
A Semantic Web Reasoner for Rules, Equations
and Constraints

Daniel Elenius, Grit Denker, Mark-Oliver Stehr

SRI International, Menlo Park, California, USA
firstname.lastname@sri.com

Abstract. We describe a reasoner for OWL ontologies and SWRL poli-
cies used on cognitive radios to control dynamic spectrum access. In addi-
tion to rules and ontologies, the reasoner needs to handle user-defined op-
erations (e.g., temporal and geospatial). Furthermore, the reasoner must
perform sophisticated constraint simplification because any unresolved
constraints can be used by a cognitive radio to plan and reason about
its spectrum usage. No existing reasoner supported all these features.
However, the term rewriting engine Maude, augmented with narrowing,
provides a promising reasoning mechanism. This allows for a behavior
similar to that of a logic programming system, while constraint simpli-
fication rules as well as operations can easily be defined and processed.
Our system and general approach will be useful for other problems that
need sophisticated constraint processing in addition to rule-based reason-
ing, or where new operations need to be added. The implementation is
efficient enough to run on resource-constrained embedded systems such
as software-defined radios.

1 INTRODUCTION

The radio frequency spectrum is a finite resource, and demand for it is increasing.
Large, robust, and agile radio networks are very difficult to achieve with tradi-
tional methods. Cognitive radios and dynamic spectrum access offers a solution,
where radios can use sensors to avoid interference and reason about spectrum
usage. This area offers an interesting application domain for Semantic Web tech-
nologies.

In DARPA’s neXt Generation (XG) program, declarative policies are used
to control access to the spectrum resource. Policies define circumstances under
which radios are allowed to transmit, in terms of frequencies used, power levels,
geographic location, time, and so on. These concepts are defined in ontologies.
A policy reasoner is used to decide whether a transmission is allowed. More
background can be found in [1].

The ontologies and policies are encoded in OWL and SWRL. The semantics
is the usual first-order model theory. However, the reasoning problem is not a
straightforward Description Logic subsumption problem. This paper describes
our policy reasoner, which is a general-purpose reasoner for OWL and SWRL,
but with several additional features. Our intent here is not to give a formal
characterization of our reasoner, but to motivate and describe the system, and
to contrast it with other reasoning technologies.

Our approach is to translate to a target language that has reasoning mech-
anisms appropriate to our domain. There are several desired features of such a
language and its reasoning system. Policies can be permissive or restrictive. It
is intuitive to write policies as rules, e.g., of the form Allow⇐ Constraints (for
permissive policies), where we try to prove Allow by solving the constraints.
(Replace Allow by Disallow for restrictive policies). It is also useful to define
auxiliary predicates using rules, for modularity, reusability, and convenience of
specification. This speaks in favor of a logic programming type of language.

We also need to define certain operations, such as arithmetic on time primi-
tives, and calculation of the distance between two geographic points. Pure logic
programming does not provide an appropriate computation framework for this,
and because we want purely declarative policies, procedural attachments are not
an option. However, these types of operations can be defined in a natural, declar-
ative way that allows for efficient computation, using functions and equational
specifications. Another use of functions is to define so-called power masks, i.e.,
functions from frequency to power levels (see Figure 1).

10 20 30 40 50

10

20

Frequency
(KHz)

Power
(dBm)

3525

5

15

155 45

power(f) = 0.0⇐ f < 10.0
power(f) = 10.0⇐ 10.0 ≤ f ∧ f < 30.0
power(f) = 20.0⇐ 30.0 ≤ f ∧ f < 40.0
power(f) = 10.0⇐ 40.0 ≤ f ∧ f < 50.0
power(f) = 0.0⇐ 50.0 ≤ f

Fig. 1. A power mask (left) is a function from frequency to power. Such functions can
be intuitively defined using conditional equations (right).

Another ubiquitous feature in spectrum policies are numerical constraints,
for frequency ranges, power levels, minimum distance to other transmitters, and
so on. Interesting problems arise from the combination of numerical and other
logical constraints.

To summarize, we need a reasoner that allows rules in the logic program-
ming style, functions defined using equations, and flexible handling of numerical
constraints.

This remainder of this paper is organized as follows. In Section 2 we examine
existing reasoning technologies with regard to the desired features. Section 3
describes the system in which we implemented our reasoner, and its underlying
logic. Section 4 describes our reasoner, and shows how it can be used as a Web
reasoning tool. We end with some conclusions in Section 5.

