomposed into the three parts of an RDF triple:

Type(?st, Statement) −→

∃?p∃?r∃?v(PropV al(Predicate, ?st, ?p)∧

PropV al(Subject, ?st, ?r) ∧ PropV al(Object, ?st, ?v))

Subject, Predicate, and Object are functional properties, that is, every state-

ment has exactly one subject, one predicate and one object:

TLFeBOOK

TLFeBOOK

3.7 An Axiomatic Semantics for RDF and RDF Schema 97

Type(Subject, FuncProp)

Type(Predicate, FuncProp)

Type(Object, FuncProp)

Their typing information is

PropV al(Subject, ?st, ?r) −→

(Type(?st, Statement) ∧ Type(?r, Resource))

PropV al(Predicate, ?st, ?p) −→

(Type(?st, Statement) ∧ Type(?p, Property))

PropV al(Object, ?st, ?v) −→

(Type(?st, Statement) ∧ (Type(?v,Resource) ∨ Type(?v, Literal)))

The last axiom says, if Object appears as the property in an RDF statement,

then it must apply to a reified statement and have as value either a resource

or a literal.

Containers

All containers are resources:

Type(?c, Container) −→ Type(?c,Resource)

Containers are lists:

Type(?c, Container) −→ list(?c)

Containers are bags or sequences or alternatives:

Type(?c, Container) ←→

(Type(?c,Bag) ∨ Type(?c, Seq) ∨ Type(?c, Alt))

Bags and sequences are disjoint:

¬(Type(?x, Bag) ∧ Type(?x, Seq))

For every natural number n > 0, there is the selector _n, which selects the

nth element of a container. It is a functional property

Type(_n, FuncProp)

and applies to containers only:

PropV al(_n, ?c, ?o) −→ Type(?c, Container)

TLFeBOOK

TLFeBOOK

98 3 Describing Web Resources in RDF

3.7.4 RDF Schema

Subclasses and Subproperties

subClassOf is a property:

Type(subClassOf, Property)

If a class C is a subclass of a class C ′, then all instances of C are also instances

of C ′:

PropV al(subClassOf, ?c, ?c′) ←−

(Type(?c, Class) ∧ Type(?c′, Class)∧

∀?x(Type(?x, ?c) −→ Type(?x, ?c′)))

Similarly for subPropertyOf: P is a subproperty of P ′ if P ′(x, y) whenever

P (x, y):

Type(subPropertyOf, Property)

PropV al(subPropertyOf, ?p, ?p′) ←→

(Type(?p, Property) ∧ Type(?p′, P roperty)∧

∀?r∀?v(PropV al(?p, ?r, ?v) −→ PropV al(?p′, ?r, ?v)))

Constraints

Every constraint resource is a resource:

PropV al(subClassOf,ConstraintResource, Resource)

Constraint properties are all properties that are also constraint resources:

Type(?cp, ConstraintProperty) ←→

(Type(?cp, ConstraintResource) ∧ Type(?cp, Property))

domain and range are constraint properties:

Type(domain, ConstraintProperty)

Type(range, ConstraintProperty)

domain and range define the domain, respectively range, of a property.

Recall that the domain of a property P is the set of all objects to which P

applies. If the domain of P is D, then for every P (x, y), x ∈ D.

TLFeBOOK

TLFeBOOK

3.8 A Direct Inference System for RDF and RDFS 99

PropV al(domain, ?p, ?d) −→

∀?x∀?y(PropV al(?p, ?x, ?y) −→ Type(?x, ?d))

The range of a property P is the set of all values P can take. If the range of

P is R, then for every P (x, y), y ∈ R.

PropV al(range, ?p, ?r) −→

∀?x∀?y(PropV al(?p, ?x, ?y) −→ Type(?y, ?r))

Formulas that can be inferred from the precedings ones:

PropV al(domain, range, Property)

PropV al(range, range, Class)

PropV al(domain, domain, Property)

PropV al(range, domain,Class)

Thus we have formalized the semantics of RDF and RDFS. An agent

equipped with this knowledge is able to draw interesting conclusions. For

example, given that the domain of teaches is academicStaffMember, that aca-
demicStaffMember is a subclass of staffMembers, and that teaches(DB, DiMa),
the agent can automatically deduce staffMember(DB) using the predicate logic

semantics or one of the predicate logic proof systems.

3.8 A Direct Inference System for RDF and RDFS

As stated above, the axiomatic semantics detailed in section 3.7 can be used

for automated reasoning with RDF and RDF Schema. However, it requires a

first-order logic proof system to do so. This is a very heavy requirement and

also one that is unlikely to scale when millions of statements are involved

(e.g. millions of statements of the form Type(?r, ?c)).

For this reason, RDF has also been given a semantics (and an inference

systems that is sound and complete for this semantics) directly in terms of

RDF triples instead of restating RDF in terms of first-order logic, as was done

in the axiomatic semantics of section 3.7.
This inference system consists of rules of the form

IF E contains certain triples

THEN add to E certain additional triples

TLFeBOOK

TLFeBOOK

100 3 Describing Web Resources in RDF

(where E is an arbitrary set of RDF triples).

Without repeating the entire set of inference rules (which can be found in

the official RDF documents), we give here a few basic examples:

IF E contains the triple (?x, ?p, ?y)

THEN E also contains the triple (?p, rdf : type, rdf : property)

This states that any resource ?p that is used in the property position of a triple

can be inferred to be a member of the class rdf:property.
A somewhat more interesting example is the following rule:

IF E contains the triples (?u, rdfs : subClassOf, ?v)

and (?v, rdfs : subclassOf, ?w)

THEN E also contains the triple (?u, rdfs : subClassOf, ?w)

which encodes the transitivity of the subclass relation.
Closely related is the rule

IF E contains the triples (?x, rdf : type, ?u)

and (?u, rdfs : subClassOf, ?v)

THEN E also contains the triple (?x, rdf : type, ?v)

which is the essential definition of the meaning of rdfs:subClassOf.
A final example often comes as a surprise to people first looking at RDF

Schema:

IF E contains the triples (?x, ?p, ?y)

and (?p, rdfs : range, ?u)

THEN E also contains the triple (?y, rdf : type, ?u)

This rule states that any resource ?y which appears as the value of a property

?p can be inferred to be a member of the range of ?p. This shows that range

definitions in RDF Schema are not used to restrict the range of a property, but

rather to infer the membership of the range.

The total set of these closure rules is no larger than a few dozen and can be

efficiently implemented without sophisticated theorem-proving technology.

3.9 Querying in RQL

In this section we will introduce a query language for RDF. Before doing

so, we have to say why we need a new query language instead of using an

XML query language. The answer is that XML is located at a lower level

of abstraction than RDF. This fact would lead to complications if we were

TLFeBOOK

TLFeBOOK

3.9 Querying in RQL 101

querying RDF documents with an XML-based language. Let us illustrate

this point.

As we have already seen, there are various ways of syntactically represent-

ing an RDF statement in XML. For example, suppose we wish to retrieve the

titles of all lecturers. The description of a particular lecturer might look like

this:

<rdf:Description rdf:about="949318">

<rdf:type rdf:resource="&uni;lecturer"/>

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</rdf:Description>

An appropriate Xpath query is

/rdf:Description[rdf:type=

"http://www.mydomain.org/uni-ns#lecturer"]/uni:title

But we could have written the same description as follows:

<uni:lecturer rdf:about="949318">

<uni:name>David Billington</uni:name>

<uni:title>Associate Professor</uni:title>

</uni:lecturer>

Now the previous XPath query does not work; we have to write

//uni:lecturer/uni:title

instead. And a third possible representation of the same description is

<uni:lecturer rdf:about="949318"

uni:name="David Billington"

uni:title="Associate Professor"/>

For this syntactic variation, yet another XPath query must be provided:

//uni:lecturer/@uni:title

Since each description of an individual lecturer may have any of these equiv-

alent forms, we must write different XPath queries.

A better way is, of course, to write queries at the level of RDF. An appro-

priate query language must understand RDF, that is, it must understand not

only the syntax but also the data model of RDF and the semantics of RDF

vocabulary.

In addition, a query language should also understand the semantics of

RDF Schema. For example, given the information

TLFeBOOK

TLFeBOOK

102 3 Describing Web Resources in RDF

<uni:lecturer rdf:about="949352">

<uni:name>Grigoris Antoniou</uni:name>

</uni:lecturer>

<uni:professor rdf:about="949318">

<uni:name>David Billington</uni:name>

</uni:professor>

<rdfs:Class rdf:about="&uni;professor">

<rdfs:subClassOf rdf:resource="&uni;lecturer"/>

</rdfs:Class>

a query for the names of all lecturers should return both Grigoris Antoniou

and David Billington.

At the time of writing (mid 2003), there is no standardization of query

languages for RDF and RDFS, neither de jure by W3C, nor de facto by the

community. In our discussion we have chosen to discuss RQL because it

illustrates a number of features that will be part of any reasonable query lan-

guage for RDF and RDFS, such as path expressions and schema awareness.

However, other query languages exist (e.g., RDQL), and even RQL itself is

subject to change.

3.9.1 Basic Queries

The query Class retrieves all classes, and the query Property retrieves

all properties. To retrieve the instances of a class, for example, course, we

write

course

This query will return all instances of the subclasses of course, too, which

is perfectly correct. But if we do not wish to retrieve inherited instances, then

we have to write

^course

The resources and values of triples with a specific property, for example,

involves, are retrieved using simply the query involves. The result in-

cludes all subproperties of involves, for example, it retrieves also inherited

triples from property isTaughtBy. If we do not want these additional re-

sults, then we have to write ^involves instead.

TLFeBOOK

TLFeBOOK

3.9 Querying in RQL 103

3.9.2 Using select-from-where

As in SQL,

select specifies the number and order of retrieved data

from is used to navigate through the data model

where imposes constraints on possible solutions

For example, to retrieve all phone numbers of staff members, we can write

select X,Y

from {X}phone{Y}

Here X and Y are variables, and {X}phone{Y} represents a resource-

property-value triple. To retrieve all lecturers and their phone numbers, we

can write

select X,Y

from lecturer{X}.phone{Y}

Here lecturer{X} collects all instances of the class lecturer, as dis-

cussed, and binds the result to the variable X. The second part collects all

triples with predicate phone. But there is an implicit join here, in that we re-

strict the second query only to those triples, the resource of which is in the

variable X; in our example, we restrict the domain of phone to lecturers. A dot

. denotes the implicit join.

We demonstrate an explicit join by a query that retrieves the name of all

courses taught by the lecturer with ID 949352.

select N

from course{X}.isTaughtBy{Y}, {C}name{N}

where Y="949352" and X=C

Apart from = there exist other comparison operators. For example, X<Y means

“X is lower than Y”. In case X and Y are strings, X comes before Y in the

lexicographic order. If X and Y are classes, X is a subclass of Y.

3.9.3 Querying the Schema

RQL allows us to retrieve schema information. Schema variables have a

name with prefix $ (for classes) or @ (for properties). For example,

TLFeBOOK

TLFeBOOK

104 3 Describing Web Resources in RDF

select X,$X,Y,$Y

from {X:$X}phone{Y:$Y}

retrieves all resources and values of triples with property phone, or any of

its subproperties, and their classes. Note that these classes may not coincide

with the defined domain and range of phone, because they may be sub-

classes of the domain or range. For example, given

phone(“949352”,“5041”)
type(“949352”,lecturer)
subclass(lecturer,staffMember)
domain(phone,staffMember)
range(phone,literal)

we get

(“949352”,lecturer,“5041”,literal)

although lecturer is not the domain of phone.

The domain and range of a property can be retrieved as follows:

select domain(@P),range(@P)

from @P

where @P=phone

For more details see the RQL User Manual (v2.0) (2003).

3.10 Summary

• RDF provides a foundation for representing and processing metadata.

• RDF has a graph-based data model. Its key concepts are resource, prop-

erty, and statement. A statement is a resource-property-value triple.

• RDF has an XML-based syntax to support syntactic interoperability. XML

and RDF complement each other because RDF supports semantic inter-

operability.

• RDF has a decentralized philosophy and allows incremental building of

knowledge, and its sharing and reuse.

• RDF is domain-independent. RDF Schema provides a mechanism for de-

scribing specific domains.

TLFeBOOK

TLFeBOOK

Suggested Reading 105

• RDF Schema is a primitive ontology language. It offers certain modelling

primitives with fixed meaning. Key concepts of RDF Schema are class,

subclass relations, property, subproperty relations, and domain and range

restrictions.

• There exist query languages for RDF and RDFS.

Some points that will be discussed in the next chapter:

• RDF Schema is quite primitive as a modelling language for the Web.

Many desirable modelling primitives are missing.

• Therefore we need an ontology layer on top of RDF/RDFS.

Suggested Reading

The following are some official online documents:

• G. Klyne and J. Carroll, eds. Resource Description Framework (RDF):

Concepts and Abstract Syntax. January 23, 2003.

<http://www.w3.org/TR/rdf-concepts>.

• D. Brickley and R.V. Guha, eds. RDF Vocabulary Description Language

1.0: RDF Schema, January 23, 2003.

<http://www.w3.org/TR/rdf-schema>.

• P. Hayes, ed. RDF Semantics, January 23,2003.

<http://www.w3.org/TR/rdf-mt/>.

• D. Beckett, ed. RDF/XML Syntax Specification, January 23, 2003.

<http://www.w3.org/TR/rdf-syntax-grammar/>.

• F. Manola and E. Miller, eds. RDF Primer.

<http://www.w3.org/TR/rdf-primer/>.

• R. Fikes and D. McGuinness. An Axiomatic Semantics for RDF, RDF

Schema and DAML+OIL, October 2001.

<http://www.daml.org/2001/03/axiomatic-semantics.html>.

• The RQL v2.0 User Manual, July 12, 2003.

<http://139.91.183.30:9090/RDF/RQL/Manual.html>.

Here are some further useful readings:

TLFeBOOK

TLFeBOOK

106 3 Describing Web Resources in RDF

• S. Decker et al. The Semantic Web: The Roles of XML and RDF. IEEE
Internet Computing 15,3 (October 2000): 63–74.

• D. Dodds et al. Professional XML Meta Data. Birmingham, U.K., Wrox

Press, 2001.

• J. Hjelm. Creating the Semantic Web with RDF. New York, Wiley, 2001.

• G. Karvounarakis, V. Christophides, D. Plexousakis, and S. Alexaki.

Querying Community Web Portals. Technical Report, ICS-FORTH, Herak-

lion, Greece, November 2000.

<http://139.91.183.30:9090/RDF/publications/sigmod2000.html>.

• J. Broekstra, Sesame RQL: a tutorial.

<http://sesame.aduna.biz/publications/rql-tutorial.html>.

• M. Nic. RDF Tutorial - Part I: Basic Syntax and Containers.

<http://www.zvon.org/xxl/RDFTutorial/General/book.html>.

An extensive list of tools and other resources is maintained at:

• <http://www.ilrt.bris.ac.uk/discovery/rdf/resources/>.

• <http://www.w3.org/RDF>

Exercises and Projects

3.1 Read the RDFS namespace and try to understand the elements that

were not presented in this chapter.

3.2 Read the manual on RQL, focusing on points not discussed here.

3.3 The RDFS specification allows more than one domain to be defined for

a property and uses the union of these domains. Discuss the pros and

cons of taking the union versus taking the intersection of domains.

3.4 In an older version of the RDFS specification, rdfs:subClassOf was

not allowed to have cycles. Try to imagine situations where a cyclic

class relationship would be beneficial. (Hint: Think of equivalence be-

tween classes.)

3.5 Discuss the difference between the following statements, and draw

graphs to illustrate the difference:

TLFeBOOK

TLFeBOOK

Exercises and Projects 107

X supports the proposal; Y supports the proposal; Z supports the proposal.

The group of X, Y, and Z supports the proposal.

Draw graphs to illustrate the difference.

3.6 Compare rdfs:subClassOf with type extensions in XML Schema.

3.7 Consider the formal specification of rdf:_n in the axiomatic seman-

tics. Does it capture the intended meaning of rdf:_n as the selector of

the nth element of a collection? If not, suggest a full axiomatization.

3.8 Prove the inferred formulas at the end of section 3.7 using the previous

axioms.

3.9 Discuss why RDF/S does not allow logical contradictions: any RDF/S

document is consistent, thus it has at least one model.

3.10 Try to map the relational database model on RDF.

3.11 Compare entity-relationship modelling to RDF.

3.12 Model part of a library in RDF Schema: books, authors, publishers,

years, copies, dates, and so on. Then write some statements in RDF,

and query them using RQL.

3.13 Write an ontology about geography: cities, countries, capitals, borders,

states, and so on.

3.14 In chapter 2 you were asked to consider various domains and develop

appropriate vocabularies for them. Try to model these domains by

defining suitable classes and properties, and a conceptual model. Then

write sample statements in RDF.

In the following you are asked to think about limitations of RDFS, specifi-

cally, what should actually be expressed, and whether it can be represented

in RDF Schema. These limitations will be relevant in chapter 4, where we

present a richer modelling language.

3.15 Consider the classes of males, and females. Name a relationship be-

tween them that should be included in an ontology.

3.16 Consider the classes of persons, males and females. Name a relation-

ship between all three that should be included in an ontology. Which

part of this relationship can be expressed in RDF Schema?

TLFeBOOK

TLFeBOOK

108 3 Describing Web Resources in RDF

3.17 Suppose we declare Bob and Peter to be the father of Mary. Obviously

there is a semantic error here. How should the semantic model make

this error impossible?

3.18 What relationship exists between “is child of” and “is parent of”?

3.19 Consider the property eats with domain animal and range animal or
plant. Suppose we define a new class vegetarian. Name a desirable re-

striction on eats for this class. Do you think that this restriction can be

expressed in RDF Schema by using rdfs:range?

3.20 Evaluate some RQL queries against the RDF repositories that are avail-

able at <http://sesame.aduna.biz>.

3.21 Construct an RDF Schema vocabulary on a topic of your choice, and

use the FRODO RDFSViz visualisation tool2 to construct a class and

property diagram for your vocabulary.

2. <http://www.dfki.uni-kl.de/frodo/RDFSViz/>

TLFeBOOK

TLFeBOOK

4 Web Ontology Language: OWL

4.1 Introduction

The expressivity of RDF and RDF Schema that we described in the previ-

ous chapter is deliberately very limited: RDF is (roughly) limited to binary

ground predicates, and RDF Schema is (roughly) limited to a subclass hier-

archy and a property hierarchy, with domain and range definitions of these

properties.

However, the Web Ontology Working Group of W3C1 identified a number

of characteristic use-cases for the Semantic Web that would require much

more expressiveness than RDF and RDF Schema offer.

A number of research groups in both the United States and Europe had al-

ready identified the need for a more powerful ontology modeling language.

This led to a joint initiative to define a richer language, called DAML+OIL2

(the name is a join of the names of the U.S. proposal DAML-ONT,3 and the

European language OIL4).

DAML+OIL in turn was taken as the starting point for the W3C Web On-

tology Working Group in defining OWL, the language that is aimed to be the

standardized and broadly accepted ontology language of the Semantic Web.

In this chapter, we first describe the motivation for OWL in terms of its

requirements, and its resulting nontrivial relation with RDF Schema. We

then describe the various language elements of OWL in some detail.

1. <http://www.w3.org/2001/sw/WebOnt/>
2. <http://www.daml.org/2001/03/daml+oil-index.html>
3. <http://www.daml.org/2000/10/daml-ont.html>
4. <http://www.ontoknowledge.org/oil/>

TLFeBOOK

TLFeBOOK

110 4 Web Ontology Language: OWL

4.1.1 Requirements for Ontology Languages

Ontology languages allow users to write explicit, formal conceptualizations

of domain models. The main requirements are

a well-defined syntax efficient reasoning support

a formal semantics sufficient expressive power

convenience of expression.

The importance of a well-defined syntax is clear, and known from the area of

programming languages; it is a necessary condition for machine-processing

of information. All the languages we have presented so far have a well-

defined syntax. DAML+OIL and OWL build upon RDF and RDFS and have

the same kind of syntax.

Of course, it is questionable whether the XML-based RDF syntax is very

user-friendly; there are alternatives better suitable for human users (for ex-

ample, see the OIL syntax). However, this drawback is not very significant

because ultimately users will be developing their own ontologies using au-

thoring tools, or more generally, ontology development tools, instead of writing

them directly in DAML+OIL or OWL.

A formal semantics describes the meaning of knowledge precisely. Precisely
here means that the semantics does not refer to subjective intuitions, nor is

it open to different interpretations by different people (or machines). The

importance of a formal semantics is well-established in the domain of math-

ematical logic, for instance.

One use of a formal semantics is to allow people to reason about the know-

ledge. For ontological knowledge, we may reason about

• Class membership. If x is an instance of a class C, and C is a subclass of

D, then we can infer that x is an instance of D.

• Equivalence of classes. If class A is equivalent to class B, and class B is

equivalent to class C, then A is equivalent to C, too.

• Consistency. Suppose we have declared x to be an instance of the class A

and that A is a subclass of B ∩ C, A is a subclass of D, and B and D are

disjoint. Then we have an inconsistency because A should be empty, but

has the instance x. This is an indication of an error in the ontology.

• Classification. If we have declared that certain property-value pairs are a

sufficient condition for membership in a class A, then if an individual x

satisfies such conditions, we can conclude that x must be an instance of A.

TLFeBOOK

TLFeBOOK

4.1 Introduction 111

Semantics is a prerequisite for reasoning support. Derivations such as the

preceding ones can be made mechanically instead of being made by hand.

Reasoning support is important because it allows one to

• check the consistency of the ontology and the knowledge

• check for unintended relationships between classes

• automatically classify instances in classes

Automated reasoning support allows one to check many more cases than

could be checked manually. Checks like the precedings ones are valuable

for designing large ontologies, where multiple authors are involved, and for

integrating and sharing ontologies from various sources.

A Formal semantics and reasoning support are usually provided by map-

ping an ontology language to a known logical formalism, and by using auto-

mated reasoners that already exist for those formalisms. OWL is (partially)

mapped on a description logic, and makes use of existing reasoners such as

FaCT and RACER. Description logics are a subset of predicate logic for which

efficient reasoning support is possible.

4.1.2 Limitations of the Expressive Power of RDF Schema

RDF and RDFS allow the representation of some ontological knowledge. The

main modeling primitives of RDF/RDFS concern the organization of vocab-

ularies in typed hierarchies: subclass and subproperty relationships, domain

and range restrictions, and instances of classes. However, a number of other

features are missing. Here we list a few:

• Local scope of properties. rdfs:range defines the range of a property,

say eats, for all classes. Thus in RDF Schema we cannot declare range

restrictions that apply to some classes only. For example, we cannot say

that cows eat only plants, while other animals may eat meat, too.

• Disjointness of classes. Sometimes we wish to say that classes are disjoint.

For example, male and female are disjoint. But in RDF Schema we can

only state subclass relationships, e.g., female is a subclass of person.

• Boolean combinations of classes. Sometimes we wish to build new classes

by combining other classes using union, intersection, and complement.

For example, we may wish to define the class person to be the disjoint

TLFeBOOK

TLFeBOOK

112 4 Web Ontology Language: OWL

union of the classes male and female. RDF Schema does not allow such

definitions.

• Cardinality restrictions. Sometimes we wish to place restrictions on how

many distinct values a property may or must take. For example, we

would like to say that a person has exactly two parents, or that a course is

taught by at least one lecturer. Again, such restrictions are impossible to

express in RDF Schema.

• Special characteristics of properties. Sometimes it is useful to say that a

property is transitive (like “greater than”), unique (like “is mother of”), or

the inverse of another property (like “eats” and “is eaten by”).

Thus we need an ontology language that is richer than RDF Schema, a lan-

guage that offers these features and more. In designing such a language one

should be aware of the trade-off between expressive power and efficient rea-

soning support. Generally speaking, the richer the language is, the more

inefficient the reasoning support becomes, often crossing the border of non-

computability. Thus we need a compromise, a language that can be sup-

ported by reasonably efficient reasoners while being sufficiently expressive

to express large classes of ontologies and knowledge.

4.1.3 Compatibility of OWL with RDF/RDFS

Ideally, OWL would be an extension of RDF Schema, in the sense that

OWL would use the RDF meaning of classes and properties (rdfs:Class,

rdfs:subClassOf, etc.) and would add language primitives to support

the richer expressiveness required. Such an extension of RDF Schema would

also be consistent with the layered architecture of the Semantic Web (see fig-

ure 1.3).

