
A Semi-custom Design Flow in High-performance
Microprocessor Design

Gregory A. Northrop
IBM Research

Yorktown Heights, NY 10598

gnorth@us.ibm.com

Pong-Fei Lu
IBM Research

Yorktown Heights, NY 10598

pflu@us.ibm.com

ABSTRACT
In this paper we present techniques shown to significantly
enhance the custom circuit design process typical of high-
performance microprocessors. This methodology combines
flexible custom circuit design with automated tuning and
physical design tools to provide new opportunities to optimized
design throughout the development cycle.

Keywords
Standard cell, circuit tuning, custom design, methodology.

1. INTRODUCTION
The development of high performance microprocessors requires
concurrent design at many levels (logical, circuit, physical) with
large teams and tightly interlocked schedules. Often the best
design flow is one that most effectively addresses the natural
conflicts within this flow (e.g., logic stability vs. timing closure),
in contrast to one that simply applies the most modern or
aggressive approach in each domain. This paper describes such a
case, in the development and use of a semi-custom design
methodology which has significantly enhanced several
generations of IBM zSeries (S/390) processors [1-3], as well as
the IBM POWER4 processor[4]. The coordinated use of a
common parameterized gate representation, standard cell
generation capabilities, place and route merged with custom
physical design, static transistor level timing + formal circuit
tuning, and gain-based synthesis have all led to significant
improvements in both quality-of-result and time-to-market in the
conventional static CMOS design domain.

2. CUSTOM PROCESSOR DESIGN
The circuit design methodology described in this paper was
developed and applied over 3 generations of the microprocessor
family used in the IBM eServer zSeries (S/390 mainframe) [1-3].
These processors have achieved frequencies in excess of 1GHz
in a 0.18u CMOS technology, combining high frequency with a
relatively shallow pipeline (~7 stages) and extensive use of
millicode [2] to implement the complex S/390 architecture with a

RISC-like micro-architecture.

The physical design of these processors makes extensive use of
hierarchy, partitioning the chip into functional units (instruction,
FXU, FPU…) and units into macros. There are typically ~6 units
and ~200 distinct macros (about 600 total instances), and a
macro can have anywhere from 1K to 100K or more transistors.
The macro serves as the primary partitioning unit for logic entry
(HDL), and a common macro connectivity description is used for
both functional models for verification and for circuit design.
Boolean verification is used to ensure functional equivalence
between macro HDL and a schematic representation, which is
verified against the physical design. All macros and units are
fully floorplanned objects, and the global wiring (chip and unit)
is done hierarchically, using a wiring contract methodology.
Macros are all characterized for timing, noise, etc., and
represented by models at the global level. Timing rules are
generated for all macros using static transistor-level simulation.
Global timing is run at both the unit and the chip level, using
these macro rules and global wire extractions. The resulting
timing is routinely used to generate assertions for all macros,
which are used with the static transistor level timing to drive
timing closure.

Concurrent design with carefully controlled feedback and
iteration are the keys to bringing such a design to closure.
Circuit and physical design start as soon as sufficient logic is
defined, while the early emphasis is on simulation for functional
verification. Early floorplanning and initial circuit design are
used to check the cycle time feasibility, and as the design
matures, the emphasis shifts from strictly functional verification
to logic modification and repartitioning as the primary
mechanism for achieving timing closure. This means that the
efficiency, turn-around-time, and flexibility of the circuit design
methods are as important to the ultimate chip cycle-time
performance as is the intrinsic circuit performance.

Circuit implementations of macros fall into 3 classes, with each
type occupying about 1/3 of the area: arrays, (cache, table logic)
synthesized random logic macros (RLMs) for controls, and full
custom dataflow. The dataflow is done predominantly in static,
with dynamic circuitry reserved for only extremely critical
function, in order to meet power requirements. Traditionally,
full custom design is used for arrays, register files, and the
dataflow stacks that are typical of the instruction and execution
units. Custom design is very effective at optimizing performance
and achieving a high area efficiency, particularly where elements
are identical across the bit range of the data stack, as hierarchy
and careful tiling lead to highly optimal designs. This clearly
applies to register files, working registers, muxes, and the like.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
DAC 2001, June 18-22, 2001, Las Vegas, Nevada, USA.
Copyright 2001 ACM 1-58113-297-2/01/0006…$5.00.

restructure

Schematic design

Flatten to gate level

Tune sizes

Map to standard cell

Layout custom cells

Generate layout for
remaining cells

Place and route

Schematics with
all leaf cell

Layout

Select flatten

Extraction

Timing

Paras
itics

Figure 2. Complete design flow using the primitive bookset.
The custom designed schematics can be a hierarchical
combination of parameterized and custom designed cells.

