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Abstract: Geoinformation derived from Earth observation (EO) plays a key role for 

detecting, analyzing and monitoring landslides to assist hazard and risk analysis. Within 

the framework of the EC-GMES-FP7 project SAFER (Services and Applications For 

Emergency Response) a semi-automated object-based approach for landslide detection 

and classification has been developed. The method was applied to a case study in  

North-Western Italy using SPOT-5 imagery and a digital elevation model (DEM), 

including its derivatives slope, aspect, curvature and plan curvature. For the classification 

in the object-based environment spectral, spatial and morphological properties as well as 

context information were used. In a first step, landslides were classified on a coarse 

segmentation level to separate them from other features with similar spectral characteristics. 

Thereafter, the classification was refined on a finer segmentation level, where two categories 

of mass movements were differentiated: flow-like landslides and other landslide types. In 

total, an area of 3.77 km² was detected as landslide-affected area, 1.68 km² were classified 

as flow-like landslides and 2.09 km² as other landslide types. The outcomes were compared 

to and validated by pre-existing landslide inventory data (IFFI and PAI) and an interpretation 
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of PSI (Persistent Scatterer Interferometry) measures derived from ERS1/2, ENVISAT 

ASAR and RADARSAT-1 data. The spatial overlap of the detected landslides and existing 

landslide inventories revealed 44.8% (IFFI) and 50.4% (PAI), respectively. About 32% of 

the polygons identified through OBIA are covered by persistent scatterers data. 

Keywords: object-based image analysis (OBIA); landslide mapping; persistent scatterers 

(PS); radar-interpretation; validation  

 

1. Introduction 

1.1. Background 

Gravitational mass movements such as landslides constitute a major natural hazard in all hilly or 

mountainous regions throughout the world. Although these movements are mostly a very local 

phenomenon, they cause damage to all types of man-made structures and affect infrastructures from 

local to regional scales and even on a national scale. The floods and landslides in China from May to 

August 2010 ranked second highest in terms of economic damage caused by natural disasters, with 

US$ 18 billion worth of damage [1]. In the course of this natural disaster, mass movements killed 

1,765 persons and ranked in the top 10 of the most important disasters by number of persons killed [1]. 

Landslide triggering conditions, such as heavy rain falls and typhoons or earthquakes, can affect very 

large areas and sometimes cause several thousand landslides per event; for example Tsai et al. [2] 

reported over 9,000 detected landslides after typhoon Morakot in Taiwan in August 2009.  

Within the framework of the EC-GMES-FP7 project SAFER (Services and Applications For 

Emergency Response), where an integrated Landslide Monitoring (LM) service has been established, a 

semi-automated object-based approach for landslide detection has been developed for Mont de la Saxe 

area, Aosta Valley, Italy. Landslide Monitoring represents a thematic reference service carried out to 

retrieve past ground movements of single large landslides affecting built-up areas with a high level of 

risk. For the site of Mont de la Saxe, LM was based on the integration of object-based analysis of 

optical satellite images with InSAR (Interferometric Synthetic Aperture Radar) and PSI (Persistent 

Scatterer Interferometry) measures of ground displacements obtained from interferometric processing 

of radar satellite images. These input data were subsequently integrated with further ancillary data 

(e.g., detailed geological and geomorphological information) and in situ measurements following a 

consolidated methodology, in order to obtain detailed information about the spatial and temporal 

distribution of landslide movements within the study area. This approach is particularly useful for 

investigating highly hazardous landslides, which threaten exposed, built-up areas. In such situations, 

the assessment of the future evolution of slope instabilities by means of integrated monitoring systems 

plays a major role in the adequate set up of early warning systems (EWS) and emergency plans, 

fundamental tools for landslide hazard and risk reduction.  

The SAFER services, which are part of the GMES (Global Monitoring for Environment and 

Security) initiative, are targeted at the integration of users (e.g., public authorities such as civil 

protection agencies, humanitarian aid organizations, NGOs), who are supposed to make use of the 
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provided services and products in emergency situations. By expressing their explicit needs as well as 

proposing improvements through feedback questionnaires, the users support the deployment of an 

operational emergency response service. The user engaged in the LM monitoring service in the Mont 

de la Saxe area is the Italian Department of Civil Protection (DPC), the national institution in charge 

of risk management and mitigation over the whole Italian territory. The investigated area represents 

one of the most hazardous areas of the Valle d’Aosta Region due to widespread slope instability 

affecting very steep slopes overlooking narrow, but densely urbanized valleys and exposing local 

population and infrastructure at risk. 

1.2. OBIA for Landslide Mapping 

Today, the wide range of available Earth observation (EO) data implies the need for accurate and 

fast methods for detecting, analyzing and monitoring landslides and to facilitate the generation of 

landslide inventory maps and databases to assist hazard and risk analysis. Landslide inventories are 

traditionally derived by visual interpretation of aerial photographs and field surveys. This kind of 

inventory is, however, time-consuming, fraught with the subjectivity of the visual interpreters and very 

costly in terms of data and workload. Satellite imagery offers a fast and economical opportunity to 

monitor slopes and map landslides over large and inaccessible areas, especially since the spatial 

resolution is ever increasing [3–6]. Applying automated methods can contribute to more efficient 

monitoring and timesaving as well as cost-efficient updating of existing landslide inventories.  

Supervised and unsupervised classification methods of multi-spectral SPOT-5 imagery for mapping 

landslides were successfully used by Borghuis et al. [7] and then compared to a manual delineation. 

