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Abstract

Loss of circulation while drilling is a challenging problem that may interrupt operations and contaminate the subsurface forma-

tion. Analytical modeling of fluid flow in fractures is a tool that can be quickly deployed to assess drilling mud leakage into

fractures. A new semi-analytical solution is developed to model the flow of non-Newtonian drilling fluid in fractured formation.

Themodel is applicable for various fluid types exhibiting yield-power law (Herschel-Bulkley).We use finite-element simulations

to verify our solutions. We also generate type curves and compare them to others in the literature. We then demonstrate the

applicability of the proposed model for two field cases encountering lost circulations. To address the subsurface uncertainty, we

combine the semi-analytical solutions withMonte Carlo and generate probabilistic predictions. The solutionmethod can estimate

the range of fracture conductivity, parametrized by the fracture hydraulic aperture, and time-dependent fluid loss rate that can

predict the cumulative volume of lost fluid.
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Introduction

Naturally fractured formation is often prone to severe mud

loss during drilling operations. As a result, problems may

emanate because of the severity of lost fluid such as kicks,

wellbore instability, formation damage, and sometimes fresh-

water aquifer contamination (Al-Hameedi et al. 2019;

Seyedmohammadi 2017). One procedure to encounter and

mitigate this problem is to add lost circulation material

(LCM) to the drilling fluid. LCM is commonly used in drilling

applications to reduce and stop lost circulation (Attong et al.

1995; Ali et al. 1997; Olsen et al. 2019; Knudsen et al. 2015).

The fluid characteristics of LCM, such as density and viscos-

ity, should be carefully selected based on the formation of

hydraulic properties such as the conductivity of the thief layers

and fractures, among other factors (Luzardo et al. 2015; Wang

et al. 2020; Okoro et al. 2020; He and Bu 2020). Due to the

time-scale of the problem, there is a need to develop accurate

and efficient modeling tools applicable to real-time drilling

operations to perform diagnostics and predictions. Field ob-

servations suggest that, during mud filtration into porous me-

dia, an immediate spurt loss generally occurs, which then

decreases in rate as filter cake is being deposited.

On the other hand, mud loss rate into fractures often ex-

hibits a sudden peak, followed by a gradual declining loss

(Dyke et al. 1995). The transient rate decline is related to the

fluid pressure build-up within the fracture. The ultimate lost

volume is a function of the fluid mobilities, and the fracture

conductivity, pore volume, and extension (Norman 2011).

Analytical solutions for mud loss into a single effective frac-

ture, mimicking a fractured formation, have been studied for

decades in the literature. Early modeling attempts for simpli-

fied cases were based on Darcy’s Law at steady-state condi-

tions (Bannister and Lawson 1985; Bruckdorfer and Gleit

1988). Sanfillippo et al. (1997) introduced a semi-analytical

solution for Newtonian fluid flow into a horizontal fracture by

combining the diffusivity equation and mass conservation in

one-dimensional (1D) radial systems. The derived ordinary

differential equation (ODE) was solved numerically.

Maglione and Marsala (1997) presented an analytical solution

of the diffusivity equation for fluids with a constant viscosity

at the steady-state conditions. Liétard et al. (2002) developed

type curves based on numerical solutions to describe time-

dependent mud-loss volumes into a horizontal fracture. The
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model is applicable for non-Newtonian fluids exhibiting

Bingham-Plastic rheological behavior. The authors generated

type curves, based on dimensionless groups, to describe mud-

loss rates as a function of the fracture hydraulic aperture and

fluid properties. Other authors proposed analytical approaches

to generate similar type curves to the ones proposed by Liétard

et al. (2002). Kemerli and Engin (2020) evaluated the analyt-

ical and numerical modeling of the flow of Herschel-Bulkley

fluid model in a monotube. Huang et al. (2011) derived a

method to estimate the hydraulic fracture aperture by simpli-

fying insignificant terms in the governing equations. Majidi

et al. (2010) generated approximate analytical solutions for

yield-power law fluids by reducing a Tylor expansion of the

governing nonlinear flow equation into its linear terms. This

approximation helped to generate an analytical solution but

was found to introduce inaccuracies in some cases, as

discussed in the paper. Motivated by the work of Majidi

et al. (2010), Dokhani et al. (2020) introduced a mathematical

model and numerical solutions to account for fluid leak-off

from fractures. Russian et al. (2019) used stochastic and glob-

al sensitivity analysis to study drilling mud losses in fractured

media. Other authors proposed various numerical methods

based on higher-order discretizations (Ambartsumyan et al.

2019; Girault and Rivière 2009; Arbogast and Brunson

2007; Shao et al. 2016; Ţene et al. 2016; Hoteit and

Firoozabadi 2008).

In this work, a new semi-analytical solution is developed to

model the flow of non-Newtonian drilling or LCM fluids

exhibiting a yield-power law (Herschel-Bulkley) behavior.

The non-Newtonian fluid flow is described by the Cauchy

momentum equation. The nonlinear system of equations is

reformulated and converted into a system of ODEs, which is

then solved numerically with an efficient ODE solver

(Hindmarsh et al. 2005). For convenience, we also introduce

dimensionless groups and develop type curves, which de-

scribe fluid volume loss behavior versus dimensionless time,

as a function of the fracture and fluid properties. The fracture

is represented by two parallel plates in a 1D radial system. We

use high-resolution finite element simulations from commer-

cial software, COMSOL (Littmarck and Saeidi 1986), to ver-

ify our model. We also compare our proposed semi-analytical

solutions to two other models from the literature. The devel-

oped type curves describe the mud-loss volume and mud-

invasion front velocity under various fluid rheological prop-

erties, drilling pressure conditions, and fracture aperture. We

use the type curves and demonstrate the applicability of the

proposed model for two field cases. We discuss a simple ap-

proach to combine the developed semi-analytical solutions

with Monte Carlo simulations to address uncertainties.