Unfortunately, simply extending RDF Schema would work against ob-

taining expressive power and efficient reasoning. RDF Schema has some

very powerful modeling primitives (see figure 3.8). Constructions such as

rdfs:Class (the class of all classes) and rdf:Property (the class of all

properties) are very expressive and would lead to uncontrollable computa-

tional properties if the logic were extended with such expressive primitives.

TLFeBOOK

TLFeBOOK

4.1 Introduction 113

4.1.4 Three Species of OWL

The full set of requirements for an ontology language that seem unobtain-

able: efficient reasoning support and convenience of expression for a lan-

guage as powerful as a combination of RDF Schema with a full logic.

Indeed, these requirements have prompted W3C’s Web Ontology Working

Group to define OWL as three different sublanguages, each geared toward

fulfilling different aspects of this full set of requirements.

OWL Full

The entire language is called OWL Full and uses all the OWL languages

primitives. It also allows the combination of these primitives in arbitrary

ways with RDF and RDF Schema. This includes the possibility (also present

in RDF) of changing the meaning of the predefined (RDF or OWL) primitives

by applying the language primitives to each other. For example, in OWL

Full, we could impose a cardinality constraint on the class of all classes, es-

sentially limiting the number of classes that can be described in any ontology.

The advantage of OWL Full is that it is fully upward-compatible with RDF,

both syntactically and semantically: any legal RDF document is also a legal

OWL Full document, and any valid RDF/RDF Schema conclusion is also a

valid OWL Full conclusion. The disadvantage of OWL Full is that the lan-

guage has become so powerful as to be undecidable, dashing any hope of

complete (or efficient) reasoning support.

OWL DL

In order to regain computational efficiency, OWL DL (short for Description

Logic) is a sublanguage of OWL Full that restricts how the constructors from

OWL and RDF may be used: essentially application of OWL’s constructor’s

to each other is disallowed, thus ensuring that the language corresponds to

a well studied description logic.

The advantage of this is that it permits efficient reasoning support. The

disadvantage is that we lose full compatibility with RDF: an RDF document

will in general have to be extended in some ways and restricted in others

before it is a legal OWL DL document. Every legal OWL DL document is a

legal RDF document.

TLFeBOOK

TLFeBOOK

114 4 Web Ontology Language: OWL

OWL Lite

An even further restriction limits OWL DL to a subset of the language con-

structors. For example, OWL Lite excludes enumerated classes, disjointness

statements, and arbitrary cardinality.

The advantage of this is a language that is both easier to grasp (for users)

and easier to implement (for tool builders). The disadvantage is of course a

restricted expressivity.

Ontology developers adopting OWL should consider which sublanguage

best suits their needs. The choice between OWL Lite and OWL DL depends

on the extent to which users require the more expressive constructs provided

by OWL DL and OWL Full. The choice between OWL DL and OWL Full

mainly depends on the extent to which users require the metamodeling facil-

ities of RDF Schema (e.g., defining classes of classes, or attaching properties

to classes). When using OWL Full as compared to OWL DL, reasoning sup-

port is less predictable because complete OWL Full implementations will be

impossible.

There are strict notions of upward compatibility between these three sub-

languages:

• Every legal OWL Lite ontology is a legal OWL DL ontology.

• Every legal OWL DL ontology is a legal OWL Full ontology.

• Every valid OWL Lite conclusion is a valid OWL DL conclusion.

• Every valid OWL DL conclusion is a valid OWL Full conclusion.

OWL still uses RDF and RDF Schema to a large extent:

• All varieties of OWL use RDF for their syntax.

• Instances are declared as in RDF, using RDF descriptions and typing in-

formation.

• OWL constructors like owl:Class, and owl:DatatypeProperty, and

owl:ObjectProperty are specialisations of their RDF counterparts.

Figure 4.1 shows the subclass relationships between some modeling primi-

tives of OWL and RDF/RDFS.

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 115

rdfs:Class

owl:Class owl:DatatypePropertyowl:ObjectProperty

rdf:Property

rdfs:Resource

Figure 4.1 Subclass relationships between OWL and RDF/RDFS

One of the main motivations behind the layered architecture of the Se-

mantic Web (see Figure 1.3) is a hope for downward compatibility with cor-

responding reuse of software across the various layers. However, the advan-

tage of full downward compatibility for OWL (that any OWL-aware proces-

sor will also provide correct interpretations of any RDF Schema document)

is only achieved for OWL Full, at the cost of computational intractability.

In this chapter, section 4.2 presents OWL in some detail, and section 4.3

illustrates the language with examples.

Part of the OWL definition can be written in OWL itself. as shown in sec-

tion 4.4. Section 4.5 discusses some representational requirements not han-

dled by OWL, which may be the subject of future extensions.

4.2 The OWL Language

4.2.1 Syntax

OWL builds on RDF and RDF Schema and uses RDF’s XML-based syntax.

Since this is the primary syntax for OWL, we use it here, but RDF/XML does

not provide a very readable syntax. Because of this, other syntactic forms for

OWL have also been defined:

• An XML-based syntax5 that does not follow the RDF conventions and is

thus more easily read by human users.

5. defined in <http://www.w3.org/TR/owl-xmlsyntax/>

TLFeBOOK

TLFeBOOK

116 4 Web Ontology Language: OWL

• An abstract syntax, used in the language specification document6, that

is much more compact and readable then either the XML syntax or the

RDF/XML syntax. Appendix A lists all the RDF/XML code in this chap-

ter in this abstract syntax.

• a graphic syntax based on the conventions of UML (Unified Modeling

Language), which is widely used, and is thus an easy way for people to

become familiar with OWL.

4.2.2 Header

OWL documents are usually called OWL ontologies and are RDF documents.

The root element of an OWL ontology is an rdf:RDF element, which also

specifies a number of namespaces:

<rdf:RDF

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns:rdf ="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd ="http://www.w3.org/2001/XMLSchema#">

An OWL ontology may start with a collection of assertions for housekeeping

purposes. These assertions are grouped under an owl:Ontology element,

which contains comments, version control, and inclusion of other ontologies.

For example:

<owl:Ontology rdf:about="">

<rdfs:comment>An example OWL ontology</rdfs:comment>

<owl:priorVersion

rdf:resource="http://www.mydomain.org/uni-ns-old"/>

<owl:imports

rdf:resource="http://www.mydomain.org/persons"/>

<rdfs:label>University Ontology</rdfs:label>

</owl:Ontology>

Only one of these assertions has any consequences for the logical meaning of

the ontology: owl:imports, which lists other ontologies whose content is

assumed to be part of the current ontology. Note that while namespaces are

used for disambiguation, imported ontologies provide definitions that can

6. <http://www.w3.org/TR/owl-semantics/>

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 117

be used. Usually there will be an import element for each namespace used,

but it is possible to import additional ontologies, for example, ontologies that

provide definitions without introducing any new names.

Also note that owl:imports is a transitive property: if ontology A im-

ports ontology B, and ontology B imports ontology C, then ontology A also

imports ontology C.

4.2.3 Class Elements

Classes are defined using an owl:Class element.7 For example, we can

define a class associateProfessor as follows:

<owl:Class rdf:ID="associateProfessor">

<rdfs:subClassOf rdf:resource="#academicStaffMember"/>

</owl:Class>

We can also say that this class is disjoint from the assistantProfessor

and professor classes using owl:disjointWith elements. These ele-

ments can be included in the preceding definition, or added by referring to

the ID using rdf:about. This mechanism is inherited from RDF.

<owl:Class rdf:about="#associateProfessor">

<owl:disjointWith rdf:resource="#professor"/>

<owl:disjointWith rdf:resource="#assistantProfessor"/>

</owl:Class>

Equivalence of classes can be defined using an owl:equivalentClass ele-

ment:

<owl:Class rdf:ID="faculty">

<owl:equivalentClass rdf:resource="#academicStaffMember"/>

</owl:Class>

Finally, there are two predefined classes, owl:Thing and owl:Nothing.

The former is the most general class, which contains everything (everything

is a thing), and the latter is the empty class. Thus every class is a subclass of

owl:Thing and a superclass of owl:Nothing.

7. owl:Class is a subclass of rdfs:Class.

TLFeBOOK

TLFeBOOK

118 4 Web Ontology Language: OWL

4.2.4 Property Elements

In OWL there are two kinds of properties:

• Object properties, which relate objects to other objects. Examples are is-

TaughtBy and supervises.

• Data type properties, which relate objects to datatype values. Examples

are phone, title and age etc. OWL does not have any predefined data

types, nor does it provide special definition facilities. Instead, it allows

one to use XML Schema data types, thus making use of the layered archi-

tecture of the Semantic Web

Here is an example of a datatype property:

<owl:DatatypeProperty rdf:ID="age">

<rdfs:range rdf:resource="http://www.w3.org/2001/XMLSchema

#nonNegativeInteger"/>

</owl:DatatypeProperty>

User-defined data types will usually be collected in an XML schema and then

used in an OWL ontology.

Here is an example of an object property:

<owl:ObjectProperty rdf:ID="isTaughtBy">

<rdfs:domain rdf:resource="#course"/>

<rdfs:range rdf:resource="#academicStaffMember"/>

<rdfs:subPropertyOf rdf:resource="#involves"/>

</owl:ObjectProperty>

More than one domain and range may be declared. In this case the intersec-

tion of the domains, respectively ranges, is taken.

OWL allows us to relate “inverse properties”. A typical example is the pair

isTaughtBy and teaches:

<owl:ObjectProperty rdf:ID="teaches">

<rdfs:range rdf:resource="#course"/>

<rdfs:domain rdf:resource="#academicStaffMember"/>

<owl:inverseOf rdf:resource="#isTaughtBy"/>

</owl:ObjectProperty>

Figure 4.2 illustrates the relationship between a property and its inverse. Ac-

tually domain and range can be inherited from the inverse property (inter-

change domain with range).

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 119

l c

isTaughtBy

teaches

Figure 4.2 Inverse properties

Equivalence of properties can be defined through the use of the element

owl:equivalentProperty.

<owl:ObjectProperty rdf:ID="lecturesIn">

<owl:equivalentProperty rdf:resource="#teaches"/>

</owl:ObjectProperty>

4.2.5 Property Restrictions

With rdfs:subClassOf we can specify a class C to be subclass of another

class C ′; then every instance of C is also an instance of C ′.

Suppose we wish to declare, instead, that the class C satisfies certain con-

ditions, that is, all instances of C satisfy the conditions. This is equivalent to

saying that C is subclass of a class C ′, where C ′ collects all objects that satisfy

the conditions. That is exactly how it is done in OWL. Note that, in general,

C ′ can remain anonymous.

The following element requires first-year courses to be taught by profes-

sors only (according to a questionable view, older and more senior academics

are better at teaching):

<owl:Class rdf:about="#firstYearCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:allValuesFrom rdf:resource="#Professor"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:allValuesFrom is used to specify the class of possible values the

property specified by owl:onProperty can take (in other words, all values

TLFeBOOK

TLFeBOOK

120 4 Web Ontology Language: OWL

of the property must come from this class). In our example, only professors

are allowed as values of the property isTaughtBy.

We can declare that mathematics courses are taught by David Billington as

follows:

<owl:Class rdf:about="#mathCourse">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:hasValue rdf:resource="#949352"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

owl:hasValue states a specific value that the property specified by

owl:onProperty must have.

And we can declare that all academic staff members must teach at least

one undergraduate course:

<owl:Class rdf:about="#academicStaffMember">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#teaches"/>

<owl:someValuesFrom

rdf:resource="#undergraduateCourse"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Let us compare owl:allValuesFrom and owl:someValuesFrom. The

example using the former requires every person who teaches an instance of

the class, a first-year subject, to be a professor. In terms of logic, we have a

universal quantification.

The example using the latter requires that there exists an undergraduate

course taught by an instance of the class, an academic staff member. It is still

possible that the same academic teaches postgraduate courses in addition. In

terms of logic, we have an existential quantification.

In general, an owl:Restriction element contains an owl:onProperty

element and one or more restriction declarations. One type of restriction dec-

larations defines restrictions on the kinds of values the property can take:

owl:allValuesFrom, owl:hasValue, and owl:someValuesFrom. An-

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 121

other type defines cardinality restrictions. For example, we can require every

course to be taught by at least someone:

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#isTaughtBy"/>

<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

Notice that we had to specify that the literal “1” is to be interpreted as non-

NegativeInteger (instead of, say, a string), and that we used the xsd

namespace declaration made in the header element to refer to the XML

Schema document.

Or we might specify that, for practical reasons, a department must have at

least ten and at most thirty members:

<owl:Class rdf:about="#department">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMember"/>

<owl:minCardinality

rdf:datatype="&xsd;nonNegativeInteger">

10

</owl:minCardinality>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#hasMember"/>

<owl:maxCardinality

rdf:datatype="&xsd;nonNegativeInteger">

30

</owl:maxCardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

TLFeBOOK

TLFeBOOK

122 4 Web Ontology Language: OWL

It is possible to specify a precise number, for example, a Ph.D. student must

have exactly two supervisors. This can be achieved by using the same

number in owl:minCardinality and owl:maxCardinality. For con-

venience, OWL offers also owl:cardinality.

We conclude by noting that owl:Restriction defines an anonymous

class which has no ID, is not defined by owl:Class, and has only local

scope: it can only be used in the one place where the restriction appears.

When we talk about classes, please keep in mind the twofold meaning:

classes that are defined by owl:Class with an ID, and local anonymous

classes as collections of objects that satisfy certain restriction conditions, or

as combinations of other classes. The latter are sometimes called class expres-
sions.

4.2.6 Special Properties

Some properties of property elements can be defined directly:

owl:TransitiveProperty defines a transitive property, such as “has

better grade than”, “is taller than”, or “is ancestor of”.

owl:SymmetricProperty defines a symmetric property, such as “has

same grade as” or “is sibling of”.

owl:FunctionalProperty defines a property that has at most one value

for each object, such as “age”, “height”, or “directSupervisor”.

owl:InverseFunctionalProperty defines a property for which two

different objects cannot have the same value, for example, the property

“isTheSocialSecurityNumberfor” (a social security number is assigned to

one person only).

An example of the syntactic forms for these is:

<owl:ObjectProperty rdf:ID="hasSameGradeAs">

<rdf:type rdf:resource="&owl;TransitiveProperty" />

<rdf:type rdf:resource="&owl;SymmetricProperty" />

<rdfs:domain rdf:resource="#student" />

<rdfs:range rdf:resource="#student" />

</owl:ObjectProperty>

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 123

4.2.7 Boolean Combinations

It is possible to talk about Boolean combinations (union, intersection, com-

plement) of classes (be they defined by owl:Class or by class expressions).

For example, we can say that courses and staff members are disjoint as fol-

lows:

<owl:Class rdf:about="#course">

<rdfs:subClassOf>

<owl:Class>

<owl:complementOf rdf:resource="#staffMember"/>

</owl:Class>

</rdfs:subClassOf>

</owl:Class>

This says that every course is an instance of the complement of staff mem-

bers, that is, no course is a staff member. Note that this statement could also

have been expressed using owl:disjointWith.

The union of classes is built using owl:unionOf:

<owl:Class rdf:ID="peopleAtUni">

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class rdf:about="#student"/>

</owl:unionOf>

</owl:Class>

This does not say that the new class is a subclass of the union, but rather

that the new class is equal to the union. In other words, we have stated an

equivalence of classes. Also, we did not specify that the two classes must be

disjoint: it is possible for a staff member to also be a student.

Intersection is stated with owl:intersectionOf:

<owl:Class rdf:ID="facultyInCS">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#belongsTo"/>

<owl:hasValue rdf:resource="#CSDepartment"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

TLFeBOOK

TLFeBOOK

124 4 Web Ontology Language: OWL

Note that we have built the intersection of two classes, one of which was

defined anonymously: the class of all objects belonging to the CS depart-

ment. This class is intersected with faculty to give us the faculty in the CS

department.

Boolean combinations can be nested arbitrarily. The following example

defines administrative staff to be those staff members that are neither faculty

nor technical support staff:

<owl:Class rdf:ID="adminStaff">

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#staffMember"/>

<owl:Class>

<owl:complementOf>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#faculty"/>

<owl:Class rdf:about="#techSupportStaff"/>

</owl:unionOf>

</owl:Class>

</owl:complementOf>

</owl:Class>

</owl:intersectionOf>

</owl:Class>

4.2.8 Enumerations

An enumeration is an owl:oneOf element, used to define a class by listing

all its elements:

<owl:Class rdf:ID="weekdays">

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#Monday"/>

<owl:Thing rdf:about="#Tuesday"/>

<owl:Thing rdf:about="#Wednesday"/>

<owl:Thing rdf:about="#Thursday"/>

<owl:Thing rdf:about="#Friday"/>

<owl:Thing rdf:about="#Saturday"/>

<owl:Thing rdf:about="#Sunday"/>

</owl:oneOf>

</owl:Class>

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 125

4.2.9 Instances

Instances of classes are declared as in RDF:

<rdf:Description rdf:ID="949352">

<rdf:type rdf:resource="#academicStaffMember"/>

</rdf:Description>

or equivalently

<academicStaffMember rdf:ID="949352"/>

We can also provide further details, such as

<academicStaffMember rdf:ID="949352">

<uni:age rdf:datatype="&xsd;integer">39</uni:age>

</academicStaffMember>

Unlike typical database systems, OWL does not adopt the unique-names as-
sumption; just because two instances have a different name or ID does not

imply that they are different individuals. For example, if we state that each

course is taught by at most one staff member

<owl:ObjectProperty rdf:ID="isTaughtBy">

<rdf:type rdf:resource="&owl;FunctionalProperty" />

</owl:ObjectProperty>

and we subsequently state that a given course is taught by two staff members

<course rdf:ID="CIT1111">

<isTaughtBy rdf:resource="#949318"/>

<isTaughtBy rdf:resource="#949352"/>

</course>

this does not cause an OWL reasoner to flag an error. After all, the system

could validly infer that the resources "949318" and "949352" are appar-

ently equal. To ensure that different individuals are indeed recognized as

such, we must explicitly assert their inequality:

<lecturer rdf:ID="949318">

<owl:differentFrom rdf:resource="#949352"/>

</lecturer>

Because such inequality statements occur frequently, and the required num-

ber of such statements would explode if we wanted to state the inequality of

a large number of individuals, OWL provides a shorthand notation to assert

the pairwise inequality of all individuals in a given list:

TLFeBOOK

TLFeBOOK

126 4 Web Ontology Language: OWL

<owl:AllDifferent>

<owl:distinctMembers rdf:parseType="Collection">

<lecturer rdf:about="#949318"/>

<lecturer rdf:about="#949352"/>

<lecturer rdf:about="#949111"/>

</owl:distinctMembers>

</owl:AllDifferent>

Note that owl:distinctMembers can only be used in combination with

owl:allDifferent.

4.2.10 Data Types

Although XML Schema provides a mechanism to construct user-defined data

types (e.g., the data type of adultAge as all integers greater than 18, or the

data type of all strings starting with a number), such derived data types can-

not be used in OWL. In fact, not even all of the many built-in XML Schema

data types can be used in OWL. The OWL reference document lists all the

XML Schema data types that can be used, but these include the most fre-

quently used types such as string, integer, Boolean, time, and date.

4.2.11 Versioning Information

We have already seen the owl:priorVersion statement as part of the

header information to indicate earlier versions of the current ontology. This

information has no formal model-theoretic semantics but can be exploited

by human readers and programs alike for the purposes of ontology manage-

ment.

Besides owl:priorVersion, OWL has three more statements to indicate

further informal versioning information. None of these carry any formal

meaning.

owl:versionInfo generally contains a string giving information about

the current version, for example RCS/CVS keywords.

owl:backwardCompatibleWith contains a reference to another ontol-

ogy. This identifies the specified ontology as a prior version of the contain-

ing ontology and further indicates that it is backward-compatible with it.

In particular, this indicates that all identifiers from the previous version

have the same intended interpretations in the new version. Thus, it is a

hint to document authors that they can safely change their documents to

TLFeBOOK

TLFeBOOK

4.2 The OWL Language 127

commit to the new version (by simply updating namespace declarations

and owl:imports statements to refer to the URL of the new version).

owl:incompatibleWith, on the other hand, indicates that the containing

ontology is a later version of the referenced ontology but is not backward-

compatible with it. Essentially, this is for use by ontology authors who

want to be explicit that documents cannot upgrade to use the new version

without checking whether changes are required.

4.2.12 Layering of OWL

Now that we have discussed all the language constructors of OWL, we can

completely specify which features of the language may be used in which

sublanguage (OWL Full, OWL or OWL Lite).

OWL Full

In OWL Full, all the language constructors may be used in any combination

as long as the result is legal RDF.

OWL DL

In order to exploit the formal underpinnings and computational tractability

of Description Logics, the following constraints must be obeyed in an OWL

DL ontology:

• Vocabulary partitioning. Any resource is allowed to be only a class, a data

type, a data type property, an object property, an individual, a data value,

or part of the built-in vocabulary, and not more than one of these. This

means that, for example, a class cannot at the same time be an individual,

or that a property cannot have some values from a data type and some

values from a class (this would make it both a data type property and an

object property).

• Explicit typing. Not only must all resources be partitioned (as prescribed

in the previous constraint) but this partitioning must be stated explicitly.

For example, if an ontology contains the following:

<owl:Class rdf:ID="C1">

<rdfs:subClassOf rdf:about="#C2" />

</owl:Class>

TLFeBOOK

TLFeBOOK

128 4 Web Ontology Language: OWL

this already entails that C2 is a class (by virtue of the range specification of

rdfs:subClassOf). Nevertheless, an OWL DL ontology must explicitly
state this information:

<owl:Class rdf:ID="C2"/>

• Property separation. By virtue of the first constraint, the set of object prop-

erties and data type properties are disjoint. This implies that the following

can never be specified for data type properties:

owl:inverseOf,

owl:FunctionalProperty,

owl:InverseFunctionalProperty, and

owl:SymmetricProperty.

• No transitive cardinality restrictions. No cardinality restrictions may be

placed on transitive properties (or their subproperties, which are of course

also transitive, by implication).

• Restricted anonymous classes. Anonymous classes are only allowed

to occur as the domain and range of either owl :equivalentClass

or owl:disjointWith, and as the range (but not the domain) of

rdfs:subClassOf.

OWL Lite

An OWL Lite ontology must be an OWL DL ontology and must further sat-

isfy the following constraints:

• The constructors owl:oneOf, owl:disjointWith, owl:unionOf,

owl:complementOf and owl:hasValue are not allowed.

• Cardinality statements (minimal, maximal, and exact cardinality) can

only be made on the values 0 or 1 and no longer on arbitrary non-negative

integers.

• owl:equivalentClass statements can no longer be made between

anonymous classes but only between class identifiers.

TLFeBOOK

TLFeBOOK

4.3 Examples 129

giraffe

herbivore carnivore

lion

animal plant

tree

Figure 4.3 Classes and subclasses of the African wildlife ontology

branch

isPartOf

tree

isSubclassOf

onProperty

toClass

Figure 4.4 Branches are parts of trees

4.3 Examples

4.3.1 An African Wildlife Ontology

This example shows an ontology that describes African wildlife. Figure 4.3

shows the basic classes and their subclass relationships. Note that the sub-

class information is only part of the information included in the ontology.

The entire graph is much larger. Figure 4.4 shows the graphic representation

of the statement that branches are parts of trees.
The ontology includes comments written using rdfs:comment.

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:owl ="http://www.w3.org/2002/07/owl#">

TLFeBOOK

TLFeBOOK

130 4 Web Ontology Language: OWL

<owl:Ontology rdf:about="xml:base"/>

<owl:Class rdf:ID="animal">

<rdfs:comment>Animals form a class.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="plant">

<rdfs:comment>

Plants form a class disjoint from animals.

</rdfs:comment>

<owl:disjointWith rdf:resource="#animal"/>

</owl:Class>

<owl:Class rdf:ID="tree">

<rdfs:comment>Trees are a type of plant.</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>

</owl:Class>

<owl:Class rdf:ID="branch">

<rdfs:comment>Branches are parts of trees.</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is_part_of"/>

<owl:allValuesFrom rdf:resource="#tree"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="leaf">

<rdfs:comment>Leaves are parts of branches.</rdfs:comment>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#is_part_of"/>

<owl:allValuesFrom rdf:resource="#branch"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="herbivore">

<rdfs:comment>

Herbivores are exactly those animals that eat only plants

TLFeBOOK

TLFeBOOK

4.3 Examples 131

or parts of plants.

</rdfs:comment>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom>

<owl:Class>

<owl:unionOf rdf:parseType="Collection">

<owl:Class rdf:about="#plant"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#is_part_of"/>

<owl:allValuesFrom rdf:resource="#plant"/>

</owl:Restriction>

</owl:unionOf>

</owl:Class>

</owl:allValuesFrom>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="carnivore">

<rdfs:comment>

Carnivores are exactly those animals that eat animals.