Nicol and Wong [8] used a Maximum Likelihood classifier with SPOT XS images and were able to 

detect approximately 70% of the existing landslides. A multiple change detection (MCD) technique to 

semi-automatically recognize and map landslides triggered by typhoons has been developed by 

Mondini et al. [9]. However, in many cases object-based methods seem to capture the complexity of 

natural phenomena and geomorphologic processes such as landslides in a more appropriate way than 

traditional pixel-based ones [10]. Thus, salt-and-pepper effects are avoided, which is especially 

important when dealing with complex features in terms of shape and size as landslides, where pixels 

show quite different spectral values. Semi-automated methods for landslide detection and analysis, 

especially object-based image analysis (OBIA) techniques [11,12], although still not very common, are 

able to deliver fast and accurate results as demonstrated by several studies. An object-based approach 

using a combination of high spatial resolution satellite imagery and DEM derivatives has been 

proposed by Barlow et al. [3]. According to the classification scheme of Cruden and Varnes [13] they 

distinguished between debris slides, debris flows and rock slides and achieved accuracy rates between 

60% for debris flows and 90% for debris slides. Barlow et al. [3] pointed out that per pixel spectral 

response patterns are ineffective for delineating mass movements and instead applied an image 

segmentation and classification approach combining high spatial resolution satellite imagery and 

digital elevation derivatives. Similar approaches were demonstrated by Lahousse et al. [14], who applied 

a multi-scale object-based landslide detection technique based on optical imagery supported by digital 

elevation information to map shallow landslides in Taiwan, or Martha et al. [10], who characterized 

landslides based on their spectral, spatial and morphometric properties, while Martha et al. [15] 
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elaborated the objective selection of suitable segmentation parameters to outline landslides as 

individual segments for subsequent landslide classification. A supervised workflow based on a 

Random Forest machine learning algorithm was developed by Stumpf and Kerle [5] and successfully 

tested on various optical data sets reaching accuracies between 73% and 87%. Further approaches for 

object-based landslide identification were shown by Martin and Franklin [16] for classifying soil and 

bedrock-dominated landslides in British Columbia, Moine et al. [17], who semi-automatically detected 

landslides in the French Alps using aerial and satellite images, Rau et al. [18] by using imagery 

acquired by a fixed-wing unmanned aerial vehicle (UAV), Hölbling and Füreder [19], who carried out 

preliminary work in the Aosta Valley, Northern Italy, distinguishing different mass movement types, 

or by Aksoy and Ercanoglu [20], who identified landslides on Landsat ETM+ (Enhanced Thematic 

Mapper Plus) imagery applying fuzzy classification. In the context of rapid landslide mapping a  

semi-automatic object-based change detection analysis was suggested by Lu et al. [4]. An automated 

classification system of morphological landform elements based on OBIA has been established by 

Drǎgut and Blaschke [21]. Their approach focuses on the use of Digital Terrain Models (DTMs) and 

its derivatives and they were able to transfer the approach to different landscapes and datasets. A 

related object-based method was recently proposed by Drǎgut and Eisank [22], who automatically 

classified topography from SRTM (Shuttle Radar Topography Mission) data to decompose land-surface 

complexity into homogeneous domains. 

OBIA is making considerable progress towards a spatially explicit information extraction  

workflow [11] as it offers a methodological framework for addressing complex classes, defined by 

spectral, spatial and structural as well as hierarchical properties [23]. Thus, it provides suitable 

methods for analyzing landslides by using remote sensing data. Main assets of OBIA are the general 

potential to tackle the complexity and multi-scale characteristics of very high spatial resolution 

(VHSR) imagery and to allow the integration of various data sources [11,12]. Object-based methods 

have a high potential to monitor the evolution of landslide-prone areas over time, as spectral, spatial, 

contextual as well as morphological parameters can be considered [19]. In the present study the 

potential of an object-based landslide detection and classification approach is evaluated in an 

operational context aiming for the development of integrated solutions for mapping and monitoring 

landslides. 

2. Study Area and Data 

2.1. Geological Characterization of the Study Area 

The study area ‘Mont de la Saxe’ is located in the Aosta Valley, North-Western Italy, near the Mont 

Blanc massif and covers approximately 70 km² (see Figure 1). Major villages within the study area are 

Cormayeur and Entréves. The Dora Baltea river originates here as the confluence of Dora di Ferret and 

Dora di Vèny streams. The study area is characterized by steep terrain with altitudes ranging from 

approximately 1,100 m to over 4,000 m above sea level. 

The Western Italian Alps constitute a collisional belt developed from the Cretaceous onwards by 

subduction of a Mesozoic ocean and continental crust of the Adriatic (Austroalpine-Southalpine) and 

European (Penninic-Helvetic) continental margins [24]. 
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Figure 1. Overview of the study area Mont de la Saxe (SPOT-5 data within the red 

rectangle is displayed in false color composite, band combination 1-2-3, Acquisition Date: 

5 May 2005). 

 

In the study area, from the external to the internal sectors, three main tectono-stratigraphic units 

crop out (Figure 2): 

 Monte Bianco massif and Mont Chètif wedge complex, belonging to the Helvetic Domain, 

consist of paragneisses, migmatites, orthogneisses, granites and porphyries; in the SE part of 

the massif (Val Veny-Val Ferret) the contact with surrounding units is tectonic.  

 Ultrahelvetic units, a meta-sedimentary sequence which predominantly consist of closely 

foliated carbonate-bearing argillaceous schists and arenaceous limestones with quartz arenites 

levels. The age of the sequence can be referred to as the Middle Jurassic. 

Penninic units, which comprise the lower distal clastics and pelagic Cretaceous deposits of the 

Courmayeur Zone, the more internal ocean-continent transition zone (Valais zone) and the middle 

Penninic nappes consist of Zone Huillère Permo-Carboniferous deposits (black schist with coal 

measures, quartzites and conglomerates) and a Pre-Permian crystalline basement (paragneiss and 

micaschists with amphibolites and metabasites intercalations). The described units dip towards SE 

forming an imbricated structure, and are arranged as large belts oriented NE-SW. 
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Quaternary alluvial, glacial and debris deposits directly lie unconformably and discontinuously on 

the bedrock. The recent and actual alluvial deposits rest on the valleys’ bottom and consist of gravels, 

pebbles and boulders in coarse-grained sandy matrix along the river channels and finer-grained 

deposits (sandy silts and silts) in floodplain areas. Old glacial deposits crop out discontinuously along 

the slopes at elevations up to 2,000 m above sea level, while the recent ones become particularly 

widespread along secondary tributary valleys at higher altitudes. They consist of massive boulders, 

pebbles and gravels in an abundant sandy-silty matrix (diamicton). The debris deposits include talus, 

alluvial fan and flow deposits and crop out at the base of rocky cliffs (talus), along the stream incision 

(flow deposits) and at the outlet of the minor valleys (alluvial fans). 

