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Abstract In this letter, using the non-extensive entropy of
Tsallis, we study some properties of the Schwarzschild black
holes (BHs), based on the loop quantum gravity (LQG), some
novel characteristics and results of the Schwarzschild BH can
be obtained in Mejrhit and Ennadifi (Phys Lett B 794:45–49,
2019). Here we find that these findings are strikingly identical
to ones obtained by Hawking and Page in anti-de Sitter space
within the original of the Boltzmann entropy formula. By
using the semi-classical estimate analysis on the energy at
this minimum Mmin , an approximate relationship between

the q and γ parameters of BHs can be found, (q ≈
√

3γ
π ln 2 +1),

which is remarkable approaching to q-parameters of cosmic
ray spectra and quarks coalescing to hadrons in high energy.

1 Introduction

Loop quantum gravity presents the spectrum of kinematic
geometry operators such as the area operator and the volume
operator [2]. It is a canonical quantification of general rel-
ativity within the framework of this formalism which leads
to interesting applications of spin networks as the Hilbert
space of the canonically quantized metric, the most fruitful
implications that may arise from the application of LQG to
BHs is to obtain a plausible explanation of BH thermody-
namics based on non-extensive statistical mechanics taking
into account strong gravitational couplings [3–8]. A com-
parative study of the results obtained with those based on
Bekenstein–Hawking entropy shows the deep links between
the entropy of BHs and their horizon surface, which clearly
illustrates the underlying unity of the proposed cosmological
models.

In a similar way to that based on the Sharma–Mittal
entropy formalism [9], which can be considered as a com-
bination of Tsallis and Rényi entropy with the horizon sur-
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face of the BH is not quantified, we have achieved important
results on the thermodynamics of the BH in relation to its
stability using Tsallis non-extensive statistical mechanics in
the framework of quantum gravity theory.

The LQG provides a guess of the microstates of a BH with
the classical surface (A), for the calculation of the entropy
for BHs. The principal critique of this approach was the need
to take a particular value of a free dimensionless parameter
which is called the Barbero–Immirzi (BI) parameter (γ ) [10],
to obtain the Bekenstein–Hawking entropy Horizon [11].

In LQG the event horizon of BH is described by a 2D–
sphere which is a topological defects called punctures, where
every edge of the global quantum geometry is represented
with a spin carried by one puncture. In this work we will use
Bekenstein–Hawking formula of the non-extensive Tsallis
entropy [12,13] to develop the work done before, all motiva-
tions for the use of non-extensive statistic in LQG are given in
[1,14]. This work is a complementary to the previous article
[1], where we used the ideas discussed in [14], to study some
thermodynamic properties of the Schwarzschild–BH [15–
17] meeting the non-extensive Tsallis entropy in the frame-
work of the LQG [3] instead of the Bekenstein entropy. In
the beginning, we will touch the problem of the stability of
isolated BH when it is surrounded by a bath of thermal radi-
ation, the BHs can also be in stable equilibrium with the
thermal bath at a fixed temperature, on contrary to the stan-
dard Boltzmann description. We will investigate a possible
phase transitions in the system, we display a transition from
the Hawking–Page and the change of the small-BH/large-BH
of the first order, similarly to the model of Schwarzschild
BH in the anti-de Sitter (AdS) space. These results confirm
the resemblance between Tsallis-asymptotically flat in LQG
and Boltzmann-AdS in the BH thermodynamics in the case
q > 1.

In this letter, we will essentially study some of the ther-
modynamic characteristic of the Schwarzschild BHs that
is based on the Tsallis entropy instead of the Bekenstein
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entropy. After processing some general observations on
the non-extensive Tsallis entropy of Schwarzschild BHs
and quantum gravity theory in the Sect. 2. In Sect. 3, we
study the temperature and the thermodynamic stability of
Schwarzschild BHs, where the heat capacity and Gibbs free
energy has also been examined. In Sect. 4, a semi-classical
approach is used to find an approximate relation between the
q and γ parameters of Schwarzschild BHs. Finally, in Sect.
5, we use the Stefan–Boltzmann law to get an expression for
the decay time (i.e. lifetime) of the Schwarzschild BHs. The
final section deals with some concluding remarks.

