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Abstract

Motivation: Although semantic similarity in Gene Ontology (GO) and other approaches

may be used to find similar GO terms, there is yet a method to systematically find a class of

GO terms sharing a common property with high accuracy (e.g. involving human curation).

Results: We have developed a methodology to address this issue and applied it to iden-

tify lipid-related GO terms, owing to the important and varied roles of lipids in many

biological processes. Our methodology finds lipid-related GO terms in a semi-automated

manner, requiring only moderate manual curation. We first obtain a list of lipid-related

gold-standard GO terms by keyword search and manual curation. Then, based on the

hypothesis that co-annotated GO terms share similar properties, we develop a machine

learning method that expands the list of lipid-related terms from the gold standard.

Those terms predicted most likely to be lipid related are examined by a human curator

following specific curation rules to confirm the class labels. The structure of GO is also

exploited to help reduce the curation effort. The prediction and curation cycle is repeated

until no further lipid-related term is found. Our approach has covered a high proportion,

if not all, of lipid-related terms with relatively high efficiency.

Database URL: http://compbio.ddns.comp.nus.edu.sg/�lipidgo

Introduction

Gene Ontology (GO) (1) is the most widely used controlled

vocabulary that provides functional annotation for gene

product. GO contains three orthogonal sub-ontologies—

viz., cellular component (CC), molecular function (MF)

and biological process (BP). Each sub-ontology covers
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different aspect of biology and is represented as a rooted,

directed acyclic graph with multiple inheritance property

in which a more specific child term may have more than

one parent, which is more general. For example, the

term GO:0005739 ‘mitochondrion’ has two parents

GO:0043231 ‘intracellular membrane-bounded organelle’

and GO:0044444 ‘cytoplasmic part’. There are several

types of relationships between parent and child node in

GO: ‘is-a’, ‘part-of’, ‘regulates’, etc (2). Only ‘is-a’ relation-

ship is considered in our project because our interest is

to find a class of similar GO terms—e.g. GO terms with

lipid-relatedness property—and only in ‘is-a’ relationship

the child term inherits the property or attribute of the par-

ent. In fact, the ‘is-a’ relationship is transitive. When a par-

ent term is lipid related, all its child terms are also lipid

related, and the child terms of all the child terms are also

lipid related and so on. The logical consequence of this is

the ‘inheritance constraint’ property: if an ancestor term is

lipid related, then all its descendant terms are necessarily

lipid related. However, the inverse of above statement may

not necessarily hold true: when an ancestor/parent term

is not lipid related, the descendant/child term may still be

lipid related. For example, GO:0006644 ‘phospholipid

metabolic process’ is lipid related but its parent term

GO:0006796 ‘phosphate-containing compound metabolic

process’ is not necessarily lipid related. Another property

of GO is the ‘true-path’ rule: genes annotated by more

specialized child terms are transitively and implicitly

annotated by the more general parent terms as well, i.e. a

gene annotated by the term ‘mitochondrion’ is, transitively

and implicitly, also annotated by the term ‘cell part’

(via intermediate terms ‘cytoplasmic part’ and ‘intracellu-

lar part’).

There have been a number of studies on finding related

GO terms. A popular concept for comparing the similarity

between a pair of GO terms is semantic similarity, consist-

ing of three main classes: node-based approach, edge-based

approach and hybrid approach (3). Central to the node-

based approach is information content (IC), which gives a

measure of how specific and informative a term is. In the

case of GO, the frequency p of a term is the ratio of the

number of genes annotated by that particular term to all

GO annotations. The smaller the frequency, the more

informative that term is, and this relationship is mathemat-

ically represented as IC¼�log(p). Resnik (4) proposed a

simple measure of semantic similarity between any two

nodes in a directed acyclic graph: the IC of their lowest

common ancestor (LCA), and if there are multiple LCA,

the one with the highest IC, is used. This measure was later

adapted for GO and achieved good results in some inde-

pendent assessment studies despite its simplicity (5). There

are variations of this formula for calculating semantic

similarity: (6–8). There are also edge-based methods (9)

and hybrid methods using both node and edge (10).

All these methods involving semantic similarity inher-

ently depend on how close the two GO terms are in the

GO structure. However, for the purpose of finding a class

of similar GO terms, we may need to look in different parts

of the GO tree. For example, both GO:0006631 ‘fatty acid

metabolic process’ and GO:0034378 ‘chylomicron assem-

bly’ are lipid related but the only common ancestor besides

the root is ‘single-organism process’, which is a general

term. To achieve that purpose, other data sources are

needed, such as co-annotation to the same proteins or

genes and co-occurrence in literature. Jin and Lu (11)

adopt a text-mining approach and construct a word-usage

profile as a feature for each GO term by collecting the

words from PubMed records (titles and abstracts) based on

the PMIDs associated with that GO term to reflect the

semantic context of the literature associated with that GO

term. Riensche’s XOA (Cross-Ontological Analytics) (12)

uses co-annotation data by constructing a matrix having

GO terms as row and gene products as columns, with the

value of each cell of the matrix being a count of association

between the corresponding GO term and gene product.

This framework is able to calculate semantic similarity of

terms from different sub-ontologies, which is not found in

other methods above but is highly useful for finding a class

of GO terms, as they may span all three sub-ontologies.

Unlike others who focus on pair-wise similarity, the aim

of our work is to find a class of GO terms sharing a certain

property. In particular, we develop an approach to identify

the class of lipid-related GO terms. We choose the class of

lipid-related GO terms because lipids and their metabolites

are very important and play an essential role in many BPs

relating to energy homeostasis, signaling, neurobiology,

infectious diseases and so on. Moreover, one of the most

important goals in the emerging field of lipidomics is

identification of genes and proteins involved in lipid

metabolism and other relevant processes (13). Like biolo-

gists in other subfields, lipid researchers are interested in

elucidating lipid metabolism functions of gene products,

and most of them use GO for functional annotation.

Therefore, the identification of lipid-related GO terms will

help lipid research, either directly or in combination

with other bioinformatics tools involving GO terms.

