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Abs t rac t .  Standard ML has a module system that allows one to define para- 
metric modules, called functors. Functors are "first-order," meaning that func- 
tors themselves cannot be passed as parameters or returned as results of functor 
applications. This paper presents a semantics for a higher-order module system 
which generalizes the module system of Standard ML. The higher-order functors 
described here are implemented in the current version of Standard ML of New 
Jersey and have proved useful in programming practice. 

1 I n t r o d u c t i o n  

One of the notable characteristics of the Standard ML module system has been its sup- 
port of parameterization in the form of functors, which are mappings from ordinary 
modules, called structures, to ordinary modules. In the original Standard ML module 
system ([7, 10]), functors were first-order, because their parameters and results could 
only be structures, and functors could not be components of structures. But the type 
theoretic analysis of the module system carried out in [8, 11, 5] made it clear that  it 
was natural to extend the notion of functors to higher orders by allowing functors as 
parameters and results (or, equivalently, allowing structures to contain functor compo- 
nents). Doing so makes the language more symmetrical  and supports useful new modes 
of parameteriv.ation. 

A practical implementation of higher-order functors has recently been provided in the 
Standard ML of New Jersey compiler [3]. The first step toward defining a semantics of 
higher-order functors was taken in [14], where a semantics for functor signatures is de- 
scribed and a principal signature theorem is proved. Here we go most of the way toward 
completing the semantics of higher-order functors by defining how functors are repre- 
sented, how higher-order signature matching is performed, and how functor application 
works. 

The technical challenge in defining a semantics of higher-order functors arises from 
the way static identity information is propagated in Standard ML. Signature matching is 
"transparent" by default, meaning that  the identities of type and structure components 
are not hidden when a structure is matched against a signature. Also, identities are 
propagated through functor calls. This is a controversial feature of the design, but it is 
justified because (1) it allows a single semantics of signature matching to work both for 
parameter constraints and result constraints, and (2) it increases the expressiveness and 
flexibility of parameterization in useful ways. 

Alternative module system designs that  do not use transparent signature matching 
have been proposed. For instance, the Extended ML specification language [13], which is 
based on Standard ML, assumes that  signature matching is opaque, and recently Leroy [6] 
and Harper and Lillibridge [4] have described module systems that  use opaque signature 
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matching but allow one to override it in the case of types by using type definitions in 
signatures. However, in the higher-order system these proposals produce an asymmetry  
between first-order and higher-order functors: types in a functor result can depend on 
structure parameters,  but not on functor parameters (see the example below). 

We want to avoid this asymmetry  between structures and functors, so in our semantics 
functor parameters as well as structure parameters can carry type information that  is 
propagated to the result. 

As an illustration of how application of a first-order functor propagates static identi- 
ties, consider the following example: 

signature POINT = 

sig 

type point 
val leq: point*point->bool 

end; 

signature INTERVAL = 

sig 

type interval and point 

val mk: point*point -> interval 

val left: interval -> point 

val right: interval -> point 

end ; 

functor Interval(P: POINT) : INTERVAL = 

struct 

type interval = P.point * P.point 

type point = P.point 

fun mk(x,y) = if P.leq(x,y) then (x,y) else (y,x) 

fun left(x,_) = x 

fun right(_,y) = y 

end; 

structure IntPoint = 

struct 

type point = int; (.1.) 

fun leq(x:int,y) = x<=y 

end ; 

structure T = Interval(IntPoint); 

val test = T.right(T.mk(3,4))+5; 

This program is legal Standard ML. The declaration of test is type-correct because the 
application I n t e r . v a l ( I n t P o i n t )  propagates the information p o i n t  = i n t  (declared at 
llne ( ' 1 " ) )  through to T, so that  T . i n t e r v a l  is i n t * i n t  and T.mk and T . r i g h t  have 
types i n t * i n t - > i n t * i n t  and i n t * i n t - > i n t ,  respectively. (Notice that  if types were not  

propagated through the functor application, the declaration of t e s t  would be illegal.) 
Now let us add a higher-order functor: 

functor S(functor Interv(P: POINT) : INTERVAL) = 

struct 
structure NatNumInt = Interv(IntPoint) 

end 
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Since the actual  functor I n t e r v a l  matches the specification in the parameter  signature 
for G, it should be possible to apply G to I n t e r v a l :  

s t r u c t u r e  R e s u l t  = G ( f u n c t o r  I n t e r v  = I n t e r v a l )  
s t r u c t u r e  T' = Resu l t .Na tNumInt ;  
v a l  t e s t '  = T ' . r i g h t ( T ' . m k ( 3 , 4 ) ) + 5  