This paper is organized as follows; we first review the main

governing equation for non-Newtonian fluid flow. Then, we

reformulate the equations for 1D radial system, followed by a

discussion of the solution method of the obtained semi-

analytical system. In “Physical and mathematical model,”

we compare our solution to other analytical solutions for a

particular fluid-type case. For general cases, we verify our

solutions with full physics numerical simulations. In the

“Discussion” section, we introduce new type curves with the

corresponding dimensionless groups. In “Conclusions,” be-

fore the conclusion, we demonstrate the applicability of the

proposed approach for two field cases.

Physical and mathematical model

The general governing equation used to describe non-

Newtonian fluid dynamics is given by Cauchy equation

(Irgens 2014; Cioranescu et al. 2016), such that,

ρ
∂v

∂t
þ ρ v⋅∇ð Þv ¼ ∇ −pIþτð Þ þ ρg ð1Þ

In the above equation, the transient term consists of the

fluid density ρ, velocity vector v, and time t. The fluid pressure

is denoted by p, the fluid shear stress by τ, the gravitational

acceleration by g, and the identity matrix by I.

The fracture is represented by two parallel radial plates,

perpendicular to the wellbore, as shown in Fig. 1. Note that

horizontal fractures could occur at shallow depths and over-

pressurized formations (Smith and Montgomery 2015; Ben-

Avraham et al. 2012).

Assuming steady-state conditions and neglecting gravity

with low inertial effect in comparison to other forces, Eq. (1)

becomes,

0 ¼ ∇⋅ −pIþτð Þ ð2Þ

In 1D radial system r, the above equation simplifies to

(Panton 1984),

Fig. 1 Physical domain mimicking a horizontal fracture intercepting the

wellbore. The shaded brown area shows the mud radial invasion, rw is

wellbore radius, w is fracture aperture, and Vmud is mud-loss volume
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τ z; rð Þ ¼ z
∂p

∂r
ð3Þ

where τ(z, r) is the radial shear stress component, perpen-

dicular to the Z-direction.

On the other hand, the shear stress component τ is de-

scribed by the Herschel-Bulkley fluid model (Hemphil et al.

1993), that is,

τ z; rð Þ ¼ τ0 þ m
dvr

dz

� �n

ð4Þ

In Eq. (4), the parameter τ0 is the yield shear stress, which

determines the fluidity state, as explained later. The flow in-

dex n is a positive number that reflects fluid rheological be-

havior. For instance, the fluid exhibits shear-thinning behavior

when n < 1, and shear-thickening when n > 1. Typical values

for flow behavioral index in drilling fluid range from about 0.3

to 1.0 (Kelessidis et al. 2006). The other parameters corre-

spond to the consistency multiplier m, and the derivative of

the radial velocity vr in the Z-direction, reflecting the shear

rate. Note that the Herschel-Bulkley model in Eq. (4) can also

be used to describe Newtonian fluids when considering τ0 + 0

and n = 1.

Solution method

Our system of equations is given by the Cauchy equation (3)

and the Herschel-Bulkley fluid model equation (4). The first

equation combines two external forces, pressure force and

shear force, applied to the fluid. The second equation de-

scribes the fluid rheological behavior as a function of the fluid

yield stress and shear rate. The proposed solution is based on

the assumption that the drilling fluid viscosity is higher than

the in situ water viscosity in the fracture, with no significant

mixing between the two fluids. Under these conditions, a

piston-like displacement is considered at the mud-water inter-

faces, which is a reasonable assumption (Razavi et al. 2017).

Therefore, the fluid pressure and the shear force are approxi-

mated only within the mud invaded zone. The fracture is as-

sumed infinite acting with constant average hydraulic aper-

ture, and no-slip boundary conditions (B.C.) are set at the

fracture walls. The pressure is assumed to be constant at the

inlet.

The concept of the proposed solution method is illustrat-

ed in Fig. 2. As the fluid propagates deep into the fracture,

radial flow velocity decreases and shear stress diminishes.

The shear rate is highest in the vicinity of the wellbore and

gradually reduces away from the wellbore. Therefore, the

fluid apparent viscosity increases as the shear rate decreases

with the radial distance. Furthermore, driven by the vertical

variations of flow velocity and shear stress, fluid layers

along the fracture aperture develop and introduce self-

friction with the highest intensity at the fracture wall and

reduce linearly toward the fracture centerline, as illustrated

in Fig. 2. Consequently, a region with diminished shear rate

(i.e., dvr/dz = 0) develops at the fracture center, correspond-

ing to the yield shear stress zone τ0 (see Eq. (4)). This region

is denoted by the plug flow region, while the rest is the free

flow region. As the fluid propagates further within the frac-

ture, the plug region expands toward the fracture walls,

eventually reaching a total stall of the flow, as illustrated

in Fig. 3a. This condition represents the ultimate steady

state, where the pressure drop between the wellbore and

the mud front becomes too small to overcome the yield

stress τ0 (see Fig. 3b).

The fluid flow in the fracture is symmetrical across the

fracture centerline. Therefore, we derive the equations for

the domain upper half of symmetry. Based on the previous

discussion, where we subdivided the flow domain into two

regions a plug and a free region, the following conditions

are introduced for the velocity vector:

Fig. 2 Sketch of an infinite-acting fracture cross-section of aperture w,

intercepting the wellbore. No-flow and no-slip B.C. are imposed at the

fracture wall. rf(t) is the time-dependent radial distance of the invading

fluid into the fracture; vr is the velocity vector, and τ is the shear stress.

The plug flow region corresponds to the region where the variation of the

velocity along the z-axis diminishes; the free flow region corresponds to

the region outside the plug region
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vr zð Þ

vr;plug zð Þ; forz≤zplug

vr;free zð Þ; forzplug < z <
w

2

0; forz ¼ w

2

8

>

>

<

>

>

:

ð5Þ

In Eq. (5), zplug is the vertical extension of the plug region.

vr, plug and vr, free denote the velocities within the plug region

and free region, respectively. The last condition is a result of

no-slip B.C.

A detailed description of the solution method is provided in

Appendix 1. Here, we only show the key derivations.