Figure 2. Geologic and structural sketch of the study area. Modified from Carta Geologica 

d’Italia 1:100,000, Sheets 27–28.  

 

The structural setting of the study area is strictly influenced by the Penninic frontal thrust and the 

Ultrahelvetic front, two regional compressive structures oriented NE-SW which separate the main 

tectono-stratigraphic units previously described. These lineaments are associated with secondary shear 

planes, milonitic and cataclastic bands, further complicating the structural setting of the area. In 

particular, the Penninic frontal thrust is a tectonic alignment of regional importance and its presence is 

detectable along most of the Western Alps [25–27]. 

Due to the general high relief energy and the steep slope gradient, slope instability is quite diffused 

in the study area. There is a clear relationship between the material involved in the instability and 

development of a particular type of movement. Rock falls and topples, resulting in formation of wide 

talus deposits are, in general, widespread along the steep rocky slopes and cliffs characterized by the 

presence of fractured hard rock mass (granites, gneiss, porphyries, quartzites). In some cases complex 
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large falls (i.e., rock avalanches) have been reported [28]. Deep-seated large landslides affect high 

steep slopes shaped in metamorphic rocks with marked anisotropy such as gneiss and schists of the 

Ultrahelvetic and Penninic units. Within the displaced mass the development of sudden and rapid 

secondary landslides (topples, rotational and planar slides, and flow-like movements) is a common 

feature, giving rise to complex deformational patterns. Shallow landslides and channelized flows affect 

in general colluviums, weathered bedrock, soils and the more erodible lithologies of the Ultrahelvetic 

and Penninic units, such as argillaceous schists and black schists with coal measures (Zone Houillère). 

In some cases, movements could be initialized by sliding on the bedding or schistosity planes and then 

evolve as flow-like phenomena, thus generating complex landslides. 

The Mont de la Saxe is affected by the Bois de Plan Cereux landslide (Figure 3), which constitutes 

an active portion of a large deep-seated gravitational slope deformation (DSGSD) extending along the 

whole Mont de la Saxe ridge. The instability, which can be classified as a complex landslide [13] with 

an estimated volume of a few Mm3, involves a significant portion of the slope and poses high risk to 

the Entrèves and La Palud villages as well as to the infrastructure (i.e., A5 motorway, SS26 national 

road, Monte Bianco cableway). The SE slope of the Mont de la Saxe ridge (Val Sapin) is characterized 

by the presence of complex and planar/rotational slides. 

Figure 3. Frontal view of the Mont de la Saxe deep-seated gravitational slope deformation 

(DSGSD) showing the Bois du Plan Cereux active landslide and the Bois du Point Pailler 

dormant landslide. 

 

2.2. Data 

The object-based detection of landslides was based on optical, very high spatial resolution satellite 

imagery (SPOT-5, acquisition date: 5 May 2005) and digital elevation data (DEM with 20 m GSD) 

including its derived products slope, aspect, curvature and plan curvature. The multispectral SPOT-5 



Remote Sens. 2012, 4                    

 

 

1317

image with two bands in the visible spectrum (red, green) and a near infrared (NIR) band was available 

in pan-sharpened mode with a spatial resolution of 2.5 m. Although the satellite image was supplied in 

geo-referenced format, it had to be co-registered to remove distortions between the SPOT-5 image and 

available orthophotos, which were used as reference for the visual interpretation of the PSI results. Due 

to the steep terrain features within the study area, some mountain sides, including the northern hillside 

of Mont de la Saxe, are shaded on the SPOT-5 image and could not be taken into account for the 

classification. 

The DEM showed some gaps and data errors, which had to be corrected before integrating it in the 

further analysis. Single DEM tiles were mosaicked and false values adjusted taking into account 

neighborhood statistics calculated for each affected input cell using map algebra in ArcGIS 10 

software. The following morphological parameters were derived from the DEM to support the  

object-based classification of landslides: slope, aspect, curvature and plan curvature. A low pass  

3-by-3 filter was applied to the curvature derivative to generate a smoother layer with less noise. 

Data used for validating results of the object-based image analysis included the Italian national 

landslides inventory: IFFI (Inventario dei Fenomeni Franosi in Italia), and the Hydrogeological Asset 

Plan: PAI (Piano Stralcio per l’Assetto Idrogeologico) of the Po River Basin Authority. In addition, 

datasets of persistent scatterers (PS) were obtained by the processing of satellite SAR (Synthetic 

Aperture Radar) data acquired by three different C-band satellites (wavelength of 5.6 cm) along both 

ascending and descending orbits, and using monthly temporal frequency. ERS1/2 data acquired in 

ascending mode from 11/06/1993 to 25/12/2000, and in descending mode from 17/04/1992 to 

25/12/2000 with a nominal repeat cycle of 35 d and ENVISAT ASAR (Advanced SAR) and 

RADARSAT-1 scenes with 35 and 24 d repeat cycle were used. ENVISAT ascending and descending 

data cover the intervals from 07/06/2004 to 19/10/2009 and 20/09/2004 to 23/11/2009, while 

RADARSAT-1 ascending and descending images span the intervals from 05/05/2006 to 28/10/2009 

and 25/08/2005 to 15/10/2009. These data were processed by Altamira Information with the Stable 

Point Network (SPN) technique [29,30]. 

3. Methodology 

3.1. Object-Based Class Modeling 

The distinction of the two classes flow-like landslides and other landslide types (falls, topples, slides 

and spreads) follows the kinematic-based classification of Cruden and Varnes [13]. Within the study 

area the class flow-like landslides mainly covers channelized debris bodies and their depositional areas. 