2 RULES, EQUATIONS, AND CONSTRAINTS

Here, we examine the features needed by the policy language in more detail, and
discuss existing technologies supporting them. There are two somewhat (but not

completely) separate issues. The first is the combination of logic programming
with functions and equations. The second is the addition of a flexible notion of
constraints.

2.1 Combining Rules and Equations
Combining a rule system with functions and equations could be seen as combin-
ing the logic programming and functional programming paradigms. There is a
large body of work on this topic (see [2, 3] for extensive surveys). Following [4],
we take the relational paradigm to be about multidirectional, nondeterministic,
and not necessarily convergent computation, and the functional paradigm to be
about directional, deterministic, and convergent computation (see Table 1).

Functions, Equations Relations, Rules

Deterministic Nondeterministic
No failure or backtracking Failure/backtracking

Directional Multidirectional
Takes inputs and produces outputs No specific inputs/outputs

Terminating Not necessarily terminating
Usually expected to terminate on legal input Can enumerate infinitely many

instances of arguments

Evaluation Deduction
Reduction Search/resolution/

unification
Table 1. Comparison of two paradigms of computation.

Having a language that supports only one of the two paradigms usually
forces users to make unnatural encodings in order to support the missing func-
tionality. One one hand, functions encoded as relations in logic programming
cannot take advantage of the efficient evaluation of deterministic functions that
a functional programming language can perform. On the other hand, functional
programming cannot take advantage of the built-in search and partially instan-
tiated data structures that logical programming supports. Thus, a combination
of both paradigms is called for.

There are two fundamental approaches to the problem of combining relations
and functions [3]. One is to start with the relational approach and add functions.
The other is to start with the functional approach and add relations.

In some sense, relations are more general than functions and can emulate
functional behavior. For example, functional notations can be translated into
Prolog through flattening, and determinism of function evaluation can be achieved
by using Prolog features like cuts. This approach is used in [5] and [6], which
both take logic programming as the starting point, and add functional notation
through a translation approach. These approaches make a syntactical distinction
between rules and equations, and between relations and functions. Normal Pro-
log mechanisms are used for rules and relations, and the translated versions with

a special encoding to behave like functions are used for the equational/functional
side.

Systems that take functional programming as the starting point instead treat
relations and logical connectives (and, or, etc.) as boolean functions, and gen-
eralize their expressiveness by allowing new variables on the right-hand sides of
equations. Thus, these languages typically do not make a distinction between
relations and functions.

Regardless of the starting point, the choices of operational principles are
similar, the main choices being residuation (e.g., Le Fun [4]) or narrowing (e.g.,
Curry [7]). The idea of residuation is to delay evaluation of terms containing
logical variables until the variables have been instantiated due to the evaluation
of other terms. Narrowing works by using unification instead of matching when
a redex is matched with the left-hand side of an equation, thus allowing logical
variables in the redex. For example, given the equations

brother(Phil) = Tom

brother(Phil) = Jack

and the redex brother(x) = Tom, normal reduction does not work since we
have a variable in the redex. However, with narrowing, the redex unifies with
the first equation and the binding x = Phil. In general, narrowing can result
in several different solutions, which means that backtracking or some equivalent
mechanism must be provided. For example, the redex brother(Phil) = y unifies
with both equations, with the bindings y = Tom and y = Jack. Narrowing is
the most general approach, encompassing both unification and reduction, and
thus supporting both the functional and the relational paradigms. Our solution
is based on a functional language, Maude [8], and uses narrowing.

2.2 Constraints
Constraints are fundamental in the policies we considered in the XG project – in
fact we take the view that policies are constraints. There are many different no-
tions of “constraints”. We will make clear what we mean by constraints, and how
this compares to the constraints of Constraint Logic Programming (CLP) [9].

