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Abstract. A universal functional form is proposed for the direct corrélation funct ion of the 
one-component plasma. This form dépends on only one scaling parameter which is deter-
mined from a novel hypernetted-chain compressibility équation through a single numerical 
intégration. The results compare well with the numerical solutions of the hypernetted-chain 
intégral équation as well as with récent M o n t e Carlo computations. 

The study of the static and dynamic properties of charged fluids has recently become an 
active field of research in relation to astrophysics, thermonuclear fusion and chemical 
physics. Among the many modes studied so far, the one-component plasma (OCP) has 
emerged as a référence system playing a rôle similar to that of the hard-sphere System for 
uncharged fluids. The ocp consists of identical point charges with purely répulsive 
Coulomb interactions immersed in an inert and uniform neutrahsing background. The 
theoretical détermination of the OCP statics is one of the many challenging problems 
raised by this relatively simple charged fluid. F rom the review article of De Witt (1978), 
we conclude that the results of Springer et al (1973) and Ng (1974), obtained on the 
basis of the numerical solutions of the hypernetted-chain (HNC) intégral équation, 
provide, when compared with the Monte Carlo (MC) data of Hansen (1973), the most 
accurate description of the ocp statics presently available. It is our purpose here to 
présent a simple model for the ocp statics which is partly analytical and which, with the 
aid of a single numerical quadrature for each value of F, yields results which compare 
favourably with the MC data and the numerical solutions of the HNC équations for ail 
values of r belonging to the fluid phase (0 ^ F ^ 155). Here F = jie^/a is a dimensionless 
coupling parameter which characterises completely the excess thermodynamic properties 
of an OCP of température (in energy units) and of average number density n = (f Tia^)" \ 
a being the mean ion-sphere radius, while e dénotes the charge on each of the mobile 
particles. 

We start by recalling that the MC data of Hansen (1973) have revealed that the direct 
corrélation function c{r) of the OCP exhibits little structure. For large r, c(r) tends rapidly 
towards — )SF(r) whereas for small r it tends smoothly towards a finite value c(0). Here 
V{r) is the interaction potential, which for the OCP equals e^/r, r being the interparticle 
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m = 

distance. As a resuit of a theorem for the pair function g{r) due to Widom (1963) and the 
Orns te in -Zern ike relation between g{j) and c(r), we can, at least for sufficiently small r, 
Write c(r) as a polynomial in : c(r) = Ef^ o^/^'- joining the small and large r 
behaviour at some intermediate point r = r^, we can, for each p, détermine ail the para-
meters a,, except the scaling parameter by requiring that c(r) together with its p first 
derivatives be cont inuous at r = r^. This results in the following functional form for c(r) : 

c ( r ) = -mro)Ur/r^) 

l/x 

. [(2p + 1) ! !/p 12"] , f - p ; f ; x^) x ^ \ (1) 

where x = is the scaled distance while p dénotes the number of cont inuous derivatives 
and 2 ^ 1 ( 2 ' 2 ' hypergeometric funct ion as defined by Gradshteyn and 
Ryzhik (1965), which in the présent case is a polynomial of order p in x^. Physically the 
direct corrélation function c(r) given by équat ion (1) can be thought of as due to the 
electrostatic potential of an effective ionic charge distribution inside a sphère of radius r^. 
This effective ion-sphere radius will be determined below. Using a dimensionless 
Fourier t ransform, / ( j t ) = n\âr / ( r ) exp(ifc. r), we obtain from équation (1), with the aid 
of Gradsh teyn and Ryzhik (1965), the compact resuit 

c[k) = -{kye)hjjir^) (2) 

where = {Ane^nPY'^ is the Debye wavenumber and hj^y) = dj(y)i2p + l)!!/y' ', dj^y) 
being the spherical Bessel function of order p as defined in Gradshteyn and Ryzhik (1965). 
Hence for a given value of p, équat ion (2) shows that in this model c{k) is a universal 
funct ion of the scaled variable kr^ with = (kj/ç)^ as amplitude. F r o m équat ion (2) we 
can further obtain the static structure factor S(k) = (1 - c(/c))"' and the dimensionless 
excess internai energy U = (Pe^/n)^ô dk{S{k) - 1) f rom which the thermodynamic 
proper t ies can be derived. For the isothermal compressibihty Xj we can obtain the virial 
compressibility via U or use the al ternative définition 

XVXT = 1 - c*(k = 0 ) ( 3 ) 

with c(/c) = —{kyk^) + c*(k) and XT = i^/n, which was shown elsewhere (Baus 1978) to 
be équivalent to the virial compressibility. F r o m équat ions (2)-(3) we find that in the 
présent model the compressibility is given simply by 

Z?/ZT = 1 - [feD'-o/2(3 + 2p)] (4) 

for the pth-order model. Before proceeding we pause a while to estimate theoretically the 
two characteristic F values of the ocp, i.e. the point F = FQ at which the inverse compressi
bility changes sign {x^ ^{V^ = 0) and the point F = F j at which the OCP freezes. To this 
end we consider the first two simplest models, p = 0 and p = 1, and estimate roughly 
the effective radius by the mean ion-sphere radius (r^ ~ a). Taking into account tha t 
k^a = (3F)' '^, we obtain from équat ion (4) F^ = 2 for p = 0 and F^ = 3-3 for p = 1, while 
the MC data yield FQ = 3 08. To estimate F j we use ~ a in équation (2) and look for the 
value of F for which the first peak of S{k) diverges. This yields F j = 53 for p = 0 and 
F j = 122 for p = 1, while the MC results predict the fluid-solid phase transit ion to take 
place at F = 155. 