</rdfs:comment>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#animal"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:someValuesFrom rdf:resource="#animal"/>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="giraffe">

<rdfs:comment>

Giraffes are herbivores, and they eat only leaves.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#herbivore"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

TLFeBOOK

TLFeBOOK

132 4 Web Ontology Language: OWL

<owl:allValuesFrom rdf:resource="#leaf"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="lion">

<rdfs:comment>

Lions are animals that eat only herbivores.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#carnivore"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eats"/>

<owl:allValuesFrom rdf:resource="#herbivore"/>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="tasty_plant">

<rdfs:comment>

Tasty plants are plants that are eaten

both by herbivores and carnivores.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#plant"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eaten_by"/>

<owl:someValuesFrom>

<owl:Class rdf:about="#herbivore"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#eaten_by"/>

<owl:someValuesFrom>

<owl:Class rdf:about="#carnivore"/>

</owl:someValuesFrom>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

TLFeBOOK

TLFeBOOK

4.3 Examples 133

product

padid hpProduct

printer

personalPrinter hpPrinterlaserJetPrinter

hpLaserJetPrinter

1100series

1100xi1100se

Figure 4.5 Classes and subclasses of the printer ontology

<owl:TransitiveProperty rdf:ID="is_part_of"/>

<owl:ObjectProperty rdf:ID="eats">

<rdfs:domain rdf:resource="#animal"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="eaten_by">

<owl:inverseOf rdf:resource="#eats"/>

</owl:ObjectProperty>

</rdf:RDF>

TLFeBOOK

TLFeBOOK

134 4 Web Ontology Language: OWL

4.3.2 A Printer Ontology

Classes and subclass relationships in this example are shown in figure 4.5.

<!DOCTYPE owl [

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#" >

]>

<rdf:RDF

xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"

xmlns:rdfs="http://www.w3.org/2000/01/rdf-schema#"

xmlns:xsd="http://www.w3.org/2001/XMLSchema#"

xmlns:owl ="http://www.w3.org/2002/07/owl#"

xmlns="http://www.cs.vu.nl/~frankh/spool/printer.owl#">

<owl:Ontology rdf:about="">

<owl:versionInfo>

My example version 1.2, 17 October 2002

</owl:versionInfo>

</owl:Ontology>

<owl:Class rdf:ID="product">

<rdfs:comment>Products form a class.</rdfs:comment>

</owl:Class>

<owl:Class rdf:ID="padid">

<rdfs:comment>

Printing and digital imaging devices

form a subclass of products.

</rdfs:comment>

<rdfs:label>Device</rdfs:label>

<rdfs:subClassOf rdf:resource="#product"/>

</owl:Class>

<owl:Class rdf:ID="hpProduct">

<rdfs:comment>

HP products are exactly those products

that are manufactured by Hewlett Packard.

</rdfs:comment>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#product"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#manufactured_by"/>

TLFeBOOK

TLFeBOOK

4.3 Examples 135

<owl:hasValue rdf:datatype="&xsd;string">

Hewlett Packard

</owl:hasValue>

</owl:Restriction>

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="printer">

<rdfs:comment>

Printers are printing and digital imaging devices.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#padid"/>

</owl:Class>

<owl:Class rdf:ID="personalPrinter">

<rdfs:comment>

Printers for personal use form a subclass of printers.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#printer"/>

</owl:Class>

<owl:Class rdf:ID="hpPrinter">

<rdfs:comment>

HP printers are HP products and printers.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#printer"/>

<rdfs:subClassOf rdf:resource="#hpProduct"/>

</owl:Class>

<owl:Class rdf:ID="laserJetPrinter">

<rdfs:comment>

Laser jet printers are exactly those

printers that use laser jet printing technology.

</rdfs:comment>

<owl:intersectionOf rdf:parseType="Collection">

<owl:Class rdf:about="#printer"/>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingTechnology"/>

<owl:hasValue rdf:datatype="&xsd;string">

laser jet

</owl:hasValue>

</owl:Restriction>

TLFeBOOK

TLFeBOOK

136 4 Web Ontology Language: OWL

</owl:intersectionOf>

</owl:Class>

<owl:Class rdf:ID="hpLaserJetPrinter">

<rdfs:comment>

HP laser jet printers are HP products

and laser jet printers.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#laserJetPrinter"/>

<rdfs:subClassOf rdf:resource="#hpPrinter"/>

</owl:Class>

<owl:Class rdf:ID="1100series">

<rdfs:comment>

1100series printers are HP laser jet printers with

8ppm printing speed and 600dpi printing resolution.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#hpLaserJetPrinter"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingSpeed"/>

<owl:hasValue rdf:datatype="&xsd;string">

8ppm

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#printingResolution"/>

<owl:hasValue rdf:datatype="&xsd;string">

600dpi

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="1100se">

<rdfs:comment>

1100se printers belong to the 1100 series and cost $450.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>

<rdfs:subClassOf>

TLFeBOOK

TLFeBOOK

4.3 Examples 137

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue rdf:datatype="&xsd;integer">

450

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:Class rdf:ID="1100xi">

<rdfs:comment>

1100xi printers belong to the 1100 series and cost $350.

</rdfs:comment>

<rdfs:subClassOf rdf:resource="#1100series"/>

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#price"/>

<owl:hasValue rdf:datatype="&xsd;integer">

350

</owl:hasValue>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:DatatypeProperty rdf:ID="manufactured_by">

<rdfs:domain rdf:resource="#product"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="price">

<rdfs:domain rdf:resource="#product"/>

<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingTechnology">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingResolution">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range rdf:resource="&xsd;string"/>

TLFeBOOK

TLFeBOOK

138 4 Web Ontology Language: OWL

</owl:DatatypeProperty>

<owl:DatatypeProperty rdf:ID="printingSpeed">

<rdfs:domain rdf:resource="#printer"/>

<rdfs:range rdf:resource="&xsd;string"/>

</owl:DatatypeProperty>

</rdf:RDF>

This ontology demonstrates that siblings in a hierarchy tree need not be

disjoint. For example, a personal printer may be an HP printer or a LaserJet

printer, although the three classes involved are subclasses of the class of all

printers.

4.4 OWL in OWL

Here we present a part of the definition of OWL in terms of itself. The full

description is found on the Web (see Suggested Reading). In our presentation

we comment on some aspects of OWL that have not been discussed so far.

4.4.1 Namespaces

<?xml version="1.0"?>

<!DOCTYPE owl [

<!ENTITY rdf "http://www.w3.org/1999/02/22-rdf-syntax-ns#">

<!ENTITY rdfs "http://www.w3.org/2000/01/rdf-schema#">

<!ENTITY xsd "http://www.w3.org/2001/XMLSchema#">

<!ENTITY owl "http://www.w3.org/2002/07/owl#">]>

<rdf:RDF

xml:base ="http://www.w3.org/2002/07/owl"

xmlns ="&owl;"

xmlns:owl ="&owl;"

xmlns:rdf ="&rdf;"

xmlns:rdfs="&rdfs;"

xmlns:dc ="http://purl.org/dc/elements/1.1/">

The URI of the current document (the OWL definition) is defined as the

default namespace. Therefore, the prefix owl: will not be used in the fol-

lowing. Also, note the use of XML entity definitions, which allows us to

abbreviate URLs appearing in attribute values.

TLFeBOOK

TLFeBOOK

4.4 OWL in OWL 139

4.4.2 Classes of Classes (Metaclasses)

The class of all OWL classes is itself a subclass of the class of all RDF Schema

classes:

<rdfs:Class rdf:ID="Class">

<rdfs:label>Class</rdfs:label>

<rdfs:comment>The class of all OWL classes</rdfs:comment>

<rdfs:subClassOf rdf:resource="&rdfs;Class"/>

</rdfs:Class>

Thing is the most general object class in OWL, and Nothing the most spe-

cific, that is, the empty object class. The following relationships hold:

Thing = Nothing ∪ Nothingc

Nothing = Thingc = Nothingc ∩ Nothingcc = ∅

<Class rdf:ID="Thing">

<rdfs:label>Thing</rdfs:label>

<unionOf rdf:parseType="Collection">

<Class rdf:about="#Nothing"/>

<Class>

<complementOf rdf:resource="#Nothing"/>

</Class>

</unionOf>

</Class>

<Class rdf:ID="Nothing">

<rdfs:label>Nothing</rdfs:label>

<complementOf rdf:resource="#Thing"/>

</Class>

4.4.3 Class Equivalence

Class equivalence, expressed by owl:EquivalentClass, implies a sub-

class relationship and is always stated between two classes. This is analogous

for owl:EquivalentProperty. Disjointness statements can only be stated

between classes.

<rdf:Property rdf:ID="EquivalentClass">

<rdfs:label>EquivalentClass</rdfs:label>

<rdfs:subPropertyOf rdf:resource="&rdfs;subClassOf"/>

<rdfs:domain rdf:resource="#Class"/>

TLFeBOOK

TLFeBOOK

140 4 Web Ontology Language: OWL

<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

<rdf:Property rdf:ID="EquivalentProperty">

<rdfs:label>EquivalentProperty</rdfs:label>

<rdfs:subPropertyOf rdf:resource="&rdfs;subPropertyOf"/>

</rdf:Property>

<rdf:Property rdf:ID="disjointWith">

<rdfs:label>disjointWith</rdfs:label>

<rdfs:domain rdf:resource="#Class"/>

<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

Equality and inequality can be stated between arbitrary things; in OWL Full

this statement can also be applied to classes. owl:sameAs is simply a syn-

onym for owl:sameIndividualAs.

<rdf:Property rdf:ID="sameIndividualAs">

<rdfs:label>sameIndividualAs</rdfs:label>

<rdfs:domain rdf:resource="#Thing"/>

<rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

<rdf:Property rdf:ID="differentFrom">

<rdfs:label>differentFrom</rdfs:label>

<rdfs:domain rdf:resource="#Thing"/>

<rdfs:range rdf:resource="#Thing"/>

</rdf:Property>

<rdf:Property rdf:ID="sameAs">

<rdfs:label>sameAs</rdfs:label>

<EquivalentProperty rdf:resource="#sameIndividualAs"/>

</rdf:Property>

owl:distinctMembers can only be used for owl:AllDifferent:

<rdfs:Class rdf:ID="AllDifferent">

<rdfs:label>AllDifferent</rdfs:label>

</rdfs:Class>

<rdf:Property rdf:ID="distinctMembers">

<rdfs:label>distinctMembers</rdfs:label>

TLFeBOOK

TLFeBOOK

4.4 OWL in OWL 141

<rdfs:domain rdf:resource="#AllDifferent"/>

<rdfs:range rdf:resource="&rdf;List"/>

</rdf:Property>

4.4.4 Building Classes from Other Classes

owl:unionOf builds a class from a list (assumed to be a list of other class

expressions).

<rdf:Property rdf:ID="unionOf">

<rdfs:label>unionOf</rdfs:label>

<rdfs:domain rdf:resource="#Class"/>

<rdfs:range rdf:resource="&rdf;List"/>

</rdf:Property>

and so do owl:intersectionOf and owl:oneOf, although for these the

list is assumed to be a list of individuals. owl:complementOf defines a

class in terms of a single other class:

<rdf:Property rdf:ID="complementOf">

<rdfs:label>complementOf</rdfs:label>

<rdfs:domain rdf:resource="#Class"/>

<rdfs:range rdf:resource="#Class"/>

</rdf:Property>

4.4.5 Restricting Properties of Classes

Restrictions in OWL define the class of those objects that satisfy some at-

tached conditions:

<rdfs:Class rdf:ID="Restriction">

<rdfs:label>Restriction</rdfs:label>

<rdfs:subClassOf rdf:resource="#Class"/>

</rdfs:Class>

All the following properties are only allowed to occur within a restriction

definition, that is, their domain is owl:Restriction, but they differ with

respect to their range:

<rdf:Property rdf:ID="onProperty">

<rdfs:label>onProperty</rdfs:label>

<rdfs:domain rdf:resource="#Restriction"/>

TLFeBOOK

TLFeBOOK

142 4 Web Ontology Language: OWL

<rdfs:range rdf:resource="&rdf;Property"/>

</rdf:Property>

<rdf:Property rdf:ID="allValuesFrom">

<rdfs:label>allValuesFrom</rdfs:label>

<rdfs:domain rdf:resource="#Restriction"/>

<rdfs:range rdf:resource="&rdfs;Class"/>

</rdf:Property>

<rdf:Property rdf:ID="hasValue">

<rdfs:label>hasValue</rdfs:label>

<rdfs:domain rdf:resource="#Restriction"/>

</rdf:Property>

<rdf:Property rdf:ID="minCardinality">

<rdfs:label>minCardinality</rdfs:label>

<rdfs:domain rdf:resource="#Restriction"/>

<rdfs:range rdf:resource="&xsd;nonNegativeInteger"/>

</rdf:Property>

owl:maxCardinality and owl:cardinality are defined analogously

to owl:minCardinality, and owl:someValuesFrom is defined analo-

gously to owl:allValuesFrom

It is also worth noting that owl:onProperty allows the restriction on an

object or data type property. Therefore, the range of the restricting properties

like owl:allValuesFrom is not owl:Class (object classes) but the more

general rdfs:Class.

Properties

owl:ObjectProperty is a special case of rdf:Property

<rdfs:Class rdf:ID="ObjectProperty">

<rdfs:label>ObjectProperty</rdfs:label>

<rdfs:subClassOf rdf:resource="&rdf;Property"/>

</rdfs:Class>

and similarly for owl:DatatypeProperty.

owl:TransitiveProperty can only be applied to object properties

<rdfs:Class rdf:ID="TransitiveProperty">

<rdfs:label>TransitiveProperty</rdfs:label>

TLFeBOOK

TLFeBOOK

4.4 OWL in OWL 143

<rdfs:subClassOf rdf:resource="#ObjectProperty"/>

</rdfs:Class>

and similarly for symmetric, functional and inverse functional properties.

Finally, owl:inverseOf relates two object properties:

<rdf:Property rdf:ID="inverseOf">

<rdfs:label>inverseOf</rdfs:label>

<rdfs:domain rdf:resource="#ObjectProperty"/>

<rdfs:range rdf:resource="#ObjectProperty"/>

</rdf:Property>

Although not stated in the online references, the following would also seem

to be true:

<TransitiveProperty rdf:ID="&rdfs;subClassOf"/>

<TransitiveProperty rdf:ID="&rdfs;subProperty/>

<TransitiveProperty rdf:ID="EquivalentClass"/>

<SymmetricProperty rdf:ID="EquivalentClass"/>

<SymmetricProperty rdf:ID="disjointWith"/>

<TransitiveProperty rdf:ID="EquivalentProperty"/>

<SymmetricProperty rdf:ID="EquivalentProperty"/>

<TransitiveProperty rdf:ID="sameIndividualAs"/>

<SymmetricProperty rdf:ID="sameIndividualAs"/>

<SymmetricProperty rdf:ID="differentFrom"/>

<SymmetricProperty rdf:ID="complementOf"/>

<rdf:Property rdf:about="complementOf">

<rdfs:subPropertyOf rdf:resource="disjointWith"/>

</rdf:Property>

<rdf:Property rdf:about="cardinality">

<rdfs:subPropertyOf rdf:resource="mincardinality"/>

<rdfs:subPropertyOf rdf:resource="maxcardinality"/>

</rdf:Property>

<SymmetricProperty rdf:ID="inverseOf"/>

TLFeBOOK

TLFeBOOK

144 4 Web Ontology Language: OWL

<rdf:Property rdf:about="inverseOf">

<inverseOf rdf:resource="inverseOf"/>

</rdf:Property>

Although this captures some of OWL’s meaning in OWL, it does not cap-

ture the entire semantics, so a separate semantic specification (as given in the

OWL standard) remains necessary.

4.5 Future Extensions

Clearly, OWL is not the final word on ontology languages for the Semantic

Web. A number of additional features have already been identified in the

OWL Requirements Document, and many others are under discussion. In

this section, we briefly list a few of these possible extensions and improve-

ments to OWL.

4.5.1 Modules and Imports

Importing ontologies defined by others will be the norm on the Semantic

Web. However, the importing facility of OWL is very trivial: it only allows

importing of an entire ontology, specified by location. Even if one would

want to use only a small portion of another ontology, one would be forced

to import that entire ontology. Module-constructions in programming lan-

guages are based on a notion of information hiding: the module promises

to provide some functionality to the outside world (the export clause of the

module), but the importing module need not concern itself with how this

functionality is achieved. It is an open research question what a correspond-

ing notion of information hiding for ontologies would be, and how it could

be used as the basis for a good import construction

4.5.2 Defaults

Many practical knowledge representation systems allow inherited values to

be overridden by more specific classes in the hierarchy, treating the inherited

values as defaults. Although this is widely used in practice, no consensus

has been reached on the right formalization for the nonmonotonic behaviour

of default values.

TLFeBOOK

TLFeBOOK

4.5 Future Extensions 145

4.5.3 Closed-World Assumption

The semantics of OWL currently adopts the standard logical model of an

open-world assumption: a statement cannot be assumed true on the basis

of a failure to prove it. Clearly, on the huge and only partially knowable

World Wide Web, this is the correct assumption. Nevertheless, the opposite

approach (a closed-world assumption: a statement is true when its negation

cannot be proved) is also useful in certain applications. The closed-world

assumption is closely tied to the notion of defaults and leads to the same

nonmonotonic behaviour, a reason for it not to be included in OWL.

4.5.4 Unique-Names Assumption

Typical database applications assume that individuals with different names

are indeed different individuals. OWL follows the usual logical paradigm

where this is not the case. If two individuals (or classes or properties) have

different names, we may still derive by inference that they must be the same.

As with the non-closed-world assumption, the non-unique-names assump-

tion is the most plausible one to make on the World Wide Web, but as before,

situations exist where the unique-names assumption is useful. More subtly,

one may want to indicate portions of the ontology for which the assumption

does or does not hold.

4.5.5 Procedural Attachment

A common concept in knowledge representation is to define the meaning of

a term not through explicit definitions in the language (as is done in OWL)

but by attaching a piece of code to be executed for computing the meaning

of the term. Although widely used, this concept does not lend itself very

well to integration in a system with a formal semantics, and it has not been

included in OWL.

4.5.6 Rules for Property Chaining

As explained previously, for reasons of decidability OWL does currently not

allow the composition of properties, but of course in many applications this

is a useful operation. Even more generally, one would want to define prop-

erties as general rules (Horn or otherwise) over other properties. Such in-

tegration of rule-based knowledge representation and DL-style knowledge

representation is currently an active area of research.

TLFeBOOK

TLFeBOOK

146 4 Web Ontology Language: OWL

Some of the issues mentioned here (rules, nonmonotonicity) will be ad-

dressed in chapter 5.

4.6 Summary

• OWL is the proposed standard for Web ontologies. It allows us to describe

the semantics of knowledge in a machine-accessible way.

• OWL builds upon RDF and RDF Schema: (XML-based) RDF syntax is

used; instances are defined using RDF descriptions; and most RDFS mod-

eling primitives are used.

• Formal semantics and reasoning support is provided through the map-

ping of OWL on logics. Predicate logic and description logics have been

used for this purpose.

While OWL is sufficiently rich to be used in practice, extensions are in the

making. They will provide further logical features, including rules.

Suggested Reading

Here are the key references for OWL:

• D. McGuinness and F van Harmelen, eds. OWL Web Ontology Language

Overview. August 18, 2003. <http://www.w3.org/TR/owl-features/>.

• M. Dean and G. Schreiber, eds. F. van Harmelen, J. Hendler, I. Horrocks,

D. McGuinness, P. Patel-Schneider, L. Stein, OWL Web Ontology Language
Reference. August 18, 2003. <http://www.w3.org/TR/owl-ref/>.

• M. Smith, C. Welty, and D. McGuinness, eds. OWL Web Ontology Language:
Guide. August 18, 2003. <http://www.w3.org/TR/owl-guide/>.

Interesting articles related to DAML+OIL and OIL include

• J. Broekstra, M. Klein, S. Decker, D. Fensel, F. van Harmelen, and I. Hor-

rocks, Enabling knowledge representation on the Web by Extending RDF

Schema. In Proceedings of the 10th World Wide Web Conference (WWW10),
2001. <http://www10.org/cdrom/papers/291/>

TLFeBOOK

TLFeBOOK

Suggested Reading 147

• D. Fensel, I. Horrocks, F. van Harmelen, D. McGuinness and P. Patel-

Schneider. OIL: An Ontology Infrastructure for the Semantic Web. IEEE
Intelligent Systems 16 March-April (2001): 38–45.

<http://www.cs.vu.nl/ frankh/abstracts/IEEE-IS01.html>.

• D. McGuiness. Ontologies come of age. In Spinning the Semantic Web, ed.

D. Fensel, J. Hendler, H. Lieberman and W. Wahlster. MIT Press 2003.

• P. Patel-Schneider, I. Horrocks and F. van Harmelen, Reviewing the De-

sign of DAML+OIL: An Ontology Language for the Semantic Web, In

Proceedings of the 18th National Conference on Artificial Intelligence (AAAI02).
2002. <http://www.cs.vu.nl/ frankh/abstracts/AAAI02.html>.

Here are a few references regarding description logics:

• F. Baader, D. Calvanese, D. McGuinness, D. Nardi, P. Patel-Schneider, eds.

The Description Logic Handbook: Theory, Implementation and Applications.

Cambrdge: Cambridge University Press, 2002.

• E. Franconi. Description Logics Course Informaton.

<http://www.cs.man.ac.uk/∼franconi/dl/course/>.

• I. Horrocks and U. Sattler. Ontology Reasoning in the SHOQ(D) Descrip-

tion Logic. In Proceedings of the 17th International Joint Conference on Artifi-
cial Intelligence (IJCAI-01). 2001, 199–204.

• I. Horrocks. Tutorial on Description Logic.

<http://www.cs.man.ac.uk/∼horrocks/Slides/IJCAR-tutorial/Print/>.

Here are two interesting Web sites:

• <http://www.w3.org/2001/sw/WebOnt/>. Information on OWL.

• <http://www.daml.org>. Information on DAML+OIL. See especially the

pages /language, /ontologies and /tools.

The following are a few links related to the general notion of ontologies but

quite different in nature from the content of this chapter. Thesauri are simple

kinds of informal ontologies.

• <http://www.lub.lu.se/metadata/subject-help.html>. An extensive col-

lection of pointers to thesauri.

TLFeBOOK

TLFeBOOK

148 4 Web Ontology Language: OWL

• <http://www.topicmaps.org>. Topic maps constitute a simple ontology

language in use today.

• <http://dublincore.org>. An example of an ontology used extensively in

the digital library domain is the Dublin Core.

Exercises and Projects

4.1 Read the online specification and the complete namespace of OWL, at

<http://w3.org>.

4.2 Give three different ways of stating that two classes are disjoint.

4.3 Express the fact that all mathematics courses are taught by David

Billington only (no other lecturer may be involved). Also express the

fact that the mathematics courses are exactly the courses taught by

David Billington. Is the difference clear?

4.4 Strictly speaking, the notion of SymmetricProperty was not needed

in OWL, because it could have been expressed in terms of other lan-

guage primitives. Explain how this can be done. (Hint: Consider the

inverse, too).

4.5 Similar question for FunctionalProperty. Show how it can be ex-

pressed using other OWL language constructions.

4.6 Determine in general which features of OWL are necessary, and which

are only convenient but can be simulated by other modeling primitives.

4.7 In the African wildlife example ontology, what problem would emerge

if we replaced owl:allValuesFrom by owl:someValuesFrom in

the definition of carnivores? (Hint: Consider the definition of tasty

plants).

4.8 State the relationship between the concepts

FunctionalProperty,

InverseFunctionalProperty, and

Inverseof.

4.9 Explain why it was necessary to declare owl:Class as a subclass of

rdfs:Class.

TLFeBOOK

TLFeBOOK

Exercises and Projects 149

4.10 In chapter 3 we presented an axiomatic semantics for RDF. A similar

axiomatic semantics can be developed for OWL. Define the axiomatic

semantics of intersectionOf.

4.11 Define the axiomatic semantics of inverseOf.

4.12 In this exercise you are asked to develop an axiomatic semantics for

cardinality restrictions.

(a) Define noRepeatsList. L is a “no repeats list” if there is not an

element that occurs in L more than once. The concept is not part

of the OWL language but will be used to count the elements for

cardinality restrictions.

(b) Define minCardinality and maxCardinality as properties

with domain Restriction and range NonNegativeInteger.