For example, lipid-related GO terms were used to identify

novel lipid-associated complexes involved in liver cancer

progression (14).

A GO term is lipid related if lipids or lipid complexes

(liposaccharides, lipoprotein, etc.) are involved in the term

as reactants, participants or structural components. To be

more exact, we have made a set of specific curation rules in

Section 2.5 to clearly define what terms are lipid related.
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As we are only interested in binary classification, the

parents or ancestors of lipid-related term, which are not

necessarily lipid related, can be in the category of non–

lipid-related terms.

For some terms it is easy to recognize that they are lipid

related, while some other terms may associate with lipid

function in an obscure way. A lipid-related GO term is

defined as explicitly lipid related if there is lipid-related key-

word (KW) in its term name or term definition. The rest of

the lipid-related GO terms are implicitly lipid related, and

detailed knowledge about the term is required for recogni-

tion of the association of lipid function to the term.

Searching lipid-related GO terms comprehensively

across all three sub-ontologies of GO is a nontrivial task.

While some terms are explicitly lipid related, often lipid

functions are implicitly associated with GO terms. Usually,

highly specific knowledge about the relevant processes,

pathways, etc. is needed to realize that these latter GO

terms are related to lipids. Furthermore, human manual

curation on all GO terms is time-consuming and a tedious

task, especially for the BP sub-ontology. There are about

40,000 GO terms, covering many concepts in many subdis-

ciplines of biology. And, for BP terms, it demands even

more detailed knowledge of the curator as each BP term

represents a series of events accomplished by one or more

ordered assemblies of MFs.

Our approach combines computational prediction with

manual curation to achieve high accuracy and high cover-

age at less curation effort. We adopt the following incre-

mental expansion strategy. With the help of an expert

curator, we first obtain a list of high-quality manually

curated lipid-related terms as well as non–lipid-related

terms. This list forms the initial gold standard that covers

all terms in the MF and CC sub-ontologies and a small por-

tion of the BP sub-ontology from a particular version of

GO (June 2009). A GO term annotated to one set of gene

products is likely to be similar to other GO terms anno-

tated to the same set of gene products (5). Using this obser-

vation and the properties of GO structure, we develop a

machine learning method that can be used to expand the

list of lipid-related terms from the gold standard. Those

terms with high prediction scores (i.e. likely to be lipid

related) are then examined by a human curator following

specific curation rules so that the predicted class labels

(i.e. lipid related vs non-lipid related) can be confirmed.

The procedure of prediction and curation is repeated until

no further lipid-related terms are found. The rest of the

terms, likely to be non-lipid related, are not manually

examined.

In our previous work, we have built a Web site for users

to view and download information on lipid-related GO

terms (15). This article elaborates the methodology of

finding lipid-related GO terms and addresses related issues

such as dealing with multiple versions of GO and balanc-

ing curation effort and accuracy. In our project, the follow-

ing notations are used to describe class labels of GO terms

according to sub-ontology and lipid relatedness: BPþ for

lipid-related BP terms, BP� for non–lipid-related BP terms,

BP? for BP terms whose lipid relatedness has not been

examined by a curator. Similar notations are defined for

CC terms (CCþ, CC�, CC?), MF terms (MFþ, MF�,

MF?) and GO terms in general (GOþ, GO�, GO?). As a

result of the inheritance constraint, all the children and des-

cendants of GOþ are also GOþ (sharing the lipid-related

property). Also, no GO� has GOþ parents or ancestors

(contrapositive). However, the children or descendants of

GO� can be either GOþ or GO�.

Methods

Collection of gold standard lipid-related GO terms

With the help of an expert curator, we obtained a list of

high-quality, manually curated, lipid-related terms as well

as non–lipid-related terms following predefined curation

rules. Non–lipid-related terms are also provided by the cur-

ator to be used as negative controls in the classifier. This

list forms the initial gold standard that covers all terms

in the MF and CC sub-ontologies and a small portion of

the BP sub-ontology from the June 2009 version of GO.

The curation rules will be elaborated later in the curation

section.

Database construction

The relational database of GO was downloaded from the

official Web site. Multiple versions of GO were used:

5 June 2009 for the gold standard and 8 April 2013 for the

simulation experiment. As GO keeps evolving and we

want to keep it up to date, multiple versions of GO are

kept. Important tables in the original GO database include

‘term’, ‘term2term’ and ‘association’. To add class label

of GO terms and other relevant information, we built our

own version of the table ‘term’, naming it as ‘myterm’. As

our interest is whether a GO term has the property of lipid

relatedness, we kept only the is_a relationship in the table

‘term2term’ and built the table ‘myterm2term’. We also

calculated the transitive closure of ‘myterm2term’ into a

table ‘mypath’ to capture ancestor–descendant relation-

ship. With the table ‘mypath’, we can check the inheritance

constraint easily to ensure the integrity of the class

label. Table ‘association’ is about which GO term is

associated with which gene product. We processed the

table ‘association’ into the table ‘myassociation’ by
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removing negative associations. GO associations from all

available organisms are used, and associations with all evi-

dence codes are kept including ‘Inferred from Electronic

Annotation’ (IEA).

Mapping lipid-related GO terms between

different GO versions

GO is frequently updated to meet the need of accumulation

of biological knowledge. It is often necessary to map the

list of lipid-related GO terms as well as non–lipidrelated

controls between different GO versions. For example, our

list of gold-standard GO terms is from an older version

(June 2009), but we are also interested to label terms in

the latest version of GO. Therefore, mapping is necessary,

and several issues have to be addressed. First, we discard

those gold-standard terms that become obsolete. We also

re-examine whether the terms are lipid related if there are

changes in term names or term definitions. Furthermore,

the inheritance constraint may be potentially violated (e.g.

a previous GOþ parent may now have GO�/GO? child)

owing to some change in the GO structure or addition

of new terms. We manually examine the substructures in

GO where there is anomaly, and we resolve the violation

in two ways: either the parent term is converted into GO�
or the child term is converted into GOþ. For example,

the new term GO:0036042 ‘long-chain fatty acyl-CoA

binding’ (as of April 2013 version of GO) became the

child term of GO:0000062 ‘fatty-acyl-CoA binding’.