The source areas of the flows are included in the class other landslide types since the movements very 

often initiate at the head of the stream incisions by sliding or by concentrate erosion. The detection of 

flow-like landslides and other landslide types was conducted by applying object-based image analysis 

in eCognition 8 software, which offers a modular programming environment for (image-)object 

handling in a vertical and horizontal hierarchy [31]. Rulesets for automated analysis are coded in CNL 

(Cognition Network Language) within the mentioned software. OBIA constitutes the methodological 

framework for machine-based interpretation of target features defined by spectral, spatial, structural, 

contextual and also hierarchical properties [23], while reducing the influence of per pixel spectral 
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response patterns. Knowledge is represented through the use of rule-based classifiers, making explicit 

the required spectral and geometrical properties just as spatial relationships for advanced class 

modeling [32]. Class modeling, a cyclic process of segmentation and classification, allows addressing 

objects individually in a region-specific manner at any stage in the ruleset [32].  

3.2. Estimation of Appropriate Scale Parameter 

In order to objectively select a suitable scale parameter for the appropriate image segmentation a 

statistical tool called ESP (estimation of scale parameter), developed by Drǎguţ et al. [33], was used. 

The ESP tool iteratively generates image-objects at multiple scale levels in a bottom-up approach and 

calculates the local variance of object heterogeneity within a scene for each scale [33]. By plotting the 

local variance against the respective scale the variation in heterogeneity can be evaluated. The scale 

levels at which the image can be segmented in the most appropriate manner, relative to the data 

properties at the scene level, are indicated by the thresholds in rates of change of local variance  

(ROC-LV) [33]. Based on this evaluation a scale parameter of 36, indicated by a peak in the ROC-LV 

graph (see Figure 4), was chosen for the initial multi-resolution segmentation. 

Figure 4. Results of the estimation of scale parameter (ESP) analysis showing potential 

scales for image segmentation. The peaks in the Rate of Change graph indicate object 

levels at which the image can be segmented in an appropriate manner (here a scale 

parameter of 36 was found suitable). 

 

The three multispectral bands of the SPOT-5 image were used for segmentation. A higher weight 

was given to the color criterion than to the shape criterion. A coarser segmentation level with scale 

parameter 82 and the same shape (0.3) and compactness factors (0.5) as for the finer segmentation 
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level, also determined by making use of the ESP tool, resulting in larger image-objects, was created to 

facilitate a first, rough delineation of target areas affected by landslides.  

3.3. Rule-Based Classification 

By using OBIA, the influence of variant spectral reflectance of single pixels can be minimized. This 

seems to be applicable especially for natural, complex phenomena such as landslides, which tend to 

exhibit varying spectral response patterns. The creation of rulesets relied on the transformation of 

expert knowledge into machine-based rules, whereby the SPOT-5 image constituted the a priori data 

used for landslide detection and classification. During class modeling absolute spectral threshold 

values were kept to a minimum, whereas relational features and spatial characteristics were used 

instead. Vegetation indices as the NDVI (Normalized Difference Vegetation Index) and the MSAVI 

(Modified Soil-Adjusted Vegetation Index, see Equation (1)) proved to be very useful for differentiating 

target areas from areas of no interest.  	 ∗ ∗ 	 (1)	
where NIR is the near infrared band and RED the red band.  

As a first step, potential landslides were identified as target objects on the finer segmentation level 

by applying the mentioned vegetation indices in combination with other feature characteristics, for 

example slope, standard deviation of the near infrared band, the maximum spectral difference within 

image-objects, neighborhood information, shape properties (e.g., length/width) or relief, the maximum 

change in elevation within an object. Objects with slope gradients above 60 degrees and below 10 

degrees were excluded from the target objects. The range of these thresholds was defined relatively 

wide, but should ensure not to miss any areas of interest. Additionally, aspect, curvature and plan 

curvature appeared to be appropriate for improving the detection of target areas. By making use of 

these characteristics it was possible to exclude falsely classified target areas, for example rocky ridges 

in high-lying areas, as well as add some missed objects. The pre-classified objects were further divided 

into two classes: flow-like landslides and other landslide types. As the segmentation levels follow a 

strict image-object hierarchy the initial classification of target areas on the finer level could be 

transferred to the level above. The differentiation of classes was initially done on the coarse 

segmentation level, where shape parameters in particular, but also morphological characteristics 

appeared to be more significant for a first, rough separation than on the fine segmentation level (cf. 

Figure 5). Mainly the mean slope was used to distinguish flow-like landslides from other landslide 

types. Image-objects with a mean slope higher than 25° were allocated to the class other landslide 

types, those with a lower value were classified as flow-like landslides. Besides slope, also aspect, 

curvature and plan curvature were used for this first differentiation. Latter mentioned morphological 

characteristics turned out to be useful for supporting the class separation on the coarse segmentation 

level (e.g., low plan curvature values were considered for the detection of flow-like channelized 

landslides), but as the spatial resolution of the available DEM (20 m GSD) was not fully sufficient for 

determining unique thresholds, they were mainly used in combination with shape characteristics such 

as length/width or the brightness of objects (flow-like landslides tend to appear brighter on the SPOT-5 

image) to facilitate the stepwise refinement of the classification. 
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Figure 5. Workflow for the semi-automated detection of flow-like landslides and other 

landslide types in an object-based environment. 

 

Subsequently, the intermediate classification results were transferred to the finer segmentation level 

for further improvement of the classification. The refinement of the classification comprised the use of 

selected feature characteristics: besides the NDVI, spectral and spatial properties (length/width or 

compactness), morphological parameters as aspect and slope and especially context information (e.g., 

relative common border to neighboring objects) and hierarchical information (relations to super objects 

on the higher segmentation level) were taken into account. As natural phenomena like landslides can 

hardly be described using one absolute threshold, several image-object feature characteristics 

combined with context information were used for the further improvement of the classification. For 

instance, if objects were primarily classified as flow-like landslides, but their classification was fraught 

with uncertainty and the objects only slightly missed the parameter thresholds attached to the class 

other landslide types, they were assigned to a temporary class in the first step. Secondly, if these 

temporary objects, which were most often relatively small ones, showed a high relative border to the 

class other landslide types or were almost completely enclosed by this class, they were finally 

reclassified as other landslides type. Using neighborhood characteristics, in this case the relative 

border to neighboring objects, contributed essentially to the improvement of the classification.  
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3.4. Region-Specific Refinement 

In a few areas (e.g., partially shadowed regions on the SPOT-5 image) some misclassifications still 

occurred. In such cases, we made use of the capability of eCognition software to address specific 

regions individually. Thereby it is possible to adapt certain rules only to pre-defined regions within a 

larger study area. This allows for more detail and quickly eliminates classification errors and also 

reduces analysis time as it is not necessary to find valid rules for the whole area under investigation. 