(c) Give an axiom that captures the meaning of minCardinality:

If onProperty(R,P) and minCardinality(R,n) then x is an in-

stance of R if, and only if, there is a “no repeats list” L of length

≥ n, such that P (x, y) for all y ∈ L.

(d) Express the meaning of maxCardinality in a similar way.

4.13 Have a look at some ontologies at

<http://www.daml.org/ontologies>.

4.14 Write your own ontologies in OWL.

4.15 OIL is a predecessor of OWL. Read the pages about the OIL language

and some of the example ontologies. Compare the OIL language to

the OWL language, paying attention both to commonalities and differ-

ences.

4.16 Compare the online documents on OWL to those for DAML+OIL.

4.17 Rewrite some examples from the DAML+OIL documents using OWL

terminology.

4.18 Try to think of features that are still missing in OWL. Hint: Think of

projects and persons involved. What should be true for each project,

and what for each person (to be valuable to their company)? Can you

express these conditions in OWL?

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

5 Logic and Inference: Rules

5.1 Introduction

From an abstract viewpoint, the subjects of the previous chapters were re-

lated to the representation of knowledge: knowledge about the content of Web

resources, and knowledge about the concepts of a domain of discourse and

their relationships (ontology).

Knowledge representation had been studied long before the emergence of

the World Wide Web, in the area of artificial intelligence and, before that,

in philosophy. In fact, it can be traced back to ancient Greece; Aristotle is

considered to be the father of logic. Logic is still the foundation of knowledge

representation, particularly in the form of predicate logic (also known as first-
order logic). Here we list a few reasons for the popularity and importance of

logic:

• It provides a high-level language in which knowledge can be expressed

in a transparent way. And it has a high expressive power.

• It has a well-understood formal semantics, which assigns an unambigu-

ous meaning to logical statements.

• There is precise notion of logical consequence, which determines whether

a statement follows semantically from a set of other statements (premises).

In fact, the primary original motivation of logic was the study of objective

laws of logical consequence.

• There exist proof systems that can automatically derive statements syn-

tactically from a set of premises.

• There exist proof systems for which semantic logical consequence coin-

cides with syntactic derivation within the proof system. Proof systems

TLFeBOOK

TLFeBOOK

152 5 Logic and Inference: Rules

should be sound (all derived statements follow semantically from the

premises) and complete (all logical consequences of the premises can be

derived in the proof system).

• Predicate logic is unique in the sense that sound and complete proof sys-

tems do exist. More expressive logics (higher-order logics) do not have

such proof systems.

• Because of the existence of proof systems, it is possible to trace the proof

that leads to a logical consequence. In this sense, the logic can provide

explanations for answers.

The languages of RDF and OWL (Lite and DL) can be viewed as specializa-

tions of predicate logic. The correspondence was illustrated by the axiomatic

semantics in the form of logical axioms.

One justification for the existence of such specialized languages is that they

provide a syntax that fits well with the intended use (in our case, Web lan-

guages based on tags). The other major justification is that they define rea-

sonable subsets of logic. As mentioned in section 4.1, there is a trade-off

between the expressive power and the computational complexity of certain

logics: the more expressive the language, the less efficient (in the worst case)

the corresponding proof systems. As we stated, OWL Lite and OWL DL cor-

respond roughly to a description logic, a subset of predicate logic for which

efficient proof systems exist.

Another subset of predicate logic with efficient proof systems comprises

the so-called rule systems (also known as Horn logic or definite logic programs) .

A rule has the form

A1, . . . An → B

where Ai and B are atomic formulas. In fact, there are two intuitive ways of

reading such a rule:

1. If A1, . . . , An are known to be true, then B is also true. Rules with this

interpretation are referred to as deductive rules.

2. If the conditions A1, . . . , An are true, then carry out the action B. Rules

with this interpretation are referred to as reactive rules.

Both views have important applications. However, in this chapter we take

the deductive approach. We study the language and possible queries that

TLFeBOOK

TLFeBOOK

5.1 Introduction 153

one can ask, as well as appropriate answers. Also we outline the working of

a proof mechanism that can return such answers.

It is interesting to note that description logics and Horn logic are orthogo-

nal in the sense that neither of them is a subset of the other. For example, it

is impossible to assert that persons who study and live in the same city are

“home students” in OWL, whereas this can be done easily using rules:

studies(X, Y), lives(X, Z), loc(Y, U), loc(Z,U) → homeStudent(X)

On the other hand, rules cannot assert the information that a person is either

a man or a woman, whereas this information is easily expressed in OWL

using disjoint union.

Then we turn our attention to another kind of rules. We give a simple

example. Suppose an online vendor wants to give a special discount if it is a

customer’s birthday. An easy way to represent this application with rules is

as follows:

R1 : If birthday, then special discount.

R2 : If not birthday, then not special discount.

This solution works properly in case the birthday is known. But imagine a

customer who refuses to provide his birthday because of privacy concerns.

In such a case, the preceding rules cannot be applied because their premises

are not known. To capture this situation we need to write something like

R1 : If birthday, then special discount.

R2′ : If birthday is not known, then not special discount.

However, the premise of rule R2′ is not within the expressive power of predi-

cate logic. Thus we need a new kind of rule system. We note that the solution

with rules R1 and R2 works in case we have complete information about the

situation (for example, either birthday or not birthday). The new kind of

rule system will find application in cases where the available information is

incomplete.

Predicate logic and its special cases are monotonic in the following sense: if

a conclusion can be drawn, it remains valid even if new knowledge becomes

available. But if rule R2′ is applied to derive “not special discount,” then this

conclusion may become invalid if the customer’s birthday becomes known

at a later stage and it happens to coincide with the purchase date. Thus we

talk of nonmonotonic rules to distinguish them from monotonic rules (which

TLFeBOOK

TLFeBOOK

154 5 Logic and Inference: Rules

are a special case of predicate logic). In this chapter, we will discuss both

monotonic and nonmonotonic rules.

Our final concern will be the exchange of rules across different applica-

tions. For example, an online store might wish to make its pricing, refund,

and privacy policies, which are expressed using rules, accessible to intelli-

gent agents. The Semantic Web approach is to express the knowledge in a

machine-accessible way using one of the Web languages we have already

discussed. In this chapter, we show how rules can be expressed in XML-like

languages (“rule markup languages”). Some applications of rule systems are

discussed in chapter 6.

In this chapter we give an example using monotonic rules (a subset of

predicate logic called Horn logic) in section 5.2. Sections 5.3 and 5.4 describe

the syntax and semantics of Horn logic, and section 5.5 describes the syntax

of nonmonotonic rules.

Section 5.6 presents an example of nonmonotonic rules. Finally, sections

5.7 and 5.8 describe an XML-based representation of monotonic and non-

monotonic rules.

5.2 Example of Monotonic Rules: Family Relationships

Imagine a database of facts about some family relationships. Suppose that

the database contains facts about the following base predicates:

mother(X, Y) X is the mother of Y

father(X, Y) X is the father of Y

male(X) X is male

female(X) X is female

Then we can infer further relationships using appropriate rules. First, we can

define a predicate parent: a parent is either a father or a mother.

mother(X, Y) → parent(X, Y)

father(X, Y) → parent(X, Y)

Then we can define a brother to be a male person sharing a parent:

male(X), parent(P,X), parent(P, Y), notSame(X, Y) →

brother(X, Y)

TLFeBOOK

TLFeBOOK

5.3 Monotonic Rules: Syntax 155

The predicate notSame denotes inequality; we assume that such facts are

kept in a database. Of course, every practical logical system offers conve-

nient ways of expressing equality and inequality, but we chose the abstract

solution to keep the discussion general.

Similarly, sister is defined as follows:

female(X), parent(P,X), parent(P, Y), notSame(X, Y) →

sister(X, Y)

An uncle is a brother of a parent:

brother(X, P), parent(P, Y) → uncle(X, Y)

A grandmother is the mother of a parent:

mother(X, P), parent(P, Y) → grandmother(X, Y)

An ancestor is either a parent or an ancestor of a parent:

parent(X, Y) → ancestor(X, Y)

ancestor(X, P), parent(P, Y) → ancestor(X, Y)

5.3 Monotonic Rules: Syntax

Let us consider a simple rule stating that all loyal customers aged over 60 are

entitled to a special discount:

loyalCustomer(X), age(X) > 60 → discount(X)

We distinguish some ingredients of rules:

• variables, which are placeholders for values: X

• constants, which denote fixed values: 60

• predicates, which relate objects: loyalCustomer, >

• function symbols, which return a value for certain arguments: age

TLFeBOOK

TLFeBOOK

156 5 Logic and Inference: Rules

5.3.1 Rules

A rule has the form

B1, . . . , Bn → A

where A,B1, . . . , Bn are atomic formulas. A is the head of the rule, and

B1, . . . , Bn are the premises of the rule. The set {B1, . . . , Bn} is referred to

as the body of the rule.

The commas in the rule body are read conjunctively: if B1 and B2 and . . .

and Bn are true, then A is also true (or equivalently, to prove A it is sufficient

to prove all B1, . . . , Bn).

Note that variables may occur in A,B1, . . . , Bn. For example,

loyalCustomer(X), age(X) > 60 → discount(X)

This rule is applied for any customer: if a customer happens to be loyal and

over 60, then she gets the discount. In other words, the variable X is implic-

itly universally quantified (using ∀X). In general, all variables occurring in

a rule are implicitly universally quantified.

In summary, a rule r

B1, . . . , Bn → A

is interpreted as the following formula, denoted by pl(r):

∀X1 . . .∀Xk((B1 ∧ . . . ∧ Bn) → A)

or equivalently,

∀X1 . . .∀Xk(A ∨ ¬B1 ∨ . . . ∨ ¬Bn)

where X1, . . . , Xk are all variables occurring in A,B1, . . . , Bn.

5.3.2 Facts

A fact is an atomic formula, such as loyalCustomer(a345678); it says that

the customer with ID a345678 is loyal. The variables of a fact are implicitly

universally quantified.

5.3.3 Logic Programs

A logic program P is a finite set of facts and rules. Its predicate logic transla-

tion pl(P) is the set of all predicate logic interpretations of rules and facts in

P .

TLFeBOOK

TLFeBOOK

5.3 Monotonic Rules: Syntax 157

5.3.4 Goals

A goal denotes a query G asked to a logic program. It has the form

B1, . . . , Bn →

If n = 0 we have the empty goal ✷.

Our next task is to interpret goals in predicate logic. Using the ideas we de-

veloped before (interpretations of commas as conjunction, implicit universal

quantification) we get the following interpretation:

∀X1 . . .∀Xk(¬B1 ∨ . . . ∨ ¬Bn)

This formula is the same as pl(r), with the only difference that the rule head

A is omitted1.

An equivalent representation in predicate logic is

¬∃X1 . . .∃Xk(B1 ∧ . . . ∧ Bn)

where X1, . . . , Xk are all variables occurring in B1, . . . , Bn. Let us briefly

explain this formula. Suppose we know

p(a)

and we have the goal

p(X) →

Actually, we want to know whether there is a value for which p is true. We

expect a positive answer because of the fact p(a). Thus p(X) is existentially

quantified. But then why do we negate the formula? The explanation is that

we use a proof technique from mathematics called proof by contradiction. This

technique proves that a statement A follows from a statement B by assuming

that A is false and deriving a contradiction, when combined with B. Then A

must follow from B.

In logic programming we prove that a goal can be answered positively by

negating the goal and proving that we get a contradiction using the logic

program. For example, given the logic program

p(a)

1. Note that the formula is equivalent to ∀X1 . . . ∀Xk(false ∨ ¬B1 ∨ . . . ∨ ¬Bn), so a missing

rule head can be thought of as a contradiction false.

TLFeBOOK

TLFeBOOK

158 5 Logic and Inference: Rules

and the goal

¬∃Xp(X)

we get a logical contradiction: the second formula says that no element has

the property p, but the first formula says that the value of a does have the

property p. Thus ∃Xp(X) follows from p(a).

5.4 Monotonic Rules: Semantics

5.4.1 Predicate Logic Semantics

One way of answering a query is to use the predicate logic interpretation of

rules, facts, and queries, and to make use of the well-known semantics of

predicate logic. To be more precise, given a logic program P and a query

B1, . . . , Bn →

with the variables X1, . . . , Xk, we answer positively if, and only if,

pl(P) |= ∃X1 . . .∃Xk(B1 ∧ . . . ∧ Bn) (1)

or equivalently, if

pl(P) ∪ {¬∃X1 . . .∃Xk(B1 ∧ . . . ∧ Bn)} is unsatisfiable (2)

In other words, we give a positive answer if the predicate logic representa-

tion of the program P , together with the predicate logic interpretation of the

query, is unsatisfiable (a contradiction).

The formal definition of the semantic concepts of predicate logic is found

in the literature. Here we just give an informal presentation. The compo-

nents of the logical language (signature) may have any meaning we like. A

predicate logic model A assigns a certain meaning. In particular, it consists of

• a domain dom(A), a nonempty set of objects about which the formulas

make statements

• an element from the domain for each constant

• a concrete function on dom(A) for every function symbol

• a concrete relation on dom(A) for every predicate

TLFeBOOK

TLFeBOOK

5.4 Monotonic Rules: Semantics 159

The meanings of the logical connectives ¬,∨,∧,→,∀,∃ are defined according

to their intuitive meaning: not, or, and, implies, for all, there is. This way we

define when a formula is true in a model A, denoted as A |= ϕ.

A formula ϕ follows from a set M of formulas if ϕ is true in all models A in

which M is true (that is, all formulas in M are true in A).

Now we are able to explain (1) and (2). Regardless of how we interpret the

constants, predicates, and function symbols occurring in P and the query,

once the predicate logic interpretation of P is true, ∃X1 . . .∃Xk(B1∧ . . .∧Bn)

must be true, too. That is, there are values for the variables X1, . . . , Xk such

that all atomic formulas Bi become true.

For example, suppose P is the program

p(a)

p(X) → q(X)

Consider the query

q(X) →

Clearly, q(a) follows from pl(P). Therefore, ∃Xq(X) follows from pl(P), thus

pl(P)∪{¬∃Xq(X)} is unsatisfiable, and we give a positive answer. But if we

consider the query

q(b) →

then we must give a negative answer because q(b) does not follow from

pl(P).

The other kind of semantics for logic programs, least Herbrand model se-

mantics, requires more technical treatment, and is not discussed here.

5.4.2 Ground and Parameterized Witnesses

So far we have focused on yes/no answers to queries. However, such an-

swers are not necessarily optimal. Suppose that we have the fact

p(a)

and the query

p(X) →

TLFeBOOK

TLFeBOOK

160 5 Logic and Inference: Rules

The answer yes is correct but not satisfactory. It resembles the joke where

you are asked, “Do you know what time it is?”, and you look at your watch

and answer “yes.” In our example, the appropriate answer is a substitution

{X/a}

which gives an instantiation for X , making the answer positive. The constant

a is called a ground witness. Given the facts

p(a)

p(b)

there are two ground witnesses to the same query: a and b. Or equivalently,

we should return the substitutions:

{X/a}

{X/b}

While valuable, ground witnesses are not always the optimal answer. Con-

sider the logic program

add(X, 0, X)

add(X, Y, Z) → add(X, s(Y), s(Z))

This program computes addition, if we read s as the “successor function,”

which returns as value the value of its argument plus 1. The third argument

of add computes the sum of its first two arguments. Consider the query

add(X, s8(0), Z) →

Possible ground witnesses are determined by the substitutions

{X/0, Z/s8(0)}

{X/s(0), Z/s9(0)}

{X/s(s(0)), Z/s10(0)}

. . .

However, the parameterized witness Z = s8(X) is the most general way to

witness the existential query

∃X∃Z add(X, s8(0), Z)

TLFeBOOK

TLFeBOOK

5.5 Nonmonotonic Rules: Motivation and Syntax 161

The computation of such most general witnesses is the primary aim of the

proof theory, called SLD resolution,2 the presentation of which is beyond the

scope of this book.

5.5 Nonmonotonic Rules: Motivation and Syntax

5.5.1 Informal Discussion

Now we turn our attention to nonmonotonic rule systems. So far, once the

premises of a rule were proved, the rule could be applied and its head could

be derived as a conclusion. In nonmonotonic rule systems, a rule may not be

applied even if all premises are known because we have to consider contrary

reasoning chains. In general, the rules we consider from now on are called

defeasible, because they can be defeated by other rules. To allow conflicts

between rules, negated atomic formulas may occur in the head and the body of

rules. For example, we may write

p(X) → q(X)

r(X) → ¬q(X)

To distinguish between defeasible rules and standard, monotonic rules, we

use a different arrow:

p(X) ⇒ q(X)

r(X) ⇒ ¬q(X)

In this example, given also the facts

p(a)

r(a)

we conclude neither q(a) nor ¬q(a). It is a typical example of two rules block-

ing each other. This conflict may be resolved using priorities among rules.

Suppose we knew somehow that the first rule is stronger than the second;

then we could indeed derive q(a).

Priorities arise naturally in practice, and may be based on various princi-

ples:

2. SLD resolution stands for “selective linear resolution for definite clauses.”

TLFeBOOK

TLFeBOOK

162 5 Logic and Inference: Rules

• The source of one rule may be more reliable than the source of the second

rule, or may have higher authority. For example, in law, federal law pre-

empts state law. And in business administration, higher management has

more authority than middle management.

• One rule may be preferred over another because it is more recent.

• One rule may be preferred over another because it is more specific. A

typical example is a general rule with some exceptions; in such cases, the

exceptions are stronger than the general rule.

Specificity may often be computed based on the given rules, but the other

two principles cannot be determined from the logical formalization. There-

fore, we abstract from the specific prioritization principle used, and assume

the existence of an external priority relation on the set of rules. To express the

relation syntactically, we extend the rule syntax to include a unique label, for

example,

r1 : p(X) ⇒ q(X)

r2 : r(X) ⇒ ¬q(X)

Then we can write

r1 > r2

to specify that r1 is stronger than r2.

We do not impose many conditions on >. It is not even required that the

rules form a complete ordering. We only require the priority relation to be

acyclic. That is, it is impossible to have cycles of the form

r1 > r2 > . . . > rn > r1

Note that priorities are meant to resolve conflicts among competing rules. In

simple cases two rules are competing only if the head of one rule is the nega-

tion of the head of the other. But in applications it is often the case that once a

predicate p is derived, some other predicates are excluded from holding. For

example, an investment consultant may base his recommendations on three

levels of risk investors are willing to take: low, moderate, and high. Obvi-

ously, only one risk level per investor is allowed to hold at any given time.

Technically, these situations are modeled by maintaining a conflict set C(L)

for each literal L. C(L) always contains the negation of L but may contain

more literals.

TLFeBOOK

TLFeBOOK

5.6 Example of Nonmonotonic Rules: Brokered Trade 163

5.5.2 Definition of the Syntax

A defeasible rule has the form

r : L1, . . . , Ln ⇒ L

where r is the label, {L1, . . . , Ln} the body (or premises), and L the head of

the rule. L, L1, . . . , Ln are positive or negative literals (a literal is an atomic

formula p(t1, . . . , tm) or its negation ¬p(t1, . . . , tm)). No function symbols

may occur in the rule.3 Sometimes we denote the head of a rule as head(r),

and its body as body(r). Slightly abusing notation, sometimes we use the

label r to refer to the whole rule.

A defeasible logic program is a triple (F,R, >) consisting of a set F of facts,

a finite set R of defeasible rules, and an acyclic binary relation > on R (pre-

cisely, a set of pairs r > r′ where r and r′ are labels of rules in R).

5.6 Example of Nonmonotonic Rules: Brokered Trade

This example shows how rules can be used in an electronic commerce appli-

cation (which will ideally run on the Semantic Web). Brokered trades take

place via an independent third party, the broker. The broker matches the

buyer’s requirements and the sellers’ capabilities, and proposes a transaction

when both parties can be satisfied by the trade.

As a concrete application we will discuss apartment renting,4 an activity

that is common and often tedious and time-consuming. Appropriate Web

services can reduce the effort considerably. We begin by presenting the po-

tential renter’s requirements.

Carlos is looking for an apartment of at least 45 sq m with at least two

bedrooms. If it is on the third floor or higher, the house must have an

elevator. Also, pet animals must be allowed.

Carlos is willing to pay $300 for a centrally located 45 sq m apartment,

and $250 for a similar flat in the suburbs. In addition, he is willing to

pay an extra $5 per square meter for a larger apartment, and $2 per

square meter for a garden.

3. This restriction is imposed for technical reasons, the discussion of which is beyond the scope

of this chapter.
4. In this case, the landlord takes the role of the abstract seller.

TLFeBOOK

TLFeBOOK

164 5 Logic and Inference: Rules

He is unable to pay more than $400 in total. If given the choice, he

would go for the cheapest option. His second priority is the presence

of a garden; his lowest priority is additional space.

5.6.1 Formalization of Carlos’s Requirements

We use the following predicates to describe properties of apartments:

size(x, y) y is the size of apartment x (in sq m)

bedrooms(x, y) x has y bedrooms

price(x, y) y is the price for x

floor(x, y) x is on the yth floor

garden(x, y) x has a garden of size y

lift(x) there is an elevator in the house of x

pets(x) pets are allowed in x

central(x) x is centrally located

We also make use of the following predicates:

acceptable(x) flat x satisfies Carlos’s requirements

offer(x, y) Carlos is willing to pay $ y for flat x

Now we present Carlos’s firm requirements. Any apartment is a priori ac-

ceptable.

r1 : ⇒ acceptable(X)

However, Y is unacceptable if one of Carlos’s requirements is not met.

r2 : bedrooms(X, Y), Y < 2 ⇒ ¬acceptable(X)

r3 : size(X, Y), Y < 45 ⇒ ¬acceptable(X)

r4 : ¬pets(X) ⇒ ¬acceptable(X)

r5 : floor(X, Y), Y > 2,¬lift(X) ⇒ ¬acceptable(X)

r6 : price(X, Y), Y > 400 ⇒ ¬acceptable(X)

Rules r2-r6 are exceptions to rule r1, so we add

r2 > r1, r3 > r1, r4 > r1, r5 > r1, r6 > r1

TLFeBOOK

TLFeBOOK

5.6 Example of Nonmonotonic Rules: Brokered Trade 165

Next we calculate the price Carlos is willing to pay for an apartment.

r7 : size(X, Y), Y ≥ 45, garden(X, Z), central(X) ⇒ offer(X, 300 +

2Z + 5(Y − 45))

r8 : size(X, Y), Y ≥ 45, garden(X, Z),¬central(X) ⇒ offer(X, 250 +

2Z + 5(Y − 45))

An apartment is only acceptable if the amount Carlos is willing to pay is not

less than the price specified by the landlord (we assume no bargaining can

take place).

r9 : offer(X, Y), price(X, Z), Y < Z ⇒ ¬acceptable(X)

r9 > r1

5.6.2 Representation of Available Apartments

Each available apartment is given a unique name, and its properties are rep-

resented as facts. For example, apartment a1 might be described as follows:

bedrooms(a1, 1)

size(a1, 50)

central(a1)

floor(a1, 1)

¬lift(a1)

pets(a1)

garden(a1, 0)

price(a1, 300)

The description of the available apartments are summarized in table 5.1. In

practice, the flats on offer could be stored in a relational database.

If we match Carlos’s requirements and the available apartments, we see

that

• flat a1 is not acceptable because it has one bedroom only (rule r2)

• flats a4 and a6 are unacceptable because pets are not allowed (rule r4)

• for a2, Carlos is willing to pay $300, but the price is higher (rules r7 and

r9)

• flats a3, a5, and a7 are acceptable (rule r1)

TLFeBOOK

TLFeBOOK

166 5 Logic and Inference: Rules

Flat Bedrooms Size Central Floor Lift Pets Garden Price

a1 1 50 yes 1 no yes 0 300

a2 2 45 yes 0 no yes 0 335

a3 2 65 no 2 no yes 0 350

a4 2 55 no 1 yes no 15 330

a5 3 55 yes 0 no yes 15 350

a6 2 60 yes 3 no no 0 370

a7 3 65 yes 1 no yes 12 375

Table 5.1 Available apartments

5.6.3 Selecting an Apartment

So far we have identified the apartments acceptable to Carlos. This selection

is valuable in itself, since it reduces the focus to relevant flats, which may

then be physically inspected. But it is also possible to reduce the number

further, even down to a single apartment, by taking further preferences into

account. Carlos’s preferences are based on price, garden size, and size, in

that order. We represent them as follows:

r10 : cheapest(X) ⇒ rent(X)

r11 : cheapest(X), largestGarden(X) ⇒ rent(X)

r12 : cheapest(X), largestGarden(X), largest(X) ⇒ rent(X)

r12 > r10

r12 > r11

r11 > r10

Also, we need to specify that at most one apartment can be rented, using

conflict sets:

C(rent(x)) = {¬rent(x)} ∪ {rent(y) | y �= x}

The prerequisites of these rules can be derived from the set of acceptable

apartments using further rules. Here we keep the discussion simple by just

stating the facts for our example:

TLFeBOOK

TLFeBOOK

5.7 Rule Markup in XML: Monotonic Rules 167

cheapest(a3)

cheapest(a5)

largest(a3)

largest(a7)

largestGarden(a5)

Now the theory is able to derive the decision to rent a5:

• Rule r11 can be applied to a5.