We resolved the conflict by changing the class label of the

child term GO:0036042 to GOþ, as apparently it is lipid

related.

Feature generation

Features for identifying lipid-related GO terms were gener-

ated in two ways: by KWs and by co-annotation. KWs can

be used to find explicitly lipid-related GO terms by looking

at term name or term definition. A list of KWs containing

names of common lipid-related compounds was picked by

the expert curator in our lab when he was building the

gold-standard set, and we extended the list into 36 KWs

after consulting with the LIPID MAPS classification system

(16). The 36 KWs are lipid, adipo, lipo, vesicle, lipase,

fatty, fats, abscisic, eicosanoid, leukotriene, docosanoid,

octadecanoid, arachid, cholesterol, sterol, steryl, steroid,

glucocorticoid, bile acid, phosphatidyl, ceramide, acetyl-

choline, gluconate, prenol, terpene, isoprene, isoprenoid,

terpenoid, geranyl, quinones, hopanoid, glycerophospho,

sphingo, ganglioside, acyltrehalose and acylaminosugar.

For a particular KW feature, we encode it as 1 if the

KW appears as a case-insensitive substring in its term

name or term definition and 0 otherwise. Thus, the KW

may appear as a separate word itself or within a composite

word (e.g. lipo appearing in lipoprotein). The form of these

KWs was carefully chosen to ensure good accuracy and

coverage. For example, ‘lipid’ is chosen rather than ‘lipids’

because it offers a better coverage. On the other hand,

‘Fats’ is preferred over ‘fat’ as otherwise ‘fate’ will be

counted as hit, which is not lipid related in general.

Database search has shown that to have a lipid-related

meaning, the majority of the substring ‘fat’ appears in two

forms, ‘fats’ or ‘fatty’, and therefore, we keep both forms.

Similarly, we keep both the noun form ‘sterol’ and the

adjective form ‘steryl’. This step simplifies natural lan-

guage processing procedure like dealing with plural forms,

part of speech, etc.

On the other hand, GO terms annotated to the same

sets of gene products are likely to be terms that describe

highly related biological entities and processes. As gene

product is the bridge between GO terms with known class

label (including both GOþ and GO�) and those whose

class label we want to predict (GO?), we first give a

‘lipid-relatedness weight’ to each gene product as follows.

For each GO sub-ontology, a separate weight is designed

because BP, CC and MF carry different aspects of informa-

tion. For example, a gene product g may be explicitly

annotated with 3 BPþ, 2 BP�, 2 BP?, no CCþ, 4 CC�, 2

CC?, no MFþ, no MF� and 1 MF? terms. The BP weight

of a gene product g, BP_weight(g), is number of BPþ
divided by number of BPþ and BP� terms, which in

this case is 3/(3þ 2)¼0.6. Similarly, CC_weight(g) is

0/(0þ 4)¼ 0. MF weight for g does not exist, as there is no

MF with known class label (e.g. MFþ or MF�). During

the calculation of gene product weight, we do not propa-

gate annotations to ancestor terms, and thus, only explicit

annotations are considered.

The next step is to calculate co-annotation feature

scores for the term, which are based on lipid-relatedness

weights of gene products annotated with that term. Here

we consider gene products not only explicitly annotated

with that term but also its descendant terms. For a term t,

suppose there are four distinct gene products that are

annotated with the term t or its descendant terms. Three of

the four gene products have BP weights, which are 0.2, 0.3

and 0.7. The BP score for the term t, BP_score(t), is the

sum of BP weights divided by the number of BP weights,

which in this case is (0.2þ0.3þ 0.7)/3¼ 0.4. CC and MF

scores are calculated in a similar fashion. By the nature

of our formula, the sub-ontology scores (BP, CC and MF

scores) take values between 0 and 1. For a term, if there

is no associated gene product or none of the associated

gene products has gene product weight for a sub-ontology,

we set the corresponding sub-ontology score to zero.
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Finally, we have three sub-ontology feature scores

derived as described above from co-annotation in addition

to the 36 KW features. These 39 features are used to build

our classifier and make prediction on GO terms with

unknown label. The classifier is a support vector machine

(SVM) with linear kernel.

Curation

The development of curation rules is not a simple process:

the rules are being developed incrementally on multiple

GO versions with a few curators involved. In the original

gold standard, there were only four rules for CC and MF

sub-ontology and no rules for BP. With more terms curated

and more experiences accumulated, we modified and

expanded the rules to make the set of curation rules as con-

sistent and informative as possible. We set the scope of

lipid by following the definition of lipids based on LIPID

MAPS (16), which is a popular portal for the lipid commu-

nity and has a comprehensive database containing lipid

molecular structure and lipid proteome. Then we proceed

from the scope of lipid to the scope of lipid-related GO

terms, where extra clarification is needed and several

curation rules are provided. Moreover, we have captured

several common patterns of implicitly lipid-related GO

terms and stated them in rule form. However, a perfect

division of GO terms into lipid-related or non–lipid-related

class is unrealistic. We will elaborate the issues of curation

in the curation section of the discussion.

The original curation rules for the gold standard for the

June 2009 version of GO are as follows:

A. If a term is in the form of ‘X transporter activity’, we

consider the term as lipid related if X is involved in a

lipid-related process.

B. In the case of catalytic activity or reaction, if any sub-

strate or product is lipid related, the term is lipid

related.

C. Polyketides are not considered as lipids, while lipopoly-

sacharides, glycolipids and lipoproteins are considered

as lipid related.

D. Transmembrane signaling receptors are considered

lipid-related terms with the explicit mentioning of the

KW ‘Transmembrane’.