But will the expression T ' .  r i g h t  (T'  .ink (3 ,4 ) )+5  be type-correct? The point is that  the 
parameter signature of G did not specify sharing between the argument and the result 
signature of I n t  erv.  Thus when the declaration of G was elaborated, there was no assump- 
tion of sharing between the point type P . p o i n t  and the point type NatNumInt .po in t .  

The actual functor, I n t e r v a l ,  propagates more sharing than is specified for I n t e r v .  
Were we to elaborate the body of G again, this time using the actual I n t e r v a l  in place of 
I n t e r v ,  the declaration of t e s t '  would be legal; if we ignore the extra sharing, however, 
the declaration of test' becomes untypable. 

One could argue that  this problem is easily solved by making the specification of 
I n t e r v  more specific so that  it expresses the sharing required: 

f u n c t o r  G(X: 
s i g  

f u n c t o r  I n t e r v ( P :  POINT): 
s i g  

t y p e  i n t e r v a l  
val mk: P.point * P.point -> interval 

val left: interval -> P.point 

val right: interval -> P.point 

end 

end)= 
struct 

structure NatNumlnt = Interv(IntPoint) 

end 

But after this change we can only apply G to arguments that  satisfy this extra sharing, 
which was not needed inside the body of the functor G, so G is less general than it could 
be. 

More generally, consider the declaration of some functor, F .  Is it sufficient to specify 
the parameter  signature of F with sharing constraints that  are needed to elaborate the 
body of F ,  or is it  necessary to specify any sharing that  must be propagated at some 
application of F ?  From a programmer's  point of view, the former is clearly preferable 
and it is the policy followed in Standard ML. To preserve this desirable property of 
Standard ML in the presence of higher-order functors, our static semantics of modules 
must be able to propagate addit ional type information at functor application time, even 
when the addit ional information comes from functor components of the actual argu- 
ment. So to properly treat  a functor application embedded in a functor body, such as 
I n t e r v ( I n t P o i n t )  in the body of G, we must elaborate it in two phases: first formally, 
when G is defined, and then again when G is applied and additional sharing information 
about the actual  parameter  is available. 

In the remainder of this paper we first present the semantic objects (Section 2). 
Then we give a grammar  for a skeletal programming language and elaboration rules 
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in terms of the semantic objects (Section 3). The key ideas for achieving the desired 
propagation of type information are (1) using terms in a simple higher-order language to 
represent functors, and {2) using two environments to simulate the two phase elaboration 
of embedded functor applications. 

The skeletal language we present has neither types nor values, but we foresee no 
serious problems in extending the semantics to cope with these because the interaction 
between module systems and the core ML language is well understood. We also do not 
deal with elaboration of signature expressions in this paper; this was studied in detail in 
[14]. 

In addition to the work on Extended ML and the work of Leroy and Harper and 
Lillibridge already cited, the work of Aponte [1] should also be noted. It provides an- 
other approach to semantic representations for ML modules, based on Rfimy's work on 
polymorphic records [12]. So far, this approach deals with first-order functors only. 

2 S e m a n t i c  o b j e c t s  

Our semantic objects are defined informally using a mixture of simple mathematical  
constructions (e.g. sets of sequences of identifiers) and term structures (e.g. lambda 
abstractions) over these constructions. The representations are finite, and in principle 
they could all be defined uniformly by an abstract  syntax of terms. 

In the skeletal language, a structure S can have two kinds of named components: 
structures and functors. The substructures of S are S and the substructures of the struc- 
ture components of S. We say that  a functor is (embedded) in a structure S, if it is a 
component of S or of one of the substructures of S. Our representation of structures is 
based on separating the "shape" of a structure, which defines what is accessible, from the 
static information that  identifies the elements of the structure. The former is represented 
by a tree s (Section 2.1) of access paths for substructures and embedded functors, and 
the latter by a realization ~ (Section 2.3), which represents a mapping from these paths 
to identifying information. A structure is then defined to be a pair (s, ~). 