NW = 10u

PW = 8u

NW*T

NW

PWPW

Figure 1. Parameterized gate and sample instance, showing
parameters NW and PW. The expressions on the transistors
are widths, and T represents an optional taper factor.

However, many of the most labor intensive and critical functions,
particularly those that implement more complex numerical
functions (adders, incrementers, and comparators) do not make
such a compelling case for full custom design. They are far less
regular across the stack, more complex, and often do not tile very
easily. They are often timing critical, and although the logical
function usually has a stable definition early in the design
process, the most appropriate circuit architecture may evolve. It
is this class of function which is the primary application for the
semi-custom design flow outlined below.

3. SEMI-CUSTOM DESIGN FLOW
3.1 Primitive parameterized bookset
The basic building block used in this methodology is a set of
parameterized gates, called the primitive bookset, an example of
which is shown in Fig 1. These gates are generally a single level
of conventional (inverting) static CMOS, with complementary
pull-up and pull-down nfet and pfet trees, wherein the
parameterization simply scales the pfets with a parameter PW

and the nfets with a parameter NW. In general, each fet can have
an additional fixed multiplier, T, which is used to define
multiple flavors of each logic type providing tradeoffs between
the delays from each input pin. With the exception of the XOR
and XNOR functions, all these primitive gates are a single level
of inverting logic. A complete set of represented topologies can
be found in Table 1.

Table 1. List of parameterized logic types

Logic type Comments
INVERTER
NAND2…NAND4 Multiple T
NOR2…NOR3 Multiple T
AOI21 & OAI21 Multiple T
AOI22 & OAI22
XOR2 & XNOR2 Pass-gate style
MUX2 2-Way transmission gate mux
PGMERGE G+P*C for adders (restricted AOI21)
DRXOR2 Dual rail xor (true & comp inputs)

Together, these parameterized gates form a basis set capable of
covering most of the design space for combinational static
circuitry found in a conventional ASIC library, since more
complex functions, such as wide ANDs and Ors are typically

composed of multiple levels of these gates. Note that this
bookset is only a schematic representation; there is no directly
associated layout.

A cell generation tool, described in more detail in section 3.5, is
designed specifically to produce layout in a row-based standard
cell image for arbitrary values of NW and PW for each primitive
cell. In addition to its use in semi-custom design, this tool was
also used to create a conventional library of discrete sizes for use
with synthesis to build the RLMs. This standard cell library had
non-parameterized cells with all the conventional views,
including timing rules required for synthesis. The sizes were
selected by generating a reasonably dense matrix of NW,PW
values for each primitive cell and running it through the cell
generator. The NW,PW values were cast as a power level
(NW+PW) and a rise/fall ratio (PW/NW), also called the beta
ratio. The ratio of adjacent power levels was around 1.25, and
the range of beta ratios was adjusted to specific rise/fall times.
Depending on the complexity of the function, there were from
10 to 25 power levels and from 1 to 4 beta ratios for each
primitive type. Including a physically compatible set of cells
using low Vt fets, there are ~1200 cells in this library. This type
of library, commonly referred to as a “tall thin” library, provides
the flexible sizing required for synthesis to achieve maximum
cycle time performance in the RLM control logic.

3.2 Overall design flow
The design flow used to implement custom designs built from the
primitive bookset is summarized in Fig 2. This flow is largely
automated, with most of the work contained in the initial design
and the place and route floorplan. After an initial pass, iteration
of the design is a relatively rapid process.

3.3 Design flow details
This section catalogs some of the details of each step in the flow
from Fig 2. Note that not all steps are needed, and a wide
variety of combinations have been used, depending upon the
details and needs of each design. The primary goal of this flow
is to retain as much detailed control of the design at the

schematic level while using layout automation, particularly place
and route, as much as possible.

3.3.1 Schematic design (contents)
The initial schematic design can be all or part of a macro, but
generally should encompass function that can be floorplanned in
a simple block, and whose components can be routed
automatically. It can contain hierarchy, with the assumption that
it will be flattened to a set of routable leaf cells going into final
physical design. It can contain a mixture of parameterized
primitive gates, cells from the standard cell library, and custom
cells.

