A Semantics for Advice and Dynamic Join Points in
Aspect-Oriented Programming

Mitchell Wand+ Gregor Kiczales and Christopher Dutchyn
College of Computer Science Department of Computer Science
Northeastern University University of British Columbia
360 Huntington Avenue, 161CN 201-2366 Main Mall
Boston, MA 02115, USA Vancouver, BC V6T 1Z4, Canada
wand@ccs.neu.edu {gregor . cdutchyn}@cs .ubc.ca
ABSTRACT (and (pcalls f) (pwithin g) (cflow (pcalls h)))

A characteristic of aspect-oriented programming, as embodied in

Aspect, is the use atdviceto incrementally modify the behav- This indicates that the piece of advice to which this pcd is attached
ior of a program. An advice declaration specifies an action to be js to be executed at every call to procedarom within the text

taken whenever some condition arises during the execution of the of procedureg, but only when that call occurs dynamically within
program. The condition is specified by a formula callgebantcut a call to procedura.

designatoror pcd The events during execution at which advice

may be triggered are callgdin points In this model of aspect- This paper presents a model of dynamic join points, pointcut desig-
oriented programming, join points are dynamic in that they refer to nators, and advice. It introduces a tractable minilanguage embody-
events during the execution of the program. ing these features and gives it a denotational semantics.

We give a denotational semantics for a minilanguage that embodiesThis is the first semantics for aspect-oriented programming that
the key features of dynamic join points, pointcut designators, and handles dynamic join points and recursive procedures. It is in-

advice. This is the first semantics for aspect-oriented programming tended as a baseline against which future correctness results may
that handles dynamic join points and recursive procedures. It iS he measured.

intended as a baseline semantics against which future correctness

results may be measured. This work is part of the Aspect Sandbox (ASB) project. The goal is
of ASB to produce an experimental workbench for aspect-oriented
1. INTRODUCTION programming of various flavors. ASB includes a small base lan-

guage and is intended to include a set of exemplars of different
approaches to AOP. The work reported here is a model of one of
g h . e X those exemplars, namely dynamic join points and advice with dy-
havior of a program. An advice declaration specifies an action to be namic weaving. We hope to extend this work to other AOP models,

taken whenever some cond.ition ari.ses during thg execution of theincluding static join points, Demeter [14], and Hyper/J [16], and to
program. The e_vents at which ad"'c‘? may be trlggere_d are called both interpreter-like and compiler-like implementation models.
join points In this model of aspect-oriented programming (AOP),

join points aredynamicin that they refer to events during execu-
tion. The process of executing the relevant advice at each join point
is calledweaving

A characteristic of aspect-oriented programming, as embodied in
AspectJ [11], is the use @fdviceto incrementally modify the be-

For more motivation for AOP, see [12] or the articles in [4]. For
more on AspectJ, see [11].

The condition is specified by a formula calleg@intcut designator 2. AMODEL
orpcd A typical pcd might look like We begin by presenting a conceptual model of aspect-oriented pro-

*Work supported by the National Science Foundation under grant 9@MmMing with dynamic join points as found in AspectJ.

number CCR-9804115. An earlier version of this paper was pre-

sented at the 9th International Workshop on Foundations of Object- In this model, a program consists of a base program and some

Oriented Languages, January 19, 2002. pieces ofadvice The program is executed by an interpreter. When
the interpreter reaches certain points, cajl@d points in its ex-
ecution, it invokes aveaver passing to it an abstraction of its in-
ternal state (theurrent join poin). Each advice contains a predi-
cate, called gointcut designatofpcd), describing the join points
in which it is interested, and a body representing the action to take
at those points. It is the job of the weaver to demultiplex the join
points from the interpreter, invoking each piece of advice that is
interested in the current join point and executing its body with the
same interpreter.

leavens
1

So far, this sounds like an instance of the Observer pattern [8]. But
there are several differences: :