• Rule r10 can be applied to a3, thus establishing an attack. However, this

attack is successfully countered because r11 is stronger than r10.

• This is indeed the only attack, because neither r11 nor r12 applies to any

other apartment.

Thus a selection has been made, and Carlos will soon move in.

5.7 Rule Markup in XML: Monotonic Rules

Our aim here is to make knowledge in the form of rules machine-accessible,

in accordance with the Semantic Web vision. We outline an encoding of

monotonic rules in XML.

5.7.1 Terms

Terms are represented using XML tags <term>, <function>, <var>,

and <const>. For example, the term

f(X, a, g(b, Y))

is represented as follows:

<term>

<function>f</function>

<term>

<var>X</var>

</term>

<term>

<const>a</const>

TLFeBOOK

TLFeBOOK

168 5 Logic and Inference: Rules

</term>

<term>

<function>g</function>

<term>

<const>b</const>

</term>

<term>

<var>Y</var>

</term>

</term>

</term>

5.7.2 Atomic Formulas

For atomic formulas we use additionally the tag <atom> and the tag

<predicate>. For example, the formula

p(X, a, f(b, Y))

is represented as follows:

<atom>

<predicate>p</predicate>

<term>

<var>X</var>

</term>

<term>

<const>a</const>

</term>

<term>

<function>f</function>

<term>

<const>b</const>

</term>

<term>

<var>Y</var>

</term>

</term>

</atom>

TLFeBOOK

TLFeBOOK

5.7 Rule Markup in XML: Monotonic Rules 169

Note that the distinction between function symbols, predicates, and con-

stants, implicit in the logical syntax we have used so far, becomes explicit

in XML.

5.7.3 Facts

A fact is just an atomic formula, enclosed by opening and closing <fact>

tags. For example, the fact p(a) is represented as follows:

<fact>

<atom>

<predicate>p</predicate>

<term>

<const>a</const>

</term>

</atom>

</fact>

5.7.4 Rules

A rule consist of a head and a body. A head is an atomic formula. The body is

a (possibly empty) sequence of atomic formulas. We use new tags <rule>,

<head>, and <body>. For example, the rule

p(X, a), q(Y, b) → r(X, Y)

is represented as follows:

<rule>

<head>

<atom>

<predicate>r</predicate>

<term>

<var>X</var>

</term>

<term>

<var>Y</var>

</term>

</atom>

</head>

TLFeBOOK

TLFeBOOK

170 5 Logic and Inference: Rules

<body>

<atom>

<predicate>p</predicate>

<term>

<var>X</var>

</term>

<term>

<const>a</const>

</term>

</atom>

<atom>

<predicate>q</predicate>

<term>

<var>Y</var>

</term>

<term>

<const>b</const>

</term>

</atom>

</body>

</rule>

5.7.5 Queries

Queries are represented as the bodies of rules, surrounded by <query>

tags.

5.7.6 A DTD

A program consists of a number of rules and facts.

<!ELEMENT program ((rule|fact)*)>

A fact consists of an atomic formula.

<!ELEMENT fact (atom)>

A rule consists of a head and a body.

<!ELEMENT rule (head,body)>

TLFeBOOK

TLFeBOOK

5.7 Rule Markup in XML: Monotonic Rules 171

A head consists of an atomic formula.

<!ELEMENT head (atom)>

A body is a list of atomic formulas.

<!ELEMENT body (atom*)>

An atomic formula consists of a predicate, followed by a number of terms.

<!ELEMENT atom (predicate,term*)>

A term is a constant, a variable, or a composite term consisting of a function

symbol, followed by a number of terms.

<!ELEMENT term (const|var|(function,term*))>

Predicates, function symbols, constants, and variables are atomic types.

<!ELEMENT predicate (#PCDATA)>

<!ELEMENT function (#PCDATA)>

<!ELEMENT var (#PCDATA)>

<!ELEMENT const (#PCDATA)>

A query is a list of atomic formulas.

<!ELEMENT query (atom*)>

5.7.7 The Alternative Data Model of RuleML

RuleML is an important standardization effort in the area of rules in the con-

text of the Semantic Web. It uses similar ideas to those presented in the DTD

(figure 5.1 shows a comparison of tags used in the DTD and in RuleML.)

But RuleML has developed an alternative data model that combines features

of XML and RDF. Recall that in XML the order of elements is important,

whereas it is ignored in RDF.

RuleML is at present based on XML but uses RDF-like “role tags,” the

position of which in an expression is irrelevant. For example, if we use the

role tags <_head> and <_body>, the expression:

TLFeBOOK

TLFeBOOK

172 5 Logic and Inference: Rules

Our DTD RuleML

program rulebase

fact fact

rule imp

head _head

body _body

atom atom

atom* and

predicate rel

const ind

var var

Figure 5.1 Monotonic rules DTD versus RuleML

<rule>

<_head>

<atom>

<predicate>p</predicate>

<term>

<const>a</const>

</term>

</atom>

</_head>

<_body>

<atom>

<predicate>q</predicate>

<term>

<const>b</const>

</term>

</atom>

</_body>

</rule>

is equivalent to

<rule>

<_body>

<atom>

TLFeBOOK

TLFeBOOK

5.8 Rule Markup in XML: Nonmonotonic Rules 173

<predicate>q</predicate>

<term>

<const>b</const>

</term>

</atom>

</_body>

<_head>

<atom>

<predicate>p</predicate>

<term>

<const>a</const>

</term>

</atom>

</_head>

</rule>

although they are different under the XML data model, in which the order is

important. For a discussion of this idea, see Suggested Reading.

It should be clear that we can express in XML not only programs and

queries but also substitutions and proofs.

5.8 Rule Markup in XML: Nonmonotonic Rules

Compared to monotonic rules, nonmonotonic rules have the following syn-

tactic differences:

• There are no function symbols; therefore the term structure is flat.

• Negated atoms may occur in the head and the body of a rule.

• Each rule has a label.

• Apart from rules and facts, a program also contains priority statements.

5.8.1 An Example

Consider the defeasible program

r1 : p(X) ⇒ s(X)

r2 : q(X) ⇒ ¬s(X)

TLFeBOOK

TLFeBOOK

174 5 Logic and Inference: Rules

p(a)

q(a)

r1 > r2

We use a <stronger> tag to represent priorities, and an ID label in rules to

denote their name.

Rule r1 is represented as follows:

<rule id="r1">

<head>

<atom>

<predicate>s</predicate>

<term>

<var>X</var>

</term>

</atom>

</head>

<body>

<atom>

<predicate>p</predicate>

<term>

<var>X</var>

</term>

</atom>

</body>

</rule>

Rule r2 is represented accordingly. The fact p(a) is represented as follows:

<fact>

<atom>

<predicate>p</predicate>

<term>

<const>a</const>

</term>

</atom>

</fact>

And the priority relation r1 > r2 is represented as follows:

<stronger superior="r1" inferior="r2"/>

TLFeBOOK

TLFeBOOK

5.8 Rule Markup in XML: Nonmonotonic Rules 175

5.8.2 A DTD

A program consists of a number of rules, facts, and priority relations.

<!ELEMENT program ((rule|fact|stronger)*)>

A fact consists of an atomic formula or its negation.

<!ELEMENT fact (atom|neg)>

<!ELEMENT neg (atom)>

A rule consists of a head and a body element, and an id attribute.

<!ELEMENT rule (head,body)>

<!ATTLIST rule

id ID #IMPLIED>

The rule head and body are defined as for monotonic rules, but may contain

negated atoms.

<!ELEMENT head (atom|neg)>

<!ELEMENT body ((atom|neg)*)>

An atomic formula consists of a predicate, followed by a number of variables

and constants.

<!ELEMENT atom (predicate,(var|const)*)>

A priority element uses two attributes, referring to the superior and the infe-

rior rule.

<!ELEMENT stronger EMPTY)>

<!ATTLIST stronger

superior IDREF #REQUIRED>

inferior IDREF #REQUIRED>

Predicates, constants, and variables are atomic types.

<!ELEMENT predicate (#PCDATA)>

<!ELEMENT var (#PCDATA)>

<!ELEMENT const (#PCDATA)>

A query is a list of atomic formulas.

<!ELEMENT query (atom*)>

TLFeBOOK

TLFeBOOK

176 5 Logic and Inference: Rules

5.9 Summary

• Horn logic is a subset of predicate logic that allows efficient reasoning. It

forms a subset orthogonal to description logics.

• Horn logic is the basis of monotonic rules.

• Nonmonotonic rules are useful in situations where the available informa-

tion is incomplete. They are rules that may be overridden by contrary

evidence (other rules).

• Priorities are used to resolve some conflicts between nonmonotonic rules.

• The representation of rules in XML-like languages is straightforward.

Suggested Reading

Monotonic rules are a standard topic in logic. More information can be found

in relevant textbooks, such as the following:

• E. Burke and E. Foxley. Logic and Its Applications. Upper Saddle River, N.J:

Prentice Hall, 1996.

• M. A. Covington, D. Nute, and A. Vellino. Prolog Programming in Depth,

2nd ed. Upper Saddle River, N.J: Prentice Hall, 1997.

• A. Nerode and R. A. Shore. Logic for Applications. New York: Springer,

1997.

• U. Nilsson and J. Maluszynski. Logic, Programming and Prolog, 2nd ed.

New York: Wiley, 1995.

• N. Nissanke. Introductory Logic and Sets for Computer Scientists. Boston:

Addison-Wesley, 1998.

Nonmonotonic rules are a quite new topic. Information can be found in Cov-

ington, Nute and Vellino, Prolog Programming in Depth, and in the following:

• G. Antoniou, D. Billington, G. Governatori, and M. J. Maher. Representa-

tion results for defeasible logic. ACM Transactions on Computational Logic
2 (April 2001): 255-287.

• B. N. Grosof. Prioritized Conflict Handling for Logic Programs. In Pro-
ceedings of the International Logic Programming Symposium. 1997, 197-211.

TLFeBOOK

TLFeBOOK

Exercises and Projects 177

• B. N. Grosof, Y. Labrou, and H. Y. Chan. A Declarative Approach to Busi-

ness Rules in Contracts: Courteous Logic Programs in XML. In Proceedings
of the 1st ACM Conference on Electronic Commerce (EC-99), 1999.

• D. Nute. Defeasible Logic. In Handbook of Logic in Artificial Intelligence and
Logic Programming Vol. 3, D. M. Gabbay, C. J. Hogger, and J. A. Robinson,

eds. New York: Oxford University Press, 1994.

• <http://www.informatik.uni- bremen.de/∼ga/research/ruleml.html>.

General information about markup languages for rules and their use in the

Semantic Web can be found at the RuleML Web site:

• <http://www.dfki.uni-kl.de/ruleml/>.

A paper describing the RuleML data model in some detail is

• H. Boley. The Rule Markup Language: RDF-XML Data Model, XML

Schema Hierarchy, and XSL Transformations. 2001.

<http://www.dfki.uni-kl.de/∼boley/ruleml-mht.pdf>.

TRIPLE is an inference system designed for the Semantic Web. Details can

be found at

• <http://triple.semanticweb.org/>.

Exercises and Projects

5.1 We refer to the example in section 5.2. Define the predicates aunt,

grandfather, sibling, and descendant.

5.2 Consider a graph with nodes and directed edges, and let an edge from

node a to node b be represented by a fact edge(a, b). Define a binary

predicate path that is true for nodes c and d if, and only if, there is a

path from c to d in the graph.

5.3 Propose a combination of nonmonotonic rules with ontologies. In par-

ticular, propose an integration such that

(a) an ontology is used to derive some facts,

(b) defeasible rules may use facts from (a),

TLFeBOOK

TLFeBOOK

178 5 Logic and Inference: Rules

(c) the predicates of rule heads do not occur in the ontology (that is,

rules may only use, but not derive, new ontological knowledge).

5.4 For monotonic rules, propose a proof markup in XML. Among others,

you should define markup for substitutions and SLD derivations (for

those familiar with SLD resolution).

5.5 Determine which constructs of RDFS and OWL can be expressed using

monotonic rules. For example, the subclass relation is represented as

c(X) → c′(X) (c is a subclass of c′).

TLFeBOOK

TLFeBOOK

6 Applications

6.1 Introduction

In this chapter we describe a number of applications in which the technol-

ogy described in this book have been or could be put to use. We have, aimed

to describe realistic scenarios only; if the scenarios are not already imple-

mented, they are at least being seriously considered by major industrial firms

in different sectors.

The descriptions in this chapter give a general overview of the kinds of

uses to which Semantic Web technology can be applied. These include hor-

izontal information products, data integration, skill-finding, a think tank

portal, e-learning, web services, multimedia collection indexing, on-line pro-

curement, and device interoperability.

6.2 Horizontal Information Products at Elsevier

6.2.1 The Setting

Elsevier is a leading scientific publisher. Its products, like those of many of

its competitors, are organized mainly along traditional lines: subscriptions

to journals. Online availability of these journals has until now not really

changed the organization of the productline. Although individual papers

are available online, this is only in the form in which they appeared in the

journal, and collections of articles are organized according to the journal in

which they appeared. Customers of Elsevier can take subscriptions to on-

line content, but again these subscriptions are organized according to the

traditional product lines: journals or bundles of journals.

TLFeBOOK

TLFeBOOK

180 6 Applications

6.2.2 The Problem

These traditional journals can be described as vertical products: the prod-

ucts are split up into a number of separate columns (e.g., biology, chemistry,

medicine), and each product covers one such column (or more likely part of

one such column). However, with the rapid developments in the various sci-

ences (information sciences, life sciences, physical sciences), the traditional

division into separate sciences covered by distinct journals is no longer sat-

isfactory. Customers of Elsevier are instead interested in covering certain

topic areas that spread across the traditional disciplines. A pharmaceutical

company wants to buy from Elsevier all the information it has about, say,

Alzheimer’s disease, regardless of whether this comes from a biology jour-

nal, a medical journal, or a chemistry journal. Thus, the demand is rather

for horizontal products: all the information Elsevier has about a given topic,

sliced across all the separate traditional disciplines and journal boundaries.

Currently, it is difficult for large publishers like Elsevier to offer such hor-

izontal products. The information published by Elsevier is locked inside the

separate journals, each with its own indexing system, organized according

to different physical, syntactic, and semantic standards. Barriers of physical

and syntactic heterogeneity can be solved. Elsevier has translated much of

its content to an XML format that allows cross-journal querying. However,

the semantic problem remains largely unsolved. Of course, it is possible to

search across multiple journals for articles containing the same keywords,

but given the extensive homonym and synonym problems within and be-

tween the various disciplines, this is unlikely to provide satisfactory results.

What is needed is a way to search the various journals on a coherent set of

concepts against which all of these journals are indexed.

6.2.3 The Contribution of Semantic Web Technology

Ontologies and thesauri, which can be seen as very lightweight ontologies,

have proved to be a key technology for effective information access because

they help to overcome some of the problems of free-text search by relating

and grouping relevant terms in a specific domain as well as providing a

controlled vocabulary for indexing information. A number of thesauri have

been developed in different domains of expertise. Examples from the area

of medical information include MeSH1 and Elsevier’s life science thesaurus

1. <http://www.nlm.nih.gov/mesh>.

TLFeBOOK

TLFeBOOK

6.2 Horizontal Information Products at Elsevier 181

R
D
F

S
c
h
e
m
a

E
M
T
R
E
E

Q
u
e
r
y

i
n
t
e
r
f
a
c
e

R
D
F

D
a
t
a
s
o
u
r
c
e

1

R
D
F

D
a
t
a
s
o
u
r
c
e

n

…
.

Figure 6.1 Querying across data sources at Elsevier

EMTREE.2 These thesauri are already used to access information sources like

MBASE3 or Science Direct, however, currently there are no links between

the different information sources and the specific thesauri used to index and

query these sources.

Elsevier is experimenting with the possibility of providing access to multi-

ple information sources in the area of the life sciences through a single inter-

face, using EMTREE as the single underlying ontology against which all the

vertical information sources are indexed (see figure 6.1).

Semantic Web technology plays multiple roles in this architecture. First,

RDF is used as an interoperability format between heterogeneous data

sources. Second, an ontology (in this case, EMTREE) is itself represented

in RDF (even though this is by no means its native format). Each of the sepa-

rate data sources is mapped onto this unifying ontology, which is then used

as the single point of entry for all of these data sources.

This problem is not unique to Elsevier. The entire scientific publishing

industry is currently struggling with these problems. Actually, Elsevier is

one of the leaders in trying to adapt its contents to new styles of delivery and

organization.

2. 42,000 indexing terms, 175,000 synonyms.
3. <http://www.embase.com>; 4000 journals, 8 million records.

TLFeBOOK

TLFeBOOK

182 6 Applications

6.3 Data Integration at Audi

6.3.1 The Setting

The problem described in the previous section is essentially a data integra-

tion problem. Elsevier is trying to solve this data integration problem for the

benefit of its customers. But data integration is also a huge problem internal

to companies. In fact, it is widely seen as the highest cost factor in the infor-

mation technology budget of large companies. A company the size of Audi

(51,000 employees, $22 billion revenue, 700,000 cars produced annually) op-

erates thousands of databases, often duplicating and reduplicating the same

information, and missing out on opportunities because data sources are not

interconnected. Current practice is that corporations rely on costly manual

code generation and point-to-point translation scripts for data integration.

6.3.2 The Problem

While traditional middleware improves and simplifies the integration pro-

cess, it does not address the fundamental challenge of integration: the shar-

ing of information based on the intended meaning, the semantics of the data.

6.3.3 The Contribution of Semantic Web Technology

Using ontologies as semantic data models can rationalize disparate data

sources into one body of information. By creating ontologies for data and

content sources and adding generic domain information, integration of dis-

parate sources in the enterprise can be performed without disturbing exist-

ing applications. The ontology is mapped to the data sources (fields, records,

files, documents), giving applications direct access to the data through the

ontology.

We illustrate the general idea using a camera example.4 Here is one way

in which a particular data source or application may talk about cameras:

<SLR rdf:ID="Olympus-OM-10">

<viewFinder>twin mirror</viewFinder>

<optics>

<Lens>

<focal-length>75-300mm zoom</focal-length>

<f-stop>4.0-4.5</f-stop>

4. By R. Costello, at <http://www.xfront.com/avoiding-syntactic-rigor-mortis.html>.

TLFeBOOK

TLFeBOOK

6.3 Data Integration at Audi 183

</Lens>

</optics>

<shutter-speed>1/2000 sec. to 10 sec.</shutter-speed>

</SLR>

This can be interpreted (by human readers) to say that Olympus-OM-10 is an

SLR (which we know by previous experience to be a type of camera), that it

has a twin-mirror viewfinder, and to give values for focal length range, f-stop

intervals, and minimal and maximal shutter speed. Note that this interpre-

tation is strictly done by a human reader. There is no way that a computer

can know that Olympus-OM-10 is a type of SLR, whereas 75-300 mm is the

value of the focal length.

This is just one way of syntactically encoding this information. A second

data source may well have chosen an entirely different format:

<Camera rdf:ID="Olympus-OM-10">

<viewFinder>twin mirror</viewFinder>

<optics>

<Lens>

<size>300mm zoom</size>

<aperture>4.5</aperture>

</Lens>

</optics>

<shutter-speed>1/2000 sec. to 10 sec.</shutter-speed>

</Camera>

Human readers can see that these two different formats talk about the

same object. After all, we know that SLR is a kind of camera, and that f-

stop is a synonym for aperture. Of course, we can provide a simple ad hoc

integration of these data sources by simply writing a translator from one to

the other. But this would only solve this specific integration problem, and we

would have to do the same again when we encountered the next data format

for cameras.

Instead, we might well write a simple camera ontology in OWL:

<owl:Class rdf:ID="SLR">

<rdfs:subClassOf rdf:resource="#Camera"/>

</owl:Class>

<owl:DatatypeProperty rdf:ID="f-stop">

<rdfs:domain rdf:resource="#Lens"/>

</owl:DatatypeProperty>

TLFeBOOK

TLFeBOOK

184 6 Applications

<owl:DatatypeProperty> rdf:ID="aperture">

<owl:equivalentProperty rdf:resource="#f-stop"/>

</owl:DatatypeProperty>>

<owl:DatatypeProperty rdf:ID="focal-length">

<rdfs:domain rdf:resource="#Lens"/>

</owl:DatatypeProperty>

<owl:DatatypeProperty> rdf:ID="size">

<owl:equivalentProperty rdf:resource="#focal-length"/>

</owl:DatatypeProperty>>

in other words: SLR is a type of camera, f-stop is synonymous with aperture,

and focal length is synonymous with lens size.

Now suppose that an application A is using the second encoding (cam-

era, aperture, lens size), and that it is receiving data from an application B

using the first encoding (SLR, f-stop, focal length). As application A parses

the XML document that it received from application B, it encounters SLR. It

doesn’t “understand” SLR so it “consults” the camera ontology: “What do

you know about SLR?”. The Ontology returns “SLR is a type of Camera”.

This knowledge provides the link for application A to “understand” the re-

lation between something it doesn’t know (SLR) to something it does know

(Camera). When application A continues parsing, it encounters f-stop.

Again, application A was not coded to understand f-stop, so it consults

the camera ontology: “What do you know about f-stop?”. The Ontology

returns: “f-stop is synonymous with aperture”. Once again, this know-

ledge serves to bridge the terminology gap between something application

A doesn’t know to something application A does know. And similarly for

focal length.

The main point here is that syntactic divergence is no longer a hindrance.

In fact, syntactic divergence can be encouraged, so that each application uses

the syntactic form that best suits its needs. The ontology provides for a sin-

gle integration of these different syntactical forms rather n2 individual map-

pings between the different formats.

Audi is not the only company investigating Semantic Web technology for

solving their data integration problems. The same holds for large compa-

nies such as Boeing, Daimler Chrysler, Hewlett Packard and others (see Sug-

gested Reading). This application scenario is now realistic enough that com-

panies like Unicorn (Israel), Ontoprise (Germany), Network Inference (UK)

TLFeBOOK

TLFeBOOK

6.4 Skill Finding at Swiss Life 185

and others world-wide are staking their business interests on this use of Se-

mantic Web technology.

6.4 Skill Finding at Swiss Life

6.4.1 The Setting

Swiss Life is one of Europe’s leading life insurers, with 11,000 employees

world wide, and some $14 billion of written premiums. Swiss Life has sub-

sidiaries, branches, representative offices, and partners representing its inter-

ests in about fifty different countries.

The tacit knowledge, personal competencies, and skills of its employees

are the most important resources of any company for solving knowledge-

intensive tasks; they are the real substance of the company’s success. Estab-

lishing an electronically accessible repository of people’s capabilities, experi-

ences, and key knowledge areas is one of the major building blocks in setting

up enterprise knowledge management. Such a skills repository can be used

to enable a search for people with specific skills, expose skill gaps and com-

petency levels, direct training as part of career planning, and document the

company’s intellectual capital.

6.4.2 The Problem

With such a large and international workforce, distributed over many geo-

graphical and culturally diverse areas, the construction of a company-wide

skills repository is a difficult task. How to list the large number of different

skills? How to organise them so that they can be retrieved across geograph-

ical and cultural boundaries? How to ensure that the repository is updated

frequently?

6.4.3 The Contribution of Semantic Web Technology

The experiment at Swiss Life performed in the On-To-Knowledge project (see

Suggested Reading) used a hand -built ontology to cover skills in three orga-

nizational units of Swiss Life: Information Technology, Private Insurance and

Human Resources. Across these three sections, the ontology consisted of 700

concepts, with an additional 180 educational concepts and 130 job function

concepts that were not subdivided across the three domains.