2.1 I d e n t i f i e r s ,  p a t h s ,  a n d  t r e e s  

We assume two disjoint sets of identifiers: 

funid E FunId (functor identifier) 
�9 strid E StrId (structure identifier) 

Substructures and embedded functors are accessed via paths of identifiers. Formally, a 
structure path, sp, is a finite string over the alphabet  StrId. We also use the notation 
stridl.....stridk, (k > 0) for structure paths. A s path, fp, is a finite string over the 
alphabet StrId U Funld of the form stridl.....stridk.funid, (k > 0), i.e., a structure path 
followed by a functor identifier. A path, p, is either a structure path  or a functor path. 
The empty path is denoted e. 

A tree, s, is a finite, prefix-closed set of paths. Let s be a tree and assume p E s. 
Then the subtree os at p, written s/p, is the tree {p' ] pp' E s}. When s is a tree, SP(s) 
denotes the set of structure paths in s and FP(s) denotes the set of functor paths in s. 
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2.2 S t a m p s  

Stamps are used to statically identify structures, and are the basis for determining shar- 
ing: two structures share if and only if they are labeled by the same stamp. Only struc- 
tures have stamps - -  functors do not have a static identity, though they do have stat ic 
descriptions. 

We assume a denumerably infinite set Stamp of stamps. We use rn to range over 
stamps. A s tamp set is a finite set of stamps. We use M and N to range over s tamp sets. 

2.3 Rea l i~ .a t lons  

Intuitively, the realization part of a structure is a mapping over the structure 's  path  tree 
that  takes structure paths to stamps and functor paths to static functor representations. 
However, it turns out to be useful to talk about realization expressions, rather than the 
maps they denote; realization expressions are defined in Figure 1. Signatures (/7) will be 
defined in Section 2.4. 

Realization environments and views are concrete representations of finite maps.  The 
domain of a realization environment/3, written Dom(/3), is defined by: Dom({}) = 0 and 
Dom(/3', p=~) = {p} U Dom(/3') and similarly for views. We allow repeated binding of the 
same domain element, with the convention that  bindings to the right supersede bindings 
to the left. We write, for example,/3(p) to denote the realization to which/3 binds p, 
when p 6 Dom(/3). We often write realization environments out in full, with the notat ion 
pi=~oi , . . . ,  pn=T, (dropping the initial {}). Realization environments/3i and/32 can be 
appended, writ ten/3i  +/32. 

Realization Expressions (W) 

(~u, r/) stamping 
p realization variable 
~/strid substructure selection 
app(6, %o) functor application 
~o $ .U signature constraint 
ne~ N.~o generative stamps 
let /3 in ~ local binding 

Realization Environments  (/3) 

/3 ::= {} empty environment 
I 13, p=~o extension 

Fig. I .  Basic semantic representations 

Views  (n) 

~7 ::= {} empty 
I r h strid=~o extension 
I ~, funid=O extension 

Stat ic  Funetors  (0) 

0 ::= AO : 27.(s, ~o) functor 
] getF(~,fp ) application 

S t a m p  Expressions  (p) 

/~ ::= m stamp 
] gets(~a , sp) application 

To get an idea of the meaning of the constructs of Figure 1, consider the following 
functor declaration: 
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functor G(X: sig 
functor Interv(P: POINT): 
structure I: POINT 

end)= 
struct 

structure NatNum = X.Interv(X.I) 
end; 

INTERVAL 

This declaration gives rise to the view 7/0 - G=Ap : ~X.(Sbody, (~body), where 8body is the 
tree {e, NatNum} and 

r ---- n e w ( m ) . l e t  p' = app(getF(P,  I n t e r v ) ,  (p / I ) )  
in (rn, NatNum=p') 

and Zx represents the parameter signature of G. Here app(getF(P, Interv), p/I) stands 
for a functor application. The operator, getF(P, I n t e r v ) ,  is the functor component named 
I n t e r v  of the (unknown) realization p; the operand, p/I, is the realization of the sub- 
structure named I. 