2 Tsallis approach for black holes in loop quantum
gravity

Loop quantum gravity presents quantum discreteness of the
spectrum of kinematic geometry operators such as the area
operator and the volume operator. despite the fact that these
results are very important, one of the results of this idea is
the statistical mechanical explanation of the thermodynamic
properties of the BH, which has been discussed in the refer-
ences [3,4].

In the framework of LQG, we consider the statistical
mechanical properties of the quantum isolated horizon [18].
A basis is given by spin networks for the Hilbert space of
canonical gravity. These are graphs whose edges are assorted
by representations of the gauge group of the theory. This
group is SU (2) in the case of gravity, and the corresponding
representations are therefore labeled by jk , taking the positive
half-integers values {1/2, 1, 3/2, . . . s/2}, corresponding to
the spin associated with the kth puncture and s is the maxi-
mum number of spins (s = 2 jmax ). The A surface acquires
the quantum area a( jk) of the horizon if it has an intersec-
tion by an edge of such a spin network carrying the label jk
[19,20], the BH quantum area is

a( jk) = 8πγ �2
P

√
jk( jk + 1), (1)

where γ being the dimensionless Immirzi parameter and
�p = √

h̄G/c3 the Planck length. A path for the determina-
tion of the BH entropy is provided by loop quantum gravity
were the statistical mechanical properties of quantum iso-
lated horizons are studied in [18]. In particular, they are spec-
ified by means of quantum states that are constructed by the
association of spin variables with punctures on the horizon.
More precisely, a special eigenvalue of the area operator. We
will deal with a horizon made up of N punctures that are sit-
uated on s = 2 jmax different surfaces of quantum area a( jk)
with spin jk , we obtain nk number of punctures in the spin
jk . we can conclude that the area of a BH horizon can be
formed by a large number of spin network edges puncturing
the surface.

The incorporate, at the level of statistical mechanical,
of the effect of a bias in the probabilities of the micro-
states of the underlying quantum mechanical system was the
idea behind the introduction of the notion of non-extensive
entropy called q-entropy of Tsallis, also named q-statistics
[13]. This opens the door to the generalization of usual
Boltzmann–Gibbs statistics by the introduction of adequate
generalized q-logarithm defined on R

+∗ by the formulas

lnq (x) ≡
∫ x

1
t−qdt = x1−q − 1

1 − q
. (2)

Let us observe that the inverse function of the q-logarithm is
the q-exponential, defined as follows:

expq (x) ≡ [1 + (1 − q)x]
1

1−q
+ , (3)

with [z]+ = z if z ≥ 0, and zero otherwise. We verify that
lnq

[
expq (z)

] = expq
[
lnq (z)

] = z, ∀z ∈ R.
According to Eqs. (2 and 3) we can see that q-parameter

gives us a new classical definitions of the exponential and
logarithm functions. The q-entropy in this framework statis-
tics, can be written as

Sq = (1 − ∑�
i=1 pqi )

(q − 1)
(4)

where pk is the probability to occupy kth micro-state and
� is the total microstates number of the considered system
and q is known as the q-parameter, at the limit q → 0 we
must recover the BG entropy. Then assuming that all the
possible microstates occurring with equal probability, on uses
pk = 1/� for all k in Eq. 4 to arrive at the formula

Sq = �1−q − 1

1 − q
. (5)

Since the estimate of this is now known from the knowl-
edge of the dimension of the Hilbert space, the remaining is
just a mathematical procedure. The q-statistics has prospered
when applied to many experimental scenarios (i.e. cosmic
rays, astrophysical models, quark-gluon plasma [21], gas of
interacting atoms and photons, BHs ...). Utilizing the defini-
tion of micro-canonical ensemble, where all the states have
the same probability, Tsallis’ entropy is reduced to what is
presented in paper [13].