3.5. Image-Object Border Refinement for Deriving Meaningful Image-Objects 

Finally, the delineation of ‘meaningful’ image-objects was further enhanced through applying split 

and merge functions as well as smoothing of image-object boundaries by using pixel-based resizing 

algorithms. In order to keep the preliminary existing result, the refinement of the boundaries was done 

on an independent segmentation and classification layer. Working with such sub-projects in one 

eCognition project allows running processes independently, for example performing independent 

segmentation and classification while not changing the initial image-object borders. 

For smoothing the boundaries of classified objects, specific pixel-based shrinking algorithms were 

applied. Edge pixels between flow-like landslides and other landslide types with an NDVI value below 

0.1 were allocated to a temporary class applying a surface tension of larger than 0.4 within a 5 × 5 

pixel window. Surface tension is calculated based on the relative area of a given class within a moving 

window around the current candidate pixel. The ratio of the relative area of seed pixels to all pixels 

inside the moving window is computed [34]. The temporary image-objects were subsequently merged 

to those neighboring objects with the highest relative common border. Consequently, smoother borders 

between flow-like landslides and other landslide types were achieved (Figure 6). Further shrinking was 

done for edge pixels between classified landslide objects with NDVI values higher than 0.2 and 

unclassified objects, keeping the same size of the moving window, but increasing the surface tension 

value to 0.5. 

Figure 6. Pixel-based resizing of object boundaries. Black ellipses highlight examples for 

edge pixels between flow-like landslides and other landslide types; red ellipses highlight 

examples for edge pixels between classified objects and unclassified objects. (a) Classified 

objects before pixel-based resizing. (b) Temporary image-objects are displayed in blue 

color. (c) Result with smoother boundaries after applying pixel-based resizing.  
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As one of the last refinement steps, classified image-objects smaller than 200 m², having no common 

border to other classified objects, were removed, and unclassified objects smaller than 300 m², which 

were enclosed by flow-like landslides or other landslide types, were assigned to the respective 

enclosing class. While a few objects, which probably constituted objects of interest, still remained 

unclassified and some others seemed to be assigned to the wrong class, a minimal manual refinement 

was done at this stage. As this affected only a minor number of small objects it was decided to perform 

a manual improvement instead of applying additional rules. 

Finally, the classified objects were partly merged to obtain more ‘meaningful’ objects. Therefore, 

several rules, considering aspect, size or maximum change of slope, were used to ensure that not all 

objects of one class were merged, but rather the most similar ones, which ideally represent one 

landslide. 

4. Results and Discussion 

4.1. Results of Object-Based Landslide Detection 

The result of the object-based landslide detection for the Mont de la Saxe study area, which covers 

approximately 70 km², is shown in Figure 7. In total, an area of 3.77 km² was classified as  

landslide-affected; comprising an area of 1.68 km² flow-like landslides (mainly channelized debris 

bodies and their depositional areas) and 2.09 km² classified as other landslide types (falls, topples, 

slides and spreads). The smallest other landslide type detected is 556 m², the largest 94,500 m²; the 

smallest and largest flow-like landslides are 1,800 m² and 262,000 m², respectively. 

Due to the illumination conditions at the acquisition time and the orientation of the mountainous 

ridges and valleys (NE-SW), all slopes facing towards NW resulted in shadowed areas (see Figure 7). 

For these areas, it was hardly possible to detect all landslides on the basis of the optical satellite image. 

Other than these obstacles, minor errors of omission (i.e., a few small landslides or sub-areas of 

landslide complexes could not be detected) and commission (i.e., wrongly classified parts) occurred 

(see Figure 8). To correct these errors minor manual editing was conducted. 

4.2. Validation  

4.2.1. Cross-Comparison with Pre-Existing Landslide Inventories 

In order to validate the detected flow-like landslides and other landslide types, the areas (i.e., 

classified image-objects) recognised as affected by instability processes, were compared with the 

Italian national landslides inventory: IFFI, and the Hydrogeological Asset Plan: PAI of the Po River 

Basin Authority.  

Concerning the IFFI inventory (Figure 9(a)), the database, updated to 2007, was created by 

integrating a collection of historical and archive data, manual aerial photo interpretation, field surveys 

and detailed mapping. For every landslide a minimum datasheet indicating the localization, the type of 

movement and the state of activity is reported. The distinction of different types of movement is 

mostly based on the classification proposed by Varnes [35] and Cruden and Varnes [13] with some 

modifications. In particular, some types of movements (deep-seated gravitational slope deformations, 



Remote Sens. 2012, 4                    

 

 

1323

areas affected by numerous falls/topples, numerous sinkholes or numerous shallow landslides) have 

been introduced, which, even limited in size, are widespread along certain slopes or affect very large 

areas [36]. In addition, the IFFI inventory also includes linear instability phenomena and limited areal 

phenomena displayed as point features. 

Figure 7. Result of the object-based landslide detection based on the SPOT-5 imagery 

(acquisition date: 5 May 2005, false color composite). Pink areas represent flow-like 

landslides and yellow areas indicate other landslide types. 
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Figure 8. (a) Results of the object-based landslide detection showing (b) wrongly 

classified other landslide types (white outline) and (c) and (d) other landslide types, which 

were missed (black outline). 