In the XG architecture, the policy reasoner must prove a special atom Permit
based on the policies and facts available:

Facts,Policies ` Permit

Policies will have axioms about the Permit predicate, so that the proof obligation
becomes

Facts ` Constraint

where Constraint is a formula resulting from combining all those Permit axioms.
The facts come from a transmission request, where the radio states what its
current configuration is, what its intended transmission looks like, and what the

state of the environment is, as far as the radio can determine by using its sensors.
As a simplistic example, consider the following policies:

Permit⇔ Allow ∧ ¬Disallow

Allow⇐ 500 < freq ∧ freq < 1000

Allow⇐ 1200 < freq ∧ freq < 1400

Disallow⇐ 900 < freq ∧ freq < 1300

The first, “top-level”, policy relates permissive and restrictive policies. The given
top-level policy just says that we need to find some policy that allows, and no
policy can disallow. Other top-level rules can be used to account for priorities
and other relationships between policies. With these policies, after expanding
the definition of Permit, we get the proof obligation

Facts ` (500 < freq ∧ freq < 1000 ∨ 1200 < freq ∧ freq < 1400)
∧¬(900 < freq ∧ freq < 1300)

which can be further simplified to

Facts ` 500 < freq ∧ freq ≤ 900 ∨ 1300 ≤ freq ∧ freq < 1400

If Facts contains for instance freq = 800, the whole constraint reduces to True,
which means that the proof is completed and the radio can transmit. However, we
are also interested in the case where such facts are not provided, because radios
can make underspecified requests as a way of querying for available transmission
opportunities. Thus, whatever remains of the constraint after simplification has
been performed should be returned as a result to the radio.

The description above could be subsumed under a very general view of CLP.
However, the variant of CLP that has been implemented in current Prolog sys-
tems is less general, in at least three respects. First, CLP does not handle nega-
tion in a clean, logical way. For example, we would like to be able to get simpli-
fications like

¬freq < 500 → freq ≥ 500

In Prolog, negation is handled by the negation-as-failure method, which pre-
cludes such inferences. Second, CLP does not handle disjunction. For example,
it cannot perform the simplification

freq < 500 ∨ freq > 400 → True

Third, in Prolog/CLP, only special constraint formulas are returned when they
are not completely satisfied, whereas we view all formulas as constraints. While
there are proposals to handle the negation [10] and disjunction [11] limitations,
the third limitation is of a more fundamental nature.

The view of constraints and constraint simplification that we have suggested
above lends itself very well to a formalization and implementation as a term

rewriting system [12], where the derivations above are instances of some rewrite
rules of the form A → B. Indeed, at first glance it may look as if most functional
programming languages (e.g., Haskell or ML) or functional logic programming
languages (e.g., Curry or Escher) can be used for this purpose, since they al-
low us to write equations, which are usually interpreted as left-to-right rewrite
rules. However, two limitations of these languages prohibit this: their constructor
discipline and their inability to handle associative or commutative functions.

Constructors are a subset of the function symbols that cannot be further
reduced. Most functional programming languages restrict the equations one can
write such that the left-hand sides must be of the form f(t1, . . . , tn), where f is
a nonconstructor function symbol and ti are terms containing only constructor
symbols or variables. This constructor discipline allows one to define computable
functions and to execute them in an efficient way, but it limits us when we want
to define a more general rewrite relation, such as our constraint simplification
relation. For example, we will need rewrite rules/equations such as

A ∧ true = A

A ∨ true = true

A ∧ (B ∨ C) = (A ∧B) ∨ (A ∧ C)

where A, B, and C are boolean variables. From the first two equations, it is clear
that neither ∧ nor ∨ are constructors, as they can be eliminated (in fact, true
and false are the only constructors of the boolean algebra). Thus, the third
equation does not adhere to the constructor discipline, since it contains nested
nonconstructor function symbols.

To show the deficiency of functional programming languages with regard to
associative and commutative functions, consider what would happen if we try to
reduce a term true ∨ A using the rules above. We want to use the second rule,
but it does not match, since the terms are in the wrong order. However, ∨ is
commutative, and we could encode this using another equation,

A ∧B = B ∧A

but adding this equation will make the term rewriting system nonterminating,
since any term rewritten by this equation still matches the equation, and can thus
be rewritten again indefinitely. A similar argument applies to the associativity
of conjunction and other operators. One solution is AC matching, where we can
declare that an operator is associative and/or commutative, instead of using an
equation. AC matching means matching modulo these properties, and can be
done in a built-in, terminating way. Thus, our solution is to use a system which
does not demand a constructor discipline and which supports AC matching,
namely, Maude [8].