Combining Eqs. (3) and (4), and solving the differential equa-

tion of velocity in the Z-direction, we get,

vr zð Þ ¼
n −

∂p

∂r

w

2
þ τ0

� �

∂p

∂r
w
2
−τ0
m

� �1=n

þ n −
∂p

∂r
zþ τ0

� �

∂p

∂r
z−τ0
m

� �
1
n

∂p

∂r
nþ 1ð Þ

ð6Þ

In the plug region, dvr/dz = 0, therefore, writing Eq. (6) for

each region separately, one gets,

vr;free zð Þ ¼ n

nþ 1
zplug−

w

2

� �
∂p

∂r
w
2
−zplug

� �

m

 !1=n

þ n

nþ 1

z−zplug
� �

∂p

∂r
z−zplug
� �

m

 !1
n

vr;plug zð Þ ¼ n

nþ 1

τ0
∂p

∂r

−
w

2

0

B

@

1

C

A

w
2

∂p

∂r
−τ0

� �

m

 !1=n

ð7Þ

The total volumetric flow rateQtotal is written as the sum of

the rate within the plug regionQplug, and within the free region

Qfree, that is,

Qtotal ¼ Qplug þ Qfree ð8Þ

On the other hand, the flux can be expressed in terms of the

surface integral for each region by:

Qtotal ¼ 4πr ∫
0

zplug

vr;plugdzþ 4πr ∫
w=2

zplug

vr;freedz ð9Þ

Substituting Eq. (7) in Eq. (9) and integrating along the

fracture aperture, we get,

Qn
total ¼

4πrð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n
dp

dr

� �

1−
τ0
w

2

dp

dr

0

B

@

1

C

A

1−
1

nþ 1

� �

τ0
w
2

dp

dr

−
n

nþ 1

� �

τ0
w
2

dp

dr

 !2
0

@

1

A

n

ð10Þ

By rearranging Eq. (10), it can be simplified to an ODE

with a quadratic form, as follows,

dp

dr

� �2

−
Qn

total

rnA
þ B

� �

dp

dr
þ D ¼ 0 ð11Þ

where the quantities A, B and D are nonlinear functions of n,

m, and w, as discussed in Appendix 1.

By solving for the quadratic Eq. (11) analytically and

selecting the positive physical root, we get,

dp

dr
¼ 1

2
Bþ Qn

total

rnA
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

A ð12Þ

a) b)

Fig. 3 Illustration (a) of yield-power-law fluid flow in a radial fracture

showing the evolution of the propagation of the plug region as the mud

travels away from the wellbore, resulting in total plugging. Plot (b) shows

typical pressure profiles versus radial distance at various times and

invasion distances, where a constant injection pressure is assumed at the

wellbore
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Finally, by integrating Eq. (12) and recalling the total flux,

we reach the final ODE system to solve:

p f −pw ¼ B r f tð Þ−rw
� �

2
þ

Qn
total r f tð Þ1−n−r1−nw

� �

2 1−nð ÞA þ 1

2
∫

r f rð Þ

rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

Adr

Qtotal ¼ 2πwr f tð Þ dr f tð Þ
dt

8

>

>

>

>

<

>

>

>

>

:

ð13Þ

The ODE system in Eq. (13) is nonlinear and cannot be

solved analytically, except for a particular case when n = 1

(see Appendix 2). Therefore, a numerical ODE solver is used

to solve Eq. (13) starting with initial conditions rf(t = 0) = rw
(see Appendix 1). Note that Eq. (13) shows only the difference

between the inlet pressure and the pressure in the fracture (pf
− pw) is needed to be modeled.

Model verification: particular analytical solution

Our proposed semi-analytical solution is a generalization of

the one introduced by Liétard et al. (2002) for Bingham plastic

fluids. By taking a unity flow index (n = 1) in Eq. (4), the

Herschel-Bulkley model reduces to the Bingham plastic mod-

el such that,

τ z; rð Þ ¼ τ0 þ m
dvr

dz
ð14Þ

In Appendix 2, we show the derivation of a particular case

of the proposed solution when n = 1. Figure 4 compares the

solutions of the mud invasion front (dimensionless) versus a

dimensionless time obtained by our model and the one

proposed by Liétard et al. (2002), which shows identical

match. The solutions are presented for various values between

0.002 and 0.04 of the dimensionless parameter α, which is

defined by,

α ¼ 3rw

w

τ0

p f −pw

 !

ð15Þ

This test case shows that a particular solution (n = 1) of the

proposed semi-analytical model converges to the analytical

solution of Liétard et al. (2002) for Bingham plastic fluids.

Model verification: general solution

We use simulations to verify our semi-analytical solutions for

general Herschel-Bulkley fluids with different flow indexes,

n. Simulations were performed using a finite-element method

within COMSOL-Multiphysics (Littmarck and Saeidi 1986)

to solve the flow of a non-Newtonian fluid within two parallel

circular plates, mimicking the geometry of the radial fracture,

shown in Fig. 1. We emphasize that the numerical solution is

based on the Navier-Stokes equations, whereas the semi-

analytical solution is based on the more general Cauchy equa-

tion of motion corresponding to the Herschel-Bulkley fluid.

To address the discrepancy between the two solutionmethods,

we use the approach by Papanastasiou (1987), which links the

Navier-Stokes equation with the Cauchy equation by manip-

ulating the Herschel-Bulkley fluid as,

μeff γð Þ ¼ μ0 1−e−mp
˙γ

� �

þ m γ̇
� �n−1

ð16Þ

where the effective viscosity as a function of shear rateμeff

γ̇
� �

is written in terms of the viscosity due to yield stress μ0,

consistency multiplier m, shear rate γ̇, behavioral flow index

n, and a regularization exponent mp. The parameter mp has no

physical significance. However, it is important to avoid sin-

gularities in the numerical solutions. Based on a sensitivity

study (not shown here) to assess the effect of mp, we found

that mp = 100 to 500 provided reasonable accuracy and

α=0.04

α=0.02

α=0.01

α=0.004

α=0.002

Fig. 4 Comparisons of solutions from a particular case of the proposed

semi-analytical with the analytical solution by Liétard et al. (2002) for

Bingham plastic fluid model. The corresponding type curves show the

invasion front versus time, generated for different values of alpha

between 0.002 and 0.04
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robustness. High-resolution simulations were also needed to

reduce instabilities and numerical artifacts. The accuracy of

this numerical solution has been discussed previously

(Albattat and Hoteit 2019).

