

Delft University of Technology

A Semi-Automatic and Low-Cost Method to Learn Patterns for Named Entity Recognition

Marrero, M.; Urbano, J.

DOI
10.1017/S135132491700016X
Publication date
2018
Document Version
Accepted author manuscript
Published in
Natural Language Engineering

Citation (APA)
Marrero, M., & Urbano, J. (2018). A Semi-Automatic and Low-Cost Method to Learn Patterns for Named
Entity Recognition. Natural Language Engineering, 24(1), 39-75.
https://doi.org/10.1017/S135132491700016X

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1017/S135132491700016X
https://doi.org/10.1017/S135132491700016X

Natural Language Engineering 1 (1): 1–39. Printed in the United Kingdom

c© 2017 Cambridge University Press

1

A Semi-automatic and Low-cost Method
to Learn Patterns for Named Entity Recognition†

M. M A R R E R O
Barcelona Supercomputing Center, Spain

E-mail: marrero.monica@gmail.com

J. U R B A N O
Delft University of Technology, The Netherlands

E-mail: urbano.julian@gmail.com

(Received 17 January 2016; revised 18 April 2017; accepted 19 April 2017)

Abstract

Named Entity Recognition is a basic task in Information Extraction that aims at identify-
ing entities of interest within full text documents. The patterns used to recognize entities
can be rule-based, as in the popular JAPE system. However, hand-crafting effective pat-
terns is often difficult, and yet there is little research devoted to methods capable of
learning human-readable patterns, possibly with arbitrary sets of features. In this paper
we present a semi-automatic method to generate both regular expressions and a subset of
the JAPE language. It does not need a corpus annotated beforehand. Instead, it employs
active learning and combines clustering with an algorithm that finds alignments between
symbols present in the entities discovered during the learning process. The method cur-
rently supports a fixed set of character features and an arbitrary set of token features, but
it can incorporate other kinds of features as well. Through several experiments with an
English corpus we show the ability of the method to generate effective patterns at a low
annotation cost, and how it can successfully help in the annotation of brand new corpora.

1 Introduction

The dramatic rate at which digital information is generated requires in many cases

to go beyond merely retrieving full documents in response to a query, for instance

by extracting the exact pieces of information that users are looking for (Gantz and

Reinsel 2012). The goal of Named Entity Recognition (NER) is to identify entities

of interest in full documents, such as persons, locations and dates. NER is a basic

area in Information Extraction, necessary for example to identify referents and

their relations, or scenario compositions in order to satisfy specific user needs. It is

a topic of research especially active in fields like Biomedicine (Nédellec, Bossy, Kim,

† This work was partially supported by the Spanish Government through a Juan de la
Cierva fellowship and project MDM-2015-0502. We specially thank Jorge Morato and
Sonia Sánchez for their advice, as well as the anonymous reviewers for their suggestions.

2 Marrero and Urbano

Kim, Ohta, Pyysalo and Zweigenbaum 2013; Marrero, Sánchez-Cuadrado, Urbano,

Morato and Moreiro 2012) or Social Media Analysis (Li, Wei, Zhang and Zhou 2013;

Ritter, Clark, Mausam and Etzioni 2011), and it is applied in other fields related

to Information Management and Natural Language Processing, such as Semantic

Annotation (Uren, Cimiano, Iria, Handschuh, Vargas-Vera, Motta and Ciravegna

2006; Reeve and Han 2005), Question Answering (Srihari and Li 1999), Ontology

Population (Maedche and Staab 2001; Etzioni, Cafarella, Downey, Popescu, Shaked,

Soderland, Weld and Yates 2005) and Opinion Mining (Pang and Lee 2007; Popescu

and Etzioni 2005).

At the core of NER systems are patterns capable of recognizing the entities

of interest. Even though statistical approaches are more frequently used to learn

these patterns, hand-crafted rules still play an important role in real world applica-

tions, especially in the industry (Chiticariu and Reiss 2013). The need for traceable

results, the lack of existing annotated data and the difficulty to create new annota-

tions, as well as unclear or unstable specifications, are some of the reasons that favor

rule-based approaches. Examples of successful rule-based systems are GATE with

JAPE (Java Annotation Patterns Engine) (Cunningham et al. 2013), and Apache

UIMA Ruta (Klueg, Toepfer, Beck, Fette and Puppe 2015). However, the user is

required to learn specific formal languages to write these rules. Even though there

are tools that help doing this, such as NooJ (Silberztein 2005) for grammars or Ul-

trapico Expresso for regular expressions, the user still has to review large amounts

of text to debug these rules and possibly refine them for the corpus at hand.

A natural development is thus the creation of systems capable of generating

recognition rules in an automatic fashion. However, currently there is little atten-

tion to such methods. Former methods employ a reduced set of features, and they

seldom allow the use of custom features or features of different levels of granularity.

In addition, these systems often learn in a supervised manner that requires large

numbers of annotations to obtain effective patterns.

We have developed a new method to semi-automatically learn regular expres-

sions and JAPE patterns that does not require any corpora annotated beforehand.

Instead, it guides the user throughout the annotation process thanks to active learn-

ing techniques, thus reducing the overall annotation cost required to generate the

patterns. The method uses features at both character and token levels to describe

entities, and applies exactly the same algorithm to identify rules in both cases, thus

simplifying its implementation and future extension to other types of feature. The

performance of the method is evaluated with three experiments and a varied set

of entity types. First, we show that it requires a small annotation effort to learn

JAPE patterns that achieve good effectiveness scores compared to the state of the

art. Second, we show that it can also be used to exhaustively annotate new corpora,

sparing users the need to review large amounts of text. Third, we show that it can

similarly learn very effective regular expressions from a small set of initial seeds.

The remainder of the paper is organized as follows. Section 2 presents an overview

of NER and related work. Section 3 describes the proposed algorithm to identify

rules for NER, and Section 4 describes how it is efficiently combined with clustering

and active learning in order to learn valid rules. Section 5 describes general evalua-

A Semi-automatic and Low-cost Method to Learn Patterns for NER 3

tion settings, and Sections 6, 7 and 8 present the experimental details and results.

Finally, Sections 9 and 10 present a final discussion and finish with conclusions and

lines for future research.

2 Named Entity Recognition

2.1 Problem Statement

The problem of Named Entity Recognition can be formulated as follows. Let E
be the set of all entities of a particular type (e.g. person names, countries, dates),

and let P be a pattern capable of recognizing all these entities. That is, E = L(P)

where L(P) is the language recognized by P, and thus the pattern recognizes the

language of the particular entity type we are looking for and nothing else. The goal

is to generate a pattern P̂ that estimates P from a set E+ ⊆ E of positive examples

(i.e. known entities) and possibly a set E− * E of negative examples (i.e. text

fragments that are not entities of the target type).

These patterns are based on different combinations of features that character-

ize entities in E and differentiate them from the rest of the text. These features

have different degrees of granularity. They are often found at the character level

(e.g. character classes) and at the token level (e.g. POS tag, morphological cat-

egory), though we can also find discourse features. Let Σ be the alphabet of all

characters. A character feature fC is a function fC : Σ→ ΣC that maps a character

onto a symbol of a certain alphabet ΣC specific of the feature. A token feature fT

is a function fT : Σ∗ → ΣT that maps a sequence of characters (i.e. a token) onto

a symbol in the feature output alphabet. Different NER systems can of course use

different sets of features.

For our purposes, a pattern learning method for NER is thus defined as a function

that estimates P from the sets E+ and E− of positive and negative examples, sets

FC and FT of character and token features, and a corpus D of documents. In this

paper we propose a semi-automatic method to learn P̂, such that L(P̂) ≈ L(P).

The accuracy of the pattern is measured in terms of precision and recall, that is,

its ability to generate the same language as P.

2.2 Pattern Learning Methods

Different machine learning approaches can be found in the literature for the au-

tomatic creation of NER patterns. According to Sarawagi (2008), these can be

broadly categorized as rule-based and statistical. While the former may produce a

customized model designed to exploit specific characteristics of the task, the latter

try to map the NER problem to some generic theoretical model that has to be fitted.

Rule-based methods are easier to develop and interpret, while statistical methods

are more robust to noisy unstructured text. Nonetheless, both rule-based and statis-

tical learning methods are still used depending on the specificities of the extraction

task (Sarawagi 2008). Chiticariu and Reiss (2013) show that rule-based methods

are more frequent in industrial settings, while statistical methods are used more

4 Marrero and Urbano

often in academia, probably because the former are easier to adopt, understand,

debug and maintain in scenarios where requirements are changing.

We find several rule-based approaches in the literature. Whisk (Soderland 1999)

and Amilcare (Ciravegna and Wilks 2003) calculate combinations of feature val-

ues and select the ones that best identify entities. RAPIER (Thompson, Califf

and Money 1999) computes possible alignments between feature values and selects

the ones with the best trade-off between accuracy and complexity of the pattern.

Wu and Pottenger (2005) learn patterns by identifying sequences of features and

iteratively expanding patterns from the most common feature value across enti-

ties. Li, Krishnamurthy, Raghavan, Vaithyanathan and Jagadish (2008) adapt reg-

ular expressions from annotated examples. Brauer, Rieger, Moca and Barczynski’s

method (2011) analyzes the prefixes and suffixes of the entities in order to determine

character patterns. Finally, Nagesh and Chiticariu (2012) induce rules by applying

a subset of operators from the declarative language AQL with basic features previ-

ously identified in the text.

Regarding statistical learning approaches, we find the use of Markov Models

(Bikel, Miller, Schwartz and Weischedel 1997; Hachey, Alex and Becker 2005),

Maximum Entropy Models (Borthwick, Sterling, Agichtein and Grishman 1998),

Conditional Random Fields (Tomanek, Wermter and Hahn 2007; McCallum and

Li 2003; Finkel, Grenager and Manning 2005), Support Vector Machines (Asahara

and Matsumoto 2003; Shen, Zhang, Su, Zhou and Tan 2004; Vlachos 2008; Li,

Bontcheva and Cunningham 2009), Neural Networks (Kazama and Torisawa 2007;

Ratinov and Roth 2009) and Decision Trees (Sekine, Grishman and Shinnou 1998).

Some other works have studied the application of bootstrapping techniques for

NER (Gupta and Manning 2014; Jones 2005; Nadeau 2007; Pasca, Lin, Bigham,

Lifchits and Jain 2006; Etzioni et al. 2005), as well as other unsupervised techniques

(Alfonseca and Manandhar 2002; Shinyama and Sekine 2004; Ritter et al. 2011).

Finally, some recent works have studied hybrid approaches (Fersini, Messina, Felici

and Roth 2014; Irmak and Kraft 2010; Liu et al. 2013; Nouvel et al. 2012).

2.3 Annotations

The initial sets E+ and E− are usually part of the corpus, where these entities

are already annotated. Statistical learning algorithms require a large number of

such annotations (Settles 2012), which often requires the user to review very large

amounts of text. As a result, these algorithms are seldom practical when there

are none or just a few annotations available. Unfortunately, this is usually the

case in NER when facing non-traditional types of entities (e.g. apparel brands,

software applications, years of experience) or simply a brand new corpus for which

known patterns are not suitable (Marrero, Urbano, Sánchez-Cuadrado, Morato and

Gómez-Berb́ıs 2013; Marrero, Sánchez-Cuadrado, Morato and Andreadakis 2009).

In addition, these algorithms may generate patterns biased towards precision be-

cause E+ is normally outnumbered by E−, that is, there are many more negative

examples than positive examples (Li et al. 2009).

Active learning techniques can reduce annotation costs, asking users to annotate

A Semi-automatic and Low-cost Method to Learn Patterns for NER 5

only certain documents or text snippets throughout the learning process. The sets

E+ and E− are initially smaller, and they are augmented with the new annotations

made during the learning process. Overall annotation costs are reduced by identify-

ing the most informative or relevant text snippets to annotate. Active learning has

been previously applied to both rule-based (Thompson et al. 1999; Soderland 1999;

Wu and Pottenger 2005) and statistical learning methods (Hachey et al. 2005; Shen

et al. 2004; Vlachos 2008; Li et al. 2009; Tomanek et al. 2007). However, even with

active learning it is still necessary in many cases to have many initial annotations

to obtain satisfactory results.

Some studies discuss different approaches to measure the effort required from

the user (Settles 2012). For instance, Vijayanarasimhan and Grauman (2009) esti-

mates annotation cost from the time it takes the user to annotate a few examples.