3 EQUATIONAL LOGIC, REWRITING LOGIC, AND MAUDE
Equational logic (EL) [13] is the subset of first-order logic with = as the
only predicate symbol, and equations as the only formulas (i.e., there are no

logical connectives). The rules of deduction of EL are reflexivity, congruence,
transitivity, and symmetry. Despite being a very small subset of first-order logic,
equational logic can be used to define any computable function. Furthermore,
EL can be used as a programming language, by treating equations as left-to-
right rewrite rules (i.e., ignoring the symmetry rule), and using reduction as the
operational semantics. Viewed as rewrite systems, theories in EL are expected to
be terminating and confluent. This means that the order in which redexes and
rewrite rules are chosen does not matter; we will reach the same result regardless,
and in a finite number of steps. Sometimes conditional equations are allowed,
which means that Horn clauses can be used in addition to plain equations, as in
the power mask definition in Figure 1.

Rewriting logic (RL) [14] is similar to EL on the surface, in that it allows
for (possibly conditional) rewrite rules. However, the rules are not semantically
equations, and the rule systems are not expected to be confluent. Therefore,
reduction cannot be used as the operational semantics, since different choices
of redexes and rules can lead to different results. Instead, the rewrite rules are
interpreted as nondeterministic state transitions, and the operational mechanism
is search in the state space. Analogously to EL, RL can also support conditional
rewrite rules.

Maude [8] is a multiparadigm executable specification language encompass-
ing both EL and RL. The Maude interpreter is very efficient, allowing proto-
typing of quite complex test cases. Maude also provides efficient built-in search
and model checking capabilities. Maude is reflective [15], providing a meta-level
module that reflects both the syntax and semantics of Maude. Using reflection,
the user can program special-purpose execution and search strategies, module
transformations, analyses, and user interfaces. Maude sources, executables for
several platforms, the manual, a primer, cases studies, and papers are available
from the Maude website http://maude.cs.uiuc.edu.

We briefly summarize the syntax of Maude that is used in this paper. Maude
has a module system, with
– functional modules, specifying equational theories, which are declared with

the syntax fmod. . . endfm
– system modules, which are rewrite theories specifying systems of state tran-

sitions; they are declared with the syntax mod. . . endm
These modules have an initial model semantics [16]. Immediately after the

module’s keyword, the name of the module is given. After this, a list of im-
ported submodules can be added. One can also declare sorts and subsorts and
operators. Operators are introduced with the op keyword followed by the oper-
ator name, the argument and result sorts. An operator may have mixfix syn-
tax, with the name containing ‘_’s marking the argument positions. A binary
operator may be declared with equational attributes, such as assoc, comm, and
id: <identity element> stating, for example, that the operator is associative,
commutative, and specifying an identity element for the operation. Such at-
tributes are then used by the Maude engine to match terms modulo the declared
axioms. Equational axioms are introduced with the keyword eq (or ceq for con-

ditional equations) followed by the two terms being declared equal separated by
the equality sign =. Rewrite rules are introduced with the keyword rl (or crl

for conditional rules) followed by an optional rule label, and terms correspond-
ing to the premises and conclusion of the rule separated by the rewrite sign
=>. Variables appearing in axioms and rules (and commands), may be declared
globally using the keyword var or vars, or “inline” using the variable name and
its sort separated by a colon; for example, n:Nat is a variable named n of sort
Nat. Rewrite rules are not allowed in functional modules.

Maude has a reduce command for equational reduction in functional mod-
ules, and a search command for breadth-first search in the state space of system
modules. The search mechanism allows searching for the first answer, all answers,
or only answers matching some goal term. The search mechanism encompasses
the reduction mechanism, as equational reduction is performed before each ap-
plication of rewrite rules.

3.1 Logic Programming in Maude
Maude also has a narrow command. Narrowing in Maude is similar in many ways
to the search mechanism mentioned above. Like search, narrowing nondetermin-
istically selects rewrite rules, generates choice points, and can return answers in
the same ways. There are two differences: 1) new variables are allowed on the
right-hand side of rewrite rules, and 2) when there are uninstantiated variables
in a redex, unification is used instead of matching.

As mentioned in Section 2.1, the addition of narrowing to a functional lan-
guage gives us the ability to subsume logic programming. We encode relations
and logical connectives as boolean functions. The logical connectives are defined
in a BOOL module in Maude’s “prelude”, which contains statements like
op _and_ : Bool Bool -> Bool [assoc comm prec 55] .

op _or_ : Bool Bool -> Bool [assoc comm prec 59] .

op not_ : Bool -> Bool [prec 53] .

vars A B C : Bool .

eq true and A = A .

eq false and A = false .

eq A and A = A .