The final curation rules (for GO version April 2013) are

as follows:

1. A term is considered as lipid related if its term name

or term definition contains explicit KWs related to

lipid. Exceptions are the following:

• Short-chain fatty acids (those fatty acids with a

chain length of �5) and their CoA forms are not

considered as lipid related in general (e.g. formic

acid, acetic acid, propionic acid and acetyl-CoA).

• Negation of KWs.

• Presence of KW in a way that does not entail the

participation of that KW in the term. (e.g. in a dis-

junctive phrase like ‘lipid or protein’.)

2. Polyketides are not considered as lipid related, while

lipopolysacharides, glycolipids and lipoproteins are

considered as lipid related.

3. In the case of catalytic activity or reaction, if any sub-

strate or product is lipid related, we consider the term

as lipid related.

4. ‘Membrane-bounded vesicle’ is considered as lipid

related.

5. Regulation of lipid-related metabolic processes is lipid

related.

6. Regulation of membrane potential is considered as

lipid related in general.

7. A metabolic process involving X is considered as lipid

related if X is commonly incorporated into lipids or

lipid complexes, e.g. GO:0006114 ‘glycerol biosyn-

thetic process’.

8. A BP term is considered as lipid related if that process

involves a change to membrane or vesicle including

folding, invagination, pinching off and fusion.

9. A BP term is considered as lipid related if that process

involves modification, breakdown or other changes of

lipids or lipid complexes.

10. We consider a term as lipid related if it can be linked

to a lipid-related function in other ways. For example,

GO:0002024 ‘diet-induced thermogenesis’ is lipid

related, as it is closely related to fatty acid catabolism

for heat generation.

11. Protein complexes in membrane part are not con-

sidered as lipid related in general. They are lipid

related if they are involved in some metabolism of

lipid or lipid complexes or play an essential role like

membrane fusion, vesicle formation and so on. Those

CC parts that are intrinsic to membrane are also con-

sidered as lipid related.

Iterative prediction

Machine learning algorithms are generally well behaved

in the sense that, when we have a larger training set, the

resulting classifier can be expected to be more accurate.

Thus, instead of building our classifier only once and

making all the predictions followed by curation, we do it

in an iterative manner that hopefully leads to less curation

effort being wasted on false-positive (FP) results. The over-

all iterative procedure is like this: starting with an initial

list of GO terms with known class labels, we generate
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features, build a classifier and make predictions on all

terms whose class label is unknown. Then we select a batch

of top-ranked terms with the highest prediction scores

(i.e. terms most likely to be lipid related) as candidates for

curation. Terms in the batch are manually curated follow-

ing the curation rules defined in the earlier section, and

their class labels are updated. We also apply a postprocess-

ing step to enforce the inheritance constraint: descendant

terms of newly curated GOþ become GOþ; ancestor terms

of newly curated GO� become GO�. Now there is a

larger set of GO terms with known class labels that can be

used as training instances, and the whole procedure is

repeated to identify more lipid-related GO terms.

Assessing the iterative prediction procedure

We use a fraction of our final list (see Results section) of

curated GOþ and GO� terms to run simulated experi-

ments, and see how our methodology recovers the rest

of the GOþ terms in our final list of curated GOþ and

GO� terms. As we do not manually curate all GO terms,

those terms with unknown class label (GO?) are excluded

in the evaluation of curation efficiency.

To test our hypothesis that iterative prediction saves

curation effort compared with doing just one round of cur-

ation, we perform experiments with six different starting

conditions, some with more GO terms used as the initial

training instances and some with less. The first starting

condition is nonrandom: we manually picked six represen-

tative GO terms, one positive and one negative control for

each sub-ontology. They are general terms with a relatively

large number of descendants. We apply the inheritance

constraint to the three GOþ terms to include their GOþ
descendants into the training set. The three GO� terms

were specially chosen such that all the descendants of the

three GO� terms are also GO� (this is not true in general);

by the inheritance constraint, the ancestors of the three

GO� and their GO� descendants are also GO�, and all of

them are included in the training set as negative control.

The representative GO terms, their class labels and so

on are summarized in Table 1. For starting conditions two

to six, we randomly select x% of our final list of curated

GOþ and y% of our final list of curated GO� as the initial

training instances. We apply the inheritance constraint:

the descendants of GOþ terms in the training set are also

added to the training set as GOþ terms; the ancestors of

GO� terms in the training are also added to the training

set as GO� terms. Thus, the actual proportion of terms

with known class label is higher. The proportions are given

in the first two rows in Table 2 for the positive and nega-

tive control, respectively. The number on the left side of

the slash is the proportion intended for training before

applying the inheritance constraint, and the number to the

right of the slash is the proportion after applying the inher-

itance constraint, which is also the actual proportion of

training instances used in the experiment. The rest of the

terms are used as test set with the number for different

starting conditions shown in the last two rows of Table 2.

In each iteration, prediction is made on the test set, and

a ranked list is generated based on prediction scores, with

higher score corresponding to being more likely lipid

related. We select a batch of only a fixed number of terms

from the top of the list with the highest prediction scores.

Those terms in the batch with a negative prediction score

Table 1. Starting condition #1, nonrandom

GO accession number Class label Term name Number of terms in the subtree rooted at the term

GO:0006644 BPþ Phospholipid metabolic process 105

GO:0016020 CCþ Membrane 133

GO:0008289 MFþ Lipid binding 70

GO:0006767 BP� Water-soluble vitamin metabolic process 44 (178a)

GO:0030880 CC� RNA polymerase complex 17 (31a)

GO:0000496 MF� Base pairing 85 (96a)

aNumber of terms by including their GO� ancestors by the inheritance constraint.