Nevertheless, the most common measures of required user effort are the number

of elements to review (e.g. number of tokens), and the number of actions required

(e.g. change a label). A very important aspect in the first case is the length of the

text units that users are given to annotate. In the case of NER, RAPIER (Thomp-

son et al. 1999) uses full documents, Whisk (Soderland 1999) and Wu and Pot-

tenger (2005) use predefined text snippets (assuming previous knowledge about the

type of documents and the boundaries of the entities), Hachey et al. (2005) and

Tomanek et al. (2007) use sentences, Shen et al. (2004) use the entities themselves,

and Vlachos (2008) and Jones (2005) use tokens. Li et. al. (2009) compare the

use of documents, text fragments and tokens with active learning. They observed

that when the annotation units are text fragments or tokens instead of full docu-

ments, the performance of algorithms is significantly lower. But large documents do

not necessarily contain more entities, so using full documents makes both overall

annotation costs and algorithm performance more variable across document types.

Regarding the measurement of effort as the number of actions taken by the

user, Culotta and Mccallum (2005) consider the actions of correcting the start

boundary, end boundary, and type of an entity, as well as choosing from a list of

suggestions with various boundaries. Others try to combine the number of elements

to review and the number of actions. For instance, Ringger, Carmen, Haertel, Seppi,

Londsdale, McClanahan, Carroll and Ellison (2008) and Haertel, Seppi, Ringger and

Carroll (2008) apply an hourly cost model to the labeling of POS that depends on

the number of tokens per sentence reviewed by the user, and the number of words

whose label needs correcting.

2.4 Features

Entities may be recognized with regular expressions when their patterns respond to

sequences of characters, such as in e-mail addresses, phone numbers and names of

some genes and proteins. However, not even the typical NER entities (e.g. location,

organization, person) can be recognized with only these features; custom token fea-

tures are needed as well to describe more complex patterns. It is therefore important

that a pattern learning method permits generality (i.e. to employ a diverse set of

features to be able to recognize various entity types, even in different types of doc-

6 Marrero and Urbano

Phase: personsA

Input: Token Lookup

Rule: rule1

({Token.category == "NNP",

Token.string ==~ "A.+",

Lookup.majorType == "person_first"}) :pname

--> :pname.Person = {type = "first"}

Phase: doctorsA

Input: Token Person

Rule: rule1

({Token.string ==~ "Dr\\.?"}

{Person.type == "first"}) :drname

--> :drname.Person = {title = "doctor"}

Fig. 1. Sample cascade grammar in JAPE notation. Each phase represents a finite

state transducer, whose input alphabet is specified after Input. Each rule contains a

left-hand-side with a pattern, the separator -->, and a right-hand-side with an action.

The text matched by the pattern can be identified with a label (eg. :pname), which is used

in the action to add certain annotations to that specific string. In the above example,

the first phase recognizes person first names, made up of a token with morphosyntactic

category NNP, whose initial character is A (==~ indicates that the right-hand side is a regular

expression), and is also included in the person first gazetteer. The text matched by this

pattern is annotated as Person.type="first". The second phase uses these annotations

to recognize first names that are preceded by a token matching the regular expression

Dr\\.?, and annotates them as Person.title="doctor".

ument) as well as retargetability (i.e. to include custom features, even at different

granularity levels, to recognize specific or novel types of entities) (Freitag1998; Mar-

rero et al. 2013). These capabilities have a direct impact on the learning method,

which needs to deal with an arbitrarily large number of features and alphabet sym-

bols. This is especially troublesome with features at the character level, because

they are applied to each of the individual characters of the entities and lead to

a high degree of variability. This is often the case with statistical learning meth-

ods, which very rarely work with character-level features and, when they do, they

usually employ n-grams instead of single characters.

2.5 Representation of Patterns

An important difference between rule-based and statistical learning approaches is

the transparency of the generated patterns. Statistical learning patterns are used as

a black-box, because they are based on statistical models that are hard to interpret

by humans. On the other hand, rule-based patterns can be more easily interpreted

and analyzed, even during the learning process (Siniakov 2008). This further allows

users to edit and refine patterns, possibly aided by computer tools (Chiticariu, Kr-

ishnamurthy, Li, Reiss and Vaithyanathan 2010). The need to represent features at

different levels of granularity gave rise to a number of different ways and syntaxes

A Semi-automatic and Low-cost Method to Learn Patterns for NER 7

to specify rule-based patterns in NER, from formal patterns such as regular expres-

sions to ad-hoc patterns that represent predefined features. Unfortunately, neither

regular expressions nor higher level grammars allow more than one input alphabet

at once. On the other hand, languages for ad-hoc patterns, except maybe for recent

developments like the UIMA language, lack standardization (Marrero and Urbano

2015).

Cascade grammars do allow us to use several types of features in the same pattern.

The Common Pattern Specification Language (CPSL) (Appelt and Onyshkevych

1998) standardizes this representation, and it is widely used in Information Ex-

traction tasks. It has been adopted and customized to different extents by different

platforms (Boguraev 2004; Drozdzynski, Krieger, Piskorski, Schfer and Xu 2004; Ri-

naldi et al. 2005), GATE (Cunningham et al. 2013) being one of the most successful

ones with its JAPE notation, which provides finite state transduction over GATE’s

document annotations. Each transducer consists of a set of pattern-action rules, the

actions being new annotations over the matched text (see Fig. 1). The rule-based

methods described in Section. 2.2 are in principle capable of generating some valid

rules for this standard, but they usually employ only character features to gener-

ate regular expressions (Brauer et al. 2011; Li et al. 2008), or only token features,

predefined (Soderland 1999; Thompson et al. 1999) or not (Nagesh and Chiticariu

2012; Ciravegna and Wilks 2003). There are some approaches like (Wu and Pot-

tenger 2005) that use both types of features, but they can not be customized. The

method we present in this paper is capable of generating cascade grammars with

features that are more customizable than in other rule-based methods for NER,

making it more general and retargetable.

3 Algorithm to Identify Potential Rules

In this section we describe the core of the proposed method to learn rules for

NER: Section 3.1 first describes the type of patterns learned by the method, and

Section 3.2 explains the algorithm to identify the rules that compose those patterns.

Section 3.3 lists the features used by the method and how they are represented,

and Section 3.4 finally describes how the validated rules are stored prior to the

translation to JAPE notation. Afterwards, Section 4 will explain how this algorithm

is efficiently combined with clustering and active learning, as well as the generation

of the final JAPE patterns.

Throughout the remainder of the paper we will follow the simple scenario in

Fig. 2 as the main example for demonstration purposes, though we will explicitly

use other examples to illustrate some specific concepts. The set of initial positive

examples contains two entities: E+ = {e1 = 4:50 pm , e2 = 10.55 am }.

3.1 Sequential Patterns

The most common criterion to recognize textual entities is the occurrence of the

same symbol in all entities. For instance, the two entities in Fig. 2.a contain dig-

its and a time expression (am or pm). The declarative languages UIMA, AQL or

8 Marrero and Urbano

1 = 4:50 pm e2 = 10.55 am

AC
1 =

4 : 5 0 p m

Nd Po Nd Nd Zs [Pp] [Mm]
D P D D S L L

 AC

2 =

1 0 . 5 5 a m

Nd Nd Po Nd Nd Zs [Aa] [Mm]
D D P D D S L L

Token Features

AT
1 =

[
<> <time>

<italics> <italics>

]
AT

2 =

[
<> <time>

<italics> <italics>

]

BC
1 =

• • • • • •
Nd Po Nd Nd • • [Mm]
• • • • • L •

 BC

2 =

• • • • • • •
Nd Nd Po Nd Nd • • [Mm]
• • • • • • L •

Token Patterns

BT
1 =

[
• <time>

<italics> <italics>

]
BT

2 =

[
• <time>

<italics> <italics>

]

({Token.string ==~

"\\p{Nd}\\p{Po}\\p{Nd}{2}"}

):token1

({SpaceToken.string == " "})

({Token.string ==~ "\\p{Ll}[Mm]"}

):token2

-->

:token1.T_1_2 = {sT = "1"},

:token2.T_1_2 = {sT = "2"}

Phase: token_phase

Input: Token T_1_2

Rule: T_1_2

({T_1_2.sT == "1",

Token.fT2 == "italics"}

{T_1_2.sT == "2",

Token.fT1 == "time",

Token.fT2 == "italics"}

):match

-->

:match.entity =

{type = "time_italics"}

Rule: C_2

({Token.string ==~

"\\p{Nd}{2}\\p{Po}\\p{Nd}{2}"}

):token1

({SpaceToken.string == " "})

({Token.string ==~ "\\p{Ll}[Mm]"}

):token2

-->

:token1.T_1_2 = {sT = "1"},

:token2.T_1_2 = {sT = "2"}

1

d) JAPE Pattern
Phase: char_phase

Input: Token SpaceToken

Rule: C_1

c) Pattern Matrices
Character Patterns

b) Feature Matrices
Character Features

a) Seed Entities
e

Fig. 2. Sample application of the pattern learning method to recognize times in italic

font: a) the set of initial seeds e1 and e2, b) their character feature matrices ACi and their

token feature matrices ATi (see Section 3.3), c) the learned pattern matrices BCi and BTi
for each feature matrix, containing the fixed rules (see Section 3.4), and d) the final JAPE

pattern generated from the pattern matrices (see Section 4.3).

A Semi-automatic and Low-cost Method to Learn Patterns for NER 9

JAPE include operators to specify this type of conditions in the elements to ana-

lyze (e.g. CONTAINS), but patterns for NER are usually much more complex. They

can be combined with other conditions to create sequential patterns, which are far

more common in Natural Language Processing. These patterns consist of sequences

of symbols that repeat in all the items of interest (Srikant and Agrawal 1996). These

symbols may appear next to each other or with a number of symbols in between,

which may be fixed or vary across items. In our example, if we represent the hour

and time expressions as symbols, then they respond to a sequential pattern where

those symbols are at a distance of 1 from each other. Note that patterns that rely

only on one symbol could also be dealt with as sequences of two symbols, where

one of them is the starting or the end symbol.

Markov Models and CRF implicitly model these dependencies among symbols

in a sequence. Other statistical models such as SVM or Decision Trees rely on

the features to add sequence information to the model (e.g. n-grams, left/right

context features). Declarative languages include sequence conditions such as AFTER

or BEFORE. Implicitly, systems based on regular expressions and transducers also

search for sequences of symbols with the use of automata.

Examples of rule-based systems that learn sequential patterns are Whisk and

Amilcare, which enumerate possible sequences of symbols and select the best ones

based on several statistics. However these techniques may not be scalable in large

search spaces, so domain information is usually employed to maintain the problem

tractable. For instance, the search space could be pruned, as Amilcare does, or

constrained with certain conditions as part of a known, customized model. For ex-

ample, RAPIER looks for features that appear in the exact same position in all the

entities. In that case, when two entities have the same value for a specific feature

(string, POS and semantic) and at the same position, that value gets fixed. Other-

wise, all the values appearing in the known entities at that position are accepted by

the pattern. Using a customized model rather than a general classification model

is specially relevant when, in addition to the scalability problem, we do not have

enough data to statistically validate the patterns. In the latter case the user could

provide some kind of feedback by means of active learning techniques, as we will see

in Section 4.2.2, but the learning method should keep the interaction at a minimum,

finding the most relevant patterns to ask based on the model we know.

3.2 Rule Vectors

Our pattern search space is composed of what we will call rule vectors. A rule

vector is associated with a particular symbol from some feature, and it contains

the positions of that symbol in all the known entities. In particular, if ~z is a rule

vector related to a symbol α, each component zi ∈ ~z is the position of α in the i-th

known entity. At this point, let us assume that the symbol α is present just once

in all entities; this restriction is relaxed in Section 4.2.1.

Example: with the entities in Fig. 2, a possible rule vector would be (4, 2) for

symbol 0, meaning that the fourth character of the first entity and the second

10 Marrero and Urbano

character of the second entity are both 0. That vector suggests fixing those specific

symbols in those specific positions as rules of the final pattern. �

We identify sequential patterns by comparing pairs of rule vectors, trying to

determine how well they are aligned with each other. For two arbitrary vectors ~u

and ~v that contain positions of two symbols α and β (not necessarily from the same

feature), the ideal case would be such that ~u = ~v + δ, meaning that all entities

contain symbols α and β in the same order and at a distance of δ from each other.

However, in practice the distance between sequential symbols is not always the

same, so we define the following distance function between two rule vectors:

∆(~u,~v) =
∑
i

|(vi+1 − ui+1)− (vi − ui)|

Pairs of vectors with small distances are more likely to get fixed in the final pattern.

Symbols that always appear at similar positions from the beginning or from the end

of the entity can be identified by introducing two additional vectors. The first one,

~zb, contains only zeros to detect patterns with respect to the beginning of entities,

that is, symbols that appear at a similar distance from the first symbol in each

entity. The second vector, ~ze, contains the length of each entity and allows us to

detect patterns with respect to their end, that is, symbols that appear at a similar

distance from the last symbol of each entity.