In formula 1, the quantity of contributions of all area edge
with spin jl given to the total area. We can consider the hori-
zon area of BH to be the result of the surface of the horizon
puncturing by the edges of a large number of spin network
[11]. This punctures that exist on the boundary of horizon also
increases the dimensions of the Hilbert space of the bound-
ary theory. If the edge puncture has a label jl the dimension
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of the spin jl representation increases by a factor of 2 jl + 1.
In large number N of edges with spins jl = 1, ..., N . The
dimension of the Hilbert space is thus [11]

� =
N∏

l=1

(2 jl + 1) (6)

It can be explained that statistically the most important con-
tribution to 6 are those in which the minimum possible value
for the spin dominates. Let us Indicate the lowest spin value
by jmin, One obtains [11]

� = (2 jmin + 1)N , (7)

where N can be calculated from the area A of the BH and
from one puncture of area a( jk) resulting from each edge
[11], which is given by

N = A

a( jmin)
= A

8πγ �2
P

√
jmin( jmin + 1)

. (8)

The BH entropy with area A is given by the logarithm of
the dimension of the Hilbert space of the boundary theory. In
classical BG statistics and using Eq. (7) the entropy is thus

S = N ln(2 jmin + 1), (9)

we will use the entropy of Tsallis (we can view a method
analogous to that described in ref. [1,14]) to general-
ize Boltzmann–Gibbs statistics. Using Eq. (7) and Tsallis
entropy, Eq. (5), we have

Sq = (2 jmin + 1)(1−q)N − 1

1 − q
. (10)

The micro-states in large BHs which attribute to every punc-
ture the smallest quantum area jmin = 1/2 dominate the
counting as they maximize the punctures number prescribed
for a given area of horizon, so replace jmin = 1/2 in Eq. (10)
the entropy then become

Sq = 2(1−q)N − 1

1 − q
, (11)

which is the result that was reported in ref. [14] for Tsallis
statistics in LQG. Putting Eq. (8) and jmin = 1/2 in Eq.
(11). The expression become

Sq = 2(1−q)A/4πγ
√

3 − 1

1 − q

= 1

1 − q

[

exp

(

(1 − q) � (γ )
A

4�2
P

)

− 1

]

, (12)

Fig. 1 The figure shows the temperature of a Schwarzschild BH as
a function of masses in the asymptotically flat case with Boltzmann
(q = 1, blue-continuous) and Tsallis entropies (q > 1, red-dashed and
q < 1, black-dotted)

Fig. 2 The figure shows the temperature of a Schwarzschild BH as
a function of masses in the asymptotically flat case with Boltzmann
(q = 1, blue-continuous) and Tsallis entropies (q > 1, red-dashed and
q < 1, black-dotted)

where

�(γ ) = ln 2

π
√

3γ
= γ0

γ
.

A complete agreement with Bekenstein–Hawking result (i.e.
SBH = A/4�2

P ) is obtained if we set q → 1 and γ = γ0 see
[22]. In the simplest case of a Schwarzschild, the mass of the
BH is related to the area of the Horizon by the formula

A = 4πR2
s = 16π

G2M2

c4

= 16π�2
Pm

2. (13)

where m = M/MP and MP = √
h̄c/G.

Using this result in Eq. (12) to get the entropy of Tsallis–
BH in LQG

Sq = kB
1 − q

[
exp

(
4π (1 − q) � (γ )m2

)
− 1

]
. (14)
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Fig. 3 The figure shows the heat capacity of a Schwarzschild BH as
a function of masses in the asymptotically flat case with Boltzmann
(q = 1, blue-continuous) and Tsallis entropies (q > 1, red-dashed and
q < 1, black-dotted)

In the following sections, we will fix the BI -parameter that
appears in the figures with γ 
 0.274 see [23,24].