(run
> ((procedure void main ()
1. First, when a piece of advice is run, its body may be evalu- (write (fact 3)))
ated before, after or instead of the expression that triggered ~ (Procedure int fact ((int n))
it; this specification is part of the advice. In the last case, (li*(; I(lfiitl(_ 2 DM
called anaroundadvice, the advice body may call the prim- (around
itive proceed to invoke the running of any other applicable (and
pieces of advice and the base expression. (pcalls int fact (int))
(args (int x)))
2. Second, the language of predicates is a temporal logic, with (let (((int y) 0))
temporal operators such aslow illustrated above. Hence (write ’beforel:)
the current join point may in general be an abstraction of the (vrite x) (newline)

(set! y (proceed x))
(write ’afterl:)
(write x) (write y) (newline)

control stack.

3. Each advice body is also interpreted by the same interpreter,

S0 its execution may give rise to additional events and advice (aroﬁr)xi
executions. (and
. i . . (pcalls int fact (int))
4. Last, in the language of this paper, as in the current imple- (args (int x)))
mentation of AspectJ, the set of advice in each program is (let (((int y) 0))
a global constant. This is in contrast with the Observer pat- (write ’before2:) (write x)
tern, in which listeners register and de-register themselves E;‘Z:}me)(roceed 1))
H : X
dynamically. (writey’agteIQ:)
(write x) (write y) (newline)
This is of course a conceptual model and is intended only to moti-) prints:
vate the semantics, not the implementation. However, this analysis
highlights the major design decisions in any such language: beforel: 3
before2: 3
beforel: 2
1. The join-point model: when does the interpreter call the weaver, E::Zi:f f
and what data does it expose? before2: 1
. . beforel: 0
2. The pcd language: what is the language of predicates over before2: 0
join points? How is data from the join point communicated after2: 0 1
to the advice? afterl: 0 1
after2: 1 1
3. The advice model: how does advice modify the execution of afterl: 1 1
the program? after2: 2 2
afterl: 2 2
after2: 3 6
In this paper, we explore one set of answers to these questions. therl: 36
Section 3 gives brief description of the language and some exam-
ples. Section 4 presents the semantics. In section 5 we describe Figure 1: Example of around advice
some related work, and in section 6 we discuss our current research
directions. '
3. EXAMPLES

Our base language consists of a set of mutually-recursive first-orderin turn callsfact. The first advice body is triggered. Its body

procedures with a call-by-value interpretation. The language is Prints thebeforel message and then evaluates heceed ex-

first-order: procedures are not expressed values. The language inPression, which proceeds with the rest of the execution. The execu-

cludes assignment in the usual call-by-value fashion: new storagetion continues by invoking the second advice, which behaves simi-

is allocated for every binding of a formal parameter, and identifiers larly, printing thebefore2 message; its evaluation of theoceed

in expressions are automatica”y dereferenced. expression executes the actual procedwet, which callsfact
recursively, which invokes the advice again. Eventuahbyt re-

Figure 1 shows a simple program in this language, using the syntaxturns 1, which is returned as the value of heceed expression.

of ASB. We have two pieces afround advice that are triggered ~ As eachproceed expression returns, the remainder of each advice

by a call tofact.l At each advice executios, will be bound to body is evaluated, printing the variosster messages.

the argument ofact. The program begins by callingain, which

1 -) . Eacharound advice has complete control of the computation; fur-
As shown in these examples, the executable version of ASB in- ther computation, including any other applicable advice, is under-

cludes types for arguments and results. The portion of ASB cap- : - .
tured by our semantics is untyped. taken only if the advice body callsroceed. For example, if the

leavens
2

(run

(

(procedure void main ()
(write (+ (fact 6) (foo 4))))
(procedure int fact ((int n))
(if (=no0) 1
(* n (fact (- n 1)))))
(procedure int foo ((int n))
(fact n))
(before (and
(pcalls int fact (int))
(args (int y))

the AspectJ dynamic join point style of AOP. The relation between
AJD and BASE is intended to model the relationship between As-
pectJ and Java. We implemented the base language and AJD using
an interpreter in Scheme in the style of [7].