TLFeBOOK

TLFeBOOK

186 6 Applications

Here, we give a glimpse of part of the ontology, to give a flavor of the kind

of expressivity that was used:

<owl:Class rdf:ID="Skills">

<rdfs:subClassOf>

<owl:Restriction>

<owl:onProperty rdf:resource="#HasSkillsLevel"/>

<owl:cardinality rdf:datatype="&xsd;nonNegativeInteger">

1

</owl:cardinality>

</owl:Restriction>

</rdfs:subClassOf>

</owl:Class>

<owl:ObjectProperty rdf:ID="HasSkills">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="#Skills"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="WorksInProject">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range rdf:resource="#Project"/>

<owl:inverseOf rdf:resource="#ProjectMembers"/>

</owl:ObjectProperty>

<owl:ObjectProperty rdf:ID="ManagementLevel">

<rdfs:domain rdf:resource="#Employee"/>

<rdfs:range>

<owl:oneOf rdf:parseType="Collection">

<owl:Thing rdf:about="#member"/>

<owl:Thing rdf:about="#HeadOfGroup"/>

<owl:Thing rdf:about="#HeadOfDept"/>

<owl:Thing rdf:about="#CEO"/>

</owl:oneOf>

</rdfs:range>

</owl:ObjectProperty>

<owl:Class rdf:ID="Publishing">

<rdfs:subClassOf rdf:resource="#Skills"/>

</owl:Class>

<owl:Class rdf:ID="DocumentProcessing">

<rdfs:subClassOf rdf:resource="#Skills"/>

TLFeBOOK

TLFeBOOK

6.5 Think Tank Portal at EnerSearch 187

</owl:Class>

<owl:Class rdf:ID="DeskTopPublishing">

<rdfs:subClassOf rdf:resource="#Publishing"/>

<rdfs:subClassOf rdf:resource="#DocumentProcessing"/>

</owl:Class>

Individual employees within Swiss Life were asked to create “home pages”

based on form filling that was driven by the skills-ontology. The correspond-

ing collection of instances could be queried using a form-based interface that

generated RQL queries (see chapter 3).

Although the system never left the prototype stage, it was in use by ini-

tially 100 (later 150) people in selected departments at Swiss Life headquar-

ters.

6.5 Think Tank Portal at EnerSearch

6.5.1 The Setting

EnerSearch is an industrial research consortium focused on information tech-

nology in energy. Its aim is to create and disseminate knowledge on how the

use of advanced IT will impact on the energy utility sector, particularly in

view of the liberalization of this sector across Europe.

EnerSearch has a structure that is very different from a traditional research

company. Research projects are carried out by a varied and changing group

of researchers spread over different countries (Sweden, United States, the

Netherlands, Germany, France). Many of them, although funded for their

work, are not employees of EnerSearch. Thus, EnerSearch is organized as a

virtual organization. The insights derived from the conducted research are

intended for interested utility industries and IT suppliers. Here, EnerSearch

has the structure of a limited company, which is owned by a number of

firms in the industry sector that have an express interest in the research be-

ing carried out. Shareholding companies include large utility companies in

different European countries, including Sweden (Sydkraft), Portugal (EDP),

the Netherlands (ENECO), Spain (Iberdrola) and Germany (Eon), as well as

some worldwide IT suppliers to this sector (IBM, ABB). Because of this wide

geographical spread, EnerSearch also has the character of a virtual organiza-

tion from a knowledge distribution point of view.

TLFeBOOK

TLFeBOOK

188 6 Applications

6.5.2 The Problem

Dissemination of knowledge is a key function of EnerSearch. The EnerSearch

web site is an important mechanism for knowledge dissemination. (In fact,

one of the shareholding companies actually entered EnerSearch directly as a

result of getting to know the web site). Nevertheless, the information struc-

ture of the web site leaves much to be desired. Its main organization is in

terms of “about us” information: what projects have been done, which re-

searchers are involved, papers, reports and presentations. Consequently, it

does not satisfy the needs of information seekers. They are generally not in-

terested in knowing what the projects are, or who the authors are, but rather

in finding answers to questions that are important in this industry domain,

such as: does load management lead to cost-saving? If so, how big are they,

and what are the required upfront investments? Can powerline communica-

tion be technically competitive to ADSL or cable modems?

6.5.3 The Contribution of Semantic Web Technology

The EnerSearch web-site is in fact used by different target groups: re-

searchers in the field, staff and management of utility industries, and so on.

It is quite possible to form a clear picture of what kind of topics and questions

would be relevant for these target groups. Finally, the knowledge domain in

which EnerSearch works is relatively well defined. As a result of these fac-

tors, it is possible to define a domain ontology that is sufficiently stable and

of good enough quality. In fact, the On-To-Knowledge project ran successful

experiments using a lightweight “EnerSearch lunchtime ontology” that took

developers no more than a few hours to develop (over lunchtime).

This lightweight ontology consisted only of a taxonomical hierarchy (and

therefore only needed RDF Schema expressivity). The following is a snap-

shot of one of the branches of this ontology in informal notation:

...

IT

Hardware

Software

Applications

Communication

Powerline

Agent

Electronic Commerce

Agents

TLFeBOOK

TLFeBOOK

6.5 Think Tank Portal at EnerSearch 189

Figure 6.2 Semantic map of part of the EnerSearch Web site

Multi-agent systems

Intelligent agents

Market/auction

Resource allocation

Algorithms

This ontology was used in a number of different ways to drive naviga-

tion tools on the EnerSearch web site. Figure 6.2 shows a semantic map of

the EnerSearch web site for the subtopics of the concept “agent” and figure

6.3 shows the semantic distance between different authors, in terms of their

disciplinary fields of research and publication.5

Figure 6.4 shows how some of the same information is displayed to the

user in an entirely different manner with the Spectacle Server semantic

5. Both figures display results obtained by using semantic clustering visualization software

from Aduna, <http://www.aduna.biz>.

TLFeBOOK

TLFeBOOK

190 6 Applications

Figure 6.3 Semantic distance between EnerSearch authors

browsing software.6 The user selected the “By Author” option, then chose

the author Fredrik Ygge and the concept “cable length”. The result lists all

the pages with publication on this topic by Fredrik Ygge.

A third way of displaying the information was created by the QuizRDF

tool7. Rather then choosing between either an entirely ontology based dis-

play (as in the three displayed figures), or a traditional keyword based search

without any semantic grounding, QuizRDF aims to combine both: the user

can type in general keywords. This will result in a traditional list of papers

containing these keywords. However, it also displays those concepts in the

hierarchy which describe these papers, allowing the user to embark on an

ontology-driven search starting from the hits that resulted from a keyword-

based search.

In this application scenario we have seen how a traditional information

source can be disclosed in a number of innovative ways. All these disclosure

mechanisms (textual and graphic, searching or browsing) are based on a sin-

gle underlying lightweight ontology but cater for a broad spectrum of users

with different needs and backgrounds.

6. From Aduna, <http://www.aduna.biz>.
7. Prototyped by British Telecom Research Labs.

TLFeBOOK

TLFeBOOK

6.6 e-Learning 191

Figure 6.4 Browsing ontologically organized papers in Spectacle

6.6 e-Learning

6.6.1 The Setting

The World Wide Web is currently changing many areas of human activity,

among them learning. Traditionally learning has been characterized by the

following properties:

• Educator-driven. The instructor selects the content and the pedagogical

means of delivery, and sets the agenda and the pace of learning.

• Linear access. Knowledge is taught in a predetermined order. The learner

is not supposed to deviate from this order by selecting pieces of particular

interest.

• Time- and locality-dependent. Learning takes place at specific times and

specific places.

As a consequence, learning has not been personalized but rather aimed at

mass participation. Though efficient and in many instances effective, tradi-

TLFeBOOK

TLFeBOOK

192 6 Applications

tional learning processes have not been suitable for every potential learner.

The emergence of the Internet has paved the way for implementing new ed-

ucational processes.

The changes are already visible in higher education. Increasingly, univer-

sities are refocusing their activities to provide more flexibility for learners.

Virtual universities and online courses are only a small part of these activi-

ties. Flexibility and new educational means are also implemented on tradi-

tional campuses, where students’ presence is still required but with fewer

constraints. Increasingly, students can make choices, determine the con-

tent and evaluation procedures, the pace of their learning, and the learning

method most suitable for them.

We can calso expect e-learning to have an even greater impact on work-

related qualifications and life long learning activities. One of the critical

support mechanisms for increasing an organization’s competitiveness is the

improvement of the skills of its employees. Organizations require learning

processes that are just-in-time, tailored to their specific needs, and ideally

integrated into day-to-day work patterns. These requirements are not com-

patible with traditional learning, but e-learning shows great promise for ad-

dressing these concerns.

6.6.2 The Problem

Compared to traditional learning, e-learning is not driven by the instructor.

In particular, learners can access material in an order that is not predefined,

and can compose individual courses by selecting educational material. For

this approach to work, learning material must be equipped with additional

information to support effective indexing and retrieval.

The use of metadata is a natural answer and has been followed, in a limited

way, by librarians for a long time. In the e-learning community, standards

such as IEEE LOM have emerged. They associate with learning materials in-

formation, such as educational and pedagogical properties, access rights and

conditions of use, and relations to other educational resources. Although

these standards are useful, they suffer from a drawback common to all solu-

tions based solely on metadata (XML-like approaches): lack of semantics. As

a consequence combining of materials by different authors may be difficult;

retrieval may not be optimally supported; and the retrieval and organization

of learning resources must be made manually (instead of, say, by a person-

alized automated agent). These kinds of problems may be avoided if the

Semantic Web approach is adopted.

TLFeBOOK

TLFeBOOK

6.6 e-Learning 193

6.6.3 The Contribution of Semantic Web Technology

The key ideas of the Semantic Web, namely, common shared meaning (ontol-

ogy) and machine-processable metadata, establish a promising approach for

satisfying the e-learning requirements. It can support both semantic query-

ing and the conceptual navigation of learning materials.

• Learner-driven. Learning materials, possibly by different authors, can

be linked to commonly agreed ontologies. Personalized courses can be

designed through semantic querying, and learning materials can be re-

trieved in the context of actual problems, as decided by the learner.

• Flexible access. Knowledge can be accessed in any order the learner

wishes, according to her interests and needs. Of course, appropriate se-

mantic annotation will still set constraints in cases where prerequisites are

necessary. But overall nonlinear access will be supported.

• Integration. The Semantic Web can provide a uniform platform for the

business processes of organizations, and learning activities can be inte-

grated in these processes. This solution may be particularly valuable for

commercial companies.

6.6.4 Ontologies for e-Learning

In an e-learning environment the situation can easily arise that different au-

thors use different terminologies, in which case the combination of learn-

ing materials becomes difficult. The retrieval problem is additionally com-

pounded by the fact that typically instructors and learners have very differ-

ent backgrounds and levels of knowledge. Therefore, some mechanism for

establishing a shared understanding is needed. Ontologies are a powerful

mechanism for achieving this task. In an e-learning environment it makes

sense to distinguish between three types of knowledge, and thus of ontolo-

gies: content, pedagogy, and structure.

A content ontology describes the basic concepts of the domain in which

learning takes place (e.g., history or computer science). It includes also the

relations between these concepts, and some basic properties. For example,

the study of Classical Athens is part of the history of Ancient Greece, which

in turn is part of Ancient History. The ontology should include the relation

“is part of” and the fact that it is transitive (e.g., expressed in OWL). In this

way, an automated learning support agent can infer that knowledge on Clas-

TLFeBOOK

TLFeBOOK

194 6 Applications

sical Athens can be found under Ancient History. The content ontology can

also use relations to capture synonyms, abbreviations, and so on.

Pedagogical issues can be addressed in a pedagogy ontology. For example,

material can be classified as lecture, tutorial, example, walk-through, exer-

cise, solution, and so on. Finally, a structure ontology is used to define the

logical structure of the learning materials. Typical knowledge of this kind

includes hierarchical and navigational relations like previous, next, hasPart,
isPartOf, requires, and isBasedOn. Relationships between these relations can

also be defined; for example, hasPart and isPartOf are inverse relations. It

is natural to develop e-learning systems on the Web; thus a Web ontology

language should be used.

We should mention that most of the inferences drawn from learning on-

tologies cannot be expected to be very deep. Human readers can easily deal

with relations such as hasPart and isPartOf and their interplay. The point is,

though, that this kind of reasoning should be exhibited by automated agents,

and the semantic information is necessary for reasoning to occur in an auto-

mated fashion.

6.7 Web Services

6.7.1 The Setting

By web services we mean Web sites that do not merely provide static in-

formation, but involve interaction with users and often allow users to effect

some action. Usually a distinction is made between simple and complex Web

services.

Simple Web services involve a single Web-accessible program, sensor, or

device that does not rely upon other Web services nor requires further inter-

action with the user, beyond a simple response. Typical examples are infor-

mation provision services, such as a flight finder and a service that returns

the postal code of a given address.

Complex Web services are composed of simpler services, and often require

ongoing interaction with the user, whereby the user can make choices or

provide information conditionally. For example, user interaction with an

online music store involves searching for CDs and titles by various criteria,

reading reviews and listening to samples, adding CDs to a shopping cart,

providing credit card details, shipping details, and delivery address.

TLFeBOOK

TLFeBOOK

6.7 Web Services 195

6.7.2 The Problem and the Contribution of Semantic Web Technology

At present, the use of Web services requires human involvement. For ex-

ample, information has to be browsed and forms need to be filled in. The

Semantic Web vision, as applied to Web services, aims at automating the

discovery, invocation, composition and monitoring of Web services by pro-

viding machine-interpretable descriptions of services.

Web sites should be able to employ a set of basic classes and properties by

declaring and describing services, an ontology of services. DAML-S is an initia-

tive that is developing an ontology language for Web services. It makes use

of DAML+OIL, that is, it can be viewed as a layer on top of DAML+OIL (a

DAML+OIL application). Currently DAML-S is very much under develop-

ment (among other things DAML-S is migrated to OWL), so we will refrain

from providing technical details, and will concentrate on the basic ideas in-

stead.

There are three basic kinds of knowledge associated with a service: service
profiles, service models, and service groundings.

A service profile is a description of the offerings and requirements of a ser-

vice, in a sense, its specification. This information is essential for a service
discovery: a service-seeking agent can determine whether a service is appro-

priate for its purposes, based on the service profile. It is also interesting to

note that a service profile may not be a description of an existing service but

rather a specification of a needed service, provided by a service requester.

A service model describes how a service works, that is, what exactly hap-

pens when the service is carried out. Such information may be important for

a service-seeking agent for composing services to perform a complex task,

and for monitoring the execution of the service.

A service grounding specifies details of how an agent can access a ser-

vice. Typically a grounding will specify a communication protocol and port

numbers to be used in contacting the service.

In the following we briefly discuss service profiles and service models in

DAML-S.

Service Profiles

Service profiles provide a way to describe services offered by a Web site but

also services needed by requesters. This way, matching of requests and of-

ferings is supported. In general, a service profile in DAML-S provides the

following information:

TLFeBOOK

TLFeBOOK

196 6 Applications

• A human-readable description of the service and its provider

• A specification of the functionalities provided by the service

• Additional information, such as expected response time and geographic

constraints.

All this information is encoded in the modelling primitives of DAML-

S: DAML-S classes and properties, which in turn are defined using the

DAML+OIL language. For example, an offering of a service is an instance

of the class OfferedService, which is defined as follows:

<rdfs:Class rdf:ID="OfferedService">

<rdfs:label>OfferedService</rdfs:label>

<rdfs:subClassOf rdf:resource= "http://www.daml.org/

services/daml-s/2001/10/Service.daml#"/>

</rdfs:Class>

A number of properties are defined on this class: intendedPurpose,

serviceName, and providedBy. The range of the first two properties com-

prises strings, and the range of the third property is a new class, Service-

Provider, which has various properties. Here is a simple example of an

instance:

<profile:ServiceProvider rdf:ID="SportsNews">

<profile:phone>1234 5678</profile:phone>

<profile:fax>1234 5679</profile:fax>

<profile:email>abc@defgh.com</profile:email>

<profile:webURL>www.defgh.com</profile:webURL>

<profile:physicalAddress>150 Nowhere St,

111 Somewhere, Australia</profile:PhysicalAddress>

</profile:ServiceProvider>

The functional description of a service profile defines properties describing

the functionality provided by the service. The main properties are

input which describes the parameters necessary for providing the service.

For example, a sports news service might require the following input:

date, sports category, customer credit card details.

output which specifies the outputs of the service. In the sports news ex-

ample, the output would be the news articles in the specified category at

the given date.

TLFeBOOK

TLFeBOOK

6.7 Web Services 197

precondition which specifies the conditions that need to hold for the

service to be provided effectively. The distinction between inputs and

preconditions can be illustrated in our running example: the credit card

details are an input, and preconditions are that the credit card is valid and

not overcharged.

effect, a property that specifies the effects of the service. In our example,

an effect might be that the credit card is charged $1 per news article.

At present, the modelling primitives of DAML-S are very limited regarding

the functional description of services, because of limitations of the under-

lying DAML+OIL language. (These same limitations apply to OWL). For

example, it is not possible to define logical relationships between inputs and

outputs, as one would do in, say, software specification. The developers

of DAML-S intend to provide such possibilities once the Web ontology lan-

guage is augmented by logical capabilities, e.g., rules.

Service Models

Service models are based on the key concept of a process, which describes

a service in terms of inputs, outputs, preconditions, effects, and where ap-

propriate, its composition of component subprocesses. We have already dis-

cussed inputs, outputs, preconditions, and effects for the profile model, so

here we concentrate on the composition of a complex process from simpler

processes.

Figure 6.5 shows the top level of the process ontology. We see the top class

Process with its three subclasses:

• Atomic processes can be directly invoked by passing them appropriate mes-

sages; they execute in one step.

• Simple processes are elements of abstraction; they can be thought of as hav-

ing single-step executions but are not invocable.

• Composite processes consist of other, simpler processes.

Let us describe a few properties shown in figure 6.5.

• hasProfile and hasProcess are two properties that state the relation-

ship between a process and its profile.

• A simple process may be realized by an atomic process.

TLFeBOOK

TLFeBOOK

198 6 Applications

Process Profile

hasProfile

hasProcess

Atomic

Process

Single

Process

Composite

Process

Control

Construct

RepeatUntil

realizes

realizedBy

collaps

expands

composedBy

Sequence

Figure 6.5 Top level of the process ontology

• Alternatively, it is used for abstraction purposes and expands to a compos-

ite process.

Finally, a composite process is composed of a number of control constructs:

<rdf:Property rdf:ID="composedBy">

<rdfs:domain rdf:resource="#CompositeProcess"/>

<rdfs:range rdf:resource="#ControlConstruct"/>

</rdf:Property>

The control constructs currently offered by DAML-S include, sequence,

choice, if-then-else and repeat-until.

As for service profiles, the process model of DAML-S is still under devel-

opment.

TLFeBOOK

TLFeBOOK

6.8 Other Scenarios 199

AI and Web Services

Web services are an application area where Artificial Intelligence techniques

can be used effectively, for instance, for matching between service offers and

service requests, and for composing complex services from simpler services,

where automated planning can be utilized. A few links to relevant references

are found in the Suggested Reading.

6.8 Other Scenarios

In this section, we mention in somewhat less detail a number of other ap-

plication scenarios that are being pursued in various sectors of industry or

research.

6.8.1 Multimedia Collection Indexing at Scotland Yard

Special sections of police forces such as Scotland Yard and Interpol are con-

cerned with theft of art and antique objects. It is often hard enough to track

down the perpetrators of such thefts, but even when this has been success-

fully done, and when some of the stolen artifacts have been recovered, it

turns out to be a surprisingly hard problem to return the objects to their orig-

inal owners. Even though international databases of stolen art objects exist,

it is difficult to locate specific objects in these databases, because different

parties are likely to offer different descriptions. A museum reporting a theft

may describe an object as “a Song dynasty Ying Ging lotus vase”, whereas a

police officer reporting a recovered item may simply enter a “12.5 inch high

pale green vase with floral designs”. It currently takes human experts to

recognize that the vase entered as stolen is indeed the same one reported as

recovered.

Part of the solution is to develop controlled vocabularies such as the

Art and Architecture Thesaurus (AAT) from the Getty Trust,8 or Iconclass

thesaurus9 to extend them into full-blown ontologies, to develop software

that can automatically recognize classified objects from descriptions of their

physical appearance using ontological background knowledge, and to deal

with the ontology-mapping problem that exists when different parties have

described the same artifacts using different ontologies.

8. <http://www.getty.edu/research/tools/vocabulary/aat>.
9. <http://www.iconclass.nl/>.

TLFeBOOK

TLFeBOOK

200 6 Applications

6.8.2 Online Procurement at Daimler-Chrysler

Like all car-manufacturing companies today, Daimler-Chrysler interacts with

hundreds of suppliers in order to obtain all the parts that go into making

a single car. In recent years, online procurement has been identified as a

major potential cost saver, for instance the paper-based process of exchang-

ing contracts, orders, invoices, and money transfers can be replaced by an

electronic process of data-interchange between software applications. Also,

static, long-term agreements with a fixed set of suppliers can be replaced by

dynamic, short-term agreements in a competitive open marketplace. When-

ever a supplier is offering a better deal, Daimler-Chrysler wants to be able to

switch rather then being locked into a long-term arrangement with another

supplier.

This online procurement is one of the major drivers behind business-to-

business (B2B) e-commerce. Current efforts in B2B e-commerce rely heav-

ily on a priori standardization of data formats, that is, off-line industrywide

agreements on data formats and their intended semantics. Organizations

such as Rosetta Net10 are dedicated to such standardization efforts. To quote

from RosettaNet’s Web site:

RosettaNet [is] a self-funded, non-profit organization. [It] is a consor-

tium of major Information Technology, Electronic Components, Semi-

conductor Manufacturing, and Telecommunications companies work-

ing to create and implement industrywide, open e-business process

standards. These standards form a common e-business language,

aligning processes between supply chain partners on a global basis.

Since such data formats are specified in XML, no semantics can be read from

the file alone, and partners must agree in time-consuming and expensive

standards negotiations, followed by hard-coding the intended semantics of

the data format into their code.

A more attractive road would use formats such as RDF Schema and OWL,

with their explicitly defined formal semantics. This would make product de-

scriptions “carry their semantics on their sleeve,” opening the way for much

more liberal online B2B procurement processes than currently possible.

10. <http://www.rosettanet.org>.

TLFeBOOK

TLFeBOOK

Suggested Reading 201

6.8.3 Device interoperability at Nokia

(This section is based on a use-case from the OWL Requirements document;

see Suggested Reading section.) Recent years have seen an explosive pro-

liferation of digital devices in our daily environment: PDAs, mobile tele-

phones, digital cameras, laptops, wireless access in public locations, GPS-

enabled cars. Given this proliferation, interoperability among these devices

is becoming highly desirable. The pervasiveness and the wireless nature

of these devices require network architectures to support automatic, ad hoc

configuration.

A key technology of true ad hoc networks is service discovery, function-

ality by which services (functions offered by various devices such as cell

phones, printers and sensors) can be described, advertised, and discovered

by others. All current service discovery and capability description mecha-

nisms (e.g., Sun’s JINI, Microsoft’s UPnP) are based on ad hoc representation

schemes and rely heavily on standardization (on a priori identification of all

those things one would want to communicate or discuss).

More attractive than this a priori standardization is “serendipitous inter-

operability,” interoperability under “unchoreographed” conditions, that is,

devices that are not necessarily designed to work together (such as ones built

for different purposes, by different manufacturers, at a different time) should

be able to discover each others’ functionality and be able to take advantage

of it. Being able to “understand” other devices and reason about their ser-

vices/functionality is necessary, because full-blown ubiquitous computing

scenarios involve dozens if not hundreds of devices, and a priori standard-

ization of the usage scenarios is an unmanageable task.

Similar to the scenario of online procurement, ontologies (with their stan-

dardized semantics) are required to make such “unchoreographed” under-

standing of functionalities possible.

Suggested Reading

A nontechnical book on the use of ontologies in electronic commerce and

knowledge management:

• D. Fensel. Ontologies: A Silver Bullet for Knowledge Management and Elec-
tronic Commerce. New York: Springer 2001.

The use-case document for OWL describes a number of use-cases that moti-

vated the W3C’s Web Ontology Working Group in defining OWL:

TLFeBOOK

TLFeBOOK

202 6 Applications

• J. Heflin. OWL Web Ontology Language Use Cases and Requirements.

August 18, 2003.<http://www.w3.org/TR/webont-req/>.

The following book describes three different application case-studies that

were performed in the On-To-Knowledge project. More information on this

project can also be found at <http://www.ontoknowledge.org>.

• J. Davies, D. Fensel, and F. van Harmelen. Towards the Semantic Web:
Ontology-Driven Knowledge Management. New York: Wiley, 2003.

A collection of papers on industrial applications of Semantic Web technology

can be found in the Industrial Track papers of the International Semantic Web

Conferences, starting from the 2003 conference:

• D. Fensel, K. Sycara, J. Mylopoulos, eds. Proceedings of the 2nd International
Semantic Web Conference. New York. Springer, 2003. Lecture Notes in

Computer Science, volume 2870.