For each feature, we iteratively calculate all rule vectors and compute their dis-

tance ∆ with each of: i) all other possible rule vectors, ii) vectors ~zb and ~ze, iii)

all vectors already fixed in the final pattern and from the same feature, and iv) all

vectors already fixed in the final pattern but from previous features. In the end, we

select the rule vectors whose distance with other vectors was minimal in the whole

set, as they are most likely to produce valid rules. We note that for two vector rules

to actually define a sequential pattern, the symbols they represent must always ap-

pear in the same order in all entities. This means that if in any entity the symbols

are swapped, the vectors are not even paired to compute their distance.

In addition, it generally does not make sense to fix a rule vector involving for

instance the same character found in the body of some entities and in the context of

some others. Because we do not force symbols to appear in the exact same position

across entities, we look for rule vectors separately within the entities and within

their contexts. The identification of rule vectors within the contexts is made by

joining together the left and right context, so we are able to find sequential patterns

involving matching symbols from both contexts. This approach would help finding

symbols that appear sequentially in the left and right context of an entity, such as

< and >, and would also let us identify symbols that could appear indistinctly in

the left or right contexts in each entity.

3.3 Feature Matrices

As mentioned, a rule vector contains the positions of a certain symbol in all entities.

These symbols are computed with different feature functions, which in our case are

either at the character level or at the token level. The set FC of character features

A Semi-automatic and Low-cost Method to Learn Patterns for NER 11

Table 1. Custom groups of Unicode categories in the third character feature.

Symbol Grouped Unicode categories

U: Uppercase letter Lu

L: Lowercase letter Ll

D: Digit Nd

Y: Symbol Sm, Sc, So

S: Separator Cc, Zs

P: Punctuation Pc, Pd, Ps, Pe, Pi, Pf, Po

O: Others rest of Unicode categories

is fixed to three feature functions similar to Brauer (2011). The first feature simply

maps a character onto the character itself. The second feature maps characters onto

their Unicode category, except for alphabetic characters, which are represented

in case-insensitive form. The third one maps characters onto a custom group of

Unicode symbols (see Table 1). The method allows the use of an arbitrary set FT
of features at the token level.

All these features are represented in what we will call feature matrices

(see Fig. 2.b). The character feature values for an arbitrary entity ei are represented

by a matrix ACi , such that each row corresponds to a feature and each column cor-

responds to a character of the entity, that is, aCijk ∈ ACi is the value of the j-th

feature with the k-th character of entity ei. Similarly, a matrix ATi represents the

token feature values of the entity.

Example: In our main example in Fig. 2, the fourth column of AC2 represents the

fourth character of the second entity. Because this character is 5 , the character

feature values are aC2,1,4 = 5, aC2,2,4 = Nd and aC2,3,4 = D. As for tokens, the example

uses two features: fT1 assigns a semantic tag from a gazetteer, and fT2 assigns a font

style tag. Similarly, the second token of the second entity is am , which is represented

as aT2,1,2 = <time> and aT2,2,2 = <italics> in the token feature matrix AT2 . From

these feature matrices we may identify rule vectors. For example, with the first

feature we may identify rule vector (5, 6) for the space symbol , and with the

second feature we could identify vector (7, 8) for symbol [Mm], among others. With

the first token feature we would have vector (2, 2) for symbol <time>.

12 Marrero and Urbano

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

𝑎11𝑘
𝐶

4 : 5 0 _ p m

𝑎21𝑘
𝐶

1 0 . 5 5 _ a m

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

𝑎12𝑘
𝐶

Nd Po Nd Nd Zs [Pp] [Mm]

𝑎22𝑘
𝐶

Nd Nd Po Nd Nd Zs [Aa] [Mm]

k=1 k=2 k=3 k=4 k=5 k=6

h1jk
a - a - a

h2jk
a - a - a

h3jk
a - - a

h4jk
a - - - a -

h5jk
a - - - a

h6jk
a - - a

k=1 k=2

𝑎11𝑘
𝑇

<> <time>

𝑎21𝑘
𝑇

<> <time>

rule vector 𝑧 = (5,6)

rule vector 𝑧 = (7,8)

rule vector 𝑧 = (2,2)

�

In the initialization step of the learning method, we first compute all character

feature matrices of the known entities, and group them together in a set AC =

{AC1 , AC2 , . . . }. In order to detect patterns involving the context of the entities as

well, we also include in these matrices a fixed number of characters to the left and

to the right of the entities; let these be the contexts for learning. In particular, we

use a window of size θwc characters on each side, so the k indexes have an offset of

θwc. The set AT with all token feature matrices is created similarly, but with an

offset window of θwt tokens. In Fig. 2 we have set θwc = θwt = 0 for simplicity and

therefore do not use any context in that example.

3.4 Pattern Matrices

Similarly to the feature matrices, we also use two pattern matrices for each known

entity, in order to save the rule vectors that have been fixed during the process

as part of the patterns. For each known entity ei, matrix BCi will contain the

symbols that have been fixed from the character features, and matrix BTi will

contain the symbols fixed from the token features. Each component of these matrices

corresponds to a rule vector learned for a particular feature and character (or token)

of the entity. For instance, bCijk = α ∈ ΣCj means that a rule was fixed for the k-

th character of the i-th entity, forcing it to be α with the j-th character feature

function. If no rule is found for some particular character (or token) and feature,

the corresponding component is set to the wildcard •.

Example: Fig. 2.c shows the character pattern matrices BC1 and BC2 in our main

example. Row 1 indicates that the fifth character must be a space in positions 5

for e1 and 6 for e2, as a result of fixing rule vector (5, 6) in the previous example.

The second row contains the values fixed by the rules found with the second feature,

such as (7, 8). In particular, they indicate that we have a sequence of one or two

digits (Nd), followed by a punctuation mark (Po), two more digits, and the character

M in upper or lowercase at the end. Regarding the token features, we have that in

both cases the second token of the entity must evaluate to <time> and <italics>

with features one and two, respectively. The pattern also indicates that there is no

specific rule for the first token with the first feature. �

After creating sets AC and AT with the feature matrices, the method also creates

A Semi-automatic and Low-cost Method to Learn Patterns for NER 13

the set BC containing all character patterns, and then the set BT containing all token

patterns. At that point, the patterns just contain • everywhere, meaning that no

specific rule has been found yet. Learning of patterns can thus be seen here as the

specialization of a wildcard matrix by means of rules that fix specific symbols from

the feature matrices. In the end these pattern matrices will be converted to regular

expressions or JAPE rules as detailed in Section 4.3.

4 Method to Learn Rules via Active Learning

A challenge we find to identify rules is that entities of the same type often respond

to quite different patterns, and therefore trying to learn just one pattern for all

entities is not effective. Instead, the method iteratively clusters entities by similarity

(see Section 4.1), and learns new rules within each cluster by a call to procedure

LearnRules (see Section 4.2). Some of those rules get fixed in the corresponding

pattern matrices via active learning: different sets of potential entities are presented

to the user for validation, and depending on the annotations the method decides

whether the rule vectors should be fixed and thus become part of the pattern

matrices (see Section 4.2.2). This process of entity clustering, rule identification

and active learning is repeated with each character feature in FC . After fixing in

BC all rules found at the character level, we then proceed in the same way with

each feature in FT to find rules at the token level and fix them in BT . In the end,

the method generates a pattern P̂ to recognize the entities of interest by calling

function JAPEGeneration (see Section 4.3). At a very high level, the method thus

works as follows:

Algorithm 1 Rule Learning Method

1: for all feature fj ∈ FC do . Iterate character features

2: for all cluster X ∈ Clustering
(
AC , j, θX

)
do

3: LearnRules
(
AC ,BC , X, j, θwc

)
4: end for

5: end for

6: for all feature fj ∈ FT do . Iterate token features

7: for all cluster X ∈ Clustering
(
AT , j, θX

)
do

8: LearnRules
(
AT ,BT , X, j, θwt

)
9: end for

10: end for

11: P̂← JAPEGeneration
()

In the following sections we discuss the clustering process, an efficient implemen-

tation of the rule identification algorithm from Section 3, active learning, and the

generation of the final JAPE pattern.

14 Marrero and Urbano

4.1 Clustering

As mentioned above, we can not just simply look for rules that are met by all

known entities (i.e. same sequence of symbols), because the resulting pattern would

tend to generalize too much in order to recognize them all. The upside of identi-

fying a single pattern is that we can maximize recall, but at the cost of reducing

precision. Let us consider for instance the example of IP addresses with an initial

set of entities following both the IPv6 format (8 groups of 4 hexadecimal digits

separated by colons, such as 2001:0DBB:AC10:FE01:FE80:8432:4F71:8BA4) and

the IPv4 format (4 groups of numbers from 0 to 255 separated by dots, such as

192.168.1.10). A single pattern could be a regular expression recognizing a se-

quence of 4 to 8 groups of 1 to 4 hexadecimal digits, all separated by a punctuation

symbol ([LD]{1,4}(P[LD]{1,4}){3,7}). However, this pattern happens to rec-

ognize not only IPs but also MAC addresses (6 groups of 2 hexadecimal digits

separated by colons, such as 00:1E:8C:33:82:B4).

To avoid this situation and find a balance, for each feature to process we run

a clustering algorithm with the row of the feature matrices corresponding to the

current feature. Similar to (Nagesh and Chiticariu 2012), we use a complete-linkage

agglomerative hierarchical clustering algorithm (Day and Edelsbrunner 1984), with

the Levenshtein edit distance normalized by the entity length (Levenshtein 1966).

Two entities will be clustered together only if their distance is smaller than a

customizable threshold θX . The method will look for rule vectors within each cluster

separately, leading to different patterns for the same entity type.

Example: in our main example in Fig. 2.b, the Levenshtein distance between the

two entities is 5, 2 and 1 with the three character features respectively. Normalizing

by entity length, they turn into 0.71, 0.29 and 0.14. If the clustering threshold is

for instance set to θX = 0.3, these entities would end up in the same cluster only

with the second and third character features. With the token features they would

be clustered together, because the distance is 0 in both cases. �

In our learning method, a cluster thus contains the indices of a subset of entities

that are likely to produce new rules with the current feature (e.g. a cluster X =

{x1 = 4, x2 = 5, x3 = 9} groups together entities e4, e5 and e9).

4.2 Learning Rules

The procedure LearnRules is used to learn new rules within a given cluster and

with a given feature, at the character or token level, indistinctly. First, it creates

sets A and B by subsetting the entire feature and pattern matrix sets with the

entities in the cluster X; here is where rules will be looked for. It iteratively finds

new potential rules within the body of the entities and within their context, and

then it runs the active learning phase to decide which are fixed. In each case, a

set ZA of potential rule vectors is identified by calling function FindRuleVectors

with the feature matrices (see Section 4.2.1). Then, a set ZB of previously fixed

rules is similarly created from the pattern matrices. Finally, a set Zbdy is created

by function RuleVectorsWithMin∆, which selects from ZA those vectors which

A Semi-automatic and Low-cost Method to Learn Patterns for NER 15

Algorithm 2 Pseudocode of the LearnRules procedure.

1: procedure LearnRules(X, j, θ)
X : cluster
j : feature index
θ : length of context window

2: A ← {Ai}i∈X . Subset of feature matrices from the cluster
3: B ← {Bi}i∈X . Subset of pattern matrices from the cluster
4: n← |X|
5: Z ′ ← ∅
6: repeat
7: . Get vector rules within bodies
8: ZA ← FindRuleVectors

(
A, j, θ

)
. Vectors with current feature

9: ZB ← FindRuleVectors
(
B, j, θ

)
. Vectors already fixed

10: Zbdy ← RuleVectorsWithMin∆
(
ZA,ZB, ~zb, ~ze

)
. Select rules which minimize ∆

11:
12: . Similarly, get vector rules within contexts
13: ZA ← FindRuleVectors

(
A, j, θ

)
14: ZB ← FindRuleVectors

(
B, j, θ

)
15: Zctx ← RuleVectorsWithMin∆

(
ZA,ZB, ~zb, ~ze

)
16:
17: Z ← Zbdy ∪ Zctx
18: if ∃~z ∈ Z : (z1, . . . , zn) /∈ Z ′ then
19: ActiveLearning

(
Z,A,B, X, j

)
20: else
21: FixRules

(
Z,A,B, j

)
22: end if
23: n← |X|
24: Z ′ ← Z
25: until Z ′ = ∅
26: end procedure

minimize the distance function ∆ with other rule vectors. Note that this process is

run separately for the body of the entities and their context, finally obtaining a set

Z with all potential rules to validate.

Once Z is computed, we check whether any of the potential rule vectors has not

been previously identified in the cluster (line 18). In that case, the user is asked to

validate new entities selected by the ActiveLearning procedure (see Section 4.2.2).