For the semantics, we have simplified BASE and AJD still further
by removing types, classes, and objects from the language and by
slightly simplifying the join point model; the details are listed in
the appendix. While much has been left out, the language of the
semantics still models essential characteristics of AspectJ, includ-
ing dynamic join points; pointcut designators; awdtore, after,
andaround advice.

(cflow
(and
(pcalls int foo (int))

4., SEMANTICS
(args (int x)))))

(write x) (write y) (newline)))) We use a monadic semantics, using partial-function semantics when-
prints: ever possible. In general, we use lower-case Roman letters to range
over sets, and Greek letters to range over elements of partial orders.

44
43 .
49 Typical sets:
41
40
744 Sets
[
Figure 2: Binding variables with cflow v ¢ Vval Expressed Values
| | I € Loc Locations
s € Sto Stores
id e Id Identifiers (program variables)
pnamewname € Pname procedure names

proceed in the first advice were omitted, the output would be just

beforel: 3
afterl: 3 0
0

4.1 Join Points

We begin with the definition of join points. We use the tgoim
pointto refer both to the events during the execution of the program
The value ofx must be passed to theroceed. If the call to at which advice may run and to the portion of the program state that
proceed in the second advice were changed(firoceed (- x may be visible to the advice. The portion of the program state made
1)), thenfact would be called with “wrong” recursive argument. Visible to the advice consists of the following data:
This design choice is intentional: changing the argumeptt@eed
is a standard idiom in AspectJ.

Join points
Our language also includesfore andafter advice, which are '
evaluated on entry to and on exit from the join point that trig- jp € JP Join Points
gers them; these forms of advice do not require an explicit call jp = ()| (k, pnamewnamev’, jp)
to proceed and are always executed for effect, not value. k = pcall | pexecution | aexecution

Join Point Kinds
The language of pointcut designators includes temporal operators,
as well. Figure 2 shows an advice that is triggered by a calhot
that occurs within the dynamic scope of a calfte. This program
prints 720+24 = 744, but only the last four callsftact (the ones
during the call offoo) cause the advice to execute. The pointcut
argument taf1low bindsx to the argument afoo. Our language of
pcd’s includes several temporal operators. For examfilpwtop
finds the oldest contained join point that satisfies its argument. Our
semantics includes a formal model that explains this behavior.

A join point is an abstraction of the control stack. It is either empty
or consists of a kind, some data, and a previous join point. The join
point (pcall, f, g, Vv*, jp) represents a call to procedufefrom
procedureg, with arguments/*, and with previous join poinjp.
pexecution andaexecution join points represent execution of a
procedure or advice body; in these join points the three data fields

contain empty values.
The examples shown here are from the Aspect Sandbox (ASB).

ASB consists of a base language, called BASE, and a separate lan- . .
guage of advice and weaving, called AJD. The language BASE is 4.2 Pointcut DeS|gnators
a simple language of procedures, classes, and objects. Our intenA pointcut designator is a formula that specifies the set of join

tion is that the same base language be used with different weaverspoints to which a piece of advice is applicable. When applied to a
representing different models of AOP; AJD is intended to capture

leavens
3

join point, a pointcut designator either succeeds with a set of bind-

ings, or fails.)]
match-pcd basic operations
[

The grammar of pcd’s is given by:
match-pcdpcalls pnamé (k, pnamé, wnamev*, jp)
NEl if k=pcall A pname= pnamé
Fail otherwise

Pointcut designators
[

pcd::= (pcalls pnam@ | (pwithin pname match-pcdpwithin wname (k, pnamewname, v*, jp)
o= (args idy ... idp) _{ i if K=pcall A wname=wnamé
= (and pcd pcd | (or ped pcd | (not ped) Fail otherwise