In the simulation model, the fracture is assumed to be ini-

tially saturated in water at a constant pressure. The size of the

fracture in the simulation domain is selected to be large

enough to mimic infinite boundary conditions. The simulation

solution includes the pressure solution in the mud and water

zones, and the mud-front propagation (Albattat and Hoteit

2019). Figure 5 compares the semi-analytical solutions and

the numerical solutions obtained for two cases with n = 1

and n = 0.7, reflecting a yield stress shear-thinning fluid. The

solutions describe the mud invasion distance versus time. The

plateau section in the curves reflects the maximum invasion

distance that is when the mud front stalls. Both solution

methods are in good agreement.

Type curves

Type curves are often generated with dimensionless groups to

provide quick interpretations and diagnostics of time-

dependent trends. This technique is commonly used in well

testing (Lee 1982). In this work, we adopt the following di-

mensionless variables:

rD ¼ r f

rw

VD ¼ Vm

Vw

¼
πw r2f −r

2
w

� �

πw2
w

¼ r f

rw

� �2

−1 ¼ r2D−1

α ¼ 2nþ 1

nþ 1

� �

2rw

w

� �

τ0

Δp

� �

β ¼ n

2nþ 1

� �

w

rw

� �1þ1
n Δp

m

� �

1

n
tD ¼ tβ

ð17Þ

where rD is the dimensionless mud-invasion radius, VD is

the dimensionless mud-loss volume, tD = βt is the dimension-

less time, and a and β are dimensionless parameters reflecting

invasion stoppage behavior and fluid rheological behavior.

Additional analysis of the effect of a is discussed below.

The governing system of equations given in Eq. (13) is then

rewritten in terms of the dimensionless variables, where the

same solution method is applied. Additional details on the

derivation of the dimensionless form of the semi-analytical

solution are shown in Appendix 3. Figure 6 shows a set of

type curves generated for different flow indexes n = 1.0, 0.8,

0.6, and 0.4 and different values of a. The type curves show

cumulative mud loss increase versus time. At far enough dis-

tance from the wellbore, the plugging effect becomes more

significant and the fluid eventually halts.

We compare our derived type curves with the one proposed

by Majidi et al. (2010). Majidi et al.’s model simplifies a

nonlinear term in the governing equation by a linear term

corresponding to a first-order Taylor’s expansion. With this

simplification, Majidi et al. (2010) could generate an approx-

imate analytical solution. In this work, however, we kept a

second nonlinear order in the equations. As a result, it was

not possible to generate a full analytical solution, but rather a

semi-analytical solution, as detailed in Appendix 1.

We found that the accuracy of this simplified solution by

Majidi et al. (2010) depends on the selected problem param-

eters. Figure 7 shows a comparison between the solutions of

Majidi et al. and the proposed solutions for different values of

a. The flow indexes are, respectively, n = 0.6 and 0.4, from

left to right. At high values of a, both solutions are consistent.

However, as a decreases, the approximation error in Majidi

et al.’s (2010) solution increases, as depicted in Fig. 8. The

error reduces when the flow index increases or approaches

unity.

Method demonstration

The proposed semi-analytical method is applied to four wells

from two different fields. In field case 1, the drilling mud was

Bingham plastic fluid with known fluid properties. A deter-

ministic approach is used to match the data with the semi-

analytical model. In field case 2, a more complex Herschel-

Bulkley fluid was used. In this case, a probabilistic approach is

adopted to account for various uncertainties in the mud and

subsurface formation properties. Alterations in the mud prop-

erties could occur for various reasons such as mud/water in

situ mixing and transient thermal effects.

Field case 1

In the first case, a drilling Bingham plastic fluid was used for

the drilling of two wells: Machar 18 and Machar 20, in the

Machar field in the North Sea (Liétard et al. 2002). Lost

n=0.7

Fig. 5 Comparison between the proposed semi-analytical solutions with

the numerical solutions by COMSOL. Both methods show good

agreements for different cases, n = 1 and 0.7
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circulations within naturally fractured formation were encoun-

tered in both wells, as shown in Fig. 9. The fracture apertures

were estimated to be around 0.42 and 0.64 mm for Machar 18

and Machar 20, respectively, based on a simplified method

proposed by Huang et al. (2011). The limitation of Huang

et al.’s (2011) method is in the assumption that the total

mud-loss volume must be known, which is available in this

case. In our proposed approach, however, the total mud-loss

volume can be predicted by fitting the transient mud-loss be-

havior versus dimensionless time.

We note that the well data, given in Fig. 9, as provided

by Liétard et al. (2002), are plotted versus different

dimensionless groups than the ones used here. For consis-

tency, we replotted these field data using the proposed

dimensionless variables given in Eq. (17), as shown in

Fig. 10. The semi-analytical solutions were then generated

to replicate the transient mud-flow, which produced an

excellent match to the trends, as depicted in Fig. 10. In

this case, the behavioral flow index is unity (n = 1) for

Bingham plastic fluid model, 19.5 lb./100 ft2 of yield

value, and 35 cp of plastic viscosity. The dimensionless

parameters are α = 0.00215 and 0.0006436, respectively.

Fracture apertures of Machar 18 and Machar 20 wells

were found to be w=0.425 mm and 0.616 mm.