3 Thermodynamic stability of black holes

On the basis of the Tsallis model with q > 1, we studied
the properties of thermodynamic for the Schwarzschild BH ,
if (14) is correct, one obtains the thermodynamic quantities
following [1]:

Sq (m) = kB
1 − q

[exp
(
m2/2m2

min

)
− 1], (15)

Tq (m) =
(

1

kB

∂Sq
∂E

)−1

=
(

1

kBMPc2

∂Sq
∂m

)−1

,

= (q − 1) TP
exp

[
m2/2m2

min

]

m/m2
min

, (16)

Cq (m) = Tq
∂Sq
∂Tq

= m2/m2
min

(q − 1)

exp
[−m2/2m2

min

]

(
m2/m2

min − 1
) , (17)

Gq (m) = E − Tq × Sq

= Mpc
2

[
m2/m2

min + (
1 − exp

[
m2/2m2

min

])]

m/m2
min

,(18)

where TP is the Planck temperature such as TP = MPc2/kB
and

mmin = [
8π (q − 1) � (γ )

]−1/2
, (19)

it is the minimum mass [1] of the temperature functions at
q > 1, i.e. ∂mTq (m) |m=mmin = 0. Therefore the minimum

value of Tq is Tmin
q = TP

√
(q−1)e
8π�(γ )

,then there exists a lower
value of temperature for the BH see Fig. 1.

Fig. 4 The figure shows the free energy of a Schwarzschild BH in
the Tsallis model as a function of the temperature in the standard with
Boltzmann entropy (q = 1, blue-continuous) and the Tsallis entropy
(q > 1, red-dashed and q < 1, black-dotted)

We clearly observe a thermodynamic behavior different
from the case of the Schwarzschild BH asymptotically flat.

In Fig. 2 illustrates how Tsallis q > 1 and Boltzmann q =
1 Entropy are related to the temperature of the Schwarzschild
BHs. Thus, entropy function Sq(T ) has two horizontal
asymptotes, Sq = 0 and Sq = kB/ (q − 1). More specifi-
cally in Fig. 3, the heat capacity Cq is not always negative:
it becomes positive for the large BHs with m > mmin while
it is negative for m < mmin and not defined at m = mmin.

The behaviors of the Gibbs free energy [1] Gq for q > 1 is
depicted in Fig. 4, We observe a minimum temperature Tmin

q ,
at m = mmin, no BH solution can exist below the minimal
temperature and the space is filled with pure radiation.

There exist two branches above Tmin
q , the upper branch

describes small BHs m < mmin (and Schwarzschild type
q ≤ 1) with negative specific heat; which are thermody-
namically unstable and can not be in thermal equilibrium,
while the lower branch have positive specific heat and are
therefore thermodynamically stable locally for large BHs
for m > mmin.

Hence, When we have Tmin
q < Tq < T HP

q , We observe
that Gibbs free energy Gq of those BHs is always positive,
This also confirms the results of [25] for the Schwarzschild–
AdS–BH . in general, BHs with Tq > T HP

q (that is to say
m > mHP in Fig. 5), have negative Gibbs free energy and
represent the globally preferred state.

Furthermore, at Tq = T HP
q , the intersection point of

the bottom branch and Gq = 0 indicates the well known
phase transition between thermal radiation and large BHs,
this is completely analogous to the Hawking–Page [25]
phase transition of Schwarzschild BHs in AdS space see
[26]. This phase transition can be interpreted as confine-
ment/deconfinement phase transition by checking the differ-
ent configurations of a quark and anti-quark in AdS/QCD.
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Fig. 5 The figure shows the Gibbs free energy of a Schwarzschild BH
as a function of masses in the asymptotically flat case with Boltzmann
(q = 1, blue-continuous) and Tsallis entropies (q > 1, red-dashed and
q < 1, black-dotted)

We can see from Eq. (18) that this point occurs at :

mHP = mmin
√
B 
 1.58520 × mmin (20)

T HP
q = Tmin

q

√
eB−1/B 
 1.34409 × Tmin

q (21)

where B = −1 − 2W−1

[
− 1

2
√
e

]
and W−1(z) ≡ W (x) is

the branch for −1/e ≤ x < 0 of the Lambert W function is
defined by W (z)eW (z) = z [27,28].