Table 2. All six starting conditions for iterative prediction

Starting condition #1 #2 #3 #4 #5 #6

% GOþ in the training set 6.5 2/6.7 5/12.6 20/45.3 50/76.1 80/92.3

% GO� in the training set 2.1 5/15 10/22.9 20/36.6 50/65.3 80/86.8

Number of GOþ in the test set 4366 4386 4061 2758 1145 358

Number of GOþ and GO� in the test set 18,305 16,529 15,047 11,814 6162 2210
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are discarded, and the rest is checked against their real

class labels in the final list, which is assumed here to be

100% correct even though it is not perfect. In the case that

the real class label is GOþ, it is counted as a true positive

(TP); if the real class label is GO�, it is counted as an FP;

if the real class label is GO?, we just ignore the term. This

checking of real-class labels in the experiment simulates

the manual curation for de novo discovery of lipid-related

GO terms using the methodology in this article. As a

bonus, without additional curation effort, we apply the

inheritance constraint to get descendant terms of those TP

in the batch as lipid related (denoted as descþ) and ances-

tor terms of FP in the batch as non-lipid related (denoted

as ance�). Terms from TP, FP, descþ, ance� and their

newly obtained class labels will be used as training

instances in the subsequent iterations. They together

with the ignored terms (those with class label GO?)

are excluded from test sets in the subsequent iterations.

As a result of changing training and test sets, each subse-

quent iteration has a new starting condition, but the pro-

cedure remains the same. The number of terms in the

batch is set to be relatively smaller first and increases in

later iterations. The rationale for this is that in the first few

iterations, there are fewer training instances and even an

addition of 100 terms can make a significant impact on the

classifier but, at later iterations, the impact is not that

great when most of GOþ have already been discovered in

earlier iterations. Therefore, we set 100 terms per batch

in the first five iteration; 200 for iterations 6–10; 300

for iterations 11–15; and 500 for iterations 16–25.

Although the number of terms per batch seems to be large,

especially for later iterations, we deliberately set it to be

so because the test set may contain terms with GO? class

label, which are ignored in the evaluation and cannot

affect future prediction. We still want to keep those

GO? terms in the test set, as these additional terms

may provide us insight into our prediction procedure and

curation rules.

For performance comparison purpose, we also ran the

experiments using a non-iterative version with the same six

starting conditions. The classifiers are built, and the test

sets are predicted and sorted into a single ranked list.

We take the top 300 terms from this list with the highest

prediction scores, and check their real class labels to get

TP, FP and ignored GO? terms as we did in the iterative

case. The inheritance constraint is applied to get descþ and

ance�. Terms from TP, FP, GO?, descþ, ance� are taken

out from the single ranked list. Without training the classi-

fier again, we repeat the checking procedure by taking the

top 300 terms with the highest score from the reduced list,

checking the class label, applying the inheritance constraint

and reducing the ranked list for 20 times.

Another experiment was carried out to see the effect of

different combination of feature scores on the perform-

ance. Instead of using all 39 features, we ran an additional

set of experiments with only the 36 KW features. As

before, both iterative and non-iterative versions are used

and starting condition #1 and #2 were chosen for nonran-

dom and random case.

To evaluate curation efficiency, two numbers are

needed. The first is curation effort or number of terms

manually curated, which corresponds to number of terms

in the TP and FP in our experiment, as they are the terms

that the curator examines. The second is curation hit, or

the number of lipid-related GO terms discovered, which

includes not only TP found by curation but also the num-

ber of terms in descþ derived from the inheritance con-

straint. These two numbers are cumulative with respect to

iterations or batches. For example, the curation effort up

to iteration #3 is the sum of the number of terms curated

from iteration 1 to 3. Finally, the curation effort is plotted

against curation hit as a measurement of curation effi-

ciency. If the ratio of curation hit to curation effort is 1 or

above, the effort is really worth it, as every term curated

gives you at least one GOþ term on average.

Curation effort ¼ TPþ FP

Curation Hit ¼ TPþ descþð Þ

Recall and precision are also given as alternative evalu-

ation measure. Formulas are given below, where P is the

total number of GOþ in the test set; since descþ is derived

from TP by inheritance constraint, the sum of it and TP is

considered as ‘total true positive’ and thus appears accord-

ingly in the formula. Similar to curation efficiency meas-

ure, the numbers in the formula are cumulative with

respect to iterations or batches. Unlike the curation effort

and hit evaluation measure, we keep those terms with the

negative prediction score when selecting a batch of a fixed

number of terms with highest prediction scores in each iter-

ation. For more detailed result, please go to the supplemen-

tary material.

Recall ¼ TPþ descþð Þð Þ=P

Precision ¼ TPþ descþð Þð Þ= TPþ descþð Þ þ FPð Þ

Results

The number of GO terms during different stages of work is

given in the Table 3, decomposed by sub-ontologies and

lipid relatedness. We had a number of gold-standard GO

terms to start with, covering all CC terms and MF terms
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and a small portion of BP terms in that version of GO. The

gold standard even includes some terms that are associated

with lipid function implicitly. The curation used for the

gold standard then was not developed yet: it had only four

rules, as specified earlier. As we are interested in the latest

version of GO, we mapped the class label from the gold

standard to the April 2013 version of GO. Some terms be-

came obsolete and new terms were added, with the overall

number of terms increase from 27,734 to 37,462. Because

of changes in GO structure, we found many pairs of terms

that violated the inheritance constraints. Moreover, a new

set of curation rules is needed because the newer version of

GO becomes more complicated, and there are many

changes in term definitions, structures and so on (evolution

and refinement of curation rule will be elaborated in the

discussion). We resolved the violated inheritance con-

straints with new curation rules, and the distribution of

class labels changed dramatically. The increase of BPþ was

mainly due to the addition of new terms as descendants of

gold standard BPþ, and the decrease of CCþ and MFþ
was largely caused by modification of curation rules. After

that, we applied our iterative approach to find the rest of

lipid-related GO terms in all three sub-ontologies, and the

final results are given in the last column. So far, for the

April 2013 version of GO, we manually curated 18,941

terms, comprising 4712 lipid-related GO term (GOþ),

14,229 non–lipid-related GO terms (GO�). The rest of

18,521 terms, predicted not likely to be lipid related and

not manually examined, are given the unknown class

label (GO?).