 

The main objective of the Hydrogeological Asset Plan (PAI, Figure 9(b)) is the reduction of the 

hydrogeological risk to ensure the safety of people and to minimize the threat to the exposed elements 

at risk. In Italy the Environmental Protection Law 183/1989 identified hydrographic basins as the 

optimal physical environment for land management in terms of risk limitation. The study area of Mont 

de la Saxe lies in the northern sector of the Po river hydrographic basin, the major Italian river basin 

with a total surface of about 74,000 km2. In this context, the areas characterized by higher landslide 

risk (R3 and R4 classes) were taken into account for validating the result of the object-based approach. 

The PAI maps have been updated to 2006 and also served as archive data for the realization of the IFFI 

database. 
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Figure 9. Hillshade of the study area showing (a) the IFFI landslide inventory and (b) the  

R3/R4 risk areas as reported in the Hydrogeological Asset Plan PAI. 

 

Table 1. Number of features and area of the landslides included in IFFI and PAI 

inventories compared to the results of the object-based image analysis. 

OBIA  No of Features Area [km
2
] 

Flow-like landslides 275 1.68 

Other landslide types  357 2.09 

Total 632 3.77 

Spatial overlap with IFFI   

Flow-like landslides 181 1.16 

Other landslide types 89 0.53 

Total 270 1.69 

Spatial overlap with PAI   

Flow-like landslides 178 1.16 

Other landslide types 104 0.74 

Total 282 1.90 

IFFI    

Fall/topple 15 2.83 

Planar/rotation slide 2 0.14 

Rapid flow 2 1.18 

Complex 12 3.18 

DSGSD 6 10.79 

Total  37 18.12 

PAI   

R3 and R4 areas 50 12.26 

In Table 1 the extension of the areas recognized as unstable by the object-based image analysis 

approach and the areas affected by landslides reported in the IFFI inventory and in the PAI are shown. 
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It is worth noting that 92.9% of the high risk areas (in terms of km2) reported in the PAI are also 

included in the IFFI database. For this comparison and further validation, not the result with the 

merged objects was used, but the objects showing the borders before the final merge instead. By using 

these smaller objects more detailed comparative statements can be made regarding the coincidence of 

specific objects with reference data sets. 

An area of 3.77 km2 has been recognized as affected by landslides by the object-based approach. 

Approximately 44.8% (i.e., 1.69 km²) of the detected landslides are also classified areas of the IFFI 

inventory and about 50.4% (i.e., 1.9 km²) spatially overlap with the R3 and R4 areas of the PAI map. 

The marked differences in terms of total surface affected by slope instability between OBIA and the 

ancillary inventories are mainly due to the fact that the densely vegetated areas in the lower slope 

portions, where IFFI and PAI report a considerable amount of landslides, prevented a complete 

extraction of the landslide features with the available data (cf. Figure 10(a,b)). Moreover, it was not 

possible to carry out the semi-automated analysis on the whole study area due to illumination 

conditions. On the other hand, in high, mountainous areas with limited accessibility (i.e., areas 

generally without element at risk) the IFFI and PAI maps are not completed and/or updated on a 

regular basis and show fewer landslides than detected through OBIA. In general, it has to be 

mentioned that these existing inventories, although officially used, cannot provide the ‘true’ reference 

as the delineation of affected areas is rather coarse and partly incomplete. 

Further slight differences between the OBIA results and the pre-existing inventories can be 

attributed to the fact that the SPOT-5 image used in the analysis was acquired in 2005 while PAI and 

IFFI landslide maps are updated to 2006 and 2007, respectively. 

In particular, taking into account the type of movement as indicated in the landslide inventory, the 

object-based approach was more effective in the detection of flow-like channelized landslides and 

areas affected by diffuse falls and topples. The major concentration of unstable areas is located in the 

SE slopes of the Monte Bianco massif (Ferret valley) and along the SE slopes of Mont de la Saxe ridge 

(Sapin valley).  

In the lower Ferret valley (Figure 10(a,b)) many features detected by OBIA are located along the 

boundaries of the classified IFFI and PAI flow-like or falls/topples landslide bodies. In this case, it 

should be noted that IFFI inventory tends to classify only the channelized debris bodies in the valleys 

and the depositional areas in the alluvial fans and talus as areas affected by flows or landslides. The 

OBIA approach instead allowed the identification of the source areas of the flows, located in the upper 

portion of the catchment basins. It is well-known that these areas can undergo very fast modifications 

following rainfalls and snow melting resulting in a retrogressive extension of the instability at the head 

of the river catchments. Concentrated erosion (gully erosion) is the typical process which causes the 

extension of the instability in the direction opposite the movement of the displaced material and 

preferably affects the erodible lithologies, such as the argillaceous schists of the Ultrahelvetic units and 

the detritic cover. 
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Figure 10. Comparison of OBIA results, (a) IFFI and (b) PAI maps in the lower Ferret valley. 

 

Another important geological consideration is that the IFFI classification of the instability 

phenomena along the SE slopes of the Monte Bianco massif is just a schematization and all landslides 

should be considered as complex. In fact, the upper portion of the slopes, constituted by hard rocks 

(granites, orthogneiss, migmatites), is characterized by diffuse falls and topples. The mobilized 

material is able to reach the valley’s bottom in some cases, but more often it accumulates as talus and 

scree deposits along the slope. It can be subsequently mobilized and channelized as debris flows or 

debris slide during rainfall events. Therefore, all fan-shaped deposits along the Ferret valley should be 

considered as mixed alluvial fans-talus depositional systems. Hence, in this area the distinction 

between flow-like landslides and other landslide types can be considered subtle since talus and scree 

deposits can subsequently be mobilized as landslides.  

The Bois de Plan Cereux landslide (cf. Figure 3) was not detected by the OBIA methodology as its 

area was affected by shadowing at the time of the SPOT-5 acquisition, and hence the landslide was not 

visible to the optical satellite. 