Functor applications can generate fresh structures. For example, every application of 
the functor G gives rise to one fresh structure, i.e.. to one structure with a fresh stamp, 
corresponding to the expression s t r u c t  .-. end forming the body of the functor. The 
realization expression new N .  ~ is used for expressing generativity. The stamps in N are 
bound in 9, and the semantic rules will force alpha-conversion to insure that  these are 
replaced by "fresh" stamps when the functor is applied. 

2.4 Signatures 

Module interfaces are called signatures in Standard ML. A key feature is the abil i ty to 
specify sharing in signatures. This is particularly important  in connection with functors, 
as a means of st ipulating sharing within the formal parameter structure. There are two 
forms of sharing in Standard ML: structure sharing and type sharing. The present seman- 
tics deals with structure sharing (but not with type sharing, as this requires integration 
with the Core language semantics.) Since functors do not have static identities, there is 
no notion of functor sharing specifications. As in Standard ML, a specification that  two 
structures share is implicitly a specification that  all substructures visible in both struc- 
tures share as well. However, this does not imply that  common functor components have 
the same functor signature. No at tempt  is made to "unify" functor signatures; indeed, 
there are valid signatures which cannot be matched by any real structure, because the 
signature imposes conflicting signatures on a specified functor. In this respect, functor 
specifications resemble the value specifications of Standard ML. 

A functor specification can contain sharing specifications that  impose sharing be- 
tween the argument structure and the result structure, or between either of these and 
some structure declared or specified elsewhere. In that  sense, sharing specifications can 
constrain a functor. A more detailed study of sharing, including functor sharing, is given 
in [14]. 

Formally, we represent sharing specifications by relations on structure paths, as fol- 
lows, Let s be a tree. A sharing relation (on s) is a relation R satisfying: 
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1. R is an equivalence relation on SP(s); 
2. R is closed under structure path extension: for all sp, sp', strid, if sp R sp t and 

sp.strid E s and sp'.strid E s then sp.strid R sp'.s~rid; 
3. there are no cycles' in the graph obtained by collapsing R-equivalent paths into a 

single node. 

The equivalence class containing sp is written [sp]R, or just [sp], when R is clear from the 
context. The set of equivalence classes is denoted s /R.  Given any relation R on structure 
paths, Ol(R) is the equivalence "closure" of this relation, i.e. the smallest equivalence 
relation on SP(s) containing R. 

A signature ~ is a tuple (s, R t or, Sp.ff). Here s is a tree, R is a sharing relation on s, 
is an (external) sharing map with Dom(~) C_ SP(s) mapping structure paths to stamp 

expressions, and O is a functor signature environment with Dora(O) = FP(s) mapping 
functor paths to functor signatures. The 5 is a binding operator binding p with scope 
d f, and the idea is that P represents the realization of a hypothetical structure matching 
the entire signature. It is used to express sharing between an embedded functor whose 
signature, S,  is given by ~ and a substructure specified elsewhere in the signature. This 
sharing is represented by a free occurrence of the stamp expression p(sp) within S .  
Accordingly, we require that the only free occurrences of p in �9 are in stamp expressions 
of the form p(sp), where sp E s. 

The following example illustrates the roles of R and cr in representing internal and 
external sharing in signatures. 

structure S = struct end; 

signature SIG = 

sig 

structure A: sig end 

structure B: sig end 

structure C: sig end 

sharing A = S 
sharing B = C 

end; 

The representation of this signature is 12 = (s, R, ~, 6p.{}), where s -- {e,/t, B, C}, R -= 
ct({(s, c ) } )  and ~ = {A ~ ,~} ,  where ,~  is the s tamp of s .  

We require that cr be consistent with R, so that it can be regarded as a partial map 
from s / R  to stamp expressions, i.e. that if sp R sp' then ~(sp) = tr(sp'). Furthermore, 
we require that the domain of cr is closed under path extension: if sp 6 Dom(tr) and 
sp.strid E s then sp.strid 6 Dom(tr). 