= (cflow pcd)

ii= (cflowbelow pcd) | (cflowtop pcd) match-pediargs idy ... idn) (k, pnamewname
L (V17~~~7Vm)7lp>
[[i[d1=vy,...,idh=vp] if k=pcallandn=m
~ 1 Falil otherwise

The semantics of pcd’s is given by a functioratch-pcathat takes ' J

a pcd and a join point and produces either a set of bindings (a finite

partial map from identifiers to expressed values), or the singleton

Fail. The second grougiand pcd pcd, (or pcd pcd, and(not pcd),
perform boolean combinations on the results of their arguments,

Before definingnatch-pcgwe must define the operations on bind- using the functions, v, and— defined above.

ings and pcd results. We wrifefor the empty set of bindings and

+ for concatenation of bindings. The behavior of repeated bindings

under+ is unspecified. The operations A, and— on the result of match-pcd boolean operators

match-pcdare defined by '

match-pcdand pcd; pcd,) jp = match-pcd pedjp
Amatch-pcd pcgljp

Algebra of pcd results match-pcdlor pcd; pcdy) jp = match-pcd pedjp
' Vv match-pcd pcgjp
b € Bnd=[ld— Val Bindings match-pcdnot pcd) jp = —(match-pcd ped jp
r € Optional (Bnd)= Bnd+{Fail} | J

bvr=b FailAr=Fail —Fail =]

Failvr=r bA Fa'l = Fail , ~b = Fail Last, we have the temporal operatét€low pcd), (cflowbelow pcd),
bAb =b+b and(cflowtop pcd). The pcd(cflow pcd) finds the latest (most

l J recent) join point that satisfigscd (cflowbelow pcd) is just
like (cflow pcd), butit skips the current join point, beginning its
search at the first preceding join poiri¢flowtop pcd) is like

Note that bothn andV are short-cutting, so that prefers its first (cflow pcd), but it finds the earliest matching join point. These

argument. searches can be thought of local loops within the overall structural
induction.

We can now give the definition ahatch-pcd match-pcdproceeds

by structural induction on its first argument. The pcd’s fall into

three groups. The first group does pattern matching on the top por-lma'fCh'pCd temporal operators
tion of the join point: (pcalls pname and (pwithin pname

check the target and within fields of the join poitiargs idy ... idp) match-pcdcflow ped) () = Fail _
succeeds if the argument list in the join point contains exactly match-pcdicflow ped) (K, pnamewname v, ip)
ements, and bindily, ..., id to those values. In full AJD, the = match-pcd pedk, pnamewnamev*, jp)
args ped includes dynamic type checks as well. Vv match-pcd(cflow pcd) jp

match-pcd cflowbelow pcd) () = Fail
match-pcd cflowbelow pcd) (k, pnamewnamev*, jp)
= match-pcdcflow pcd) jp

match-pcdcflowtop pcd) () = Fail
match-pcdcflowtop pcd) (k, pnamewnamev, jp)
= match-pcdcflowtop pcd jp
Vv match-pcd pcdk, pnamewname v, jp)

leavens
4

4.3 The Execution Monad

To package the execution, we introduce a monad:

T(A) = JP— Sto— (Ax Sto) |

This is a monad with three effects: a dynamically-scoped quantity

A procedure takes a sequence of arguments and produces a compu-
tation. An advice takes a join point and a procedure, and produces
a new procedure that is either the original procedure wrapped in
the advice (if the advice is applicable at this join point) or else is
the original procedure unchanged (if the advice is inapplicable).
Procedures and advice do not require any environment arguments
because they are always defined globally and are closed (mutually
recursively) in the global procedure- and advice- environments.

of type JP, a store of type5ta and non-termination. ltsaysthata rpe gistinguishedNamecomponent of the environment will be

computation runs given a join point and a store, and either produces

used for tracking the name of the procedure (if any) in which the

avalue and a store, or else fails to terminate. The monad operationsCurrent program text resides. Similarly, the distinguisReaceed

ensure thafP has dynamic scope and tigitbis global:

Monad operations
[

return v=A jp s.lift(v,s)
letv<=E;in E
=Ajps.case(E1jps) of
1l=1
lift (v,s') = ((AV.E2) vjp 9)

component will be used for thproceed operation, if it is de-
fined. We writep(%within), p[/within=...], p(%proceed), and
p[%proceed = ...] to manipulate these components.