Figure 11 shows that the object-based methodology allowed to identify the whole detachment area 

of a large slide in the upper part of the Sapin valley (Figure 11(a)) and to extend the unstable sectors 

towards NE. Comparing the IFFI and PAI maps, the landslide boundaries are not coincident, but the 

PSI analysis confirmed that towards NE the whole area has been affected by major movements. Two 

further landslides mapped in the IFFI inventory (Landslide B and C in Figure 11(a)) were partially 

identified with a less degree of precision since the slope is mainly covered by forest. Towards the 

upper portion of the Sapin valley the Ultrahelvetic units and the Monte Bianco-Mont Chètif crystalline 

complex are divided by the Penninic frontal thrust. The rocks belonging to the frontal portion of the 

Penninic units (calcschists, dolomites, limestones, chalk, gypsum, conglomerates and breccias) are 

highly tectonized and prone to the development of instability. In particular, the OBIA method 

recognized a whole secondary valley incised in Tarantasia breccias characterized by potential 
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instability, which has been only partially mapped as R4 area in the PAI inventory, and an adjacent area 

affected by falling and toppling (Figure 11) detected also by the PSI analysis. Landslide A mapped in 

PAI (Figure 11(b)) could only partly be detected by the object-based analysis due to vegetation cover. 

Figure 11. Comparison between OBIA results, (a) IFFI and (b) PAI maps in the Sapin 

Valley with indication of the larger instability phenomena underlain by orthophotos from 

1998–1999. 

 

4.2.2. Advanced Interpretation of Persistent Scatterers Data in 1992–2009 

InSAR techniques, especially the use of persistent scatterers (PS), provide valuable information on 

ground deformation [37–40]. To quantify the historical and recent deformation rates of the unstable 

areas identified through OBIA and to validate the semi-automated landslide recognition, we employed 

six datasets of persistent scatterers obtained by SPN processing of ascending and descending ERS1/2 
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(1992–2000), ENVISAT ASAR and RADARSAT-1 (2004–2009) data, which allowed the recognition 

of more than 12,000 PS over the whole area (~70 km2). Only low density of PS can be obtained for 

densely vegetated areas due to the absence of good radar reflectors and strong temporal decorrelation. 

On the other hand, several targets are detected on urban structures and exposed rocks, allowing the 

estimation of LOS (Line Of Sight) yearly velocities as well as time series of deformation for the 

investigated area from 1992 to 2009 with millimeter precision. 

Of the 632 polygons identified through OBIA about 32% are covered by PS data; in particular, 

estimates of ground deformation are available for 149 flow-like landslides and 54 areas affected by 

other landslide types by at least one of the six PS datasets. For E, SE and NE facing slopes the datasets 

exploiting the ascending acquisition geometry are providing higher densities of PS, while W, SW and 

NW facing slopes are better analyzed with descending acquisition geometries. This is justified by the 

geometric visibility and topographic distortions of SAR imagery in the ascending and descending 

configurations, which are more suitable to investigate slopes facing in the same direction of the 

employed LOS (i.e., E and W facing areas). On the other hand, slopes facing the satellite undergo 

layover and foreshortening effects. As for the NW facing Bois de Plan Cereux landslide (cf. Figure 3), 

although a good topographic visibility is achieved using the descending geometry, a dense vegetation 

cover prevents reflective scatterers to be identified in the radar imagery; and as a direct consequence, 

the SPN processing was not able to deliver appropriate results for this area. 

Interpretation of 1992–2009 PS measures (recently called ‘radar-interpretation’; [41,42]) supported 

the definition of boundaries and areas of unstable sectors identified within the pre-existing inventories 

(PAI and IFFI), and detected through OBIA. For those unstable sectors characterized by high densities 

of PS data within their boundaries, the estimation of average velocities was also performed, together 

with their classification according to Cruden and Varnes [13]. Due to intrinsic characteristics of PS 

data and their difficulties in the analysis of motions exceeding few tens of cm/yr, only extremely slow 

(v < 16 mm/yr) and very slow (16 mm/yr ≤ v < 1.6 m/yr) phenomena were detected. Two examples of 

validation of the OBIA results through radar-interpretation are analyzed below. They show the  

cross-comparison of the object-based detection with PS data, the main advantages of the combined use 

of these two types of datasets and their complementarities, as well as critical issues, which should be 

addressed through field checks and validation. 

4.3. Combined Use of OBIA and PS Interpretation for Integrated Landslide Mapping 

In the area of Sapin valley the object-based approach identified quite a steep area of ~0.085 km2 

classified as affected by slope instability and characterized by an average NDVI of 0.12 (Figure 12). This 

area was previously mapped within the IFFI inventory as affected by falls and topples. PSI data stacks 

gathered from ENVISAT and RADARSAT-1 descending data reveal average rates of deformation of 

about 13 mm/yr (ENVISAT) and 15 mm/yr (RADARSAT) along the LOS, confirming the presence of 

active ground instability occurring in this area. The slight difference in the velocities estimated by the 

two datasets is mainly justified by the different orientation of the LOS of ENVISAT and RADARSAT-1 

satellites, which are characterized by different look angles (i.e., ~23° and ~34°, respectively). Due to the 

local orientation of the unstable slope, which faces WSW and has an average inclination of 30°, the 
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component of the motion captured through the RADARSAT geometry (i.e., 15 mm/yr) is higher than 

that observed by ENVISAT (i.e., 13 mm/yr). 

Figure 12. Integrated landslide mapping in the Sapin valley area updating the IFFI  

pre-existing inventory (a) through the OBIA approach and (b) complemented through 

radar-interpretation of ENVISAT (2004–2009) and RADARSAT-1 (2005–2009) 

descending PS data. Landslide mapping and PS data are overlapped on the 1998–1999 

orthophoto, displayed using grey scale. Negative velocity values for the identified PS 

represent LOS movements in the direction away from the sensor, while positive values 

represent movements towards the satellite sensor. 