2.5 F u n c t o r  s igna tu res  

A functor signature F. takes the form Ap : 27.27~. Here ,U is the argument signature 
and ,Ur is the result signature. Write I2, in the form (sr ,Rr,g, ,~p, .~r) .  Sharing be- 
tween argument and result is expressed by occurrences of stamp expressions of the form 
gets(p,  sp) in cry and @,, for some 8p. We require that the only free occurrences of 9 in 
tr, and ~, are in stamp expressions of the form gets(p,  sp), where sp has to be a member 
of the tree component of Z. This is to ensure proper propagation of sharing at functor 
application time. 
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Here is a functor specification illustrating propagation of information from the pa- 
rameter of a functor to the result via the ),-bound realization variable in the functor 
signature. 

functor F(X: sig structure A: sig end end): 

sit 
structure B: sit end 
sharing B = X.A 

end 

The corresponding functor signature is S = )`p: ITx.ITR, where ,Ux ----- ({e, A}, I ,  {}, 6pl.{}) 
and ,~R = ({e, B}, I ,  {B ~ gets(p,  A)}, 6p".{}) and I is the identity relation. 

The next example illustrates the use of the 6-bound realization variable in expressing 
sharing between part of a functor and a structure specified in the same signature: 

sig 
structure A: sig end 
functor F(X: sig structure B : sig end 

sharing B = A 
end): sig end 

end 

for which the representation is ,U -- (s, I, o, 6p.{F ~+ ~}),  where s -- {e, A, F}, cr is the 
empty map, and ,~ -- )`p': ITx.,UR, with k2x -- ({e, B}, I ,  {[B] ~ gets(P,  A)}, 6pz.{}) and 
~R = ({~}, I, {}, ~p2.O>. 

The requirement that a 6-bound p only be "applied" to valid paths of the containing 
signature is significant for getting a well-defined notion of structure matching. Unfor- 
tunately, it also means that there is not a perfect correspondence between the present 
signatures and the so-called principal signatures inferred in [14]. In the latter case, one 
is allowed to write for example 

sig 
structure A: sit end 
functor F(S: sig end): 

sig 
structure A': sig structure B: sit end end 

sharing A' = A 
end 

end 

in which A' is specified to share with l ,  although there is no specification of a B com- 
ponent of A outside the specification of F. Because of the requirement we are discussing, 
the principal signature for the above signature expression cannot be represented as a 
signature in the present semantics. Principal signatures that do not have such dangling 
components can be represented, however. Since these dangling components are easy to 
detect in principal signatures and could be banned without any dramatic loss in pro- 
gramming convenience, the two forms of signatures are not in serious conflict. 
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2.6 E v a l u a t i o n  o f  s t a m p  e x p r e s s i o n s  

Since we verify sharing specifications by comparing stamps, it is necessary to "evaluate" 
arbitrary s tamp expressions to reduce them to concrete stamps. Since s tamp expressions 
may contain realization variables, this evaluation must be performed in the context of a 
realization environment that  binds these variables. Here are the rules defining evaluation 
of s tamp expressions: 

S t a m p  e x p r e s s i o n s  I 
(1) 

~ = ( s , l ~ , C r ,  gp.~)  spes ~ l - g e l ; s ( T ,  sp ) : :Frn  

/~ [- (gets( T $ ~),  Sp) ::r m 
(2) 

/~ F gets(T, str id.sp)  ::~ rn 

F g e t s ( T / s t r i d  , sp) ~ rn 
(3) 

/3(p) = T fl I- g e t s ( p ,  sp) ==~ m 

/~ ~- ge ts (p ,  sp) ::~ rn 
(4) 

T = (g,-) # ~ g ~ - ~  
# l- g e t s ( T , e  ) ~ m 

(5) 

(6) 
f l b  ge t s (T ,  strid.sp)  ~ rn 

We define a function Eval  : RealizationEnv -+ (StampExp ---, Stamp) by 

m if  fl  F- i~ ~ m 
Ev~Z(#)(~) = undefined i f f l  I-/~ 7~ 

The inference system made up of the inference rules (1)-(6) is monogenic; thus the 
definition of Eval makes sense. 