Fig. 6 Type curves in a dimensionless form showing dimensionless mud-loss volume (VD) versus dimensionless time (tD) for different values of n (n = 1,

0.8, 0.6, and 0.4) and a (a = 0.002, 0.004, 0.01, 0.02, and 0.04)

Fig. 7 Comparisons of the dimensionless mud-front radius (rD) versus

dimensionless time (tD) obtained by the simplified solutions of Majidi

et al. (2010) and our proposed method. Different cases are considered,

corresponding to flow indexes n = 0.60 (a) and n = 0.40 (b). The

simplified solution becomes less accurate as α decreases
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Field case 2

The second field case corresponds to two wells in the Gulf of

Mexico (Majidi 2008; Majidi et al. 2010). The mud-loss vol-

umes (gallons per minute) were reported versus time in the

two zones for a limited period before the mud-loss stops, as

shown in Fig. 11. The pressure drop, which is the difference

between the injection pressure and initial formation pressure,

was reported to be within the range of 700–800 psi, and mud

properties are n = 0.94, m = 0.08 lbf/100 ft2, and τ0 = 8.4 lbf/

100 ft2 at surface conditions.

Because of the nature of uncertainties in the drilling fluid

and subsurface properties, we apply a probabilistic modeling

approach using Monte Carlo simulations. This probabilistic

approach is needed to account for various uncertainties in

the fluid property alterations related to subsurface temperature

conditions and fluid mixing (Babu 1998; Rommetveit and

Bjorkevoll 1997). We perform uncertainty analysis by com-

bining our semi-analytical solutions with Monte Carlo simu-

lations. The whole process is computationally efficient and

could be performed within seconds. We vary six input

parameters, including the flow index, yield stress, fracture

aperture, consistency factor, and pressure drop.

Figure 12 (right) corresponds to the parameters in zone 2.

These distributions are used as inputs for the semi-analytical

model, which is driven by the Monte Carlo simulation pro-

cess. The history match corresponds to the time-dependent

cumulative mud-loss volume, where uncertainties are taken

into consideration. Figure 13 (left) shows the solution

matching band of the field data using the semi-analytical so-

lution combined with Monte Carlo simulations. The matching

p10, p50, and p90 percentiles are also shown. Figure 13 (right)

uses a violin plot to highlight the distribution behavior of the

solution versus time. Figure 14 shows similar analyses done to

match the data in zone 2.

For well 1, the obtained probabilistic predictions for the

fracture aperture were 0.57, 0.79, and 1.01 mm for p10, p50,

and p90, respectively. The predicted total mud-loss volumes

were 968, 2591, and 5331 bbl for p10, p50, and p90,
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Fig. 9 Cumulative mud losses encountered in two wells in the Machar

field, data acquired from Liétard et al. (2002)

Fig. 10 Matching solutions for the two field data sets of Machar field

using dimensionless variables. Both graphs’ data were processed to

capture transient leakage behavior. The upper graph is for Machar20,

and the lower plot is for Machar18
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respectively. The probabilistic distributions of the matching

parameters are shown in Fig. 15 for well 1, and in Fig. 16

for well 2.

Discussion

The objective of the proposed model is to develop a numer-

ical diagnostic tool to help predict the dynamic behavior of

mud leakage into fractured formation. The tool can be used

to perform quick sensitivity analyses and what-if scenarios

to optimize LCM selection. The model is based on simple

computations and runs efficiently in a spreadsheet. This

feature makes it convenient to be coupled with Monte

Carlo simulations to address uncertainties, where thousands

of simulations are typically needed. The input data for the

model corresponds to the drilling fluid rheological proper-

ties, the injection pressure drop, and the mud-flow rate. The

modeling procedure consists of (1) converting and plotting

the cumulative mud volumes versus a dimensionless time

and (2) matching the trend with the semi-analytical model or

the type curves by tuning the fracture hydraulic aperture. As

a result, the matching trend provides an estimate of the frac-

ture hydraulic aperture and a prediction of the mud-loss

behavior, including the flow halt time and the total ultimate

volume of mud leakage.

a) b)

0

20

40

60

80

100

120

140

0 10 20 30 40 50 60

M
u

d
 l

o
ss

 r
a
te

 [
g

p
m

]

Time [min]

0

50

100

150

200

250

300

0 20 40 60 80 100

M
u

d
 l

o
ss

 r
a
te

 [
g

p
m

]

Time [min]

Fig. 11 Mud-loss volume rate (gallons per minute) versus time (minutes) reported for two wells, 1 and 2, in the Gulf ofMexico (Majidi 2008). aWell 1.
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a) b)

Fig. 12 Histograms showing the distributions of the input parameters, modified fromRezaMajidi (2008), used in theMonte Carlo simulations for zone 1

(a) and zone 2 (b)
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The presented model assumes laminar flow, which may not

be valid in the case of turbulent flow. Turbulent flow, howev-

er, is known to occur in the near-wellbore region for gas wells

operating at high production or injection rates, and is less

common for liquids (Morris et al. 1987; Lin et al. 2015).

The fluids we are dealing with in this work are highly viscous,

where the fluid flow takes place in natural fractures with an

aperture within the range of millimeters. The reduced

Reynold’s number (Re) for 1D radial flow is given by,

Re ¼ v w2

μ r
;

where r is the characteristic radius from the wellbore, v is the

average velocity at distance r, w is the fracture aperture, and μ

is the fluid viscosity. For instance, with μ = 100 cp,w = 1mm,

and flow loss rate into the fracture at 1 gal/s, which is substan-

tially high. The reduced Reynolds number at r = 10 cmwill be

Re = ~0.6 < 1, which is still within the laminar flow regime

(Majidi 2008).

It should be noted that the proposed model is based on

several simplifications, and therefore, its applicability is con-

ditional. The main simplifications include the assumption of

mud flow in a horizontal fracture. This assumption was

adopted to neglect the buoyancy effect, driven by the differ-

ence of densities of the drilling mud and the in situ water.

Consequently, the model is not expected to be applicable

when the gravity effect is significant such as in the case of

mud with a specific gravity different from one, flowing in

inclined fractures. The model also neglects the effect of water

displacement, downstream of the mud. Therefore, the pressure

of the water phase is assumed constant, equal to the initial

pressure of the formation. This assumption is valid when the

mud viscosity is significantly higher than the water viscosity.