 

Assuming the direction of maximum slope as the main direction of deformation of this  

landslide-prone area, LOS rates estimated by both ENVISAT and RADARSAT were projected along 

the maximum slope direction. This projection produced an average velocity of about 17–18 mm/yr for 

both datasets, which allowed classifying the landslide as a very slow phenomenon [13]. The combined 

interpretation of radar measures and landslide boundaries detected through OBIA facilitated the 

updating of the pre-existing landslide mapping, enlarging the unstable area in the uppermost sector of 

the slope (100 m NNE) and in its eastern portion (Figure 12). The total area of the unstable sector was 

updated from ~0.141 km2 (IFFI) to ~0.158 km2. 

In the NE sector of Ferret valley, the OBIA method identified several unstable areas classified as 

flow-like landslides (Figure 13(a)), previously mapped within the IFFI inventory as affected by falls 

and topples; orientation of this sector is predominantly SE, with average slopes of 30–35° and an 

NDVI ranging between 0.08 and 0.2. Due to slope orientation, the available PS data mostly belong to 

the ascending stacks of ENVISAT and RADARSAT-1 data (Figure 13(b)). These PS stacks reveal 

deformation velocities ranging between ±3 mm/yr (RADARSAT) and -4 and +3 mm/yr (ENVISAT), 

moving from the uppermost to the lowermost portions of the slope. An interpolated map of 

RADARSAT measured from 2005–2009 confirms this velocity distribution for all identified areas 

(Figure 13(c)). This behavior reflects the changes in the orientation of the main direction of 

displacement for the different portions of the slope. In the upper portion—characterized by higher 
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inclinations—motion is mainly parallel to the slope, and produces negative deformation velocities (up 

to -4 mm/yr) when projected along the ascending LOS direction. On the other hand, the lower portion 

is characterized by less steep slopes (up to 5°) and displacements show stronger horizontal components, 

which are seen by the ascending LOS as motions in the direction towards the sensor (i.e., positive 

velocities, up to +3 mm/yr). Velocities projected along the maximum slope direction reveal for this 

unstable area up to 5–10 mm/yr; therefore, the movement can be classified as extremely slow [13]. 

Slight enlargement of the unstable area in its western sector was performed to include those areas 

highlighted by OBIA and showing geomorphologic evidences of ground instability (Figure 13(b)). 

Figure 13. Integrated landslide mapping in the area of Ferret valley, refining the IFFI 

inventory through OBIA and radar-interpretation of ENVISAT (2004–2009) and 

RADARSAT-1 (2005–2009) ascending PS data. Pre-existing mapping from IFFI 

inventory and the results of the object-based analysis are shown in (a), while the updated 

landslide boundaries and PS data are shown in (b) and the interpolated LOS velocity of 

RADARSAT-1 PS in 2005–2009 in (c). 
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5. Conclusions 

The presented approach demonstrates how landslide mapping can be improved and existing 

landslide inventories updated using a combination of object-based image analysis and  

radar-interpretation of ENVISAT and RADARSAT measures. In total, an area of 3.77 km² was 

classified as landslide-affected by the object-based approach, including 1.68 km² flow-like landslides 

(mainly channelized debris bodies and their depositional areas) and 2.09 km² other landslide types 

(falls, topples, slides and spreads). OBIA offers fast and reliable methods for landslide detection and 

mapping by considering spectral, spatial, structural, contextual and also hierarchical properties while 

reducing the influence of per pixel spectral response patterns. During class modeling image-objects 

can be addressed individually and object-boundaries can be refined through applying pixel-based 

resizing algorithms. The flexibility of the approach allows for the integration of various data sets while 

making use of the most appropriate specific characteristics for detecting and classifying landslides. 

Thus, results with richer information content can be achieved overcoming some of the limitations 

found when relying on just one data set. On the other hand, uncertainty might be introduced through 

the combination of data sets from different points in time or with a different spatial resolution or by 

using absolute thresholds in the course of transforming expert knowledge into machine-based rules. 

The use of fuzzy rules during class modeling might be an alternative approach for analyzing complex 

natural phenomena, which hardly exhibits sharp boundaries. Validation of landslide mapping results 

originating from remote sensing data is a crucial aspect, but has been almost neglected in existing 

studies. That might be because existing landslide inventory maps, which could be used as a reference, 

are often outdated or too inaccurate or incomplete. As a result, they can present, at best, a rough 

reference indicating landslide-prone areas. Instead, such inventories could be regularly updated by 

using semi-automated and innovative methods. Ground truth data would probably constitute the best 

reference for validation, but such information often has limited availability and its acquisition is a 

work-intensive and expensive task and it is difficult to ascertain as landslide-prone regions are often 

hard to reach and to survey.  

Within the presented study the results achieved through semi-automated object-based image 

analysis were validated against existing landslide inventories and outcomes from radar data analysis. 

Approximately 44.8% (i.e., 1.69 km²) of the detected landslides are also classified areas of the IFFI 

inventory and about 50.4% (i.e., 1.9 km²) spatially overlap with the R3 and R4 areas of the PAI map. 

The analysis of radar data (i.e., applying PSI technique) is commonly used in landslide research and 

has proved its usefulness over recent years. This study demonstrates how PSI results showing  

point-based movements can be used for validation purposes. Although some landslides are only 

detected by either OBIA or PSI due to some limitations (e.g., shadowed areas, absence of good radar 

reflectors), the results show a significant match when comparing image-objects with outcomes from 

radar data analysis. Of the 632 polygons identified through OBIA about 32% are covered by PS data; 

in particular, estimates of ground deformation are available for 149 flow-like landslides and 54 other 

landslide types. Further analysis should examine the methodological constraints attached to the 

comparison of point data with polygon data and taking into account different velocity rates.  

Object-based image analysis offers a suitable and innovative framework to complement established 

procedures and brings in new dimensions regarding a more objective and efficient mapping and 
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monitoring of landslides. However, more research is needed to make rulesets more intuitive, robust 

and transferable to different settings and conditions. Future research directions should aim at the 

further implementation of automated and operational workflows by a full integration of all available 

data sets (i.e., integrating both, optical and radar data supplemented by elevation information and 

ancillary data). Thus, it might be possible to automatically attach information about moving directions 

and rates to image-objects and to come up with fully integrated workflows and results. 
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