4.4 Expressions

We can now give the semantics of expressions. We give here only
a fragment:

We write

letvi < W;...;Va<=Mnin E

for the evident nestelet.

We will have the usual monadic operations on the store; for join
points we will have a single monadic operatatjp. setjp takes

a functionf from join points to join points and a mapfrom join
points to computations. It returns a computation that apglies

the current join point, passes the new join poingt@nd runs the
resulting computation in the new join point and current store:

setjp
[

setjp: (JP—> JP) — (JP—> T(A)) — T(A)
=Afg.Ajps.(g(fjp)) (fjp) s

Thelift operation induces an order @i{A) for anyA. We will use
the following domains based on this order:

IDomains
X € T(Val) Computations
m € Proc=Val* — T(Val) Procedures
a € Adv=JP— Proc— Proc Advice
¢ € PE=Pname— Proc Procedure Environments
y € AE=Adv Advice Environments
p € Env=(ld — Lod x WNamex Proceed

Environments
WName= Optional(Pname) Within Info
Proceed= Optional(Proc) proceed Info

Semantics of expressions
[
E[€] € Env— PE— AE— T(Val)

Z[(pname ¢ ... en)]pey
= letvy < Z[ellpgy; ..
in (enter-join-pointy
(new-pcall-jp pnamép %within) (V1,...,Vn))
(¢(pname)
(V1,...,Vn))

.} Vn < E[en]lpgy

E[(proceed €1 ... en)]pwy
=letv; <= E[ellpgy; ... vn <= E[en] pgy
in p(%proceed) (V1,...,Vn)

In a procedure call, first the arguments are evaluated in the usual
call-by-value monadic way. Then, instead of directly calling the
procedure, we usenter-join-pointto create a new join point and
enter it, invoking the weaver to apply any relevant advice. Contrast
this with theproceed expression, which is like a procedure call,
except that the special procedderoceed is called, and no addi-
tional weaving takes place. The functioew-pcall-jp: Pname—
WName— Val* — JP — JP builds a new procedure-call join point
following the grammar in section 4.1.

45 The Weaver and Advice

enter-join-pointis the standard entry to a new join point. It takes
a list of advicey, a join-point builderf, a procedurat, and a list
of arguments/*. It produces a computation that builds a new join
point using functiorf, calls the weaver to wrap all the adviceyin
around procedurs, and then applies the resulting procedurg‘to

leavens
5

enter-join-point Semantics of advice
[[

enter-join-point AE — (JP — JP) — Proc — Proc A[(around pcd ©]¢y: JP— Proc— Proc
=Ayf AV setipf (Ajp’. weavey jp’ T V) =Ajp TTv*.
. PCD[ped]jp

(Ap.enter-join-pointy
new-aexecution-jp
(Av*. £[€](p[hwithin = None
%iproceed = Tqy))
0

(mtv)

The weaver is the heart of the system. It takes a list of advice, a
join point, and a procedure. It returns a new procedure that con-
sists of the original procedure wrapped in all of the advice that is
applicable at the join point. To do this, the weaver attempts to ap-
ply each piece of advice in turn. If there is no advice left, then the
effective procedure is just the original procedureOtherwise, it
calls the first advice in the list, asking it to wrap its advice (if ap-
plicable) around the procedure that results from weaving the rest of
the advice around the original procedure.