A paper describing the potential benefits of the Semantic Web for e-

learning:

• L. Stojanovic, S. Staab and R. Studer. eLearning Based on the Semantic

Web. In Proceedings of WebNet 2001 - World Conference on the WWW and the
Internet.
<http://www.aifb.uni-karlsruhe.de/WBS/Publ/2001/

WebNet_lstsstrst_2001.pdf>

Two relevant references for Semantic Web portal applications:

• S. Staab et al. Semantic Community Web Portals. In Proceedings of the 9th
International WWW Conference. 2000

<http://www9.org/w9cdrom/134/134.html>

• N. Stojanovic et al. SEAL – A Framework for Developing SEmantic Por-

tALs. In Proceedings of the 1st International Conference on Knowledge Capture
(K-CAP). 2001.

<http://www.aifb.uni-karlsruhe.de/WBS/Publ/2001/sealkcap2.pdf>

The main page on DAML-S and DAML-enabled Web services is

• <http://www.daml.org/services/>

Some relevant publications:

TLFeBOOK

TLFeBOOK

Suggested Reading 203

• The DAML Services Coalition. DAML-S: Web Service Description for the

Semantic Web. In Proceedings of the 1st International Semantic Web Confer-
ence (ISWC). New York: Springer 2002. Lecture Notes in AI Volume 2342.

<http://www.daml.org/services/ISWC2002-DAMLS.pdf>

• M. Paolucci et al. Semantic Matching of Web Services Capabilities. In

Proceedings of the 1st International Semantic Web Conference (ISWC). New

York: Springer 2002. Lecture Notes in AI Volume 2342.

<http://www.daml.org/services/ISWC2002-Matchmaker.pdf>

• S. McIlraith, T.C. Son, and H. Zeng. Mobilizing the Semantic Web with

DAML-Enabled Web Services. In Proceedings of the 2nd International Work-
shop on the Semantic Web (SemWeb 2001).
<http://www.daml.org/services/SemWeb01-KSL.pdf>

Some useful websites with collections of tools are:

<http://business.semanticweb.org>. A very good resource on the use of Se-

mantic Web technolgy in companies, and a list of providers of Semantic

Web technology.

<http://www.daml.org/tools> is an extensive repository of tools. Al-

though at present, these are for DAML+OIL, but many are exptected to

be upgraded to OWL.

<http://www.w3.org/2001/sw/WebOnt/impls#Implementations> and

<http://www.cs.man.ac.uk/∼horrocks/OntoWeb/SIG/node3.html>

is a list of the first tools that came out after the OWL specification stabi-

lized.

<http://www.ilrt.bris.ac.uk/discovery/rdf/resources/>.

Tools, projects, and applications for RDF and RDF Schema.

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

7 Ontology Engineering

7.1 Introduction

In this book, we have focused mainly on the techniques that are essential to

the Semantic Web: representation languages, query languages, transforma-

tion and inference techniques, tools. Clearly, the introduction of such a large

volume of new tools and techniques also raises methodological questions:

how can tools and techniques best be appliled? Which languages and tools

should be used in which circumstances, and in which order? What about

issues of quality control and resource management?

Many of these questions for the Semantic Web have been studied in other

contexts, for example in software engineering, object-oriented design, and

knowledge engineering. It is beyond the scope of this book to give a com-

prehensive treatment of all of these issues. Nevertheless, in this chapter, we

briefly discuss some of the methodological issues that arise when building

ontologies, in particular, constructing ontologies manually, reusing existing

ontologies, and using semiautomatic methods.

7.2 Constructing Ontologies Manually

For our discussion of the manual construction of ontologies, we follow

mainly Noy and McGuinness, “Ontology Development 101: A Guide to Cre-

ating Your First Ontology.” Further references are provided in Suggested

Reading.

We can distinguish the following main stages in the ontology development

process:

TLFeBOOK

TLFeBOOK

206 7 Ontology Engineering

1. Determine scope. 5. Define properties.

2. Consider reuse. 6. Define facets.

3. Enumerate terms. 7. Define instances.

4. Define taxonomy. 8. Check for anomalies.

Like any development process, this is in practice not a linear process. These

above steps will have to be iterated, and backtracking to earlier steps may

be necessary at any point in the process. We will not further discuss this

complex process management. Instead, we turn to the individual steps:

7.2.1 Determine Scope

Developing an ontology of the domain is not a goal in itself. Developing an

ontology is akin to defining a set of data and their structure for other pro-

grams to use. In other words, an ontology is a model of a particular domain,

built for a particular purpose. As a consequence, there is no correct ontology

of a specific domain. An ontology is by necessity an abstraction of a partic-

ular domain, and there are always viable alternatives. What is included in

this abstraction should be determined by the use to which the ontology will

be put, and by future extensions that are already anticipated. Basic questions

to be answered at this stage are: What is the domain that the ontology will

cover? For what we are going to use the ontology? For what types of ques-

tions should the ontology provide answers? Who will use and maintain the

ontology?

7.2.2 Consider Reuse

With the spreading deployment of the Semantic Web, ontologies will become

more widely available. Already we rarely have to start from scratch when

defining an ontology. There is almost always an ontology available from a

third party that provides at least a useful starting point for our own ontology.

(See section 7.3).

7.2.3 Enumerate Terms

A first step toward the actual definition of the ontology is to write down

in an unstructured list all the relevant terms that are expected to appear in

the ontology. Typically, nouns form the basis for class names, and verbs (or

verb phrases) form the basis for property names (for example, is part of, has
component).

TLFeBOOK

TLFeBOOK

7.2 Constructing Ontologies Manually 207

Traditional knowledge engineering tools such as laddering and grid anal-

ysis can be productively used in this stage to obtain both the set of terms and

an initial structure for these terms.

7.2.4 Define Taxonomy

After the identification of relevant terms, these terms must be organized in a

taxonomic hierarchy. Opinions differ on whether it is more efficient/reliable

to do this in a top-down or a bottom-up fashion.

It is, of course, important to ensure that the hierarchy is indeed a taxo-

nomic (subclass) hierarchy. In other words, if A is a subclass of B, then every

instance of A must also be an instance of B. Only this will ensure that we

respect the built-in semantics of primitives such as owl:subClassOf and

rdfs:subClassOf.

7.2.5 Define Properties

This step is often interleaved with the previous one: it is natural to orga-

nize the properties that link the classes while organizing these classes in a

hierarchy.

Remember that the semantics of the subClassOf relation demands that

whenever A is a subclass of B, every property statement that holds for in-

stances of B must also apply to instances of A. Because of this inheritance, it

makes sense to attach properties to the highest class in the hierarchy to which

they apply.

While attaching properties to classes, it makes sense to immediately pro-

vide statements about the domain and range of these properties. There is a

methodological tension here between generality and specificity. On the one

hand, it is attractive to give properties as general a domain and range as pos-

sible, enabling the properties to be used (through inheritance) by subclasses.

On the other hand, it is useful to define domains and range as narrowly as

possible, enabling us to detect potential inconsistencies and misconceptions

in the ontology by spotting domain and range violations.

7.2.6 Define Facets

It is interesting to note that after all these steps, the ontology will only re-

quire the expressivity provided by RDF Schema and does not use any of the

TLFeBOOK

TLFeBOOK

208 7 Ontology Engineering

additional primitives in OWL. This will change in the current step, that of

enriching the previously defined properties with facets:

• Cardinality. Specify for as many properties as possible whether they are

allowed or required to have a certain number of different values. Often,

occurring cases are “at least one value” (i.e., required properties) and “at

most one value” (i.e., single-valued properties).

• Required values. Often, classes are defined by virtue of a certain prop-

erty’s having particular values, and such required values can be speci-

fied in OWL, using owl:hasValue. Sometimes the requirements are less

stringent: a property is required to have some values from a given class

(and not necessarily a specific value, owl:someValuesFrom).

• Relational characteristics. The final family of facets concerns the relational

characteristics of properties: symmetry, transitivity, inverse properties,

functional values.

After this step in the ontology construction process, it will be possible to

check the ontology for internal inconsistencies. (This is not possible before

this step, simply because RDF Schema is not rich enough to express incon-

sistencies). Examples of often occurring inconsistencies are incompatible do-

main and range definitions for transitive, symmetric, or inverse properties.

Similarly, cardinality properties are frequent sources of inconsistencies. Fi-

nally, requirements on property values can conflict with domain and range

restrictions, giving yet another source of possible inconsistencies.

7.2.7 Define Instances

Of course, we do rarely define ontologies for their own sake. Instead we use

ontologies to organize sets instances, and it is a separate step to fill the ontolo-

gies with such intances. Typically, the number of instances is many orders of

magnitude larger then the number of classes from the ontology. Ontologies

vary in size from a few hundred classes to tens of thousands of classes; the

number of instances varies from hundreds to hundreds of thousands, or even

larger.

Because of these large numbers, populating an ontology with instances is

typically not done manually. Often, instances are retrieved from legacy data-

sources such as databases. Another often used technique is the automated

extraction of instances from a text corpus.

TLFeBOOK

TLFeBOOK

7.3 Reusing Existing Ontologies 209

7.2.8 Check for Anomalies

An important advantage of the use of OWL over RDF Schema is the possi-

bility to detect inconsistencies in the ontology itself, or in the set of instances

that were defined to populate the ontology. Some examples of often occur-

ring anomalies are the following: As mentioned above, examples of often

occurring inconsistencies are incompatible domain and range definitions for

transitive, symmetric, or inverse properties. Similarly, cardinality properties

are frequent sources of inconsistencies. Finally, the requirements on property

values can conflict with domain and range restrictions, giving yet another

source of possible inconsistencies.

7.3 Reusing Existing Ontologies

One should begin with an existing ontology if possible. Existing ontologies

come in a wide variety.

7.3.1 Codified Bodies of Expert Knowledge

Some ontologies are carefully crafted, by a large team of experts over many

years. An example in the medical domain is the cancer ontology from the

National Cancer Institute in the United States.1 Examples in the cultural

domain are the Art and Architecture Thesaurus (AAT)2 containing 125,000

terms and the Union List of Artist Names (ULAN),3 with 220,000 entries on

artists. Another example is the Iconclass vocabulary of 28,000 terms for de-

scribing cultural images.4 An example from the geographical domain is the

Getty Thesaurus of Geographic Names (TGN),5 containing over 1 million

entries.

7.3.2 Integrated Vocabularies

Sometimes attempts have been made to merge a number of independently

developed vocabularies into a single large resource. The prime example of

this is the Unified Medical Language System,6 which integrates 100 biomed-

1. <http://www.mindswap.org/2003/CancerOntology/>.
2. <http://www.getty.edu/research/tools/vocabulary/aat>.
3. <http://www.getty.edu/research/conducting_research/vocabularies/ulan/>.
4. <http://www.iconclass.nl>.
5. <http://www.getty.edu/research/conducting_research/vocabularies/tgn/>.
6. <http://umlsinfo.nlm.nih.gov>.

TLFeBOOK

TLFeBOOK

210 7 Ontology Engineering

ical vocabularies and classifications. The UMLS metathesaurus alone con-

tains 750,000 concepts, with over 10 million links between them. Not surpris-

ingly, the semantics of such a resource that integrates many independently

developed vocabularies is rather low, but nevertheless it has turned out to be

very useful in many applications, at least as a starting point.

7.3.3 Upper-Level Ontologies

Whereas the preceding ontologies are all highly domain-specific, some at-

tempts have been made to define very generally applicable ontologies (some-

times known as upper-level ontologies). The two prime examples are Cyc,7

with 60,000 assertions on 6,000 concepts, and the Standard Upperlevel On-

tology (SUO).8

7.3.4 Topic Hierarchies

Other “ontologies” hardly deserve this name in a strict sense: they are simply

sets of terms, loosely organized in a specialization hierarchy. This hierarchy

is typically not a strict taxonomy but rather mixes different specialization

relations, such as is-a, part-of, contained-in. Nevertheless, such resources are

often very useful as a starting point. A large example is the Open Directory

hierarchy9, containing more then 400,000 hierarchically organized categories

and available in RDF format.

7.3.5 Linguistic Resources

Some resources were originally built not as abstractions of a particular do-

main, but rather as linguistic resources. Again, these have been shown to be

useful as starting places for ontology development. The prime example in

this category is WordNet, with over 90,000 word senses.10

7.3.6 Ontology Libraries

Attempts are currently underway to construct online libraries of online on-

tologies. Examples may be found at the Ontology Engineering Group’s Web

7. <http://www.opencyc.org/>.
8. <http://suo.ieee.org/>.
9. <http://dmoz.org>.
10. <http://www.cogsci.princeton.edu/∼wn>, available in RDF at

<http://www.semanticweb.org/library/>.

TLFeBOOK

TLFeBOOK

7.4 Using Semiautomatic Methods 211

site11 and at the DAML Web site.12 Work on XML Schema development, al-

though strictly speaking not ontologies, may also be a useful starting point

for development work.13

It is rarely the case that existing ontologies can be reused without changes.

Typically, refine existing concepts and properties must be refined (using

owl:subClassOf and owl:subPropertyOf). Also, alternative names

must be introduced which are better suited to the particular domain (for ex-

ample, using owl:equivalentClass and owl:equivalentProperty).

Also, this is an opportunity for fruitfully exploiting the fact that RDF and

OWL allow private refinements of classes defined in other ontologies.

The general question of importing ontologies and establishing mappings

between different mappings is still wide open, and is considered to be one of

the hardest (and most urgent) Semantic Web research issues.

7.4 Using Semiautomatic Methods

There are two core challenges for putting the vision of the Semantic Web into

action.

First, one has to support the re-engineering task of semantic enrichment

for building the Web of meta-data. The success of the Semantic Web greatly

depends on the proliferation of ontologies and relational metadata. This re-

quires that such metadata can be produced at high speed and low cost. To

this end, the task of merging and aligning ontologies for establishing seman-

tic interoperability may be supported by machine learning techniques

Second, one has to provide a means for maintaining and adopting the

machine-processable data that is the basic for the Semantic Web. Thus, we

need mechanisms that support the dynamic nature of the Web.

Although ontology engineering tools have matured over the last decade,

manual ontology acquisition remains a time-consuming, expensive, highly

skilled, and sometimes cumbersome task that can easily result in a know-

ledge acquisition bottleneck.

These problems resemble those that knowledge engineers have dealt with

over the last two decades as they worked on knowledge acquisition method-

ologies or workbenches for defining knowledge bases. The integration of

11. <http://www.ontology.or.kr/ontology/onto_lib.asp>.
12. <http://www.daml.org>.
13. See for example the DTD/Schema registry at <http://XML.org>

and Rosetta Net <http://www.rosettanet.org>.

TLFeBOOK

TLFeBOOK

212 7 Ontology Engineering

knowledge acquisition with machine learning techniques proved beneficial

for knowledge acquisition.

The research area of machine learning has a long history, both on know-

ledge acquisition or extraction and on knowledge revision or maintenance,

and it provides a large number of techniques that may be applied to solve

these challenges. The following tasks can be supported by machine learning

techniques:

• Extraction of ontologies from existing data on the Web

• Extraction of relational data and metadata from existing data on the Web

• Merging and mapping ontologies by analyzing extensions of concepts

• Maintaining ontologies by analyzing instance data

• Improving Semantic Web applications by observing users

Machine learning provides a number of techniques that can be used to

support these tasks:

• Clustering

• Incremental ontology updates

• Support for the knowledge engineer

• Improving large natural language ontologies

• Pure (domain) ontology learning

Omalayenko identifies three types of ontologies that can be supported using

machine learning techniques and identifies the current state of the art in these

areas

Natural Language Ontologies

Natural language ontologies (NLOs) contain lexical relations between lan-

guage concepts; they are large in size and do not require frequent updates.

Usually they represent the background knowledge of the system and are

used to expand user queries The state of the art in NLO learning looks quite

optimistic: not only does a stable general-purpose NLO exist but so do tech-

niques for automatically or semiautomatically constructing and enriching

domain-specific NLOs.

TLFeBOOK

TLFeBOOK

7.4 Using Semiautomatic Methods 213

Domain Ontologies

Domain ontologies capture knowledge of one particular domain, for in-

stance, pharmacological, or printer knowledge. These ontologies provide a

detailed description of the domain concepts from a restricted domain. Usu-

ally, they are constructed manually but different learning techniques can

assist the (especially inexperienced) knowledge engineer. Learning of the

domain ontologies is far less developed than NLO improvement. The ac-

quisition of the domain ontologies is still guided by a human knowledge

engineer, and automated learning techniques play a minor role in knowledge

acquisition. They have to find statistically valid dependencies in the domain

texts and suggest them to the knowledge engineer.

Ontology Instances

Ontology instances can be generated automatically and frequently updated

(e.g., a company profile from the Yellow Pages will be updated frequently)

while the ontology remains unchanged. The task of learning of the ontology

instances fits nicely into a machine learning framework, and there are several

successful applications of machine learning algorithms for this. But these ap-

plications are either strictly dependent on the domain ontology or populate

the markup without relating to any domain theory. A general-purpose tech-

nique for extracting ontology instances from texts given the domain ontology

as input has still not been developed.

Besides the different types of ontologies that can be supported, there are

also different uses for ontology learning. The first three tasks in the following

list (again taken from Omalayenko) relate to ontology acquisition tasks in

knowledge engineering, and the last three to ontology maintenance tasks.

• Ontology creation from scratch by the knowledge engineer. In this task

machine learning assists the knowledge engineer by suggesting the most

important relations in the field or checking and verifying the constructed

knowledge bases.

• Ontology schema extraction from Web documents. In this task machine

learning systems take the data and metaknowledge (like a metaontology)

as input and generate the ready-to-use ontology as output with the possi-

ble help of the knowledge engineer.

• Extraction of ontology instances populates given ontology schemas and

extracts the instances of the ontology presented in the Web documents.

TLFeBOOK

TLFeBOOK

214 7 Ontology Engineering

This task is similar to information extraction and page annotation, and

can apply the techniques developed in these areas.

• Ontology integration and navigation deal with reconstructing and navi-

gating in large and possibly machine-learned knowledge bases. For ex-

ample, the task can be to change the propositional-level knowledge base

of the machine learner into a first-order knowledge base.

• An ontology maintenance task is updating some parts of an ontology that

are designed to be updated (like formatting tags that have to track the

changes made in the page layout).

• Ontology enrichment (or ontology tuning) includes automated modifica-

tion of minor relations into an existing ontology. This does not change

major concepts and structures but makes an ontology more precise.

A wide variety of techniques, algorithms, and tools is available from ma-

chine learning. However, an important requirement for ontology representa-

tion is that ontologies must be symbolic, human-readable, and understand-

able. This forces us to deal only with symbolic learning algorithms that make

generalizations, and to skip other methods like neural networks and genetic

algorithms. Potentially applicable algorithms include

• Propositional rule learning algorithms that learn association rules, or

other forms of attribute-value rules.

• Bayesian learning is mostly represented by the Naive Bayes classifier. It

is based on the Bayes theorem and generates probabilistic attribute-value

rules based on the assumption of conditional independence between the

attributes of the training instances.

• First-order logic rules learning induces the rules that contain variables,

called first-order Horn clauses.

• Clustering algorithms group the instances together based on the similar-

ity or distance measures between a pair of instances defined in terms of

their attribute values.

In conclusion, we can say that although there is much potential for ma-

chine learning techniques to be deployed for Semantic Web engineering, this

is far from a well-understood area. No off-the-shelf techniques or tools are

currently available, although this is likely to change in the near future.

TLFeBOOK

TLFeBOOK

7.5 On-To-Knowledge Semantic Web Architecture 215

Figure 7.1 Semantic Web knowledge management architecture

7.5 On-To-Knowledge Semantic Web Architecture

Building the Semantic Web not only involves using the new languages de-

scribed in this book, but also a rather different style of engineering and a

rather different approach to application integration. To illustrate this, we

describe in this section how a number of Semantic Web-related tools can be

integrated in a single lightweight architecture using Semantic Web standards

to achieve interoperability between independently engineered tools (see fig-

ure 7.1).

TLFeBOOK

TLFeBOOK

216 7 Ontology Engineering

7.5.1 Knowledge Acquisition

At the bottom of figure 7.1 we find tools that use surface analysis techniques

to obtain content from documents. These can be either unstructured natural

language documents or structured and semistructured documents (such as

HTML tables and spreadsheets).

In the case of unstructured documents, the tools typically use a combi-

nation of statistical techniques and shallow natural language technology to

extract key concepts from documents.

In the case of more structured documents, the tools use techniques such as

wrappers, induction, and pattern recognition to extract the content from the

weak structures found in these documents.

7.5.2 Knowledge Storage

The output of the analysis tools is sets of concepts, organized in a shal-

low concept hierarchy with at best very few cross-taxonomical relationships.

RDF and RDF Schema are sufficiently expressive to represent the extracted

information.

Besides simply storing the knowledge produced by the extraction tools,

the repository must of course provide the ability to retrieve this knowledge,

preferably using a structured query language such as discussed in chapter

3. Any reasonable RDF Schema repository will also support the RDF model

theory, including deduction of class membership based on domain and range

definitions, and deriving the transitive closure of the subClassOf relation-

ship.

Note that the repository will store both the ontology (class hierarchy, prop-

erty definitions) and the instances of the ontology (specific individuals that

belong to classes, pairs of individuals between which a specific property

holds).

7.5.3 Knowledge Maintenance

Besides basic storage and retrieval functionality, a practical Semantic Web

repository will have to provide functionality for managing and maintaining

the ontology: change management, access and ownership rights, transaction

management.

Besides lightweight ontologies that are automatically generated from un-

structured and semistructured data, there must be support for human engi-

TLFeBOOK

TLFeBOOK

7.5 On-To-Knowledge Semantic Web Architecture 217

neering of much more knowledge-intensive ontologies. Sophisticated edit-

ing environments must be able to retrieve ontologies from the repository,

allow a knowledge engineer to manipulate it, and place it back in the repos-

itory.

7.5.4 Knowledge Use

The ontologies and data in the repository are to be used by applications that

serve an enduser. We have already described a number of such applications.

7.5.5 Technical Interoperability

In the On-To-Knowledge project,14 the architecture of figure 7.1 was imple-

mented with very lightweight connections between the components. Syn-

tactic interoperability was achieved because all components communicated

in RDF. Semantic interoperability was achieved because all semantics was

expressed using RDF Schema. Physical interoperability was achieved be-

cause all communications between components were established using sim-

ple HTTP connections, and all but one of the components (the ontology

editor) were implemented as remote services. When operating the On-To-

Knowledge system from Amsterdam, the ontology extraction tool, running

in Norway was given a London-based URL of a document to analyze; the re-

sulting RDF and RDF Schema were uploaded to a repository server running

in Amersfoort (the Netherlands). These data were uploaded into a locally in-

stalled ontology editor, and after editing downloaded back into the Amers-

foort server. The data were then used to drive a Swedish ontology-based

Web site generator (see the EnerSearch case-study in chapter 6), as well as a

U.K.-based search engine, both displaying their results in the browser on the

screen in Amsterdam.

In summary, all these tools were running remotely, were independently

engineered, and only relied on HTTP and RDF to obtain a high degree of

interoperability.

14. <http://www.ontoknowledge.org>.

TLFeBOOK

TLFeBOOK

218 7 Ontology Engineering

Suggested Reading

Some key papers that were used as the basis for this chapter are:

• Ontology Development 101: A Guide to Creating Your First Ontology Na-

talya. F. Noy and Deborah L. McGuinness

<http://www.ksl.stanford.edu/people/dlm/papers/ontology101/

ontology101-noy-mcguinness.html>.

• M. Uschold, and M. Gruninger. Ontologies: Principles, Methods and

Applications. Knowledge Engineering Review, Volume 11 Number 2, (June

1996).

• B. Omelayenko. Learning of Ontologies for the Web: the Analysis of Ex-

isting Approaches, In: Proceedings of the International Workshop on Web Dy-
namics, 8th International Conference on Database Theory (ICDTŠ01). 2001.

<http://www.cs.vu.nl/ borys/papers/WebDyn01.pdf>

Two often cited books are:

• A. Maedche, Ontology Learning for the Semantic Web, Kluwer International

Series in Engineering and Computer Science, Volume 665, 2002.

• J. Davies, D. Fensel, and F. van Harmelen. Towards the Semantic Web:
Ontology-Driven Knowledge Management. New York: Wiley, 2003.

Project

This project is a mediumscale exercise that will occupy two or three people

for about two to three weeks. All required software is freely available. We

provide some pointers to software that we have used successfully, but given

the very active state of development of the field, the availability of software

is likely to change rapidly. Also, if certain software is not mentioned, this

does not indicate our disapproval of it.