If with the new entities just validated the same rule vectors (or a subset of them)

are identified again in the next iteration, the rules they contain get fixed in the

patterns (line 21). When called, procedure FixRules adds to the pattern matrices

in B all the new rules just found by fixing the symbols identified in each rule vector.

In particular, for each rule ~z ∈ Z, it sets Bijzi ← Aijzi (i.e. ACxijzi
when working

with character features, or ATxijzi
with tokens). The procedure ends when no new

rule vectors are found (line 25).

We note that the cluster is augmented when the user validates new entities during

the active learning process. Therefore, the rule vectors found in some iteration

may involve new entities that were not available in the previous iteration, so when

comparing sets of rule vectors between successive iterations we must disregard the

16 Marrero and Urbano

new entities just found. This is achieved with variable n, which tracks the size of

the cluster: only the first n components of the rule vectors are compared in line 18,

that is, only the first n entities in the cluster.

Example: in our example from Fig. 2.b, let us assume that the vector (3, 4) is

identified as a potential rule vector for symbol 5 in the first character feature.

During the active learning process, the user validates a new entity e3 = 11.30 PM,

so in the next iteration there is no rule vector involving symbol 5 anymore, because

it is not contained in the new entity. Thus, the symbol 5 is not fixed. However,

with the second character feature the potential rule vector (7, 8, 8) is found for

symbol [Mm]. During the active learning process the user validates new entities, all

of which contain an m or an M in the last position, so the rule gets eventually fixed

(see Fig. 2.c). �

At the end, the same LearnRules procedure is called one feature and cluster at a

time, treating feature and pattern matrices in the same way, whether they represent

character or token features. The only difference is that in the case of characters,

if some rule is already fixed at position k, there is no point in trying to identify

more rules in that same position with the next features, because features at the

character level follow a hierarchy (e.g. a 3 with the first feature implies Nd and

D with the second and third features). This inefficient and redundant situation is

avoided after learning rules with the current feature by setting to • all symbols

below that position in ACi . This is not done in the token patterns because token

features do not necessarily follow a hierarchy.

In the next subsections we explain in detail function FindRuleVectors and pro-

cedure ActiveLearning.

4.2.1 Finding Rule Vectors

We assumed in Section 3.2 the ideal case where a symbol can occur only once in

each entity, but this is seldom true in practice. We may actually consider several

rule vectors for the same symbol, each containing different combinations of symbol

occurrences within the same entity. The problem of doing this is that the number

of vectors for each symbol grows exponentially with the number of entities in the

cluster. In general, with m being the length of the longest entity, a symbol α is

repeated O(m) times, and thus the number of vectors generated for α is O(m|X|).

Through the learning process we extend the cluster with new entities, so it could

become large enough to make the algorithm impractical at some point. In order to

reduce the complexity, we apply a heuristic that prioritizes the selection of sym-

bol occurrences whose positions are closer to each other across entities. Function

FindRuleVectors implements this heuristic to find new potential rule vectors within

an arbitrary set of matrices H, be them characters or tokens, entities or contexts,

features or patterns (in the latter case, to get previously fixed rule vectors).

Since we only find rule vectors for symbols that appear in all entities, we can

just iterate the unique symbols in the shortest entity of the cluster (i.e. with fewest

columns in its matrix). If the symbol appears in all entities, we gather a set with

A Semi-automatic and Low-cost Method to Learn Patterns for NER 17

Algorithm 3 Pseudocode of the FindRuleVectors function.

27: function FindRuleVectors(H, j)
H : matrices of the cluster (entities or contexts)
j : feature index

28: H∗ ← arg minHi∈H cols(Hi) . Shortest entity
29: Z ← ∅
30: for all symbol α ∈

⋃
k

(
h∗jk
)
do

31: if α 6= • and ∀Hi ∈ H : ∃k : hijk = α then
32: K ←

⋃
Hi∈H {k | hijk = α} . Positions with α

33: for all position k ∈ K do
34: ~zL ←

(
zLi = min

(
arg min{k′ | hijk′=α} |k − k′|

))
35: ~zR ←

(
zRi =max

(
arg min{k′ | hijk′=α} |k − k′|

))
36: Z ← Z ∪

{
~zL, ~zR

}
37: end for
38: end if
39: end for
40: return Z
41: end function

all its different positions across entities; note that if a symbol is equal to • we can

skip it because it was marked as redundant during the character learning step (see

Section 4.2). For each position k (note that we have O(m) such positions), the

algorithm computes the rule vector closest to k across entities. However, in some

entities the symbol might appear twice and at the same distance from k (i.e. once

on each side). We thus generate vectors ~zL and ~zR to keep the positions on the left

and right sides of k, respectively.

Example: let us consider the following example where the j-th rows of the feature

matrices contain the following symbols (− represents an arbitrary symbol here):

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

𝑎11𝑘
𝐶

4 : 5 0 _ p m

𝑎21𝑘
𝐶

1 0 . 5 5 _ a m

k=1 k=2 k=3 k=4 k=5 k=6 k=7 k=8

𝑎12𝑘
𝐶

Nd Po Nd Nd Zs [Pp] [Mm]

𝑎22𝑘
𝐶

Nd Nd Po Nd Nd Zs [Aa] [Mm]

k=1 k=2 k=3 k=4 k=5 k=6

h1jk
a - a - a

h2jk
a - a - a

h3jk
a - - a

h4jk
a - - - a -

h5jk
a - - - a

h6jk
a - - a

k=1 k=2

𝑎11𝑘
𝑇

<> <time>

𝑎21𝑘
𝑇

<> <time>

rule vector 𝑧 = (5,6)

rule vector 𝑧 = (7,8)

rule vector 𝑧 = (2,2)

The unique positions of symbol a are K = {1, 3, 4, 5}. The rule vector closest to

k = 1 is simply (1, 1, 1, 1, 1, 1). Entities 3 to 6 do not contain symbol a at position

k = 3, so we take the position that is closest, and when there is a tie we just take the

positions closest from the left and from the right sides. The vector closest from the

left side is (3, 3, 4, 1, 1, 4), and the one closest from the right side is (3, 3, 4, 5, 5, 4).

The latter is also the vector from the left side for k = 4. The vector from the right

side is (5, 5, 4, 5, 5, 4), which turns out to be the vector from the left for k = 5. �

For each of the O(m) positions of a symbol, FindRuleVectors returns two vectors

at most (one from the left side and one from the right side), regardless of the

18 Marrero and Urbano

number of entities in the cluster. The number of vectors returned is thus reduced

from O(m|X|) to O(m). The time to generate them is O(|X| · m2) because we

compute O(m) different vectors of |X| dimensions, for each of which we compare

O(m) positions of the symbol. Therefore, the space complexity is independent of

the number of entities, and the time complexity is linear with respect to it.

4.2.2 Active Learning

An active learning process is followed to validate the set of potential rule vectors

Z identified during the learning step. We first generate a temporary JAPE pat-

tern with procedure JAPEGeneration for each entity in the cluster, using both its

character and token pattern matrices. They are used to gather a set M of text

fragments from the unannotated corpus D that match the patterns as of this point,

some of which will probably be entities and some of which will not. Until we have

at least θM such matches, we randomly select a document from the corpus and

include all matches from the document that comply with any of the temporary

JAPE patterns. From these matches we select two sets P and R that will allow us

to increase the precision and recall of the patterns, respectively. With P we try to

avoid fixing rules that may be wrong by finding at least one valid entity as counter-

example, while with R we try to extend the set of valid rules by finding new valid

entities that are different.

For precision, until we have at least θP matches, we iterate each of the rule vectors

we are validating and select the top θz matches from M that do not comply with

it. To this end, these matches are previously ordered by their similarity with the

entities we already know. The sorting criterion is the sum of two similarity functions:

the first one counts the number of symbols that appear in both the match and its

corresponding feature matrix, and the second one counts the number of potential

rule vectors with which the match complies. These matches are then added to P
and removed from M. In the end, P contains matches that are very similar to the

known entities in the cluster and comply with as many of the rule vectors we are

validating except one.

For recall, we simply select the top θR remaining matches from M, sorted by

the first function, that is, the matches that are the most similar to the entities we

know. Note that the matches do not necessarily have the same length as the entities

they come from, because they are only required to comply with the rules fixed so

far. They are then sorted by their similarity with the original entities, so in the end

we tend to select the matches whose length is similar but not necessarily the same.

Finally, all selected matches are presented to the user for validation, along with

θwv characters to the left and right of the text fragments so that the user can correct

the boundaries of a partially recognized entity and facilitate the validation task.

Note that this context for validation is different from the contexts used to learn (θwc

and θwt). All matches that are valid entities are added to sets E+,AC ,AT ,BC ,BT
and the current cluster X; matches that are not entities are just added to E− and

ignored by the method. A valid entity from P will prevent us from fixing the rule

vector it did not comply with, because that rule vector will not come up again in

A Semi-automatic and Low-cost Method to Learn Patterns for NER 19

the next iteration within LearnRules. The effect of a valid entity from R is twofold:

first, it might result in an even better set of rule vectors in the next iteration;

second, it might end up in a different cluster for the next iteration, possibility

leading to the creation of an additional branch of patterns for the same type of

entities (e.g. different types of IP addresses).

4.3 JAPE Generation

Once all features have been iterated in search for rules, the final estimated pattern P̂

is generated in JAPE notation from the pattern matrices in BC and BT . In order to

avoid too general character patterns due to atypical entities, all positions for which

no rule was found are set to their corresponding symbols in the second feature.

Note that in the case of tokens we can not fix any default symbol because they do

not follow a hierarchy like characters do.

The resulting pattern contains two JAPE phases: the first one involves character

features, that we have called char phase, and the second involves token features,

that we have called token phase. To avoid redundancy, we first group together all

entities that share the same token pattern, and generate their JAPE rule in the

token phase. Next, we group together all entities that share the same pattern with

both character and token features. Each group will generate one JAPE rule in the

char phase, which will tag its tokens so they are recognized by the corresponding

token-level JAPE rule in the token phase. Rules in the char phase are regular

expressions created by concatenating the symbols fixed in the corresponding char-

acter pattern. Rules in the second phase simply concatenate the set of all fixed

symbols in the token pattern, forcing all of them to appear for each token.

Example: in our main example in Fig. 2.c, both entities would be grouped together

for the token pattern, because BT1 and BT2 are equal. This group turns into the

JAPE rule T 1 2, which expects the first token to evaluate to <italics> with

the second feature, and the second token to evaluate to <time> and <italics>

with the first and second features, respectively (see Fig. 2.d-right). In terms of

characters, our two entities are not grouped together because they do not have the

same pattern, so in the first phase there is one JAPE rule for each of them. The

first rule, C 1, matches a token with the regular expression \p{Nd}\p{Po}\p{Nd}{2},
followed by a space character and a token with the regular expression \p{Ll}[Mm].

The second rule, C 2, is the same except that it requires another digit in the first

regular expression (see Fig. 2.d-left). �

5 Evaluation

Three different experiments were designed to evaluate the effectiveness and annota-

tion cost of our method. The first and main experiment evaluates its ability to learn

JAPE patterns. The second experiment assesses its utility to annotate a new corpus

from scratch. The third and last experiment shows its ability to learn regular ex-

20 Marrero and Urbano

Table 2. Number of entities in the 300 documents of the Jobs Postings Corpus.

Entity Type Instances Entity Type Instances

ID 300 Platform 686
Title 459 Application 606
Salary 141 Area 981
Company 291 Required years experience 167
Recruiter 325 Desired years experience 43
State 461 Required degree 81
City 639 Desired degree 21
Country 346 Post date 301
Language 849 Phone number 662

pressions. This section describes common evaluation settings, whereas Sections 6, 7

and 8 present the detailed design and results of each experiment.

5.1 Corpus, Features and Performance Measures

To evaluate our method with a varied range of entity types, we used the Software

Jobs Corpus1 (Califf 1998). It contains 300 documents in English, of about 313

tokens each, describing software related job postings. There are 17 different types of

entities already annotated: ID, title, salary, company, recruiter, state, city, country,

language, platform, application, area, required years of experience, desired years of

experience, required degree, desired degree, and post date. For the third experiment,

we annotated ourselves all the entities of type phone number. Table 2 shows the

number of instances per entity in this corpus.