A[[((before pcd) e)]gy: JP— Proc— Proc
=AjpTv*.
PCD[ped]jp
(Ap.enter-join-pointy
new-aexecution-jp

(AV*. let
S0 we want vi < E[€e](p[4within = None
(weave(dy,...,0n) jp T) = (aq jp (az jp ... (an jp 1)...)) %proceed = Nong)gy;
Vo <= (TtVY)
This becomes a straightforward bit of functional programming: 0) in vz)
(V)
IThe weaver A4[((after pcd) e)]gy: IP— Proc— Proc
=AjpTIVF.
weave AE — JP — Proc— Proc ;
=AY jp m.casey of #CDlped)ip
=AY]p T.casey (Ap.enter-join-pointy
f=m , new-aexecution-jp
a:y = ajp(weavey jp m) (V. let
| vy < (TTV);
vo < E[€](p[%4within = None
%proceed = Nond)gy
This brings us to the semantics of advice. A piece of advice, like an in vp)
expression, should take a procedure environment and an advice en- ()
vironment, and its meaning should be a procedure transformer. Our (V)

fundamental model isround advice. If the advice does not apply |
in the current join point, then the procedure should be unchanged.
If the advice does apply, then the advice body should be executed
with the bindings derived from the pcd, and witproceed set to

he original d hich be either th . d The function?CD[—] takes four arguments: a pcd, a join point,
the original procedure (which may be either the starting proce U'€ 4 functionk from environments to computations (the “success con-

or a procedure containing the rest of the woven advice). However, tinuation”), and a computatiog (the “failure computation”), and
there are two subtleties: first, the body of the advice is to be exe- ;; produce‘s a computation. It calisatch-pcdto match the pcd

tCUtsd.lldntﬁ nev\ae;.ce‘cutif)r;jouzjr.)0|nt|; S(t)hwe usenter_—llﬁ!n-_pomtt against the join point. Ifnatch-pcdsucceeds with a set of bind-
t'o " urd t ?. n_:ew join point an n;vode_ € V‘(’faveh' . |ISdIS poten- ings, PCD creates an environment containing a fresh location for
|ally an Innnite regress, So most advice pcds will Include an ex- o, binding, and invokes the success continuation on this envi-

tpk:'C'F pcat*ls. conjtunct (tjo ?r\]'o'dgh.'s prbotzllem. Sec?hd’ |n.tth|s. Cas€, ronment, producing a new computation. Otherwise, it returns the
e innerv* is not used; the advice body can refrieve it using an ¢ ire computation.

args pcd.

before andafter advice are similarjproceed is not bound, and
we use the monad operations to perform the sequencing.

leavens
6

discussed on page .

ISemantlcs of pcd’s This completes the semantics of the core language.
PCD[pcd] : IP— (Env— T(Val)) — T(Val) — T(Val)
= A jp kx.casgmatch-pcd pcd jpof 5. RELATED WORK
Fail = x Aspect-oriented programming is presented in [12], which shows
[X1 =V1,....% = Vn] = how several elements of prior work, including reflection [17], metaob-
letI1 < alloc(vy);...;1n < alloc(vn) ject protocols [10], subject-oriented programming [9], adaptive pro-
ink([xy=1I4,...,xn=1n]) gramming [14], and composition filters [1] all enable better control

| over modularization of crosscutting concerns. A variety of models
of AOP are presented in [4]. AspectJ [11] is an effort to develop a
Java-based language explicitly driven by the principles of AOP.

4.6 Procedures and Programs Flavors [19, 5], New Flavors [15], CommonLoops [3] and CLOS

Finally, we give the semantics of procedures and whole programs. [18] all supportbefore, after, andaround methods.

The meaning of a procedure in a procedure and advice environ-)

ment is a small procedure environment. In this environment, the Andrews [2] presents a semantics for AOP programs based on a
name of the procedure is bound to a procedure that accepts somé&SP formalism, using CSP synchronization sets as join points. His
arguments and enterspaxecution join point, possibly weaving Ianguage_ls an imperative language with flrst-order procz_edures, like
some advice. When the advice is accounted for, the arguments are?urs, butit does not allow procedures to be recursive. His language
stored in new locations, and the procedure body is executed in anincludesbefore, after, andaround advice, but his pcd's contain
environment in which the formal parameters are bound to the new Neither boolean nor temporal operators.

locations. . . .) .
Lammel [13] presents static and dynamic operational semantics for

a small OO language with a method-call interception facility some-
Semantics of procedure declarations what different from ours. His system allows dynamic registration
' ! of advice, but does not treatound advice.