Similarly, one can define rules that  allow one to infer conclusions of the form/~ I- 
0 ~ Ap : lT.(s, T), meaning that  in the realization environment #, the value of 0 is 
$p : lT.(s, T).  These rules are also monogenic and so give rise to a function Eval  : 
RealizationEnv --r Functor ---, Functor. 
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2.7 Elaborat|on of  realization e x p r e s s l o n s  

To evaluate s tamp expressions of the form g e t s ( ~ ,  sp) that  involve realization expres- 
sions, it may first be necessary to reduce the realization expression ~ to a simpler form 
such that  the rules for evaluating the s tamp expression apply. The rules in this section 
show how to perform this reduction. 

The two most interesting forms of realization expressions are app(0, ~), for functor 
application, and new N .  ~ for generativity. To handle generativity, the inference rules 
extend a store of currently used structure stamps each time a new stamp is picked. Thus 
the conclusions of the elaboration rules take the form N,/3 ~- ~ ::~ ~',  N ' ,  and we shall 
always have N '  D N.  

Elaboration of functor applications involves substitution. A substitution is a finite 
map from realization variables to realization expressions. It can be represented by a 
realization environment/3; conversely, every realization environment/3 represents a sub- 
stitution. Application of a substi tut ion/3 to a term t is written riB]. 

Realizations N~/3 [- ~o ==~ %o', N']  S t r u c t u r e  

(7) 
N,/3 ~- app(e, ~=) ~ ~', N' 

M N N = O N U M, /31-" ~ :=C, ~', N '  (s) 
N,/3 F new M . ~  ~ ~ ' , N '  

Comment:  The side-condition M f't N = 0 forces the stamps in M to be new. By a-  
conversion, M can always be chosen to satisfy the side-condition. 

y,/3~ /31~ #'~,g~ N1,/3e ~[Z;] ~ ~',g~ (~) 
N,/3~- let /31 in (o=~o',N~ 

N, /3 ~- ~o :~ ~o', N '  

N,/3 ~ (~, ~ E) ~ (r  ~ ~), N' 
(lO) 

Reallzat|on environment s 

N,/3~ {} ~ 0 , g  

N,/3~/31 ~/3~,N1 N1, /3~2[~]  ~ , N '  
N,/3 ~ (/31, p=~2) ~ (/3~', p=~), N' 

IN,# F- # =~ 3 , N  

(11) 

(12) 

Rule (7) deserves some explanation. The functor Ap:  ~ . (s ,  ~o> may contain free re- 
alization variables. These can be looked up in fl during the elaboration of the second 
premise. This may seem odd in a statically scoped language, as it looks like the rule uses 
"dynamic binding" (/3 is the "call-site" environment). However, the semantics is orga- 
nized in such a way that  the semantic objects found for the free variables of the functor 
in the realization environment/3 at the call site are identical to the objects which were 
in the realization environment when the functor was declared. This is achieved, in part,  
by using explicit substi tutions in rules (9) and (12). 



419 

3 A s k e l e t a l  p r o g r a m m i n g  l a n g u a g e  

In this section we present a grammar and a static semantics for the skeletal language. 

3.1 Grammar for programs 

The grammar defining structure expressions (strezp) and structure-level declarations 
(strdec) is given below. (A grammar of signature expressions (sigezp) and specifications 
(spec) may be found in [14]). 

strezp ::--- s t r u c t  strdec end generative 
I strezp/strid structure selection 
[ strid structure identifier 
[ strezp : sigezp signature constraint 
I fp (s$re~p) functor application 

s$rdec : : -  s t r u c t u r e  strid = stre~p structure declaration 
[ f u n c t o r  funid(strid:sigezp) = strezp functor declaration 
[ empty 
] strdec ; s~rdec sequential 

3.2 S t r u c t u r e s  a n d  e n v i r o n m e n t s  

An environment, E, is a pair (FE, SE), where FE is a functor environment, i.e. a finite 
map from FunId to terms 8 representing static functors, while SE is a s~ructure environ- 
ment, i.e., a finite map from StrId to structures. Concatenation of environments, written 
E1 + E2 is defined in the usual way. 

3.3 S t r u c t u r e  m a t c h i n g  

Informally speaking, a structure matches a signature if it has at least the functors and 
structures specified in the signature and satisfies the sharing prescribed by the signature. 