We first would like to know how good predictors of

lipid-relatedness KW features are in general. Among the

manually curated 18,941 terms mentioned in the previous

paragraph whose class label are known, we decomposed

them according to their class label and whether they have

at least one KW (Table 4). The proportion of the terms

with more than at least one KWs is only 13%, and it is

expected to be even lower if the scope is over all GO terms,

which include terms with unknown class label (GO?).

Among those non–lipid-related GO terms, the great major-

ity do not contain any KWs at all, which shows our chosen

KWs are specific. On the other hand, less than half of the

lipid-related terms contain any KWs, giving only a moder-

ate sensitivity. In Table 5, we decompose the same 18,941

terms a bit differently: instead of splitting them into those

having at least one KW and those not, we check whether

a term or one of its ancestor terms contain at least one of

Table 4. KWs and lipid relatedness

Number of terms No KWs (87%) Containing at least

one KW (13%)

Non–lipid-related 14,014 224

Lipid-related 2406 2306

Table 3. Number of GO terms

Class label Gold standard

with original

curation rules

(GO version: June 2009)

Gold standard mapped

to April 2013 version

of GO with original curation

rules (may violate inheritance

constraint)

After resolving inheritance

constraints and with final

set of curation rules

(GO version: April 2013)

Final version (expanded

with iterative prediction)

with final curation rules

(GO version: April 2013)

BPþ 1639 1606 2225 2405

BP� 2309 2291 2650 5331

BP? 12,783 20,855 19,877 17,016

CCþ 924 912 712 748

CC� 1461 1429 1845 1870

CC? 0 817 601 540

MFþ 1736 1668 1495 1559

MF� 6882 6658 6956 7028

MF? 0 1206 1101 965

GOþ 4299 4186 4432 4712

GO� 10,652 10,378 11,451 14,229

GO? 12,783 22,898 21,579 18,521

All 27,734 37,462 37,462 37,462

Table 5. KWs and lipid relatedness considering ancestors

Number of terms Terms containing

no KWs, not even

any of its

ancestors (67%)

Term itself or one of

its ancestor contain at

least one KW (33%)

Non–lipid-related 12,108 2121

Lipid-related 1204 3508
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the KWs and partition the set accordingly. Table 5 shows

the number of terms according to this new way of parti-

tioning: we see a moderate increased sensitivity but a great

reduction in specificity, which does not seem to be a desir-

able trade-off. Thus, we do not propagate the KW features

up to ancestors when we compute the KW feature score.

Still, the sensitivity does not seem to be good enough. That

is why sub-ontology scores are also used, especially for

finding implicitly lipid-related terms.

The curation efficiency curves are plotted in Figure 1

with the curation effort as the x axis and curation hit as

the y axis. The horizontal red dotted line corresponds

to total number GOþ terms in the test set, which sets

the limit on the number of GOþ terms that can be found.

The six subfigures correspond to six starting conditions,

with the top left being the first one, top middle being the

second one and so on. The black curve represents the per-

formance of the iterative version, with the little circle on it

corresponding to the number of iterations. The blue curve

represents the performance of the non-iterative version,

and the little triangle on the curve corresponds to the num-

ber of batches. The straight gray line is the break-even line,

where curation effort equals to curation hits. Above the

break-even line, on average one curation gives more than

one discovery of lipid-related GO terms, and the curation

effort is really worth it.

For all six starting conditions, the iterative version out-

performs the non-iterative, and the difference is largest

when the starting condition has the least number of terms

used in training (i.e. starting condition #1, #2), and can be

as many as 1000 terms. The difference between the two

versions becomes smaller when a larger amount of training

data is used, and by the time >90% are used as training

data (starting condition #6), the two become almost

the same.

Overall, as we curate more terms, there is a diminishing

return. In the beginning, the number of GOþ terms found

can be even greater than the number of terms predicted for

curation, thanks to the inheritance constraint. As easier

terms are found, much more curation effort is needed

for recovering the same amount of GOþ terms, as reflected

by the curve turning flat. With a reasonable amount of cur-

ation effort, >75% of the GOþ terms can be recovered

from the test set. For instance, in the simulation

Figure 1. Curation efficiency for the six starting conditions. The black line with circle represents the iterative version, whereas the blue line with tri-

angle represents the non-iterative one.

Database, Vol. 2014, Article ID bau089 Page 9 of 13

D
ow

nloaded from
 https://academ

ic.oup.com
/database/article/doi/10.1093/database/bau089/2635098 by guest on 21 August 2022

keywords 
keyword 
keyword 
'
-
e
, 
more than 
more than 


experiment on the iterative version with starting condition

#3, when �2500 terms are curated, 3000 of 4000 GOþ
terms in the test set have been found. In this case, the semi-

automatic approach seems to be a much more viable

option than manually curating all the 14,451 terms (see

Table 2 for statistics).

Figure 2 shows evaluation measure for starting condi-

tion 2. The left graph is curation efficiency, and the right

one is recall and precision. For both graph, the black

curves represent using all features, red curves represent

using only KW features; the solid lines correspond to the

iterative cases and dotted lines correspond to the non-

iterative cases. The straight gray line in the left graph

is the break-even line, where curation effort equals to

curation hits.

Overall, using only KW features performs slightly worse

than using all features and at some points even gives more

hits for the same amount of terms curated. However, using

all features gives more terms with positive prediction

scores, discovering more lipid-related terms. Overall, the

curation efficiency is better using all features than using

KW features alone.

As for the precision and recall graph, using KWs feature

alone gives a slightly better precision at lower recall range.

The precision for using only KWs feature drops abruptly

when recall is after 0.7 where there are no more terms with

KW features to be found. Using all features gives not only

gives better maximum recall, but also better precision at

higher recall range as it is able to handle ‘difficulty-to-find’

terms, or terms implicitly associated with lipid-related

function.

Detailed result can be found in the Supplementary

Materials. For both evaluation measures, the iterative

approach outperforms the non-iterative one. We also tried

other starting conditions, and the results were similar.