P[(procedure pname (X; ... Xn) €)]:PE— AE— PE
= A@y.[pname= Douence, Motelet, and Sudholt [6] present an event-based theory of
AV* . (enter-join-pointy AOP. They present a domain-specific language for defining “cross-
(new-pexecution-jp pname cuts” (equivalent to our pointcuts). Their language is very pow-

(Aw. letly < alloc(w|1) ; erful, but its semantics is given by a rewriting semantics, which
. makes the meaning of its programs obscure. We believe that our

: definition ofmatch-pcdrepresents a significant improvement.
In < alloc(w/n)

n(£[elxa =11, ..., X =In, 6. FUTURE WORK
%within = pname ’
%proceed = Nond @y)) We are currently developing a translator from AJD(BASE) to BASE
V9] that removes all advice by internalizing the weaving process. We

hope to do this in a way that will facilitate a correctness proof.

We plan to extend the ASB suite by adding implementations of the
core concepts of other models of AOP and weaving, including static
join points, Demeter [14], and Hyper/J [16]. We hope to develop a
theory of AOP that accounts for all of these.

We have formulated the semantics of procedures and advice as be
ing closed in a given procedure environment and advice environ-
ment. A program is a mutually recursive set of procedures and
advice, so its semantics is given by the fixed point over these func-
tions. We take the fixed point and then apply the procedute 7. REFERENCES

to no arguments.
[1] M. Aksit, K. Wakita, J. Bosch, L. Bergmans, and

A. Yonezawa. Abstracting Object Interactions Using

Semantics of programs Composition Filters. In R. Guerraoui, O. Nierstrasz, and
f M. Riveill, editors,Proceedings of the ECOOP’93 Workshop
PGM[(proc; ... proc, adw ... advn)] : T(Val) on Object-Based Dis_tributed Programming\NCS 791,
= run(fix(A(9,y)- (31 (2[proc] gy), (afady ey,) pages 152-184. Springer-Verlag, 1994.
) [2] J. H. Andrews. Process-algebraic foundations of
run(@,y) = £[(main)]| [Jgy aspect-oriented programming. Rroceedings of the Third

! International Conference on Metalevel Architectures and
Separation of Crosscutting Concerns (Reflection 2001)
volume 2192 oL ecture Notes in Computer Sciengages

Here the notatior(...); denotes a sequence of length and 187-209, Berlin, Heidelberg, and New York, Sept. 2001.

the notationy[! , denotes the concatenation operator on bindings, Springer-Verlag.

leavens
7

(3]

(4]

(5]

(6]

(7]

(8]

El

(10]

(1]

(12]

(13]

(14]

(15]

(16]

D. G. Bobrow, K. Kahn, G. Kiczales, L. Masinter, M. Stefik,
and F. Zdybel. CommonLoops: merging Common Lisp and
object-oriented programming. Proceedings ACM
Conference on Object-Oriented Programming Systems,
Languages, and Applicationpages 17-29, Oct. 1986.

Communications of the ACMolume 44:10. ACM, Oct.
2001. special issue on Aspect-Oriented Programming.

H. I. Cannon Flavors: A non-hierarchical approach to
object-oriented programmingymbolics, Inc., 1982.

R. Douence, O. Motelet, and M. Sudholt. A formal definition
of crosscuts. IiProceedings of the Third International
Conference on Metalevel Architectures and Separation of
Crosscutting Concerns (Reflection 200d9lume 2192 of
Lecture Notes in Computer Scienpages 170-186, Berlin,
Heidelberg, and New York, Sept. 2001. Springer-Verlag.