Note that an analogy to this assumption is in Richards

a) b) 

Fig. 13 Well 1 data and corresponding solution match of cumulative mud-loss volume (Vm) versus time, showing the p10, p50, and p90 percentiles (a)

and with the solution distribution behavior (b). a Model match with uncertainty range. b Distribution of probabilistic match

a) b)

Fig. 14 Well 2 data and corresponding solution match of cumulative mud-loss volume versus time, showing the p10, p50, and p90 percentiles (a) and

with the solution distribution behavior (b). a Model match with uncertainty range. b Distribution of probabilistic match
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equations for water flow in unsaturated porous media, where

the air pressure is assumed constant. Other simplifications in

our model include ignoring the mud/water in situ mixing and

thermal effects. Furthermore, the modeling procedure may

produce non-unique solutions. This problem is common in

all curve-fitting approaches, such as pressure transient analy-

sis (PTA) and decline curve analysis (DCA), which mostly

occur if the trend of field data is not well established.

Therefore, uncertainty analysis should always be accounted

for, and different methods should be used to confirm the re-

sults. The use of Monte Carlo simulations may mask some

physical effects that are not considered in the model. This

approach could be useful to assess the range of possibilities

when significant uncertainties present in the input data.

Conclusions

Lost circulation during drilling operations is a common

problem that requires immediate intervention to circumvent

fluid loss. Diagnostic tools, based on simplified input data

such as fluid properties, pressure, and rate trends, can be

quickly deployed to quantify uncertainties related to the

fluid leakage into the subsurface formation and to perform

predictions. In this work, a new semi-analytical approach is

presented to model the leakage behavior of general

Herschel-Bulkley fluids into a horizontal infinite-acting

fracture, mimicking the effect of a fractured formation.

The analytical approach is based on simplified assumptions

such as horizontal fractures with uniform aperture.

However, the proposed solution is a generalization of other

analytical solutions developed for Bingham plastic fluids.

The model is therefore applicable to different types of non-

Newtonian fluids, including yield stress shear-thinning and

shear-thickening fluids. The model verification was

established for general cases using high-resolution finite

element simulations. The modeling approach can adequate-

ly predict the trend of mud leakage in a system with hori-

zontal fractures as a function of time. It can predict the

effective hydraulic aperture of the fracture, the ultimate total

mud-loss volume, and the expected duration before the

leakage stalls, if conditions allow. We introduced dimen-

sionless groups and generated type curves, which can pro-

vide quick diagnostics about the leakage behavior from

a) b)

Fig. 15 Histograms showing the predicted probabilistic distribution of the fracture aperture (a) and the total mud-loss volume (b) for zone 1. a

Distribution of fracture aperture uncertainty, b Distribution of total mud loss uncertainty

Fig. 16 Histograms showing the predicted probabilistic distribution of the fracture aperture (a) and the total mud-loss volume (b) for zone 2. a

Distribution of fracture aperture uncertainty. b Distribution of total mud loss uncertainty
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matching the type curve trends without a need for simula-

tions. We demonstrated the applicability of the model for

four wells from two different fields. A numerical procedure

was described to couple the model with Monte Carlo simu-

lations to perform predictions under uncertainties. The pro-

posed semi-analytical model is based on simple calculations

that can be performed efficiently. This model is useful as a

numerical diagnostic tool to perform quick predictions and

to help optimize LCM selection by performing what-if

scenarios.

Appendix 1. Derivation from Cauchy equation
to transient fluid loss

The Cauchy equation of motion is given by:

ρ
∂v

∂t
þ ρ v⋅∇ð Þv ¼ ∇⋅ −pIþ τð Þ þ ρg ð18Þ

At the steady state without inertial and gravity effects, we

get,

0 ¼ ∇ −pIþ τð Þ ð19Þ

In a radial system 1D, the above equation simplifies to, see

Panton (1984):

τ rz ¼ z
∂p

∂r
ð20Þ

Equation (20) relates the pressure to shear stress. Another

equation to relate shear stress to velocity is given by Herschel-

Bulkley model, such that,

τ rz ¼ τ0 þ m
dvr

dz

� �n

ð21Þ

Connecting these two Eqs. (21) and (20) as,

z
∂p

∂r
¼ τ0 þ m

dvr

dz

� �n

ð22Þ

Solving the differential equation for the general solution of

the velocity profile of the half fracture (i.e., z ∈ [0,w/2]) do-
main, we get,

vr zð Þ ¼
n −

∂p

∂r

w

2
þ τ0

� �

∂p

∂r
w
2
þτ0
m

� �1=n

þ n −
∂p

∂r
zþ τ0

� �

∂p

∂r
z−τ0
m

� �
1
n

∂p

∂r
nþ 1ð Þ

ð23Þ

Equation (23) is valid along the fracture aperture in the Z-

direction, where two regions, according to the velocity profile,

can be distinguished: plug (non-deformed) region and free

(deformed) region. We can see from Herschel-Bulkley equa-

tion model that the plug region corresponds to zero derivative

of the velocity in the Z-direction, that is, dvr
dz

¼ 0. Substituting

this condition in the fluid model with pressure Eq. (22), the

following equation of fluid yield stress is obtained,

zplug
∂p

∂r
¼ τ0 ð24Þ

The velocity is defined at the three B.C. as,

vr zð Þ ¼

vr;plug zð Þ for z≤zplug

vr;free zð Þ for zplug < z <
w

2

0 for z ¼ w

2

8

>

>

<

>

>

:

ð25Þ

In Eq. (5), zplug is the vertical extension of the plug region;

vr, plug and vr, free denote the velocities within the plug region

and free region, respectively. The last condition is a result of

no-slip B.C.