The assoc and comm attributes declare the associativity and commutativity of
the operators. The prec attribute sets the precedence of an operator so that the
mixfix notation is parsed correctly without a proliferation of parentheses. Note
that not is simply a truth function that takes true to false and vice versa, and
corresponds to classical negation. We do not have a notion of negation-as-failure
since we deal with a language with classical first-order models.

User-defined predicates are encoded in a way similar to the connectives. For
example, an n-ary predicate P is encoded as
op P : T1 ... Tn -> Bool .

where Ti are the sorts of the arguments of P.
Rules are encoded as rewrite rules. For example,

∀x, y, z : uncle(x, y) ⇐ parent(x, z) ∧ brother(z, y)

is encoded in Maude as
vars x,y,z : Ind .

rl uncle(x,y) => father(x,z) and brother(z,y) .

Note the implicit existential variable z on the right-hand side. Normal rewriting
logic does not support this, but narrowing allows us to handle this. We do not
allow existential variables in a negative context (i.e., under an odd number of
nots). This would correspond to universal quantification, which the system does
not support.

Facts are rules without bodies. For example, father(John,Bob) is encoded as
rl father(John,Bob) => true .

Note the use of rewrite rules (rl) rather than equations (eq) for user-defined
facts and rules. This is motivated by operational concerns; we want to be able to
use narrowing on these facts and rules. The model-theoretic semantics of Maude
rewrite rules as state transitions does not directly reflect our interpretation of
the rules as implications in first-order logic. However, our use of Maude is sound
with regard to the first-order model theory.

4 MAUDE AS A WEB REASONING TOOL

We now describe how Maude can be used as a Web reasoning tool. First we de-
scribe how to translate (parts of) OWL ontologies and SWRL rules into Maude,
and how the system can be used in a way similar to other rule-based systems like
Prolog. Then we describe the novel features where our system goes beyond other
rule-based systems: user-defined or “built-in” operations, and domain-specific
simplification rules. Our examples come from the spectrum policy domain as
discussed above, but we believe that these features are generally useful for a
wide variety of problems. Finally, we discuss some implementation details.

4.1 Encoding OWL and SWRL in Maude

To use Maude as the reasoning engine for spectrum policies, we need to trans-
late our policies to Maude. The policies are written as SWRL rules, i.e., Horn
clauses, and refer to OWL ontologies. We can also translate a significant por-
tion of axioms from OWL ontologies into Horn logic [17]. Once we have all our
statements in Horn clause form, it is straightforward to encode them in a very
direct way in Maude, using the scheme described in Section 3.1. Some specifics
of the encoding follow.

First, we note that OWL does not have types or sorts in the sense of Maude
or other programming languages. However, Maude operators need to be declared
with sorted signatures. We therefore introduce one sort of OWL individuals, Ind,
and one sort of OWL data values, Data. These are the two semantic domains of
OWL models. We translate OWL individuals, classes, and properties as follows
(*** denotes a comment in Maude):
op Radio1 : -> Ind . *** an individual

op Radio : Ind -> Bool . *** a class

op detector : Ind Ind -> Bool . *** an object property

op frequency : Ind Data -> Bool . *** a datatype property

The signatures here are perhaps best understood as follows: An individual is an
operator with no argument that returns itself (a constant). A class is an operator
that takes an individual as an argument, and returns true or false, depending
on whether or not the individual is a member of the class. A property is an
operator that takes a subject and an object as arguments, and returns true or
false depending on whether or not that subject has that object as a property
value for the property in question.

We treat functional properties separately, translating them as
op role : Ind -> Ind *** a functional object property

op power : Ind -> Data *** a functional datatype property

where the operator works as a function—it takes the subject as an argument
and returns the object. This encoding makes reasoning more efficient in Maude,
since it is essentially a functional language.

Facts are translated into Maude rewrite rules as in the following examples:
rl Radio(Radio1) => true . *** class-instance fact

rl detector(Radio1,Detector1) => true . *** property-value fact

rl role(Radio1) => BaseStation . *** functional property-value fact

Finally, rules are translated exactly as shown in Section 3.1.