The Jobs corpus is widely used in Information Extraction (Lavelli et al. 2004),

because it contains a well-defined and more varied selection of entity types than

other corpora. In addition, some of these entities are recognizable with regular ex-

pressions, and many of them can be recognized fairly well without gazetteers. This

is particularly relevant when evaluating a novel learning method, because the suc-

cess of information extraction methods can be notably increased by using domain-

specific knowledge resources such as gazetteers, dictionaries and taxonomies. There-

fore, we explicitly do not use such resources in our experiments in order to center

the evaluation on the performance of the proposed learning method and not on the

performance of a specific set of knowledge resources, whose existence can not be

presupposed and whose growth is seldom traceable (Siniakov 2008). Instead, we use

a basic set of token features obtained with the ANNIE tool in the GATE framework,

namely string, stem, POS tag, token type (<word>, <number> or <punctuation>)

and case. Recall that the set of three character features is fixed in our method (see

Section 3.3).

1 ftp://ftp.cs.utexas.edu/pub/mooney/ie-data/jobs300data.tar.gz

A Semi-automatic and Low-cost Method to Learn Patterns for NER 21

Table 3. Parameters configured for evaluation of the learning method.

Parameter Comment

θwc = 1 Characters in each side of the context for learning.
θwt = 2 Tokens in each side of the context for learning.
θX = 0.8 Dissimilarity threshold for clustering.

θM = 40k Minimum number of random matches for active learning.
θz = 2 Minimum number of matches to validate per potential rule.
θP = 10 Minimum number of matches to validate for precision.
θR = 10 Maximum number of matches to validate for recall.
θwv = 10 Characters in each side of the context for validation.

In all three experiments we measure the effectiveness of the learning method with

Precision, Recall and the F -measure. Because it learns patterns for each entity type

separately, we compute the effectiveness for each of those types and then report the

average across types (i.e. macro-average). In terms of cost, we follow the standard

approach of reporting the number of elements that the user would have to review,

which in our case are text fragments to validate as entities or not. Specifically, we

report the number of entities and the number of tokens they contain. We include

the initial set of seed entities in the annotation cost, as well as the 2 ·θwv characters

in the validation contexts of each match, rounded up to the next token, in order to

help the user validate potential entities and adjust their boundaries if needed.

The goal in the first and third experiments is to generate effective patterns, so

the method will be run on a training corpus to learn the patterns and they will

then be evaluated on a test corpus. The goal in the second experiment is to fully

annotate a new corpus, so the method will be trained and evaluated on the full

corpus. Regarding the initial seeds, random selections of various sizes are made for

each entity type separately. Note that the annotations in the training set, except

for these initial seeds, are not used by the method in any way; they are iteratively

discovered by the active learning process.

5.2 Initial Configuration and Baselines

As seen in Sections 3 and 4, our method depends on several parameters that control

various aspects of the learning process, such as context windows, thresholds, etc.

Table 3 summarizes the values of the parameters used in the three experiments.

For details on the selection of these values, the reader is referred to the Appendix.

Given that the objective is to learn JAPE patterns of reasonable effectiveness

at a low cost, we compare our learning method with a semi-supervised baseline

that maximizes effectiveness while reducing cost, and an unsupervised baseline that

minimizes cost. The semi-supervised baseline is a pattern learning method based

on Support Vector Machines, adapted to deal with imbalanced training data and

combined with active learning techniques (Li et al. 2009). In terms of features, they

22 Marrero and Urbano

use the same basic set of token features we use. Their method also contains a post-

processing step that discards entities of infrequent length, and chooses the sequence

of entity types with the highest probability for a sequence of tokens (e.g. one entity

type often preceded by another one). We note that our method can not apply the

second correction because it is run separately for each entity type, so patterns are

independent of other types that might be irrelevant to the user (and hence need not

be annotated) or might not appear at all in the target corpus. To our knowledge,

theirs are the best results to date of an active learning method, whether rule-

based or statistical, applied to the Jobs corpus and without the use of gazetteers

or dictionaries.

The unsupervised baseline is a rule-based bootstrapped method part of the Stan-

ford CoreNLP framework (Gupta and Manning 2014). This method builds a dic-

tionary from a set of initial seeds, and then iteratively learns patterns without any

user intervention, adding to the dictionary the recognized fragments that ranked

best according to a scoring function. In terms of features, they use the lemma and

POS tag of the entity and its context, as well as their edit distance and distribu-

tional properties in the sets of positive and negative examples. In the end, all text

fragments in the corpus that are found in the dictionary are labeled as entities.

In the remainder of the paper, we will refer to our method as RB-AL (for

Rule-Based Active Learning), to the semi-supervised method of Li et.al. (2009)

as SVM-AL (for SVM Active Learning), and to the unsupervised method of Gupta

and Manning (2014) as BOOT (for Bootstrap).

6 Experiment 1: Generation of JAPE Patterns

In this experiment we evaluate the ability of our method to learn JAPE patterns

and evaluate the trade-off between learning cost and effectiveness on a previously

unseen corpus.

6.1 Design

We randomly split the full corpus in an unlabeled training set (two thirds) and a

test set (one third) that remains unseen by the algorithm; results are reported over

five such splits. In terms of initial seeds, we run the method with random sets of

2, 5, 10, 20, 50 and 100 entities from the training set and for each of the 17 entity

types separately. Finally, we run 10 random trials in each case, leading to a total of

5,100 trials. Note that the annotations in the training set, except for the seeds, are

not used by the method in any way; they are iteratively discovered by the active

learning process.

For the assessment of effectiveness, we force the patterns to recognize the exact

boundaries of the entities in order to be considered correct; if there is any discrep-

ancy whatsoever the identification of the entity is considered incorrect regardless of

how close it is to the true boundaries of the entity. For the assessment of cost, we

report the total number of text fragments validated by the user during active learn-

A Semi-automatic and Low-cost Method to Learn Patterns for NER 23

Table 4. Effectiveness and annotation cost (mean±95% CI) per entity type of the

JAPE patterns learned by RB-AL.

Seeds 2 5 10

F -score 0.44 ± 0.02 0.53 ± 0.02 0.57 ± 0.02
Precision 0.74 ± 0.02 0.71 ± 0.02 0.68 ± 0.02
Recall 0.35 ± 0.02 0.50 ± 0.02 0.57 ± 0.02

Cost (entities) 83 ± 4 157 ± 7 221 ± 9
Cost (tokens) 284 ± 16 603 ± 31 860 ± 40

Seeds 20 50 100

F -score 0.59 ± 0.02 0.59 ± 0.02 0.60 ± 0.02
Precision 0.64 ± 0.02 0.61 ± 0.02 0.60 ± 0.02
Recall 0.63 ± 0.02 0.68 ± 0.02 0.70 ± 0.01

Cost (entities) 295 ± 12 420 ± 19 532 ± 27
Cost (tokens) 1,172 ± 57 1,697 ± 88 2,166 ± 120

ing and the number of tokens they contained, including their validation context.

Recall that the seeds are included in these costs.

In the case of the SVM-AL baseline, we compare with the results reported by

Li et.al. (2009), though we must note two differences. First, they always use two

fully annotated documents as seeds, so that all unannotated tokens are used as

negative examples. Second, they train with the full corpus, using to test whatever

(variable) portion is left without user validation. For the BOOT baseline, we ran

their code with the same corpus splits and random sets of seeds as our method, for

a total of 5,100 trials as well. Note that, because it is unsupervised, its annotation

cost is due only to the seeds.

6.2 Results

Table 4 reports the average effectiveness scores of RB-AL over all the 5,100 trials.

As expected, larger sets of initial seeds highly improve recall because we start with

a larger variety of potential rules, but at the cost of more annotations because

they need to be validated. On the other hand, precision decreases, but the average

F -score still improves. It ranges between 0.44 (2 seeds) and 0.60 (100 seeds), with

mean precision rates above 0.6 in all cases. The total annotation cost ranges between

83 and 532 entities, including seeds.

Fig. 3 shows the effectiveness-cost trade-off of our method and the two base-

lines. To properly compare our results with SVM-AL, we sum the annotation costs

obtained independently for all 17 entity types found in the corpus. They report

annotation costs using different annotation units in the active learning process: full

24 Marrero and Urbano

0 20000 40000 60000 80000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Number of tokens

F
−

sc
or

e

●

●

●
● ● ●

●

●

●

●

●
●

documents

fragments

tokens

2

5

10
20 50 100

SVM−AL
RB−AL
BOOT

50 200 1000 5000

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

F
−

sc
or

e

●

●

●
●

●

●

●

●

●
●

2

5

10

2

5

10

20
50 100

Number of tokens
(log−scaled)

Fig. 3. Mean F -score by total cost (sum over all entity types) of Li et al.’s method

(SVM-AL), Gupta and Manning’s method (BOOT) and ours (RB-AL). Circles mark the

means with 2, 5, 10, 20, 50 and 100 initial seeds, respectively. On left, 0 to 90,000 tokens.

On right, 0 to 20,000 tokens (log-scaled), expanded to show detail of BOOT.

documents, 11-token fragments and single tokens. The left plot shows that even the

average 0.44 F -score obtained with just 2 seeds outperforms their method when

using text fragments and tokens as annotation unit, where their best results are ap-

proximately 0.41 and 0.37, respectively. Compared to their use of fragments, for the

same annotation effort our method improves effectiveness between +35% (2 seeds)

and +54% (100 seeds). Compared to their use of tokens, the relative improvement

ranges between +35% (2 seeds) and +62% (100 seeds).

In the case where they use full documents as annotation unit, we see that our

method still requires fewer annotations to achieve the same F -score. For instance,

they need about 32,500 tokens to reach a score of 0.57, while our method requires

10 initial seeds and just 14,620 tokens (about 47 full documents), which is a −55%

improvement in annotation effort. Even if we assumed that the user needs to an-

notate a full document in order to identify each seed, the approximate total cost

would still be 57 documents, that is, a −45% improvement. On the other hand,

while the average F -score of our method seems to converge to 0.60, the maximum

achieved by SVM-AL is slightly above 0.65. However, in order to reach this point

they require the annotation of about 78,000 tokens, or 83% of the corpus. Setting

aside the great annotation cost, we note that in our case the training set comprises

67% of the full corpus, so we do not have access to that many documents to learn

patterns in the first place.

Fig. 3 also plots the results for the BOOT baseline, showing that effectiveness

also increases with the number of seeds. The mean F -scores start at 0.27 with 2

seeds, and similarly seem to converge to almost 0.50 with 100 seeds (we executed

additional runs with 200 seeds and the improvement was of only +0.001). In terms

A Semi-automatic and Low-cost Method to Learn Patterns for NER 25

of cost, it requires only the annotation of the initial seeds, which correspond to an

average of 48 tokens (2 seeds) to 2,400 tokens (100 seeds).

In general, the figure evidences a clear trend in the effectiveness-cost trade-off.

The unsupervised BOOT method is able to achieve mid-low F -scores for an excep-

tionally low cost, while on the other side of the spectrum we see the semi-supervised

SVM-AL baseline achieving mid-high scores for a much larger annotation cost (they

report and F -score of 0.81 in supervised mode). In the middle, our RB-AL method

is able to reach medium effectiveness for a reasonably low annotation effort. In

contrast to SVM-AL, an additional advantage of our method is that the learned

patterns are human-readable (see Section 9.3). On the other hand, BOOT does gen-

erate human-readable patterns, but at the core of their method is the dictionary

containing the seeds and the text fragments that were captured by these patterns

and ranked best by the scoring function (Gupta and Manning 2014). The evaluation

of BOOT using only the patterns yields an average F -score between 0.12 and 0.13,

evidencing that, without the accompanying dictionaries, the patterns are not very

effective on their own.

7 Experiment 2: Corpus Annotation

The previous experiment showed that the proposed method can learn patterns that

adapt well to unseen parts of the corpus. Nonetheless, even patterns that do not

generalize to other corpora or unseen parts of the same corpus can be of interest if

they allow us to reduce the cost of editorial annotation. This is especially useful in

the face of a brand new corpus or a new entity type that needs to be annotated as

part of the creation of resources for the evaluation of IE algorithms. This second

experiment evaluates the utility of our method in this scenario.

7.1 Design

This experiment is run in two phases. First, the method is given the initial seeds to

learn patterns, which are then run over the whole corpus. Second, the user would

have to review all text fragments matched by the patterns to ensure that they

are correct. In this case we do not need separate training and test sets, because

we actually want to annotate all documents in the corpus. As in the previous

experiment, we use random sets of 2, 5, 10, 20, 50 and 100 entities for each of the

17 entity types separately. This is replicated 10 times, leading to a total of 1,020

trials. Again, the annotations in the corpus, except for the seeds, are not used by

the method in any way.

Our goal this time is a high recall rate over all entities of the corpus. We thus

report two annotation costs: the cost required to learn the patterns (learning cost),

which includes the seeds, and the cost required to review the fragments captured by

those patterns (review cost). Because of this review process, here we will also con-

sider a partial match as correct because it will be reviewed, and possibly corrected,

by the user anyway. For completeness, we still report the precision and F -scores

obtained by the learning algorithm before the review process. Note that at the end

26 Marrero and Urbano

of the review process the recall is the same, but the practical precision is actually

100%, that is, there will not be false positives.