Substitute Eq. (24) into the solution of the general velocity

profile in Eq. (23), we get,

vr;free zð Þ ¼ n

nþ 1
zplug−

w

2

� �
∂p

∂r
w
2
−zplug

� �

m

 !1=n

þ n

nþ 1
z−zplug
� �

∂p

∂r
z−zplug
� �

m

 !1
n

ð26Þ

Use Eq. (26) to find velocity profile in the plug region (plug

velocity) by substituting zplug ¼ τ0
∂p

∂r

and simplifying, we get,

vr;plug zð Þ ¼ n

nþ 1

τ0
∂p

∂r

−
w

2

0

B

@

1

C

A

w
2

∂p

∂r
−τ0

m

 !1=n

ð27Þ

Now, we have two velocity profiles as expressed as,

vr;free zð Þ ¼ n

nþ 1
zplug−

w

2

� �
∂p

∂r
w
2
−zplug

� �

m

 !1=n

þ n

nþ 1
z−zplug
� �

∂p

∂r
z−zplug
� �

m

 !1
n

vr;plug zð Þ ¼ n

nþ 1

τ0
∂p

∂r

−
w

2

0

B

@

1

C

A

w
2

∂p

∂r
−τ0

m

 !1=n

ð28Þ

We transform the velocities into the total volumetric flow

rate (flux);

Qtotal ¼ Qplug þ Qfree ð29Þ

Applying the surface integral of the velocity field for the

two regions,
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Qtotal ¼ 4πr ∫
0

zplug

v rð Þplugdzþ 4πr ∫
w=2

zplug

v rð Þfreedz ð30Þ
Substituting, we find the total flux,

Qtotal ¼
4πr

m1=n

dp

dr

� �1=n
w

2
−
τ0
dp

dr

 !1=nþ1
n

nþ 1

τ0
dp

dr

þ n

2nþ 1

w

2
−
τ0
dp

dr

0

B

@

1

C

A

0

B

@

1

C

A
ð31Þ

Simplifying the above expresses to get,

Qtotal ¼
4πr

m1=n

w

2

� �1=nþ2 n

2nþ 1

� �

dp

dr

� �1=n

1−
τ0
w
2

dp

dr

 !1=n

1−
n

nþ 1

� �

τ0
w

2

dp

dr

−
n

nþ 1

� �

τ0
w
2

dp

dr

 !2

0

B

@

1

C

A
ð32Þ

To avoid obtaining complex number because of the nega-

tive dp

dr
inside the power term, we rewrite the equation as,

Qn
total ¼

4πrð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n
dp

dr

� �

1−
τ0
w

2

dp

dr

0

B

@

1

C

A
1−

n

nþ 1

� �

τ0
w
2

dp

dr

−
n

nþ 1

� �

τ0
w
2

dp

dr

 !2
0

@

1

A

n

ð33Þ

The last term is approximated by using the second-order

Taylor expansion, that is,

Qn
total ¼

4πrð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n
dp

dr

� �

1−
τ0
w

2

dp

dr

0

B

@

1

C

A
1−

n

nþ 1

� �

τ0
w

2

dp

dr

−
n2

nþ 1

� �

τ0
w
2

dp

dr

 !2

0

B

@

1

C

A
ð34Þ

Simplifying,

Qn
total ¼

4πrð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n
dp

dr

� �

1−
2nþ 1

nþ 1

� �

τ0
w

2

dp

dr

þ n−n2

nþ 1

� �

τ0
w
2

dp

dr

 !2

þ n2

nþ 1

τ0
w
2

dp

dr

 !3

0

B

@

1

C

A
ð35Þ

By neglecting the higher-order terms, we get,

Qn
total ¼

4πrð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n
dp

dr

� �

1−
2nþ 1

nþ 1

� �

τ0
w

2

dp

dr

þ n−n2

nþ 1

� �

τ0
w
2

dp

dr

 !2

0

B

@

1

C

A
ð36Þ

We arrange the pressure gradient term as a polynomial

equation of second degree, that is,

0 ¼ dp

dr

� �2

−
Qn

total

rn
4πð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n þ
2nþ 1

nþ 1

� �

τ0
w

2

0

B

B

@

1

C

C

A

dp

dr

þ n−n2

nþ 1

� �

τ0
w
2

� �2

ð37Þ

This equation can be seen as a quadratic equation with

unknown dp

dr
. To simplify the expression, we define the follow-

ing quantities,

A ¼ 4πð Þn
m

w

2

� �2nþ1 n

2nþ 1

� �n

B ¼ 2nþ 1

nþ 1

� �

τ0

w=2

D ¼ n−n2

nþ 1

� �

τ0

w=2

� �2

ð38Þ

Equation (37) becomes,

0 ¼ dp

dr

� �2

−
Qn

total

rnA
þ B

� �

dp

dr
þ D ð39Þ
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This equation is a nonhomogeneous, nonlinear first-order or-

dinary differential equation. The general solution of the polyno-

mial quadratic equation is in the form of −b�
ffiffiffiffiffiffiffiffiffiffi

b2−4ac
p
2a

. Hence,

dp

dr
¼ 1

2
Bþ Qn

total

rnA
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

A ð40Þ

There are two roots for this equation, from which the pos-

itive root is selected, thus,

dp

dr
¼ 1

2
Bþ Qn

total

rnA
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

A ð41Þ

The pressure at the inlet is pw, and the pressure at the mud-

font is pf. It should be noted that the interface is moving with

time rf(t). As a result, we implement a moving boundary con-

dition at the interface only, that is,

∫
pw

p f

dp ¼ ∫
r f tð Þ

rw

1

2
Bþ Qn

total

rnA
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

Adr ð42Þ

Integrate the left-hand side, and the first two sides on the

right-hand side, we get,

p f −pw ¼ 1

2
∫

r f tð Þ

rw

Bdr þ ∫
r f tð Þ

rw

Qn
total

rnA
drþ ∫

r f tð Þ

rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

Adr

0

@

1

A ð43Þ

p f −pw ¼ B r f −rw
� �

2
þ

Qn
total r1−nf −r1−nw

� �

2 1−nð ÞA þ 1

2

� ∫
r f tð Þ

rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

Adr ð44Þ

To compute the last integral term on the right, we use,

1

2
∫

r f tð Þ

rw

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

rnA

� �2

−4D

s
0

@

1

Adr ¼ f r f tð Þ
� �

− f rað Þ ð45Þ

which can be solved as (Choi et al. 2018; Vidunas 2008;