As a second step we now détermine the effective radius as a function of F and hence 
via équat ion (2) the F-dependence of S{k) and of the thermodynamics. In order to do this 
in a simple manner , i.e. by a single numerical quadra ture , we int roduce a novel 
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HNC compressibility équation not previously found in the literature. We start from tiie 
exact relation, g(r) = 1 + h{r) = exp(-</)(r) + h(r) - c(r) + B[r)) between the dimen
sionless pair potential </)(r) = Py/ir), the pair corrélation function h(r), the direct corréla
tion function c(r) and the so-called Bridge contributions B(r) (see for instance Ng 1974). 
Taking spatial gradients of both sides of this relation and rearranging terms we obtain, 
after multiplying the Fourier transform of each member by the scalar fc/l'^l^-

(5) 
1 C àk k k 

c(fc) = - m + B{k) + - \ ^ ^ h { \ k - k\)\h{k') - c(k') + B{k') - W ï ] 

where, as above, ail Fourier transforms are dimensionless. Using the Ornstein-Zernike 
relation h(k) = c(ky{l — c{k)) we can eliminate from équation (5) h in favour of c and 
obtain in the HNC approximation {B — 0) 

[dk k.k c(\k - kDidk'Mk') + m ) ^ m i (g) 
C(fc) = -(t){k) + -

n Sn^ k^ [1 - c{\k - *'!)](! - c{k')) 

which is a single closed non-linear intégral équation for c{k) in terms of <p{k) équivalent to 
the original r-space HNC system of équations. Equation (6) clearly shows that the HNC 
approximation for the ocp is consistent with the two familiar limiting results : c{k) = — 
(i) for small k and ail F and (ii) for ail k and small F (Debye-Hûckel approximation). 
Indeed for the OCP we have <̂ (/c) = k^k^ and the first term in the RHS of équation (6) 
clearly dominâtes the second for -> 0 and/or F -» 0. From équation (6) and équation (3) 
we immediately obtain 

c*(k = 0) = (l/ÔTt^n) dfc' /c'3[c*(fc') - h(/c')] dh{k')/dk' (7) 

which is the desired HNC compressibility équation. The relation between and F which 
is needed to fix our model completely is obtained by requiring that équation (2) satisfies 

Figure 1. The dimensionless internai energy as a function of F from the présent model (full 
curves) and from the interpolation formula of the HNC and MC data (broken line) proposed 
by De Witt (1976, 1978). 



Figure 4.The position of the first peak of S(fc) in units of a ' as a function of T. The MC data are 
taken from Ga lam and Hansen (1976) while the HNC data are from J P Hansen (unpubUshed). 
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Figure 5. The ampl i tude of the first peak of S(<c) as a function of F. D a t a as in figure 4. 

équation (7) exactly. This yields 

where /^(fc) is given by the following quadra ture : 

1,% = (1/fe) [ " d x { l + [(2p + l ) ! ! b X ( x ) / x ' ' + 2 ] - i } - i 
Jo 

K 2 p + l ) ! ! ^ ^ ( x ) / x ^ + 1 - ,zp + l Y ^ W - ^ (9) 

We now have at our disposai an explicit functional form for c{k), équat ion (2), depending 
on a single scale parameter which is given in ternis of F by équation (8). As a final step 
we have computed équat ion (9) numerically for p = 1, 2 and 3 and for values of b (or F) 
covering the whole fluid phase. Our results are summarised in figures 1-5. As seen f rom 
the figures, the errors increase with increasing F for given p and decrease with increasing 
p for given F. F r o m figure 1 we see that reasonable internai énergies, compared with the 
HNC or MC data, are obtained up to F = 25 for p = 1, up to F = 50 for p = 2 while for 
p = 3 the error at F = 160 is still less than ten per cent. The fact that the p = 3 mode!-
yields the best results points to the existence of some amount 'o f s tructure in the short-
range part of c(r). F r o m figure 2 we see that the point at which the inverse compressi-
bility vanishes ( F^ = 2-86 for p = 3) is within the uncertainty of the MC data. F o r 
large F the compressibility tends however to its HNC value which difîers markedly f rom 
the MC values. Clearly, on the basis of équation (7), we cannot expect to do better than 
the much more involved numerical solutions of the HNC équations themselves. F r o m 
figure 3 we see that b = fc^r^ = X(,(3F)''^ rises monotonical ly with F whereas x^ = rja, 
i.e. the ratio of the effective to the mean ion-sphere radius, saturâtes for large F a round 
XQ = 1-8 (for p = 3). This then in t u m leads to a saturat ion of c{r = 0)/F at a value of 
—1-23 (p == 3) very close to the HNC (—1-22) and MC (—1-33) results. At the other extrême 
of small F, is seen from figure (3) to vanish with F, a resuit which guarantees that for 
weak coupling we recover the Debye-Hûckel resuit which corresponds simply to = 0 
in équat ion (2). F r o m figures 4 and 5 we see that the position of the first peak (and in fact 
also of the other peaks) of S(fc) are quite well reproduced but that the ampli tude of the 
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peak is much too low (about 30 per cent at F = 170 for p = 3). This, to a lesser extent, is 
also the case for the HNC data. In conclusion, we feel that the présent model, while quanti-
tatively not so outstanding as the more involved numerical solutions of the HNC équations, 
has the advantage of being the first step towards an analytical theory of the ocp statics 
for which it leads to a more physical understanding and for which it points to the exis
tence of a universal functional form for S(k) such as the one given by équation (2). 

Part of this work was performed while one of us (MB) was visiting the Laboratoire de 
Physique Théorique des Liquides (Paris) with the support of FNRS and CNRS. 
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