For the BOOT baseline, we ran the code by Gupta and Manning (2014) with

the same random sets of seeds as our method. The learning cost of BOOT is still

due only to the seeds, but in this experiment there is also a review cost because

the user would similarly check all labeled fragments. In this case we do not include

the SVM-AL baseline because the experiments in Li et.al. (2009) do not provide

information to compare with.

7.2 Results

Table 5 shows the effectiveness of our method and both the learning and review

costs. Accounting for both costs we observe that on average just with 5 seeds we

can already discover 61% of the entities of some type, with a total cost of about

600 entities, approximately equivalent to 2.5% of the corpus. With 50 initial seeds

we can identify almost 90% of the entities, at the cost of reviewing slightly over 5%

of the corpus. Between 50 and 100 seeds would be needed in order to identify more

than 90% of them. As indicated by the precision scores, we finally remark that a

large fraction of the matched fragments are indeed valid entities, and virtually all

of these have correct boundaries. Even though they do not require any action from

the user, we have still included them as part of the review cost.

In contrast, the BOOT baseline achieves a recall between 0.28 (2 seeds) and 0.65

(100 seeds), with total costs between approximately 190 and 500 entities; the mean

precision across seeds remains nearly constant and at 0.50. In general, our method

achieves better recall rates, but it also requires more annotation effort. However,

this is expected in this experiment, because there is a correlation between recall

and review cost: if we identify more entities, the user will still have to review them.

Therefore, a better way to assess cost in this experiment is to consider only the false

positives that the user would have to mark as such, during learning or reviewing,

because they represent user effort spent in vain.

Fig. 4 shows somewhat similar trade-offs between recall and number of false

positives. Still, BOOT has fewer false positives than RB-AL for the same recall rate.

However, BOOT is clearly limited as to the maximum achievable recall, while our

method is able to successfully identify nearly all the entities in the corpus. In order

to reach this level, BOOT would apparently need several hundred seeds, which is

effectively the same as manually annotating this corpus.

8 Experiment 3: Generation of Regular Expressions

There are two main reasons why the use of character features is interesting. First,

and unlike some token features such as the POS, they can always be computed

regardless of how much context there is available, allowing the user to obtain the

seeds from a gazetteer or simply to make them up. Second, the resulting patterns

are simply regular expressions, which is very appealing on its own because of their

wide use. Therefore, in this section we briefly evaluate the capability of our method

A Semi-automatic and Low-cost Method to Learn Patterns for NER 27

Table 5. Effectiveness and cost (mean±95% CI) when annotating an entity type in

a new corpus using RB-AL.

Seeds 2 5 10

F-score 0.50 ± 0.04 0.64 ± 0.04 0.67 ± 0.04
Precision 0.83 ± 0.04 0.78 ± 0.05 0.73 ± 0.05
Recall 0.43 ± 0.04 0.61 ± 0.04 0.71 ± 0.03

Learning Cost (validated entities) 105 ± 13 187 ± 17 261 ± 24
Review Cost (true positives, exact) 147 ± 22 204 ± 22 235 ± 23
Review Cost (true positives, inexact) 4 ± 1 5 ± 1 7 ± 2
Review Cost (false positives) 115 ± 55 219 ± 91 314 ± 105
Total Cost (% corpus) 1.39 ± 0.30 2.46 ± 0.47 3.27 ± 0.57

Seeds 20 50 100

F-score 0.71 ± 0.04 0.71 ± 0.04 0.73 ± 0.04
Precision 0.71 ± 0.05 0.66 ± 0.05 0.65 ± 0.05
Recall 0.79 ± 0.03 0.88 ± 0.02 0.92 ± 0.01

Learning Cost (validated entities) 344 ± 32 501 ± 53 631 ± 67
Review Cost (true positives, exact) 251 ± 24 266 ± 28 246 ± 29
Review Cost (true positives, inexact) 8 ± 2 8 ± 1 7 ± 1
Review Cost (false positives) 319 ± 91 517 ± 146 522 ± 141
Total Cost (% corpus) 3.72 ± 0.57 5.33 ± 0.91 5.87 ± 0.97

to generate this kind of patterns using seeds that may not be present in the training

corpus.

8.1 Design

The target entity types must be exclusively recognizable with character features,

so we only consider the post date of the job offer, and the contact phone and fax

numbers. As usual, we run the method separately for each entity type, and the full

corpus is again randomly split in two thirds for training and one third for testing;

results are reported over five such splits. We always use 3 randomly selected seeds,

either all found in the corpus (internal) or none (external). In the latter case, they

are randomly chosen from the ones listed in Table 6; note that some of these follow

a pattern that does not match any entity in the corpus. Finally, we run 10 random

trials in each case, leading to a total of 200 trials.

We require the patterns to recognize the exact boundaries of the entities. For

the assessment of cost, we report the total number of text fragments and the cor-

responding number of tokens validated during learning, including the validation

contexts and the seeds.

Neither the SVM-AL nor the BOOT baselines can work exclusively with character

28 Marrero and Urbano

0 200 400 600 800

0.
2

0.
4

0.
6

0.
8

1.
0

False Positives

R
ec

al
l

●

●

●

●

●

●

2

5

10

20

50
100

●

●

●

●

●

●

2

5

10

20

50
100

RB−AL
BOOT

Fig. 4. Mean recall by false positives when annotating an entity type in a new corpus.

Circles mark the means with different seed set sizes.

Table 6. Entities used as external seeds in the third experiment; none of them are

found in the corpus. Entities in the last two columns do not correspond to the same

pattern as the entities in the corpus (e.g. months in post date entities always contain

three letters, the first one in uppercase).

Same pattern Different pattern

(821)444-8241 5554789632 916249-1155

Phone (452)954-3377 922 5554189 632 458 666 23

91-624-9115 698/458/2148 632/945 7788

958-523-ASCI

25 Feb 75 28 July 2000 14 january 2033

Post date 14 May 85 15 August 1989 1 jun 85

Apr 2010 18 september 2020 9 oct 2001

7 March 1977

features, and in particular BOOT does not allow the use of external seeds. Therefore,

in this experiment we do not compare with baselines, but rather limit the analysis

to how our method is affected by the use of internal or external seeds for the

generation of regular expressions.

8.2 Results

Table 7 lists the results. The average F -scores are above 0.85 when using internal

seeds, requiring the annotation of 53 and 20 entities (including seeds) for phone

and post date, respectively. In the worst cases observed, the method required the

A Semi-automatic and Low-cost Method to Learn Patterns for NER 29

Table 7. Effectiveness and annotation cost (mean±95% CI) of RB-AL when

generating regular expressions from internal and external seeds.

Internal External
Phone Post date Phone Post date

F-score 0.93 ± 0.02 0.86 ± 0.04 0.80 ± 0.06 0.74 ± 0.08
Precision 0.92 ± 0.02 1 0.77 ± 0.05 0.92 ± 0.05
Recall 0.94 ± 0.02 0.77 ± 0.05 0.84 ± 0.07 0.68 ± 0.08

Cost (entities) 53 ± 3 20 ± 2 56 ± 10 52 ± 5
Cost (tokens) 300 ± 16 95 ± 8 291 ± 56 308 ± 37

●

●

●

●

●●
●

●●
●
●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●
●●

●●●●●●●●●●●●●●●●

●

●

●

●

●

●

●●

●

●

●●●●

●

●

●

●●
●
●

●●●

●
●
●
●
●

●

●●

●

●

●

●

●

●

●
●
●

●●

●●●●●

●

●
●

●

●●

●●●●●●

●

●●

●

●

●●●

●●

●

●

●●●●

●

●●●

●●●

●●

●

●

●●●●

●●

●

●
●

●

●●

●

●●●

●●

●

●●

●

●●●●

●

●●●●●●●●●●●

●

●●

●

●

●

●●

●●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●●●●

●●

●

●

●

●

●●●●

●

●

●●

●

●

●●●●

●

●

●●●

●

●

●

●

●

●

●

●●●

●

●

●●

●

●

●

●

●

●●

●

●
●

●●

●●
●

●●
●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

F
−

sc
or

e

post
date

phone

co
untry cit

y
sta

te
sa

lary

recru
ite

r id

desir
ed degree

co
mpany

language

desir
ed ye

ars
ex

p

req degree
titl

e

platfo
rm

req ye
ars

ex
p

applic
atio

n
area

2 seeds
5 seeds
10 seeds

20 seeds
50 seeds
100 seeds

Fig. 5. Distributions of F -scores for each entity type and number of initial seeds.

Entities are sorted by mean F -scored, marked with crosses.

annotation of 81 and 39 entities. F -scores drop by about 0.12 when using external

seeds, but the average annotation cost is maintained at about 55 entities. In both

cases, we thus obtain high effectiveness scores for a quite low annotation cost and

with balanced precision and recall rates.

9 Discussion

9.1 Effectiveness

Fig. 5 shows the distributions of F -scores by entity type and initial number of

seeds. We observe that entities clearly responding to character patterns, such as

post date and phone number, obtain the best results (see Section 8). Other entities

like country, city, state and salary also obtain high F -scores with only 2 seeds. If

30 Marrero and Urbano

the number of seeds increases over 10, entities like desired degree, recruiter, ID and

company get F -scores over 0.6 as well. As an example, we find that the company

entities respond mainly to features like the case of the entity tokens, and the string

and lemma of the contextual tokens. It is the case for example of the words Inc and

Corporation following a large number of instances. In the case of required/desired

degree, we find the word in after the degree level (e.g. PhD/MS/BS in...), except

when they are BSCS or MSCS, because they already include the area of the title

(eg. BS/MS in Computer Science).

The worst results are clearly obtained with the entity type area, though others

like application, platform and title also get low F -scores between 0.2 and 0.4. The

main problem in these cases is the amount of false positives due to the boundaries of

the entities and their ambiguity. The same text fragment may appear multiple times

within a document, referencing a different type of entity each time. For instance,

in the sentence ...years experience with Oracle DBA, Oracle is recognized as

application and DBA as both area and title, just because it appears in the head

of the job posting as DBA’s and Application Architects. However, Oracle DBA

also appears as title in other documents, and Oracle does as platform. In order

to disambiguate these entities it would be useful to incorporate discourse features

to the method. A possibility would be for instance to use information about the

position of the text inside the document, or to exploit the occurrence of other

entities as new features in the context or even nested within the entity.

9.2 Learning Cost

Throughout the paper we followed the standard approach in active learning to

measure user effort in terms of annotation cost, that is, the total length of the text

reviewed by the user. The correlation between this cost and the actual effort per-

ceived by the user is a current topic of research in the area. Two additional factors

that might impact this perception are the number of times the user is disrupted

to validate new entities, and the interface employed to provide this feedback. With

respect to such an interface, we tried to minimize effort by simplifying the required

interaction to one of two actions: flag a proposed text fragment when it is not an

entity, or correct its boundaries when they are not exact (this is seldom required,

as seen in Table 5, “inexact boundaries”). This interface would be more similar

to those offered by tools to aid in the annotation of corpora, where the automatic

identification of potential elements of interest reduces the burden of annotating new

documents (Reeve and Han 2005).

With respect to the number of active learning iterations, 80% of the times the

method required less than 10 iterations per feature, and 50% of the times it required

4 or fewer iterations. As Fig. 6 shows, more than 35 iterations very seldom happened

and are therefore considered outliers. Indeed, the four entity types mentioned above

(application, platform, area and title) show again more extreme behavior. This is

probably because, in addition to being ambiguous, their instances are longer than

the others, and they are also more varied in terms of the feature values they produce.

As a consequence, for these entities the method tends to produce more clusters

A Semi-automatic and Low-cost Method to Learn Patterns for NER 31

●●

●●●
●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●●

●●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●
●

●

●

●●
●
●●
●
●
●

●

●●●
●

●●

●●
●
●

●●
●●●●
●
●

●●

●

●
●●●
●

●●

●●●●●●

●●●●●●●●●●●●●●
●

●●

●

●

●

●
●●

●

●

●

●

●

●●

●

●
●

●

●
●

●
●

●
●●

●
●

●

●

●
●●

●

●

●●

●●●
●

●
●

●●
●
●

●
●●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●●●●
●

●●●
●
●
●●●●
●●●●
●
●
●●●
●
●
●
●●

●

●
●●●●
●●●●●●

●

●
●●
●

●

●
●
●●●

●●

●●

●

●●
●●●
●

●●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●
●

●
●

●

●●●

●

●
●
●

●
●

●

●
●

●

●
●
●
●

●

●
●
●

●

●

●

●

●

●

●
●●●

●●

●●●●●
●●●●●●●●

●
●
●

●●

●

●●

●

●

●●

●

●

●

●

●
●

●
●
●
●

●

●

●
●●●
●

●●●

●

●●

0
20

40
60

Active Learning iterations per feature

Ite
ra

tio
ns

 /
fe

at
ur

e

post
date

desir
ed ye

ars
ex

p

desir
ed degree

co
untry

sta
te

req degree

req ye
ars

ex
p

phone

recru
ite

r
sa

lary cit
y

co
mpany id

language

applic
atio

n

platfo
rm area

titl
e

2 seeds
5 seeds
10 seeds

20 seeds
50 seeds
100 seeds

Fig. 6. Distributions of calls to the ActiveLearning procedure per feature, for each entity

type and number of initial seeds. Entities are sorted by mean number of calls, marked

with crosses.

and therefore more potential rules to validate separately during an active learning

iteration. Similarly, language requires more iterations because its instances are also

long and varied.