Ismail and Pitman 2000),

f r f tð Þ
� �

− f rwð Þ ¼

F1 α;β;β0; γ;χ; δð Þr f tð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Bþ Qn
total

r f tð ÞnA

� �2

−4D

r

2
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BQn
total þ Ar f tð Þn B2−4D
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−2A
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totalD

A2
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BQn
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−2A
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Qn
totalD
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F1 α;β;β0; γ;χ; δð Þrw
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BQn
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v

u
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t

− ð46Þ

Appell’s hypergeometric function of the first kind is a so-

lution of the integral term. It is a double hypergeometric series

F1(α, β, β', γ, χ, δ), where,

β ¼ β0 ¼ −
1

2

γ ¼ n−1

n

χ ¼ −
Qn

totalr
−n

ABþ 2A
ffiffiffiffi

D
p

δ ¼ −
Qn

totalr
−n

AB−2A
ffiffiffiffi

D
p

ð47Þ

We substitute back these values into Eq. (46) to get,
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f r f tð Þ
� �

− f rwð Þ ¼
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ð48Þ

We now have an analytical solution of pressure as a function

of radial distance r. Equations (48), (45), and (44) are used when

the total flow rate entering the fracture is known. Otherwise, if

the total flow rate is unknown, we can use the total flow rate as,

Qtotal ¼
dVm

dt
ð49Þ

Mud-loss volume can be found for radial flow as,

Vm ¼ πw r f tð Þ2−rw2
� �

ð50Þ

Substituting Eq. (50) into (49) and differentiating,

Qtotal ¼ 2πwr f tð Þ dr f tð Þ
dt

ð51Þ

Finally, the mathematical problem of lost circulation in a

smooth horizontal fracture is solved analytically. Equations (51),

(48), (45), and (44) are the solution ofmud-loss flow front rf(t) as a

function of time t, based on the given parameters of mud rheology

(n,m, τ0), differential pressure (pf, pw), and fracture aperture (w).

Appendix 2. Particular solution for Bingham
plastic fluids

Here, we show how the proposed solution can be derived

mathematically for Bingham plastic fluids, when n = 1. Let

us take Eq. (36), after approximating the last term, by applying

the same approach for Bingham plastic fluid condition (n = 1),

Qtotal ¼
πrw3

6m

dp

dr
−
3τ0

w

� �

ð52Þ

Integrating,

∫
pw

p f

dp ¼ ∫
rr tð Þ

rw

6mQtotal

πrw3
þ 3τ0

w

� �

dr ð53Þ

The above equation becomes,

p f −pw ¼ 12mr f tð Þ
w2

dr f tð Þ
dt

ln
r f tð Þ
rw

� �

þ 3τ0

w
r f tð Þ−rw
� �

ð54Þ

Rearranging,

dr f tð Þ
dt

¼
p f −pw

� �

−
3τ0

w
r f tð Þ−rw
� �

12mr f tð Þ
w2

ln
r f tð Þ
rw

� � ð55Þ

Equation (55) is the final solution of Bingham plastic fluid

model of mud invasion front rf(t) as a function of time t. The

equation can be derived in different forms, which is consistent

with the dimensionless form by Liétard et al. (2002). The

defined dimensionless groups are,

α ¼ 3rw

w

τ0

p f −pw

 !

β ¼ w

rw

� �2 p f −pw

� �

12m

rD ¼ r f

rw
; tD ¼ βt

ð56Þ

Implementing into Eq. (55) to generate a dimensionless

differential form,

drD tð Þ
dtD

¼ 1−α rD tð Þ−1ð Þ
rD tð Þln rD tð Þð Þ ð57Þ

This is an ordinary differential equation that can be solved

analytically by using inverse function theorem (IFT) in such a

way that any function f(x) is both differentiable and invertible.

Assuming y = f−1(x) is the inverse of f(x) which all x satisfying

f ' (f−1(x)) ≠ 0. Thus, the derivative,

dy

dx
¼ d

dx
f −1 xð Þ
� �

¼ f −1
� �

0
xð Þ 1

f 0 f −1 xð Þ
� � ð58Þ
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Equation (57) becomes,

dtD

drD tð Þ ¼
rD tð Þln rD tð Þð Þ
1−α rD tð Þ−1ð Þ ð59Þ

Providing the closed-form solution after applying initial

condition at tD = 0 and rD = 1, we get,

tD ¼ −
4

α
1−rD þ ln rD

rDð Þð Þ þ 4
1

α2
þ 1

α

� �

Li2
α

1þ α

� �

−Li2
αrD

1þ α

� �

−ln rDf
� �

ln 1−
αrD

1þ α

� �	 


ð60Þ

In the above equation, the polylogarithmic function Li2 is

shown as a solution of Eq. (59), which is the analytical solu-

tion of a dimensionless mud invasion front rD as a function of

dimensionless time tD for Bingham plastic fluid model.

Furthermore, an analytical solution was provided as well

(Liétard et al. 2002).

Appendix 3. Type curves

We derive the type curves in dimensionless form. Let us recall

Eq. (44)

p f −pw ¼ B r f −rw
� �

2
þ

Qn
total r1−nf −r1−nw

� �

2 1−nð ÞA þ 1

2
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@
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Dividing all terms by Δp = pf − pw, we get,

1 ¼ B r f −rw
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Substituting the defined constants as done previously in

Eq. (38) and applying the dimensionless variable rD ¼ r f rw,

it yields,

1 ¼ 1

2

2nþ 1
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2rw
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The transforming of the third term to dimensionless form,

we get,
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Hence, the proposed dimensionless parameters are,

rD ¼ r f

rw
tD ¼ βD

VD ¼ Vm

Vw
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πw r2f −r

2
w

� �

πwr2w
¼ r f
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