Formally, let N be a s tamp set, fl a realization environment, and S -- (s, W) a structure 
and let ~ = (s', R, a, 5p.~) be a signature. We say that  S matches ~ in N and fl, written 
N, ;3 ~- S matches ~ ,  if 

1. s' C_ s; 
2. For all spl , sp~ E s', if spl R sP2 then Eval(fl)(gets(~O , spl)) = Eval(fl)(gets(~, sp2)) , 

i.e., they both exist and are equal stamps; 
3. For all sp C s', if [sp] �9 Dom(~) then Zval(fl)(~(sp)) = ~val (~)(gets(V,  sp)), i.e., 

they both exist and are equal stamps; 
4. For all fp �9 s i, if we let 0 = EvalO3)(getF(~,fp)) and S = ~(fp), we have 

N, fl ~- 6 matches S[p=~]; 

The matching operation in item 4 is defined in Section 3.4. One of the requirements on 
signatures is that  the only free occurrences of p in ~" are of the form ge t s (p ,  sp), where 
sp 6 s'. Therefore, only the stamps of substructures of S (not functor components of S) 
are relevant to the substitution in i tem 4. 

Assuming that  structure S satisfies the conditions for matching the signature ,U, the 
structure that  results from matching S with ,U is the restriction of S to ~, written 
restrict(S, E) and defined as (s', ~ $ ~>. 
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3.4 F u n c t o r  m a t c h i n g  

LFrom a signature ,U it is possible to derive a so-called free structure, which can be 
thought of as a generic representative for all the structures that match ,U. This derivation 
can be formalized as a relation N , ~  ~- ~ree(~) ==~ S, N' .  This relation involves a stamp 
set because making a free structure involves picking fresh stamps for structures which 
are specified in ~Y. One always has N '  2 N. We omit the precise definition, for lack of 
space, but the process is fairly straightforward, and is justified by the Principal Signatures 
theorem [14]. 

l I I  I I I  Let ~ = ),Pl : Zl.(S 1 , W'~') be a funetor and let S = :kp2 : Z 2.Z 2 be a functor signature. 
Write ,~'~ in the form ' ' ' ' ' (s2, R2, a2, 6p2.~2). We say that 8 matches ~ in N and ~, written 
N, fl ~- 0 matches S,  if there exist s~, ~ ,  N ' ,  ~,  and N"  such that 

2. N ' , f l  F- (s~,Ta) matches ,U~ 
3. N' ,~  e ~[p~=~o J, Eli ~ ~,, N" 
4. N " , ~  t- (s~', W,) matches R'2'[p2=W~] 

That  is, we create a free structure from ,U~, apply 6 to it, and check that the result 
matches/2~' after it has been instantiated with information from the free structure. 

3,5 E l a b o r a t i o n  of s t r u c t u r e  exp re s s ions  

Elaboration of structure expressions is formalized in terms of a relation 

N,  ~d, E ~- strezp ~ N1, fl~, S, fl~ 

that consumes one realization environment, fla and produces a structure S and two 
realization environments, fl~ and fl~. The reason is that in general we must assume that 
the structure expression strezp occurs in the body of a functor and we must achieve the 
effect of elaborating it formally when the functor is defined and again when the functor is 
applied. We introduce new realization variables to stand for all embedded functor calls, 
and fl~ maps these variables to the formal realization at "definition-time" and 8[  maps 
them to the unevaluated functor call expressions. The realization environment fla can be 
regarded as "code" which is used in the functor body, which typically takes the form 

,kp:~. (s ,  new N . l e t  fla in  Tbody) 

where N is the set of generative stamps of the functor and ~body is the realization of the 
functor result. Details are found in rule 19. 

N o t a t i o n  Rule 13 uses the following definitions, which relate to converting environ- 
ments into structures. Let N be a stamp set, E be an environment and ~ a realization 
environment. Then functions cornbPaths(E) and combReas(E) are defined as follows. 
Write E in the form (FE, SE),  where FE = {funid 1 ~ 01, . . . , funid ,= ~ 0,~} and 
SE = {stridl  ~-~ (Sl, ~z ) , . . . ,  stridn ~-~ (sn, ~o=)}, for some m and n (rn, n > 0). Then 
eombPaths( E) = {e) U {funid 1 . . . . .  funid,~} U U~=l stridi.si (where stridi.si denotes the 
set of paths obtained by prepending s$ri& to each path in s~). Moreover, combReas(E) 
is the view 

strid l =~l , . . . , strid= =T,, , funid=S1, . . . , funidm=Om 
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S t r u c t u r e  Expre s s ions  