In the iterative approach, even after many iterations,

there are some lipid-related GO terms in the test set yet to

be found. For example, for starting condition #1, after the

25th iteration, 1182 GOþ terms are left among 13,195

terms with known class labels that have never been manu-

ally curated because of their low prediction score. These

leftover 13,195 terms always appear from iteration 1

through 25 as test set and have a prediction score. For each

iteration, the 13,195 terms are sorted from highest predic-

tion score (most likely to be lipid related) to the lowest

based on the prediction scores during that iteration. We

are interested in the relative positions of 1182 GOþ terms

within the sorted list of 13,195 terms while ignoring other

terms and how these positions change with different iter-

ations. As the classifier is expected to be more accurate

with more training sets in later iterations than earlier ones,

we hypothesize that the average rank of the 1182 GOþ
terms improves with increasing iteration number among

the sorted list of 13,195 terms, where the rank of a term in-

side this list is defined as follows: 1 if it has highest score,

2 second highest and so on. Thus, we test our hypothesis

using staring condition #1 with four time point—viz.,

before iteration 1 and after iteration 8, 16 and 25—and

perform one-sided Wilcoxon signed-rank test on their

average rank.

The average ranks of the 1182 GOþ terms for

the four points are 6469, 6232, 5573 and 5797. Even

though the absolute difference is not huge, it is nonethe-

less statistically significant across some time points as

given by the P-values in the Table 6. Overall, the rank

is getting higher (nearer the top or smaller in the rank

number). Our hypothesis is thus validated. Its significance

is that, if further curation is to be done, iterative

prediction helps find more TP results and saves curation

effort.

Figure 2. Evaluation measure for starting condition 2. Left graph corresponds to curation efficiency, right graph recall and precision.
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Discussion

Difference between simulated experiments and

our real discovery process

The simulated experiments with six different starting

conditions given above are used mainly for illustrative

purpose for readers to understand our methodology and

get an idea of how much curation efficiency is improved

by it. In our process of discovery of lipid-related GO

terms, there are several complications. First, as our gold

standard is from an older version of GO, we did GO

version mapping and had to resolve inheritance con-

straint violations. Second, our curation rules, instead of

being fixed, are being constantly refined as we accumu-

late experiences and adapted with new versions of GO;

more details about this will be given in the next subsec-

tion. Thirdly, in our case, our number of gold-standard

terms is more than enough, and it differs from the final

version only by a few hundred additional terms that are

either implicitly lipid related or from newly introduced

GO terms if we do not take into account of our change

in curation rules. In the end, 18,941 GO terms (or

50%) have been manually curated, of a total of 37,462

terms for the latest version of GO that we have worked

with. In fact, we could save curation effort by having a

much smaller set of gold standard, which proves to be

successful in terms of curation efficiency based on our

simulated experiment. Even a careful choice of six

GO terms is good to start with, as shown in starting

condition #1.

A caution is that during the real iterative prediction

and curation process, while applying the inheritance

constraint, it is always advisable to examine the des-

cendant terms of TP terms (which is just decided by

curator) to ensure that they are indeed GOþ instead of

simply assuming this holds true, even though most of

the time it is so. If at least one descendant term of, say,

term X happens to be GO�, the curation decision need

to be flipped and X becomes GO�. Fortunately, this

additional procedure does not add much additional bur-

den for curation, as in the most cases a cursory check is

sufficient.

Methodology

To exhaustively find all GOþ terms with only a small

proportion of all GO terms curated is unrealistic. There is

always a trade-off between curation effort and the number

of GOþ terms recovered. As most GOþ terms have been

recovered, the rest are becoming increasingly difficult to

find. These ‘difficult terms’ are usually implicitly lipid

related with few gene products assigned to them. So their

lipid-relatedness property is not properly reflected in their

KW feature scores and sub-ontology feature scores.

However, this can be alleviated by serendipity of an expert

curator: the discovery of one lipid-related term may remind

him of another similar term if some association can be

established based on his expert knowledge. For example,

lipid plays many essential roles in neural process, the term

GO:0043217 ‘myelin maintenance’ may remind the

curator to search for more GO terms using KWs like

‘synaptic’, which are later filtered, examined and curated.

This is especially helpful for finding implicitly lipid-related

terms.

We are interested in independent evaluation of the qual-

ity of our list of lipid-related terms. There is a recent work

GOplus (17) that provide explicit relationship between

GO terms and ChEBI terms. With GO-ChEBI association

and ChEBI ontologies, it is possible to use ChEBI term of

interest to find our related GO term. As we are interested

only in lipid-related GO terms, we made a query to find

those GO terms that are associated to the descendants

ChEBI terms of CHEBI:18059 ‘lipid’. The query returned

772 unique GO terms, among which 740 are in our final

list of lipid-related GO term (April 2013). Their class label

distribution is as follows: 584 BPþ, 27 BP�, 15 BP?, 107

MFþ, 6 MF� and 1 MF? (the details of the list of the terms

are in the Supplementary Material). There are a few obser-

vations after examining those terms: the majority of them

are lipid related; those terms with BP� and MF� class

label are mostly short-chain lipids, which are not con-

sidered as lipid in our curation rule; some of the 15 BP?

and 1 MF? are indeed lipid-related terms we miss, and

they belong to the category of difficult-to-find term men-

tioned in the previous paragraph. Because most of the

ChEBI terms related to lipids are descendant terms of

CHEBI:18059 ‘lipid’, including fat, phospholipid, steroid,

etc., we did not use other ChEBI term to find lipid-related

GO terms. Compared with using ChEBI to find lipid-

related term, our final list is much more comprehensive:

contain 4712 lipid-related GO terms and also include CC

sub-ontology.

To get an estimate of how many lipid-related GO terms

are left undiscovered, we randomly sampled 200 GO terms

with unknown class labels followed by manual curation.

None were found to be lipid related. Our huge effort in

Table 6. Paired t-test on ranks of lipid-related terms undiscov-

ered after iteration 25

After

iteration 8

After

iteration 16

After

iteration 25

Before iteration 1 0.304 1.25E-04 1.15E-08

After iteration 8 – 4.97E-10 1.60E-05

After iteration 16 – – 1.00Eþ00
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curation gives an almost exhaustive list of lipid-related GO

terms.