4.2 Operations
Recall from Section 1 that one of our motivations for using a reasoning technol-
ogy that supports functions and equations was that we needed to define certain
operations on temporal and geospatial entities. These operations should be de-
terministic, directional, and terminating, and should be evaluated rather than
“reasoned” about. In other words, they should be defined as functions. Whereas
we need to use rewrite rules (rl) for user-defined axioms in order to support
more general reasoning using narrowing, we use equations (eq) for these defined
operations.

Note that SWRL has a number of built-in operations of this functional fla-
vor, e.g., for math, time, comparisons, and strings.1 We propose that additional
operations should be treated in the same way as SWRL built-ins, i.e., used in
“built-in atoms” in SWRL rules.

These kinds of operations cannot be defined in OWL or SWRL. The Protégé
ontology development environment [18] supports adding implementations of new
built-ins in Java [19]. However, using a functional framework, as we propose,
provides many well-known advantages of declarative languages, such as clear
semantics, intuitive and transparent specifications, and better integration with
reasoning. In fact, one could give the SWRL builtins a formal semantics (which
they currently lack) by defining them using Maude equations.

Ideally, we would like to have an overall semantic framework that encom-
passes both OWL (and SWRL) and the equational specification of these “built-
ins.” This is an area of future research. It is also an open question whether
all the operations should be considered “built in” to the reasoner, or whether
users could also define their own operations. The latter option would provide

1 See http://www.w3.org/Submission/SWRL/

great flexibility, as it allows the same reasoner to be applied to new domains,
where any new operations required can be defined by users themselves, rather
than having to modify the reasoner with new “built-ins”. There are, however,
some practical details to resolve, e.g., regarding which syntax to use for these
user-defined operations.

Currently, our reasoner specification includes many of the SWRL built-ins,
and certain geospatial operations. Because of space restrictions, we cannot show
sample implementations of operations here, but our reasoner specification can
be downloaded at http://xg.csl.sri.com/. See, in particular, the TIME and
GEO modules.

4.3 Simplification Rules

The second motivation for using a reasoning technology that supports equations
is our need to write custom constraint simplification rules, as discussed in Sec-
tion 2.2. In fact, this is where Maude really differentiates itself from most other
systems, because it can do reduction, rewriting, and narrowing modulo associa-
tivity and commutativity (AC). Handling associativity and commutativity in a
built-in way is critical for encoding logical rewriting systems such as the one in
question here, because lacking this capability, we would be forced to add AC
axioms, which would make the system nonterminating, as discussed previously.

While Maude’s prelude already includes certain constraint simplification rules,
such as the trivial ones we showed in Section 3.1, we needed to go further and
implement our custom rules, for two reasons: 1) the combination of ordering
constraints (e.g., <, ≤) and boolean constraints (e.g., ∧, ∨) introduces many
opportunities for simplification, and 2) the desire to get answers in a certain
form.

The latter point could use some additional clarification. All the simplification
rules transform a constraint into another, equivalent, constraint. The purpose of
all rules is to move the constraint to a “simpler” form, until we have reached the
“simplest” possible form. However, it is not always obvious what the simplest
form is. In the radio policy domain, we have some guidance from the domain.
The policy engine should return a constraint that can be recognized by the radio
as a set of transmission opportunities, where each opportunity is straightforward
to interpret. We can achieve this by using disjunctive normal form (DNF) as the
target of our constraint reduction. A DNF formula is a disjunction of conjunc-
tions, i.e., it has the form

(A ∧B ∧ C) ∨ (D ∧ E) ∨ (F ∧G) ∨ ...

We can think of each of the conjuncts (A ∧ B ∧ C), (D ∧ E), or (F ∧ G) as an
opportunity, because it is enough for the radio to satisfy one of the disjunctions
in order to satisfy the entire constraint. For example, if the radio provides the
facts D and E, then the formula above reduces to

(A ∧B ∧ C) ∨ True ∨ (F ∧G) ∨ ... → True

using the rule

True ∨ P → True

Furthermore, for the chosen opportunity, all the constraints have to be satisfied.
Simplifying to DNF, however, is not enough. For example, the following con-

straint is in DNF

(freq < 500 ∧ power < 10) ∨ (freq > 400)

but it can be simplified further to

power < 10 ∨ freq > 400

This constraint is still in DNF and equivalent to, but simpler in some sense than,
the first form. Our simplification rules take care of such cases.