4 A semi-classical estimation of the q-parameter of the
black holes

In particle physics, and remarkably, for astronomical BHs,
one speculates small quantum BHs that can not be detected
in experimental terms, so q-parameter may deviate from unity
(i.e. q = 1 + ε). In what follows, we treat an estimate
of Schwarzschild BH whose temperature is the minimum
value of 19 leading to Mmin = MP

[
8π (q − 1)� (γ )

]−1/2,
if the energy of such a state, Emin = Mminc2, is situated
near the ground state energy of quantum mechanics [29,30].
Of course, we can have an approximate for this limit state
from semi-classical considerations. We see that the ground
state of the harmonic oscillator is E0 = ω0h̄/2 = kch̄/2 =
π h̄c/2λ0 (the boundary condition is results in the reality
that sin (kλ0) = 0 this is satisfied when kλ0 = π ). Here,
λ0 and ω0 represents the fundamental wavelength and fre-
quency respectively of the system, and Dmin = 2Rmin (the
BH diameter) is an appropriate method λ0 i.e. λ0 ≈ Dmin,
yielding to E0 = π h̄c/2Dmin = π h̄c3/8GMmin. The energy
of the corresponding ground state quantum oscillator must
be close to the minimum point of the temperature, it means
that E0 ≥ Emin, and taking into account the relation 19, we

obtain

π h̄c3

8GMmin
≥ Mminc

2

π

8
M2

P ≥ M2
min (22)

Now, once we can determine q, then Eqs. (19) and (22) will
gives a relation between q and γ by

q ≥
√

3γ

π ln 2
+ 1, (23)

as an approximate relation between q and γ. In fact, when we
fixed the value γ ≈ 0.274 see [23,24]. We find q ≈ 1.218,
is how well approximated by cosmic ray observations (q =
11/9) [31] and by the quark coalescence fit to Relativistic
Heavy Ion Collider RH IC (q ≈ 1.2) [30].

5 Decay time for the black holes

The radiation recorded by distant observer, the Hawking radi-
ation turns out to be black body radiation of the temperature
Tq [32]. This process results in a reduction of mass of the
BH -evaporation. It is assumed that the BH radiates accord-
ing to the Stefan–Boltzmann law [33], It is applied at the BH
surface area A, according to Hawking’s temperature Tq and
relativistic equivalence relation E = Mc2, reads as

−dE

dt
= −c2 dM

dt
= σSB AT

4
q (24)

where σSB = π2k4
B/60h̄3c2 is the Stefan–Boltzmann con-

stant [33]. This law enables us to calculate the lifetime of the
BH [34] by an analog approach to Hawking’s work on the
time of the BH ’s evaporation [35]. From the Eqs. 16 and 24,
we obtain the modified Stefan–Boltzmann law for the BH
radiation power law derivation as follows

−dm

dt
= 4π3 (q − 1)4

15tP

exp
[
2m2/m2

min

]

m2/m8
min

, (25)

where tP = √
h̄G/c5 is the Planck time. So we can write

dt = − 15tP
4π3 (q − 1)4

m2/m8
min

exp
[
2m2/m2

min

]dm. (26)

Therefore the evaporation time of a BH of initial mass m0

can be expressed by the formula

tli f e (m0) = −15 (q − 1)−4 tP
4π3m5

min

×
∫ 0

m0

m2/m2
min

exp
[
2m2/m2

min

]dm/mmin. (27)
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Fig. 6 The scaled life time of BH against black-body radiation in the
Tsallis-statistic ( q > 1, red-dashed and q < 1, black-dotted) and in the
Boltzmann-statistic (q = 1, blue-continuous) as functions of the initial
masse of BH

After the change of variable as

x = m/mmin, x0 = m0/mmin,

the last integral becomes

tli f e (m0) = 15 (q − 1)−4 tP
4π3m5

min

∫ m0
mmin

0
x2 exp

(
−2x2

)
dx .