An important factor to consider is not only how often we require feedback from

the user, but how efficiently we use that feedback, that is, how often an active learn-

ing iteration leads to potential rules getting fixed or new entities being discovered.

Fig. 7-top shows that between 50% and 90% of the potential rules get accepted in

any given active learning iteration, with an average of about 70%. Fig. 7-bottom

similarly shows that in the majority of the iterations the method identifies at least

one new entity in the training corpus. The notable exceptions are desired degree,

probably because of the small number of instances, and some other types when

using only 2 seeds. In general though, and unlike Fig. 6, the correlation with the

number of seeds is weaker: more seeds mean more clusters and therefore more it-

erations, but it does not necessarily mean better rules per cluster. Indeed, Fig. 3

shows that increasing the number of seeds beyond 20 increases the annotation cost

but not the F -scores, indicating that the method ends up learning similarly effec-

tive patterns but at a higher cost. This suggests the need for a more efficient use

of the active learning process. One possible improvement might be to ask the user

to validate text fragments for a minimum number of potential rules, possibly from

different clusters, or to reduce the number of clusters by increasing the dissimilar-

ity threshold θX . While the former could be applied in general, the latter would

probably need to be adjusted for some entity types, because the choice of threshold

has an impact on effectiveness in some cases (see Section 10).

32 Marrero and Urbano

●

●

●

●

● ●

●
●●

●

●●

●

●●

●

●●

●

●

●
●
●

●●●

●

●

●●●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

Rules fixed per Active Learning iteration

F
ix

ed
 r

ul
es

 /
ite

ra
tio

n
50

%
60

%
70

%
80

%
90

%

phone

req ye
ars

ex
p

co
untry cit

y
sta

te

platfo
rm

language

applic
atio

n
area

titl
e

desir
ed ye

ars
ex

p

req degree
sa

lary

co
mpany

recru
ite

r

post
date id

desir
ed degree

2 seeds
5 seeds
10 seeds

20 seeds
50 seeds
100 seeds

●

●
●

●

●

●

●●

●

●

●

●

●●

●

●

●

●●

●●●

●

●

●

● ●

●

●

●

●
●

●●

●

●

●

●●

●

●●

●

●

●

●●

●

●

●●●

●

●

●

Active Learning iterations where new entities are discovered

Ite
ra

tio
ns

0%
20

%
40

%
60

%
80

%
10

0%

cit
y

sta
te

phone

req ye
ars

ex
p

language

platfo
rm

co
untry

applic
atio

n
area

titl
e

req degree
sa

lary

co
mpany

desir
ed ye

ars
ex

p id

recru
ite

r

post
date

desir
ed degree

2 seeds
5 seeds
10 seeds

20 seeds
50 seeds
100 seeds

Fig. 7. Distributions of potential rules fixed during an active learning iteration (top),

and iterations where at least a new entity was discovered (bottom), for each entity type

and number of initial seeds. Entities are sorted by mean percentage, marked with crosses.

9.3 Readability of Patterns

An advantage of generating JAPE patterns is that the user has the possibility of

reviewing them to correct, adapt or reuse rules. For example, in our case such an

inspection allowed us to immediately spot a typo in an annotation of type city in

document job122387, because of a rule generated to capture Auston in addition to

Austin. However, the ability of the user to review a pattern is directly affected by

its readability which, to some degree, depends on the number of rules it contains.

The average number of JAPE rules in the token phase is 16 (median 9), whereas the

average in the character phase is 22 (median 9). When mixed together in a single

JAPE pattern, the same character rule can be linked to several token rules, which

effectively means several instances of the same character rule (see Section 4.3). If

A Semi-automatic and Low-cost Method to Learn Patterns for NER 33

we counted these as different ones, the average number of character rules per token

rule is 2.3 (median 1.5). As expected, some entity types generate patterns with

many more rules than others. In fact, 32% of all the JAPE rules learned in these

experiments belong to entity types area and title.

The final patterns learned by our method are generated just by concatenating

symbols, so they do not contain quantifiers to indicate repetitions. For instance,

in Fig. 2.d rules C 1 and C 2 may be easily simplified by merging the regular ex-

pressions for the first token to \p{Nd}{1,2}\p{Po}\p{Nd}{2}. A similar example

can be found for entity required years experience, where a single JAPE pattern is

comprised of the rules \p{D}, \p{D}\p{D} and \p{D}\p{Y}, which capture instances

like 7, 10 and 4+. These rules can be simplified to just \p{D}{1,2}\p{Y}?. Such a

simplification would still be limited by the length of the positive examples used to

learn. For instance, in order to generate a single pattern like \p{D}{1,8} to detect

numbers, the method would need positive examples of lengths one to eight. In the

extreme case of the Kleene star (e.g. \p{D}*), this simplification process would need

to include heuristics because all positive examples are finite. Another consequence

of generating patterns by concatenating symbols is that they do not contain alter-

nations. For example, we find rules US, USA and US\p{P} for entity country, which

capture different abbreviations for the United States. In this case, a single rule

may be used instead: US[A\p{P}]?. Although these kinds of simplification may be

found in the literature, we did not explore this line in the present work and leave

its application to both the character and token phases for future work.

We finally note that some of the JAPE rules learned for the character phase

could be avoided if we used gazetteers as token features, which we did not in order

to center the evaluation on the performance of the learning method and not of

the features. This would have a direct impact on the number of active learning

iterations and hence on the number of rules as well. For instance, we find rules like

Win\p{D}\p{D} and Windows\p{S}\p{D}\p{D} to capture different versions of the

operating system, which could be easily detected with an appropriate gazetteer.

10 Conclusions and Future Work

We presented a semi-automatic and low-cost method to learn JAPE patterns and

regular expressions for the recognition of named entities. Unlike patterns generated

with statistical learning methods, rule-based patterns like JAPE are easily readable

and understandable by humans, allowing users to refine them. In addition, they

follow a standard specification that permits the use of arbitrary features, all of

which has contributed to their wide acceptance and use in Information Extraction.

Unlike other rule-based approaches, our method is able to generate more complex

and customizable patterns by simultaneously analyzing features at different levels of

granularity. The method proposed here generates these patterns semi-automatically

from a corpus that does not need to be annotated beforehand. Instead, it just

requires a small set of initial seeds that may or may not be contained in the corpus.

Active learning techniques are used to guide the user in the annotation process

by selecting appropriate text fragments for validation, thus reducing the overall

34 Marrero and Urbano

cost required to generate patterns. The method uses features at the character level

and allows the use of arbitrary features at the token level. Nonetheless, the same

algorithm to identify rules is used in both cases and could be applied to other

features in the same way.

We carried out several experiments with a variety of entity types and a basic set of

features to evaluate the performance of the method. We showed that it can achieve

good effectiveness levels with little annotation effort compared to unsupervised and

semi-supervised state of the art. This effectiveness-cost trade-off suggests its use

as a method to make annotations for new corpora or new entity types. In this

scenario, we showed that the method was able to recognize more than 90% of

all entities on average, requiring the user to review a very small fraction of the

corpus. Further considering that the learned patterns can be manually refined by

users, the proposed method is especially appealing to quickly gather annotations

for supervised methods that can be more effective but require many more initial

annotations.

Our future work will focus on the improvement of the clustering and rule selec-

tion algorithms, in particular of the functions to compute distances among entities

and between rule vectors. Regarding the configuration for our experiments, here we

fixed some parameters of the method, such as the clustering dissimilarity threshold.

We plan to study how to adjust these parameters based on a preliminary analysis

upon the initial seeds provided by the user, so that performance can be maximized

for each entity type individually. Additionally, they need not be static during the

learning process; they could be dynamically adapted based on the annotations made

by the user via active learning. This self-adaptation ability could also lead to con-

sidering different stopping criteria for the learning step to avoid early convergence.

Similarly, we may investigate how to better incorporate negative examples in the

learning process to generate patterns with higher precision rates. Finally, it would

be interesting to study the simplification of the final JAPE patterns. Even though

this may be manually achieved by simple inspection, it would further contribute to

their comprehension if this simplification was done automatically and transparently

to the user.

Appendix

In terms of configuration, we recall that our method can be parameterized in several

ways. Regarding the length of the contexts used for learning, we decided to use just

θwc = 1 character to the left and to the right of the entities when working with

character features. This may allow us to detect patterns where the entities are

enclosed with some kind of marks, such as < and > in e-mail addresses, parentheses,

quotation marks, etc. In the case of tokens, we ran a preliminary experiment to

figure out the most appropriate value for θwt. This experiment was also used to set

the value for the dissimilarity threshold θX to cluster entities during the learning

step. We ran a full-factorial experiment with context θwt ∈ {1, 2, 3, 4, 6, 8} tokens

and threshold θX ∈ {0.6, 0.8, 0.9}. For each context-threshold combination we ran

A Semi-automatic and Low-cost Method to Learn Patterns for NER 35

10 random trials with a set of 10 random seeds, and recorded both the F -score and

the annotation cost in tokens.

The results showed that effectiveness is slightly affected by the context length:

on average, the F -score increased by a factor of 0.008±0.004 (mean±95% CI) with

θwt. However, the annotation cost is more clearly affected, increasing by a factor of

55 ± 12. An Analysis of Variance (ANOVA) with post-hoc correction via Tukey’s

HSD shows that the cost when using a context of 2 tokens is not significantly higher

than the most cost-efficient (1 token), and that the effectiveness is not significantly

lower than the most effective (8 tokens), so we set the context length to θwt = 2

tokens. A similar ANOVA analysis shows that both the F -score and the annotation

cost decrease with the clustering dissimilarity threshold. A rough analysis by entity

type shows that in some cases it is better to use a large threshold, while in other

cases it is the other way around, or it just does not really affect performance. We

decided to set the intermediate value θX = 0.8. The interaction between context

and threshold was not found to be statistically significant in any case.

For the active learning process, we set the minimum number of matches randomly

sought throughout the corpus to θM = 40, 000. To validate each potential rule

vector, we select at least θz = 2 of those matches, and the user validates θR = 10

and a minimum of θP = 10 matches overall. Finally, we show to the user the

θwv = 10 characters to the left and to the right of the candidate matches, under the

assumption that she will be able to properly identify the entities whose boundaries

are not exactly determined by the algorithm.

References

Alfonseca, E., and Manandhar, S. 2002. An unsupervised method for general named entity
recognition and automated concept discovery. In Proceedings of the 1st International
Conference on General WordNet, Mysore, India, pp. 34-43.

Appelt, D. E., and Onyshkevych, B. 1998. The Common Pattern Specification Language.
In Proceedings of the TIPSTER Text Program:Phase III. Baltimore, Maryland, pp.
23-30.

Asahara, M., and Matsumoto, Y. 2003. Japanese Named Entity Extraction with Redun-
dant Morphological Analysis. In Proceedings of the Conference of the North American
Chapter of the Association for Computational Linguistics on Human Language Tech-
nology - Volume 1. Edmonton, Canada, pp. 8-15.

Bikel, D. M., Miller, S., Schwartz, R., and Weischedel, R. 1997. Nymble: A High-
Performance Learning Name-Finder. InProceedings of the fifth Conference on Applied
Natural Language Processing. Washington, DC, pp. 194-201.

Boguraev, B. K. 2004. Annotation-based finite state processing in a large-scale NLP
architecture. In Nikolov et al. (ed.), Recent Advances in Natural Language Processing
III: Selected papers from RANLP 2003 John Benjamins Publishing, pp. 61-77.

Borthwick, A., Sterling, J., Agichtein, E., and Grishman, R. 1998. Exploiting Diverse
Knowledge Sources via Maximum Entropy in Named Entity Recognition. In Proceedings
of the Sixth Workshop on Very Large Corpora. Montreal, Canada, pp. 152-160.