4.4 Implementation
Above, we have discussed the principles of our engine. Here, we describe the
main components of our implementation. The engine needed to be implemented
in C/C++ in order to run on resource-constrained radios. Maude is imple-
mented in C++ and highly optimized, so this posed no particular problem.
The policies are written in OWL, SWRL, and SWRL FOL, using the XML
presentation syntax. There was no existing C/C++ parser for OWL, and no
software support for SWRL FOL. Thus, we implemented our own parser/writer
for OWL+SWRL+SWRL FOL using the XML presentation syntax.

The Maude reasoner back end consists of several distinct parts, as shown in
Figure 2:
– A translator from the parser’s representation of OWL/SWRL to Maude,

using the encoding in Section 4.1.
– The Maude reasoner specification, containing Maude equations representing

the simplification rules and built-in operations.
– The Maude engine itself. Normally, Maude runs as an interactive console-

based tool, but we used an experimental programming API to Maude.
– A translator from Maude results back to OWL/SWRL.

On a more detailed level, the Maude specification consists of a number of
Maude modules: TRM, TIME, GEO, POLICY, SIMP, DNF, CNF, and REASONER. The
TRM module contains basic definitions of the boolean algebra, arithmetic, and
ordering constraints. The TIME and GEO modules contain built-in functions for
temporal and geospatial reasoning. The POLICY module contains the translation
of all the policies and facts that are currently loaded. When the reasoner first
starts, the POLICY module is empty. Whenever new policies or facts are loaded,
this module is updated. SIMP, DNF, and CNF contain different parts of the proof
system. SIMP does a number of simplifications such as eliminating negation (as
far as possible) and implication. CNF converts to conjunctive normal form, and
does some simplifications that can be done only in this form. DNF converts to
disjunctive normal form, and does some simplifications that can be done only in

 Maude engine

Rewriting Logic
Search, narrowing

Equational Logic
Reduction

Policies, facts
(POLICY)

Reasoner Specification
(TRM, DNF, CNF, SIMP, REASONER)

Operations
(TIME, GEO, ...)

Translator

OWL/SWRL policies,
facts

Fig. 2. Components of the Maude-based reasoner.

this form. If these three modules were combined into one, the reasoning would
never terminate. For example, it could transform between CNF and DNF back
and forth indefinitely. The REASONER module controls the ordered execution of
the reasoning modules by using the Maude meta level. First, narrowing is done
in the POLICY module, then reduction in SIMP, CNF, and DNF, in that order.
The narrowing step looks for all answers. To exploit simplification opportunities
between different answers, the answers are or’d together before simplification,
again using meta level Maude code.

5 CONCLUSIONS
Dynamic spectrum access offers an interesting application area for Semantic
Web technologies. OWL allows us to define concepts related to the radio do-
main, and spectrum access can be controlled by policies written as SWRL rules.
In addition to rules and ontologies, we needed to define operations (e.g., tempo-
ral and geospatial) using equational specifications. Furthermore, we wanted the
reasoner to perform sophisticated constraint simplification. Any unresolved con-
straints can be used by a cognitive radio to plan and reason about its spectrum
usage.

No existing reasoner supported all these features, but we found that Rewrit-
ing Logic provided a promising reasoning mechanism. We built our reasoner on
top of Maude, an Equational Logic and Rewriting Logic system developed at
SRI. Maude was extended with narrowing, which allows it to achieve behav-
ior similar to that of a logic programming system, i.e., goal-oriented reasoning
with rules. At the same time, the equational part of Maude is ideal for defining

a constraint simplification system, as well as for defining operations. Thus, we
were able to include all our desired features in one system. The resulting system
subsumes both equational logic and logic programming. It can also easily be ex-
tended or modified in two ways. First, because the constraint simplification part
is specified in the Maude language, as opposed to hard coded into the reasoning
engine, it can be modified to better suit different needs. Second, new operations
can be added as additional equational specifications.

The policy domain motivated our work, but the reasoner is not limited to this
domain, since it operates on any OWL ontologies and SWRL rules. In partic-
ular, our system will be useful for problems that need sophisticated constraint
processing in addition to rule-based reasoning, or where new operations need
to be added. The implementation is also efficient enough to run on resource-
constrained embedded systems such as software-defined radios.