The assignment consists of tree parts.

1. In the first part, you will create an ontology that describes the domain and

contains the information needed by your own application. You will use

the terms defined in the ontology to describe concrete data. In this step,

you will be applying the methodology for ontology construction outlined

in the first part of this chapter, and you will be using OWL as a represen-

tation language for your ontology (see chapter 4).

TLFeBOOK

TLFeBOOK

Project 219

2. In the second part, you will use your ontology to construct different views

on your data, and you will query the ontology and the data to extract

information needed for each view. In this part, you will be applying RDF

storage and querying facilities (see chapter 3).

3. In the third part, you will create different graphic presentations of the

extracted data using XSLT technology (see chapter 2).

Part I. Creating an Ontology

As a first step, you need to decide on an application domain to tackle in

your project. Preferably, this is a domain in which you yourself have suffi-

cient knowledge or for which you have easy access to an expert with that

knowledge.

In this description of the project, we will use the domain we use in our own

course, namely, the domain of a university faculty, with its teachers, courses,

and departments, but of course you can replace this with any domain of your

own choosing.

Second, you will build an ontology expressed in OWL that describes the

domain (for example, your faculty). The ontology does not have to cover

the whole domain, but it should contain at least a few dozen classes. Pay

special attention to the quality (breadth, depth) of the ontology, and aim to

use as much of OWL’s expressiveness as possible. There are a number of

possible tools to use at this stage. We have good experiences with OILed,15

but other editors can also be used, e.g., Protégé,16 or OntoEdit.17 If you are

ambitious, you may even want to start your ontology development using

ontology extraction tools from text (but we have no experience with this in

our own course), or to experiment with some of the tools that allow you to

import semistructured data sources, such as Excell sheets, tab-delimited files,

etc. See, for example, Excel2RDF and ConvertToRDF.18 Of course, you may

choose to start from some existing ontologies in this area.19

Preferably, also use an inference engine to validate your ontology and

check it for inconsistencies. We have experience using the FaCT reasoning

engine that is closely coupled with OILed, but OntoEdit has its own inference

engine. If you use Protégé, you may want to exploit some of the available

15. <http://oiled.man.ac.uk>.
16. <http://protege.stanford.edu>.
17. <http://ontoprise.de>.
18. <http://www.mindswap.org>.
19. For example those found in <http://www.daml.org/ontologies>.

TLFeBOOK

TLFeBOOK

220 7 Ontology Engineering

plug-ins for this editor, such as multiple visualizations for your ontology, or

reasoning in Prolog or Jess.

Third, you export your ontology in RDF Schema. Of course, this will result

in information loss from your rich OWL ontology, but this is inevitable given

the limited capabilities of the tools used in subsequent steps, and this is also

likely to be a realistic scenario in actual Semantic Web applications.

Finally, you should populate your ontology with concrete instances and

their properties. Depending on the choice of editing tool, this can either

be done with the same tool (OntoEdit) or will have to be done in another

way (OILed). Given the simple syntactic structure of instances in RDF, you

may even decide to write these by hand, or to code some simple scripts to

extract the instance information from available online sources (in our own

course, students got some of the information from the faculty’s phonebook).

You may want to use the the validation service offered by W3C.20 This ser-

vice not only validates your files for syntactic correctness but also provides

a visualization of the existing triples. Also, at this stage, you may be able

to experiment with some of the tools that allow you to import data from

semistructured sources,

At the end of this step, you should be able to produce the following:

• The full OWL ontology

• The reduced version of this ontology as exported to RDF Schema

• The instances of the ontology, described in RDF

• A report describing the scope of the ontology and the main design deci-

sions you have taken during modeling it.

Part II. Profile Building with RQL Queries

In this step, you will use query facilities to extract certain relevant parts of

your ontology and data. For this you will need some way of storing your

ontology in a repository that also supports query facilities. You may use the

Sesame RDF storage and query facility,21 but other options exist, such as the

KAON server,22 or JENA.23

20. <http://www.w3.org /RDF/Validator/>.
21. <http://sesame.aidministrator.nl>.
22. <http://kaon.semanticweb.org>.
23. <http://www.hpl.hp.com/semweb>.

TLFeBOOK

TLFeBOOK

Project 221

The first step is to upload your ontology (in RDF Schema form) and asso-

ciated instances to the repository. This may involve some installation effort.

Next, use the query language associated with the repository to define dif-

ferent user profiles and to use queries to extract the data relevant for each

profile.

Although these programs support different query languages (RQL for

Sesame, RDQL for Jena, KAON Query for the KAON server), they all pro-

vide sufficient expressiveness to define rich profiles. In the example of mod-

eling your own faculty, you may, for example, choose to define profiles for

students from different years, profiles for students from abroad, profiles for

students and teachers, profiles for access over broadband or slow modem-

lines, and so on.

The output of the queries that define a profile will typically be in an XML

format: RDF/XML, or some other form of XML.

Part III. Presenting Profile-Based Information

In this final part, use the XML output of the queries from part II to generate

a human-readable presentation of the different profiles.

The obvious technology to use in this final part is XML Style Sheets, in

particular XSLT (see Chapter 2). A variety of different editors exist for XSLT,

as well as a variety of XSLT processors.24

The challenge of this part is to define browsable, highly interlinked pre-

sentations of the data generated and selected in parts I and II.

Conclusion

After you have finished all parts of this proposed project, you will effectively

have implemented large parts of the architecture shown in figure 7.1. You

will have used most of the languages described in this book (XML, XSLT,

RDF, RDF Schema, OWL), and you will have built a genuine Semantic Web

application: modeling a part of the world in an ontology, using querying to

define user-specific views on this ontology, and using XML technology to

define browsable presentations of such user-specific views.

24. See, for example, <http://www.xslt.com>.

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

8 Conclusion and Outlook

8.1 How It All Fits Together

At this time it may be instructive to look back at chapter 1, where the Seman-

tic Web vision was described. In this book, we described the key Semantic

Web technologies. Now we consider an automated bargaining scenario to

see how all technologies discussed fit together.

• Each bargaining party is represented by a software agent. We have not

discussed agents in this book and refer readers to the extensive litera-

ture. Often, agents are treated as black boxes, which solve all problems

miraculously. We preferred to concentrate on the internals of agents, and

refrained from discussing aspects of agent communication and collabora-

tion.

• The agents need to agree on the meaning of certain terms by committing

to a shared ontology, e.g., written in OWL.

• Case facts, offers, and decisions can be represented using RDF statements.

These statements become really useful when linked to an ontology.

• Information is exchanged between the agents in some XML-based (or RDF-
based) language.

• The agent negotiation strategies are described in a logical language.

• An agent decides about the next course of action through inferring con-

clusions from the negotiation strategy, case facts, and previous offers and

counteroffers.

TLFeBOOK

TLFeBOOK

224 8 Conclusion and Outlook

8.2 Some Technical Questions

8.2.1 Web Ontology Language: Is Less More?

Much of the effort in Semantic Web research has gone into developing an ap-

propriate Web ontology language, resulting in OWL as the current standard.

One key question is whether the ontology languages need to be very com-

plex. While one can always think of cases that one might wish to model and

that are beyond the expressive power of full first-order logic, the question

remains whether these issues are important in practice.

There are reasons to expect that most ontological knowledge will be of a

rather simple nature, and that less expressive languages will be sufficient.

The advantages of simple ontology languages are a more efficient reasoning

support, a simpler language for tool vendors to support, and a more easily

usable language. The latter may turn out to be of crucial importance for the

success of the Semantic Web. OWL Lite is a step in the right direction.

8.2.2 Rules and Ontologies

As we said in chapter 4, the current (advanced) Web ontology languages

are based on description logics. On the other hand, it has been recognized

that rules are an important and simple representation formalism with many

applications. Currently there is ongoing work on combining both.

We believe that a formalism that combines the full power of both descrip-

tion logics and rules would be overkill. Apart from questions regarding the

need for such rich languages, the research has revealed several complexity

and computability barriers that are difficult to overcome.

A sensible compromise approach may be to take RDFS and put rules on

top, as an alternative to going down the path of description logics. There

are no real technical problems with this approach. And it is not as restrictive

as it looks, because many features of description logics (and thus OWL) are

definable using rules.

8.3 Predicting the Future

So, will the Semantic Web initiative succeed? While many people believe in

it (and in fact are investing in it), the outcome is still open. As suggested at

the beginning of this book, the question is not so much a technological but

rather a practical one: Will we be able to demonstrate the usefulness of this

TLFeBOOK

TLFeBOOK

8.3 Predicting the Future 225

technology quickly and powerfully enough to create momentum (recreating

something similar to the early stages of the World Wide Web)?

Where will the ontologies come from? We already see the solutions to this

potential bottleneck: some large ontologies are becoming de facto standards

(WordNet, NCIBI’s cancer ontology), and many small ontologies are either

hand-created by organizations (e.g., RosettaNet) or by machine through ma-

chine learning techniques, natural language analysis, and borrowing from

legacy resources (e.g., database schemas).

Where will the semantic markup come from? It is clear that the bulk of the

required large volumes of semantic markup will not be created by hand

(unlike the start of the World Wide Web, which did happen through hand-

coded HTML pages). Instead, analysis of documents through natural lan-

guage techniques and borrowing from legacy sources (e.g., databases) will

be prominent techniques here.

Where will the tools come from? This is a potential bottleneck that is al-

ready in the process of being resolved. A large variety of tools is already

available for every aspect of the Semantic Web application life cycle (editors,

storage, query and inference infrastructure, visualization, versioning tools).

Currently these tools are mostly in the academic domain, but they are quickly

being taken up by the commercial sector, in particular, by highly innovative

startups, both in the United States and in the European Union.

How should one deal with a multitude of ontologies? This problem (known as

the ontology mapping problem) is perhaps the hardest problem to be solved.

Many approaches are being investigated (based on negotiating agents, ma-

chine learning, or linguistic analysis), but the jury is still out on this one.

Possibly the first success stories will not emerge in the open heterogeneous

environment of the WWW but rather in intranets of large organizations. In

such environments, central control may impose the use of standards and

technologies, and possibly the first real success stories will emerge. Thus we

believe that knowledge management for large organizations may be the most

promising area to start.

Other areas that will be quick to follow are so-called e-science: the use of

the Semantic Web by scientists (just as the use by scientists was an important

catalyst for the World Wide Web). It could well be that e-commerce, with

all its associated problems of privacy, security, and trust, will only be a later

application of the Semantic Web.

All in all, we are optimistic about the future of the Semantic Web and hope

that this book as a teaching resource will play its role in “bringing the Web

to its full potential”.

TLFeBOOK

TLFeBOOK

TLFeBOOK

TLFeBOOK

A Abstract OWL Syntax

The XML syntax for OWL, as we have used it in chapter 4 is rather verbose,

and hard to read. OWL also has an abstract syntax1, which is much easier to

read.

This appendix lists the abstract syntax for all the OWL code discussed in

chapter 4.

4.2.2: Header

Ontology(

Annotation(rdfs:comment "An example OWL ontology")

Annotation(rdfs:label "University Ontology")

Annotation(owl:imports http://www.mydomain.org/persons)

)

4.2.3: Class Elements

Class(associateProfessor partial academicStaffMember)

Class(professor partial)

DisjointClasses(associateProfessor assistantProfessor)

DisjointClasses(professor associateProfessor)

Class(faculty complete academicStaffMember)

1. Defined in <http://www.w3.org/TR/owl-semantics/>

TLFeBOOK

TLFeBOOK

228 A Abstract OWL Syntax

4.2.4: Property Elements

DatatypeProperty(age range(xsd:nonNegativeInteger))

ObjectProperty(isTaughtBy

domain(course)

range(academicStaffMember))

SubPropertyOf(isTaughtBy involves)

ObjectProperty(teaches

inverseOf(isTaughtBy)

domain(academicStaffMember)

range(course))

ObjectProperty(lecturesIn)

EquivalentProperties(lecturesIn teaches)

4.2.5: Property Restrictions

Class(firstYearCourse partial

restriction(isTaughtBy allValuesFrom (Professor)))

Class(mathCourse partial

restriction(isTaughtBy hasValue (949352)))

Class(academicStaffMember partial

restriction(teaches someValuesFrom (undergraduateCourse)))

Class(course partial

restriction(isTaughtBy minCardinality(1)))

Class(department partial

restriction(hasMember minCardinality(10))

restriction(hasMember maxCardinality(30)))

4.2.6: Special Properties

ObjectProperty(hasSameGradeAs Transitive Symmetric

domain(student)

range(student))

TLFeBOOK

TLFeBOOK

229

4.2.7: Boolean Combinations

Class(course partial

complementOf(staffMember))

Class(peopleAtUni complete

unionOf(staffMember student))

Class(facultyInCS complete

intersectionOf(faculty

restriction(belongsTo

hasValue

(CSDepartment))))

Class(adminStaff complete

intersectionOf(staffMember

complementOf(unionOf(faculty

techSupportStaff))))

4.2.8: Enumerations

EnumeratedClass(weekdays Monday

Tuesday

Wednesday

Thursday

Friday

Saturday

Sunday)

4.2.9: Instances

Individual(949352

type(academicStaffMember))

Individual(949352

type(academicStaffMember)

value(age "39"^^&xsd;integer))

ObjectProperty(isTaughtBy Functional)

Individual(CIT1111

type(course)

TLFeBOOK

TLFeBOOK

230 A Abstract OWL Syntax

value(isTaughtBy 949352)

value(isTaughtBy 949318))

Individual(949318

type(lecturer))

DifferentIndividuals(949318 949352)

DifferentIndividuals(949352 949111 949318)

4.3.1: African Wildlife Ontology

Ontology(

ObjectProperty(eaten-by inverseOf(eats))

ObjectProperty(eats domain(animal))

ObjectProperty(is-part-of Transitive)

Class(animal partial

annotation(rdfs:comment "Animals form a class."))

Class(branch partial

annotation(rdfs:comment "Branches are parts of trees.")

restriction(is-part-of allValuesFrom (tree)))

Class(carnivore complete

annotation(rdfs:comment

"Carnivores are exactly those animals that eat

animals.")

intersectionOf(animal

restriction(eats someValuesFrom (animal))))

Class(giraffe partial

annotation(rdfs:comment

"Giraffes are herbivores,

and they eat only leaves.")

herbivore

restriction(eats allValuesFrom (leaf)))

Class(herbivore complete

annotation(rdfs:comment

"Herbivores are exactly those animals that

eat only plants or parts of plants.")

TLFeBOOK

TLFeBOOK

231

intersectionOf(

animal

restriction(eats

allValuesFrom

(unionOf(plant

restriction(is-part-of

allValuesFrom

(plant)))))))

Class(leaf partial

annotation(rdfs:comment "Leaves are parts of branches.")

restriction(is-part-of allValuesFrom (branch)))

Class(lion partial

annotation(rdfs:comment

"Lions are animals that eat only herbivores.")

carnivore

restriction(eats allValuesFrom (herbivore)))

Class(plant partial

annotation(rdfs:comment

"Plants form a class disjoint from animals."))

Class(tasty-plant partial

annotation(rdfs:comment

"Tasty plants are plants that are eaten

both by herbivores and carnivores.")

plant

restriction(eaten-by someValuesFrom (herbivore))

restriction(eaten-by someValuesFrom (carnivore)))

Class(tree partial

annotation(rdfs:comment "Trees are a type of plant.")

plant)

AnnotationProperty(rdfs:comment)

DisjointClasses(plant animal)

)

TLFeBOOK

TLFeBOOK

232 A Abstract OWL Syntax

4.3.2: Printer Ontology

Ontology(

Annotation(owl:versionInfo

"My example version 1.2, 17 October 2002")

DatatypeProperty(manufactured-by

domain(product)

range(xsd:string))

DatatypeProperty(price

domain(product)

range(xsd:nonNegativeInteger))

DatatypeProperty(printingResolution

domain(printer)

range(xsd:string))

DatatypeProperty(printingSpeed

domain(printer)

range(xsd:string))

DatatypeProperty(printingTechnology

domain(printer)

range(xsd:string))

Class(1100se partial

annotation(rdfs:comment

"1100se printers belong to the 1100 series

and cost $450.")

1100series

restriction(price hasValue ("450"^^&xsd;integer)))

Class(1100series partial

annotation(rdfs:comment

"1100series printers are HP laser jet

printers with 8ppm printing speed and 600dpi

printing resolution.")

hpLaserJetPrinter

restriction(printingSpeed hasValue ("8ppm"^^&xsd;string))

restriction(printingResolution

TLFeBOOK

TLFeBOOK

233

hasValue ("600dpi"^^&xsd;string)))

Class(1100xi partial

annotation(rdfs:comment

"1100xi printers belong to the 1100 series

and cost $350.")

1100series

restriction(price hasValue ("350"^^&xsd;integer)))

Class(hpLaserJetPrinter partial

annotation(rdfs:comment

"HP laser jet printers are HP products

and laser jet printers.")

laserJetPrinter

hpPrinter)

Class(hpPrinter partial

annotation(rdfs:comment

"HP printers are HP products and printers.")

hpProduct

printer)

Class(hpProduct complete

annotation(rdfs:comment

"HP products are exactly those products

that are manufactured by Hewlett Packard.")

intersectionOf(

product

restriction(manufactured-by

hasValue ("Hewlett Packard"^^&xsd;string))))

Class(laserJetPrinter complete

annotation(rdfs:comment

"Laser jet printers are exactly those printers

that use laser jet printing technology.")

intersectionOf(

printer

restriction(printingTechnology

hasValue ("laser jet"^^&xsd;string))))

Class(padid partial

annotation(rdfs:comment

TLFeBOOK

TLFeBOOK

234 A Abstract OWL Syntax

"Printing and digital imaging devices

form a subclass of products.")

annotation(rdfs:label "Device")

product)

Class(personalPrinter partial

annotation(rdfs:comment "Printers for personal use form

a subclass of printers.")

printer)

Class(printer partial

annotation(rdfs:comment "Printers are printing and

digital imaging devices.")

padid)

Class(product partial

annotation(rdfs:comment "Products form a class."))

)

TLFeBOOK

TLFeBOOK

Index

#PCDATA, 33

AAT, 199, 209

Aduna, 189, 190

agent, 14

aim of the authors, xix

Art and Architecture Thesaurus, 199,

209

artificial intelligence, 16

attribute types, 34, 38

axiomatic semantics, 94

B2B e-commerce, 6, 200

B2B portals, 6

B2C e-commerce, 5

cancer ontology, 209

cardinality restrictions, 121

CDATA, 34

class expressions, 122

class hierarchy, 81

classes, 81

closed-world assumption, 145

complete proof system, 152

constant, 155

container elements, 75

CSS2, 50

Cyc, 210

DAML, 3

DAML+OIL, 109

data integration, 182

data type, 39, 67, 72

data type extension, 40

data type restriction, 41

defaults, 144

defeasible logic program, 163

defeasible rule, 163

definite logic program, 152

domain, 81

downward compatibility, 17

DTD, 32

e-commerce, 200

e-learning, 192

element, 24

element types, 38

EMTREE, 181

enumerations, 124

explicit metadata, 8

fact, 156

filter expression, 47

first-order logic, 151

follows, 159

formal semantics, 110

FRODO RDFSViz, 108

function symbol, 155

goal, 157

Horn logic, 152

HTML, 23

TLFeBOOK

TLFeBOOK

236 Index

Iconclass, 199, 209

ID, 34

IDREF, 34

IDREFS, 34

inference system, 99

inheritance, 82

instances, 81

knowledge management, 3, 185

knowledge representation, 151

layer, 16

layering of OWL, 127

literals, 64

logic, 12, 151

logic layer, 18

machine learning, 211

machine-processable Web content, 3

markup languages, 24

MBASE, 181

MeSH, 180

metaclasses, 139

model, 158

modules, 144

monotonic logic program, 156

monotonic rule, 156

multimedia, 199

namespace, 43, 71

nonmonotonic rule, 153

nonmonotonic rule system, 161

OIL, 109

On-To-Knowledge, 215, 217

ontology, 10

ontology development process, 205

Open Directory, 210

OWL, 109

OWL DL, 113, 127

OWL Full, 113, 127

OWL Lite, 114, 128

OWL species, 113

owl:AllDifferent, 140

owl:allValuesFrom, 119, 142

owl:backwardCompatibleWith, 126

owl:cardinality, 122, 142

owl:Class, 117

owl:complementOf, 123, 141

owl:DatatypeProperty, 118

owl:differentFrom, 140

owl:disjointWith, 117, 139

owl:distinctMembers, 140

owl:EquivalentClass, 139

owl:equivalentClass, 117

owl:EquivalentProperty, 139

owl:equivalentProperty, 119

owl:FunctionalProperty, 122

owl:hasValue, 119

owl:imports, 116

owl:incompatibleWith, 127

owl:intersectionOf, 123, 141

owl:InverseFunctionalProperty, 122

owl:inverseOf, 118, 143

owl:maxCardinality, 122, 142

owl:minCardinality, 122, 142

owl:Nothing, 117

owl:ObjectProperty, 118

owl:oneOf, 124, 141

owl:onProperty, 119, 142

owl:Ontology, 116

owl:priorVersion, 126

owl:Restriction, 119, 141

owl:sameAs, 140

owl:sameIndividualAs, 140

owl:someValuesFrom, 119, 142

owl:SymmetricProperty, 122

owl:Thing, 117

owl:TransitiveProperty, 122

owl:unionOf, 123, 141

owl:versionInfo, 126

path expression, 45

portal, 187

predicate, 155

TLFeBOOK

TLFeBOOK

Index 237

predicate logic, 151

priority, 161

procedural attachment, 145

proof layer, 18

proof system, 151

property, 81

property chaining, 145

property hierarchy, 83

range, 81

RDF, 61

RDF property, 64

RDF query language, 100

RDF resource, 63

RDF Schema, 80

RDF Schema limitations, 111

RDF statement, 64

rdf:_1, 75

rdf:about, 71

rdf:Alt, 75

rdf:Bag, 75

rdf:Description, 66

rdf:first, 78

rdf:List, 78

rdf:nil, 78

rdf:object, 80

rdf:predicate, 80

rdf:Property, 85

rdf:resource, 72

rdf:rest, 78

rdf:Seq, 75

rdf:Statement, 85

rdf:subject, 80

rdf:type, 74, 86

rdfs:Class, 85

rdfs:ConstraintProperty, 87

rdfs:ConstraintResource, 87

rdfs:domain, 86

rdfs:isDefinedBy, 88

rdfs:label, 88

rdfs:Literal, 85

rdfs:range, 86

rdfs:Resource, 85

rdfs:seeAlso, 88

rdfs:subClassOf, 86

rdfs:subPropertyOf, 86

recommendations, 23

reification, 67, 80

rfds:comment, 88

root, 31

root element, 31

Rosetta Net, 200, 211

RQL, 100

rule body, 156, 163

rule head, 156, 163

rule markup, 167, 173

rule markup language, 154

RuleML, 171

rules, 145, 152, 224

search engines, 1

select-from-where, 103

semantic interoperability, 11

semantics, 12

service grounding, 195

service models, 197

service profiles, 195

shopbots, 5

SLD resolution, 161

sound proof system, 152

Standard Upperlevel Ontology, 210

standards, 17, 23

style sheet, 50

subclass, 81

subproperty, 83

SUO, 210

superclass, 81

tags, 24

TGN, 209

thesaurus, 180

Thesaurus of Geographic Names, 209

triple, 64

trust layer, 18

TLFeBOOK

TLFeBOOK

238 Index

typed literals, 67

ULAN, 209

UMLS, 210

Unified Medical Language System,

209

Union List of Artist Names, 209

unique-names assumption, 125, 145

upward partial understanding, 17

variable, 155

versioning, 126

visualization, 189

Web Ontology Working Group, 109

Web services, 194

well-formed XML document, 29

witness, 160

WordNet, 210

World Wide Web, 1

World Wide Web Consortium, 3

wrappers, 5

XLink, 58

XML, 23

XML attributes, 28

XML declaration, 27

XML document, 27

XML elements, 27

XML Schema, 37

XPath, 45

Xpath, 101

XSL, 50

XSLT, 50

XSLT template, 51

TLFeBOOK

TLFeBOOK

	A.Semantic.Web.Primer
	Cover

	Brief Contents
	Contents
	Series Foreword
	Preface
	1 The Semantic Web Vision
	2 StructuredWeb Documents in XML
	3 Describing Web Resources in RDF
	4 Web Ontology Language: OWL
	5 Logic and Inference: Rules
	6 Applications
	7 Ontology Engineering
	8 Conclusion and Outlook
	A Abstract OWL Syntax
	Index