N, fla, E F- strdec ~ N~,fl~,E~,re rn ~ N~ 
s = <eo.~P:t~s(E~), (.~, eom~Re:s(E~))> 

N, fl ~, E P struct strdec end ==> N~ U {m}, fl~, S, r~ 

N, r ~, Z F ,tramp ~ g~, r l ,  (~, 9), re stria e 
N,/3 ~, E F- strezp/strid ~ N~, fl d, (slstrid, 91strid), re 

E(strid) = S 
N,/3 ~, E P strid ~ N, {}, S, {} 

(13) 

(14) 

(15) 

N, r ~, E ~- ~tre~p ~ g~ , r~ , s, re g~, r ~, Z ~ sige~p ~ 
N1,/3 d + r l  d F" S matches ,U S' = restrict(S, ~)  

(16) 
N, fl d, E ~ stremp : sigemp ~ Nl,rdl, S ' ,~  e 

N, r ~, E ~- sSremp ~ NI, r~, S:, re  N~, fl ~ --F fla~ P S~ matches ~U 

~' r Dom(r ~ + #~) r# = {~':9~} r~ = {~': app(0, 9~)} 
(17) 

N, r d, Z F- fp(strexp) ~ N2, r~ + fig, (sb, p'), r [  + r~ 
Comment: The elaboration of 9[po=9: $ ~] redoes functor applications in 9 and gener- 
ates fresh structures corresponding to new-bindings in 9. 

S t ruc tu r e - l eve l  D e c l a r a t i o n s  [N,  fl~, E 1- strdec =2;. N ~ , ~  a, E~,#~]: 

N, r d, E P stremp ~ N1, rl,d S, fll: 
N, r d, E F- s t r u c t u r e  strid = stremp ==~ g l ,  ill, {strid ~ S}, r~ (18) 

N , r  ~, E P sige~p ~ 
g , r  d ~- ~ e e ( ~ )  ~ s~,g~ S~ = (~,9~> 

P ~ Dom(r d) 
NI, (rid , P=gp ), E -F { strid ~-+ ( sp, p) } F stremp ~ N~, fir, ( sb, 9b ), r~ 

N ' = N ~ . \ N 1  ~=~p: .~ . ( sb ,new N ' . l e t  fl~ in 9b} 
N , r  ':~, .E F functor /~, '~ ia (str id : sige=,p)=,tre~p ==> N, { } ,  {Iu,id ,-', e}, { }  (19) 

Comment: The stamp set resulting from the elaboration of the declaration is N itself, 
i.e., seen from outside the functor declaration, no new structures are generated. The 
side-condition " p ~  Dom(rd) '' serves to distinguish the realization variable of strid from 
the realization variables of other structures, so that any free occurrence of p in 9b refers 
to the realization of strid. 

N, #d E ~ ::> N, {}, {}, {} (2O) 

N: #d E ~ ,trdecl ~ N1, #~, El, #e NI, #" + #~, E + Z~ ~ st~Uec: ~ N2, ##, E:, #~ 
N, #d E F- strdecl ; strdec2 ~ N2, #~ + ##, E1 H- E2, #~ H- r~ 

(21) 
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Long  f u n c t o r  i d e n t i f i e r s  

E(funid) = 0 

E ~- funid ~ 0 
(22) 

E(strid) -= <s, ~o) 

E ~- strid.fp ~ ge tF(T ,  fp ) 
(23) 

4 C o n c l u s i o n  

The semantics we have presented here shows that  higher-order functors do not increase 
the complexity of the module semantics more than one would expect, and that  the 
policy of transparent signature matching can be generalized to the higher-order case. In 
particular, signature matching is straightforward to check, following the definitions of 
the semantics. 

As noted in the introduction, higher order functors behaving in accordance with 
this semantics have been implemented in the Standard ML of New Jersey compiler [2]. 
The implementation representations differ in detail from the semantic representations 
presented above, because of various techniques used to optimize space requirements. 
But taking an abstract view, there are close parallels between the semantics and the 
implementation. 
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