A few examples of FP results and false-negative (FN)

results will be shown to explain why the classifier fails

below. The first reason for FP is due to curation rules.

Curation rule 1 considers GO:0046459 ‘short-chain fatty

acid metabolic process’ as GO�, and by inheritance

constraint its ancestor term GO:0006629 ‘lipid metabolic

process’ are GO� even though it has high prediction

scores. Another reason for FP is the negation of KW(s).

For example, for term GO:0043264 ‘extracellular non-

membrane-bounded organelle’ with term definition

‘organized structure of distinctive morphology and func-

tion, not bounded by a lipid bilayer membrane and occur-

ring outside the cell’, the appearance of KW ‘lipid’ makes

the prediction score high even though it means absence

of lipid. The third reason for FP is inflated sub-ontology

feature score by multi-functionality of the enzyme. The

term GO:0047718 ‘indanol dehydrogenase activity’ means

a function that catalyzes the non-lipid compound indanone

into another non-lipid compound indanol, and the term is

GO�. However, a majority of gene products annotated to

this GO also catalyze reaction involving lipid compounds.

For instance, human gene AKR1C3 corresponds to an

enzyme that catalyzes retinal into retinol, and both com-

pounds are closely related to vitamin A, which is a lipid.

This enzyme also catalyzes some steroids. Thus, the sub-

ontology scores, especially the MF score, are inflated and

GO:0047718 becomes an FP. On the other hand, a major-

ity of FNs are mainly owing to the lack of KW and has no

gene products association or associated with gene products

that are not assigned to other GO term.

Our semi-automated methodology can be readily

applied to find GO terms with other properties, for

example, inflammation-related GO terms or GO terms

involving transcription. If the property is clearly defined

and careful thought is given to establishing curation rules

and choosing gold standard terms, it is straightforward

with our methodology to find the rest of the terms with

such a property.

Curation

There are many issues and difficulties in the curation pro-

cess. The first problem is to define the scope of lipid-

relatedness, and different researchers may not agree with

each other on this because of their different background,

field of expertise, experiences and so on. We follow the

definition of lipids from LIPID MAPS (14), as mentioned

before in the KW feature generation section and curation

section. LIPID MAPS gives eight main categories of lipids

as well as sub-categories, derivatives of standard lipid

compounds, etc. We mostly follow this system in our

project except that we do not consider polyketides as lipid

related, as mentioned in our curation rules.

Second, sometimes the term does not appear in a neat

form like ‘metabolism involving X’, but in an implicit

form, from which alone nothing can be said about whether

the term is lipid related, and details about the process have

to be known before decisions can be made. For instance,

the BP term GO:0034238 has a term name ‘macrophage

fusion’, containing no lipid-related KW. During this

process, there is membrane fusion (curation rule 8)

of macrophage with other cells into a multinucleated cell,

we thus consider this term as lipid related. Curation rules

8, 9 and 10 are especially designed to identify lipid-related

GO terms in implicit form and detailed knowledge for

such kinds of term is often required of the curator.

If the term in question is new to the curator, a considerable

amount of time and effort is needed for him or her

to gather information to make a decision, especially for

BP terms, each consists of a series of events accomplished

by one or more ordered assemblies of MFs. Furthermore,

even with our set of rules, some terms still needed to be

decided on a case-by-case basis. We nonetheless have tried

our best to generalize our rules not only to make it clear

to the end users but also to make the curation as consistent

as possible, even by a newly trained curator.

With more experiences accumulated, we constantly

refine and expand the existing set of curation rules to make

it as consistent and informative as possible. We used to

consider the CC term GO:0044425 ‘membrane part’

as lipid-related in our original gold standard. Many of its

descendant terms are protein complexes embedded in

membrane, which we now consider as not good enough to

be qualified as lipid related unless additional criteria are

satisfied: they are either intrinsic to membrane or involved

in metabolism of lipids or lipid complexes, membrane

folding and vesicle fusion (curation rule 12). For example,

the term GO:0034702 ‘ion channel complex’, whose

main function is allowing selective ion transport down its

electrochemical gradient, is no longer considered as lipid

related because it fails the criteria above. On the other

hand, the term GO:0046696 ‘lipopolysaccharide receptor

complex’ remains as CCþ, as this complex involves

lipid metabolism. By the inheritance constraint, we

also flip the class label of the ancestor term GO:0044425

‘membrane part’ from CCþ to CC� because there are

now non–lipid-related terms among its descendants.

Moreover, terms in different versions of GO evolve.

For example, there are changes in the term definition or

changes in relationship to other terms. We thus change

our curation rules to account for that. For example, the

term definition for GO:0046459 ‘short-chain fatty acid
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metabolic process’ is changed from chemical reactions and

pathways involving fatty acids with a chain length of <8

carbons to with a chain length of <6 carbons. Moreover,

this term has a new term GO:0019541 ‘propionate meta-

bolic process’ added as its child, which is not lipid related

in the traditional sense. Therefore, we now set the class

labels of both child and parent terms (GO:0019541 and

GO:0046459) as BP�, and we generalized this situation to

make rule 1.

Conclusion

Searching lipid-related GO terms comprehensively across

all three sub-ontologies of GO is a nontrivial problem,

requiring a considerable amount of time and effort.

Our methodology tackles this problem using a combin-

ation of computational and manual curation. Starting with

a list of initial gold-standard terms, we expand our list

of lipid-related GO terms incrementally. Each step we

calculate feature scores for GO terms based on KWs and

co-annotation of gene products, build a classifier and make

a prediction followed by manual curation. During the pro-

cess, inheritance constraint is enforced to ensure the integ-

rity of classification in the GO structure. This incremental

expansion methodology is able to extract lipid-related

terms with high confidence without too much manual

curation. Though not completely exhaustive, it is estimated

that a great majority of lipid-related BP terms have been

covered. Our semi-automated methodology can be used

to find GO terms with other properties, not just lipid-

relatedness.
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