(28)

The finite decay time, during which an initial radius, R,
shrinks to zero, can be analytically obtained in both cases
for the Tsallis. The analytic results of the integrations are

tli f e (m0) = 15 (q − 1)−4 tP
32π3m4

min

×
[√

π

2
erf

(√
2m0

mmin

)

− 2m0

mmin
exp

(

− 2m2
0

m2
min

)]

,

(29)

where erf (z) is the error function defined by erf (z) :=
2√
π

∫ z
0 e−t2dt.

For q −→ 1 or For small initial mass m0 � mmin and
γ = ln 2/π

√
3, the life time tli f e (m0) can be approximated

by the classical Schwarzschild result

tli f e (m0) 
 5120
πG2

h̄c4 M3
0 . (30)

We see that the result is very close to Hawking’s time for BH
evaporation [35].

Though, for BH with large initial mass m0 ≫ mmin,
tli f e (m0) can be approximated by the limit

tli f e (∞) 
 60tP

√
�5 (γ )

(q − 1)3 , (31)

very large BHs do not live forever [30] in this approach: they
also have a finite decay time see Fig. 6.

6 Conclusion

In this letter we studied the Bekenstein–Hawking entropy as
a non-extensive entropy of Schwarzschild BH horizons, and
by considering their equation of state based on the Tsallis
non-extensive entropy using the LQG theory [1,14]. In this
framework, our major concentricity will be to study some
characteristics of a Schwarzschild BH gathering the Tsallis
entropy. This feature (and the whole Tq(M) curve at values
of q > 1) is of the same form as the result from a BH in anti-
de Sitter space within the original of the BG entropy formula
[25]. The stability analysis also show that, if its mass is bigger
than Mmin which is the mass of a Schwarzschild BH with
temperature Tmin

q , in the Tsallis formalism, a Schwarzschild
BH has positive heat capacity and is stable, if its mass is
smaller than Mmin the BH will have a negative specific
heat and will be unstable. Where it is also proved that a
Hawking–Page BH phase transition results at a critical
temperature Tmin

q which relies on theq-parameter of the Tsal-
lis formula.

Therefore, A semi-classical estimate analysis of the
energy Emin at this minimum Mmin leads to a Bekenstein
bound on the entropy parameters q and γ in the Tsallis

entropy of micro BHs with q 

√

3γ
π ln 2 + 1, and when we

fixed the value of γ ≈ 0.274 [23,24], we surprisingly con-
cluded that this estimate for q-parameter (q ≈ 1.218) is very
close to the observed value of cosmic ray and distribution of
the power law of coalescing quark in hadrons in experiments
with high energy accelerators (q ≈ 1.2). In this approach, the
BHs with very large masses do not live forever and the Hawk-
ing radiation becomes important, they also have a finite decay
time, and the maximum age is associated with two parameter
q and γ . In our next work we will focus on the study of the
thermodynamic properties of Schwarztschild BHs as well as
those of Schwarztschild–de Sitter to relate their entropy to
gravitation (coupling) and to geometry (horizon surface) in
the framework of non-extensive statistical mechanics with
the quantification of the horizon surface by means of the
LQG, and all this by relying on the Sharma–Mittal entropy
[9].

Data Availability Statement This manuscript has no associated data
or the data will not be deposited. [Authors’ comment: This manuscript
is not associated with any of the additional data, so this data will not
be deposited. All information relating to this manuscript is contained in
the theoretical formalism developed in this work and can be extracted
from the equations illustrated in this manuscript.]
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