ACKNOWLEDGMENTS
We thank Steven Eker (SRI) for maintaining the Maude system and respond-
ing to our feature requests, including the entire narrowing functionality. This
research was supported by DARPA’s neXt Generation (XG) Communications
Program under Contract Number FA8750-05-C-0230.

REFERENCES
1. Wilkins, D.E., Denker, G., Stehr, M.O., Elenius, D., Senanayake, R., Talcott, C.:

Policy-based cognitive radios. IEEE Wireless Communications 14 (2007) 41–46
2. Hanus, M.: The integration of functions into logic programming: From theory to

practice. J. Log. Program. 19/20 (1994) 583–628
3. Hanus, M.: Multi-paradigm declarative languages. In Dahl, V., Niemelä, I., eds.:

ICLP. Volume 4670 of Lecture Notes in Computer Science., Springer (2007) 45–75
4. Ait-Kaci, H., Lincoln, P., Nasr, R.: Le fun: Logic, equations, and functions. In:

IEEE Symposium on Logic Programming. (1987)
5. Casas, A., Cabeza, D., Hermenegildo, M.V.: A syntactic approach to combining

functional notation, lazy evaluation, and higher-order in LP systems. In Hagiya,
M., Wadler, P., eds.: FLOPS. Volume 3945 of Lecture Notes in Computer Science.,
Springer (2006) 146–162

6. Naish, L.: Adding equations to NU-Prolog. In: Proc. Third International Sympo-
sium on Programming Language Implementation and Logic Programming, Passau,
Germany, Springer-Verlag Lecture notes in computer science number 528 (1991)
15–26

7. Hanus, M., Kuchen, H., Moreno-Navarro, J.: Curry: A truly functional logic lan-
guage. In: Proc. ILPS’95 Workshop on Visions for the Future of Logic Program-
ming. (1995)

8. Clavel, M., Durán, F., Eker, S., Lincoln, P., Mart́ı-Oliet, N., Meseguer, J., Talcott,
C.L., eds.: All about Maude - A High-Performance Logical Framework, How to
Specify, Program and Verify Systems in Rewriting Logic. Volume 4350 of Lecture
Notes in Computer Science. Springer (2007)

9. Jaffar, J., Maher, M.J.: Constraint logic programming: A survey. Journal of Logic
Programming 19/20 (1994) 503–581

10. Stuckey, P.J.: Negation and constraint logic programming. Information and Com-
putation 118 (1995) 12–33

11. Backer, B.D., Beringer, H.: A CLP language handling disjunctions of linear con-
straints. In: ICLP. (1993) 550–563

12. Baader, F., Nipkow, T.: Term rewriting and all that. Cambridge University Press,
New York, NY, USA (1998)

13. O’Donnell, M.J.: Equational logic as a programming language. Massachusetts
Institute of Technology, Cambridge, MA, USA (1985)

14. Meseguer, J.: Conditional rewriting logic as a unified model of concurrency. The-
oretical Computer Science 96 (1992) 73–155

15. Clavel, M., Meseguer, J.: Reflection and strategies in rewriting logic. In: Rewrit-
ing Logic Workshop 96. Number 4 in Electronic Notes in Theoretical Computer
Science, Elsevier (1996)
http://www.elsevier.nl/locate/entcs/volume4.html.

16. Wirsing, M.: Algebraic specification. In van Leeuwen, J., ed.: Handbook of Theo-
retical Computer Science. Volume B. North-Holland (1990) 675–788

17. Grosof, B.N., Horrocks, I., Volz, R., Decker, S.: Description logic programs: Com-
bining logic programs with description logic. In: Proc. Twelfth International World
Wide Web Conference (WWW 2003), ACM (2003) 48–57

18. Knublauch, H., Fergerson, R., Noy, N., Musen, M.: The Protégé OWL plugin: An
open developoment environment for Semantic Web applications. In McIlraith, S.,
Plexousakis, D., van Harmelen, F., eds.: Proc. 3rd Intern. Semantic Web Confer-
ence (ISWC 2004), Hiroshima, Japan, November 2004, Springer (2004) 229–243
LNCS 3298.

19. O’Connor, M., Das, A.: A mechanism to define and execute SWRL built-ins in
Protégé-OWL (2006)