D. P. Friedman, M. Wand, and C. T. Hayn&ssentials of
Programming LanguageMIT Press, Cambridge, MA,
second edition, 2001.

E. Gamma, R. Helm, R. Johnson, and J. Vlissid&ssign
Patterns: Elements of Reusable Object-Oriented Software
Addison Wesley, Massachusetts, 1995.

W. Harrison and H. Ossher. Subject-oriented programming
(A critique of pure objects). In A. Paepcke, editor,
Proceedings ACM Conference on Object-Oriented
Programming Systems, Languages, and Applicatipages
411-428. ACM Press, Oct. 1993.

G. Kiczales and J. des Riviereghe art of the metaobject
protocol MIT Press, Cambridge, MA, USA, 1991.

G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersen, J. Palm, and
W. G. Griswold. An overview of AspectJ. IRroceedings
European Conference on Object-Oriented Programming
volume 2072 oL ecture Notes in Computer Scienpages
327-353, Berlin, Heidelberg, and New York, 2001.
Springer-Verlag.

G. Kiczales, J. Lamping, A. Menhdhekar, C. Maeda,

C. Lopes, J.-M. Loingtier, and J. Irwin. Aspect-oriented
programming. In M. Aksit and S. Matsuoka, editors,
Proceedings European Conference on Object-Oriented
Programming volume 1241, pages 220-242.
Springer-Verlag, Berlin, Heidelberg, and New York, 1997.

R. Lammel. A semantical approach to method-call
interception. In G. Kiczales, editatst International
Conference on Aspect-Oriented Software Developrignt
2002.

K. J. LieberherrAdaptive Object-Oriented Software: The
Demeter Method with Propagation Patterf®8N'S
Publishing Company, 1996.

D. A. Moon. Object-oriented programming with Flavors. In
N. Meyrowitz, editor,Proceedings ACM Conference on
Object-Oriented Programming Systems, Languages, and
Applications pages 1-8, New York, NY, Nov. 1986. ACM
Press.

H. Ossher and P. Tarr. Hyper/J: multi-dimensional separation
of concerns for Java. IRroceedings of the 22nd

International Conference on Software Engineering, June
4-11, 2000, Limerick, Irelancbages 734—737, 2000.

[17] B. C. Smith. Reflection and semantics in LispGonf. Rec.
11th ACM Symposium on Principles of Programming
Languagespages 23-35, 1984.

[18] G. L. SteeleCommon Lisp: the LanguagPigital Press,
Burlington MA, second edition, 1990.

[19] D. Weinreb and D. A. Moon. Flavors: Message passing in
the LISP machine. A. I. Memo 602, Massachusetts Institute
of Technology, A.l. Lab., Cambridge, Massachusetts, 1981.

APPENDIX A. LANGUAGE COMPARISON

Full AJD contains the following features not in the core language
captured by the semantics of this paper. None represent difficult
extensions for the semantics.

e classes, methods, and objects.

e declared types for bound variables (as illustrated in the exam-
ples of section 3).

e static type checking (asirgs pcd includes types for its argu-
ments, as in our examples; at present these must be checked
dynamically).

e additional join points at: method calls, method executions,
object constructions, field references and field assignments.

e The pcd operatorand and or take an arbitrary number of
arguments.

Aspect] provides a sophisticated advice ordering mechanism, where
advice is first ordered from most general to most specific, and within
classes with equal specificity, orders the advice by qualietdre,
after, or around). AJD is working toward this capability, but

the current stable implementation only provides the qualifier-based
ordering, wherearound advice is executed around any relevant
before andafter advice. In the semantics, advice is ordered by
its appearance in the program text.

The examples of section 3 were in written and executed in full AJD
except for the following:

o the output was edited to improve formatting

¢ in the implementation of ASB at the time this work was done,
eligible around advice was executed in reverse order from its
appearance in the program text. The example in figure 1 was
edited, reversing the order of advice declarations, to be con-
sistent with the left-to-right semantics of the core language.

leavens
8