Brauer, F., Rieger, R., Mocan, A., and Barczynski, W. M. 2011. Enabling Information
Extraction by Inference of Regular Expressions from Sample Entities. In Proceedings
of the 20th Conference on Information and Knowledge Management. Glasgow, United
Kindgdom, pp. 1285-94

36 Marrero and Urbano

Califf, M.E. 1998. Relational learning techniques for natural language information extrac-
tion PhD thesis, The University of Texas at Austin

Chiticariu, L., Krishnamurthy, R., Li, Y., Reiss, F., and Vaithyanathan, S. 2010. Do-
main Adaptation of Rule-based Annotators for Named-entity Recognition Tasks. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Massachusetts, USA, pp. 1002-12

Chiticariu, L., and Reiss, F. R. 2013. Rule-based Information Extraction is Dead! Long
Live Rule-based Information Extraction Systems! In Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Seattle, USA, pp. 827-32

Ciravegna, F., and Wilks, Y. 2003. Designing Adaptive Information Extraction for the
Semantic Web in Amilcare. In Handschuh, S., and Staab, S. (ed.), Annotation for the
Semantic Web, Frontiers in Artificial Intelligence and Applications series, Vol. 96. IOS
Press, pp. 112-27.

Culotta, A., and Mccallum, A. 2005. Reducing labeling effort for structured prediction
tasks. In Proceedings of the Twentieth National Conference on Artificial intelligence.
Pittsburgh, Pennsylvania, pp. 746-51

Cunningham, H., Maynard, D., Bontcheva, K., Tablan, V., Aswani, N., et al. 2013. Devel-
oping Language Processing Components with GATE (a User Guide). Technical report.
University of Sheffield Department of Computer Science.

Day, W. H. E. and Edelsbrunner, H. 1984. Efficient Algorithms for Agglomerative Hier-
archical Clustering Methods. Journal of Classification 1(1):7-24.

Drozdzynski, W., Krieger, H.-U., Piskorski, J., Schäfer, U., and Xu, F. 2004. Shallow Pro-
cessing with Unification and Typed Feature Structures: Foundations and Applications.
Künstliche Intelligenz 1(1):17-23.

Etzioni, O., Cafarella, M. J., Downey, D., Popescu, A., Shaked, T., et al. 2005. Unsu-
pervised Named-Entity Extraction from the Web: An Experimental Study. Artificial
Intelligence 165(1):91-134.

Fersini, E., Messina, E., Felici, G., and Roth, D. 2014. Soft-Constrained Inference for
Named Entity Recognition. Information Processing and Management 50(5):807-19.

Finkel, J. R., Grenager, T., and Manning, C. 2005. Incorporating non-local information
into information extraction systems by gibbs sampling. In Proceedings of the 43rd
Annual Meeting on Association for Computational Linguistics. Ann Arbor, Michigan,
pp. 363-70

Freitag, D. 1998. Toward General-Purpose Learning for Information Extraction Retar-
getability. In Proceedings of the 17th International Conference on Computational Lin-
guistics. Montreal, Canada, pp. 404-8

Gantz, J. and Reinsel, D. 2012. The Digital Universe in 2020: Big Data, Bigger Digital
Shadows, and Biggest Growth in the Far East. Technical report. IDC.

Gupta, S., and Manning, C.D. 2014. Improved Pattern Learning for Bootstrapped Entity
Extraction. In Proceedings of the 18th Conference on Computational Natural Language
Learning. Baltimore, USA, pp. 98-108

Hachey, B., Alex, B., and Becker, M. 2005. Investigating the Effects of Selective Sampling
on the Annotation Task. In Proceedings of the Ninth Conference on Computational
Natural Language Learning Ann Arbor, Michigan, pp. 144-51.

Haertel, R. A., Seppi, K. D., Ringger, E. K., and Carroll, J. L. 2008. Return on Investment
for Active Learning. NIPS Workshop on Cost-Sensitive Learning.

Irmak, U., and Kraft, R. 2010. A Scalable Machine-learning Approach for Semi-structured
Named Entity Recognition. In Proceedings of the 19th International Conference on
World Wide Web. Raleigh, USA, pp. 461-70

Jones, R. 2005. Learning to Extract Entities from Labelled and Unlabelled Text. PhD
thesis, Carnegie Mellon University.

Kazama, J., and Torisawa, K. 2007. A new perceptron algorithm for sequence labeling
with non-local features. In Proceedings of the Conference on Empirical Methods in
Natural Language Processing. Prague, Czech Republic, pp. 315-24

A Semi-automatic and Low-cost Method to Learn Patterns for NER 37

Kluegl, P., Toepfer, M., Beck, P.-D., Fette, G., and Puppe, F. 2015. Uima ruta: Rapid
development of rule-based information extraction applications. Natural Language En-
gineering 22(1):1-40.

Lavelli, A., Califf, M.E., Ciravegna, F., Freitag, D., Giuliano, C., Kushmerick, N., and
Romano, L. 2004. IE evaluation: Criticisms and recommendations. AAAI Workshop
on Adaptive Text Extraction and Mining. San Jose, California

Levenshtein, V. I. 1966. Binary Codes Capable of Correcting Deletions, Insertions and
Reversals. Soviet Physics Doklady 10(8):707-10.

Li, Y., Bontcheva, K., and Cunningham, H. 2009. Adapting SVM for Data Sparseness
and Imbalance: A Case Study in Information Extraction. Natural Language Engineering
15(2):241-71.

Li, Y., Krishnamurthy, R., Raghavan, S., Vaithyanathan, S., and Jagadish, H. 2008. Reg-
ular expression learning for information extraction. In Proceedings of the Conference
on Empirical Methods in Natural Language Processing. Waikiki, Hawaii, pp. 21-30

Liu, X., Wei, F., Zhang, S., and Zhou, M. 2013. Named Entity Recognition for Tweets.
ACM Transactions on Intelligent Systems and Technology 4(1):3.

Maedche, A. and Staab, S. 2001. Ontology Learning for the Semantic Web. IEEE Intel-
ligent Systems 16(2):72-9.

Marrero, M., Sánchez-Cuadrado, S., Morato, J., and Andreadakis, G. 2009. Evaluation of
named entity extraction systems. Research in Computing Science 41:47-58.

Marrero, M., Sánchez-Cuadrado, S., Urbano, J., Morato, J., and Moreiro J. A. 2012.
Information Retrieval Systems Adapted to the Biomedical Domain. Technical report.
Arxiv.org

Marrero, M. and Urbano, J. 2015. Information Extraction Grammars. European Confer-
ence on Information Retrieval. Vienna, Austria

Marrero, M., Urbano, J., Sánchez-Cuadrado, S., Morato, J., and Gómez-Berb́ıs, J. M.
2013. Named Entity Recognition: Fallacies, Challenges and Opportunities. Journal of
Computer Standards and Interfaces 35(5):482-9.

McCallum, A., and Li, W. 2003. Early results for named entity recognition with conditional
random fields, feature induction and web-enhanced lexicons. In Proceedings of the
seventh Conference on Natural Language Learning. Edmonton, Canada, pp. 188-91

Nadeau, D. 2007. Semi-supervised named entity recognition: learning to recognize 100
entity types with little supervision. PhD thesis, School of Information Technology and
Engineering, University of Ottawa.

Nagesh, A. and Chiticariu, L. 2012. Towards Efficient Named-Entity Rule Induction for
Customizability. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Jeju Island, Korea, pp. 128-38

Nouvel, D., Antoine, J.Y., Friburger, N. and Soulet, A. 2012. Coupling Knowledge-Based
and Data-Driven Systems for Named Entity Recognition. In Proceedings of the ACL
Workshop on Innovative Hybrid Approaches to the Processing of Textual Data. Avignon,
France, pp. 69-77

Nédellec, C., Bossy, R., Kim, J.-D., Kim, J.-j., Ohta, T., et al. 2013. Overview of BioNLP
Shared Task 2013. ACL Workshop on BioNLP. Sofia, Bulgaria, pp. 1-7

Pang, B. and Lee, L. 2007. Opinion Mining and Sentiment Analysis. Foundations and
Trends in Information Retrieval 2(1-2):1-135.

Pasca, M., Lin, D., Bigham, J., Lifchits, A. and Jain. A. 2006. Organizing and searching the
world wide web of facts-step one: the one million fact extraction challenge. In Proceed-
ings of the 21st National Conference on Artificial Intelligence. Boston, Massachusetts,
pp. 1400-5

Popescu, A.-M. and Etzioni, O. 2005. Extracting Product Features and Opinions from
Reviews. In Proceedings of the Conference on Empirical Methods in Natural Language
Processing. Vancouver, Canada, pp. 339-46

38 Marrero and Urbano

Ratinov, L. and Roth, D. 2009. Design challenges and misconceptions in named entity
recognition. In Proceedings of the Conference on Natural Language Learning. Boulder,
Colorado, pp. 147-55

Reeve, L. H. and Han, H. 2005. Survey of Semantic Annotation Platforms. ACM Sympo-
sium on Applied Computing. Santa Fe, USA, pp. 1634-8

Rinaldi, F., Vasilakopoulos, A., Zervanou, K., Bernard, L., Zarri, G. P., et al. 2005.
CAFETIERE: Conceptual Annotations for Facts, Events, Terms, Individual Entities,
and RElations. Technical Report TR-U4.3.1. Parmenides Project IST-2001-39023.

Ringger, E., Carmen, M., Haertel, R., Seppi, K., Lonsdale, D., et al. 2008. Assessing the
costs of machine-assisted corpus annotation through a user study. In Proceedings of the
International Conference on Language Resources and Evaluation. Marrakech, Morocco,
pp. 3318-24

Ritter, A., Clark, S., and Etzioni, O. 2011. Named Entity Recognition in Tweets: An
Experimental Study. In Proceedings of the Conference on Empirical Methods in Natural
Language Processing. Edinburgh, United Kingdom, pp. 1524-34

Sarawagi, S. 2008. Information Extraction. Foundations and Trends in Databases 1(3):261-
377.

Sekine, S., Grishman, R., and Shinnou, H. 1998. A Decision Tree Method for Finding and
Classifying Names in Japanese Texts. In Proceedings of the sixth Workshop on Very
Large Corpora. Montreal, Canada, pp. 171-8

Settles, B. 2012. Active Learning. Synthesis Lectures on Artificial Intelligence and Machine
Learning 6(1):1-114

Shen, D., Zhang, J., Su, J., Zhou, G., and Tan, C.-L. 2004. Multi-Criteria-Based Active
Learning for Named Entity Recognition. In Proceedings of the Annual Meeting of the
ACL. Barcelona, Spain, pp. 589-96

Shinyama, Y., and Sekine, S. 2004. Named entity discovery using comparable news articles.
In Proceedings of the International Conference on Computational Linguistics. Geneva,
Switzerland, pp. 848

Silberztein, M. 2005. NooJ: a linguistic annotation system for corpus processing. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Vancouver, Canada, pp. 10-11

Siniakov, P. 2008. GROPUS-an Adaptive Rule Based Algorithm for Information Extrac-
tion. PhD thesis, Free University of Berlin.

Soderland, S. 1999. Learning Information Extraction Rules for Semi-Structured and Free
Text. Machine Learning 34(1):233-72

Srihari, R. K. and Li, W. 1999. Information Extraction Supported Question Answering.
Technical Report. Cymfony Inc.

Srikant, R. and Agrawal, R. 1996. Mining sequential patterns: Generalizations and per-
formance improvements. In Proceedings of the International Conference on Extending
Database. Avignon, France, pp. 1-17

Thompson, C. A., Califf, M. E., and Mooney, R. J. 1999. Active Learning for Natural
Language Parsing and Information Extraction. In Proceedings of the International
Conference on Machine Learning. Bled, Slovenia, pp. 406-14

Tomanek, K., Wermter, J., and Hahn, U. 2007. An Approach to Text Corpus Construc-
tion which Cuts Annotation Costs and Maintains Reusability of Annotated Data. In
Proceedings of the Conference on Empirical Methods in Natural Language Processing.
Prague, Czech Republic, pp. 486-95

Uren, V. S., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., et al. 2006. Semantic
Annotation for Knowledge Management: Requirements and a Survey of the State of the
Art. J. Web Semantics 4(1):14-28.

Vijayanarasimhan, S., and Grauman, K. 2009. What’s It Going To Cost You? Predicting
Effort vs. Informativeness for Multi-Label Image Annotations. In Proceedings of the
Confernce on Computer Vision and Pattern Recognition. Miami, Florida, pp. 2262-9

A Semi-automatic and Low-cost Method to Learn Patterns for NER 39

Vlachos, A. 2008. A Stopping Criterion for Active Learning. Computer Speech & Language
22(3):295-312.

Wu, T., and Pottenger, W. M. 2005. A Semi-Supervised Active Learning Algorithm
for Information Extraction from Textual Data. Journal of the American Society for
Information Science and Technology 56(3):258-71.