3.3.2 Gate level flattening
Even though the design will be flattened to the leaf cell going
into physical design, there can be significant advantage to
flattening a hierarchical design in schematic form, particularly
when tuning a design with low symmetry in its structure or
timing constraints.

3.3.3 Static circuit tuning
Automated tuning of fet widths to optimize the slack of a macro
is one of the key elements of this methodology. It helps to take
full advantage of the sizing flexibility of the primitive bookset to
optimize timing and area. An expanded discussion of the tuning
method can be found in section 3.4.

3.3.4 Mapping to the standard cell library
After sizing, often many parameterized gates can be mapped to
cells from the standard cell library, allowing only a modest
change in fet sizes and a minimal impact on timing. This helps
to control data volume since all remaining primitive gates must
be generated specifically for that macro.

3.3.5 Inclusion of custom leaf cell physical design
Any required custom leaf cells for the design must be abstracted
for place and route. These can be either standard cell image, or
other blocks that are pre-placed.

3.3.6 Automated cell generation
Any parameterized cells that remain after step 3.3.4 are
generated. Details of the generation process can be found in
section 3.5.

3.3.7 Floorplanning, place and route
An interactive floorplanning and place and route environment is
used to complete the layout. This environment features:

• Hand constructed floorplan with detailed wire contracts.
• Customizable row configurations for placeable cells,

capable of multiple row heights.
• Pre-placement of non-placeable and placeable cells.
• Placement constraints (regions, groups, net weights).
• Code-based or manual pre-routing.
• Grid based router.
• Incremental (EC) placement to retain stable timing when

iterating a design.

3.3.8 Cell count and data volume reduction
After completion of place and route, designs that have made
heavy use of tuning and cell generation will have a large number

of unique cells, many used only once or a small number of times.
Selective flattening of these cells in the layout, with a
corresponding change back to the parameterized schematic
representation, helps strike a balance between a high cell count
and the large data volume of completely flat layout.

3.3.9 Parasitic feedback into tuning
The effects of wiring parasitics have become quite important,
accounting for as much as 30% of the delay in even moderate
size macros. Lumped capacitance, from either wire length (from
place and route) or from a subsequent full extraction of the
layout, can be merged into the schematic netlist and the circuit
re-tuned to compensate for their effect.

3.3.10 Design restructuring & alternate circuits
The combination of automated sizing and timing-based real
physical design allows the designer to try multiple restructurings
and circuit architectures, and make a confident comparison of the
relative quality of each approach. This part of the flow, and the
associated change in the approach to design, are the most
important part of this methodology, and the place where the most
benefit will be found when it is fully applied.

3.4 Circuit tuning
A pivotal driver of this methodology is the use of circuit tuning to
automate the sizing of transistors. While circuit tuning tools have
been applied in CMOS design for a number of years, we believe
that EinsTuner [5,6], the tool used here, delivers a quality of
result that is very important to the overall improvements in
design presented in this paper.

Tuning tools can be divided into 2 broad classes, static and
dynamic. Dynamic tuning involves simulation with explicit
waveforms and measures (delays and slews), while static tuning
formulates the optimization problem through static timing,
optimizing slack in the presence of timing assertions. The large,
non-bitslice circuits for which semi-custom design is best suited
present an impractical problem for dynamic tuning, but are an
ideal candidate for static tuning, which can keep track of a large
number of critical paths as tuning proceeds.

The EinsTuner static tuner is built on top of a static transistor-
level timing tool (EinsTLT), which combines a fast event-driven
simulator (SPECS) with a timing tool (Einstimer). The SPECS
simulator provides timing information (delay and slew) along
with first derivatives with respect to circuit parameters,
specifically transistor width. EinsTuner uses this to formulate
the optimization problem for solution by a large-scale general-
purpose nonlinear optimization package LANCELOT [7],
generally optimizing a linear combination of slack and area,
nominally treating all fet widths as free parameters. Additional
features of this tool that make it effective in a practical design
environment include:

• Parasitics (lumped capacitance) from physical design.
• Area modelled as sum of fet widths.
• A fet-width ratioing mechanism, used to constrain fet widths

to match hierarchy or gate parameterization.
• Input capacitance, node slew, effective pull-up and pull-

down (beta ratio), and min/max fet-width constraints.

• Complete interactive environment (GUI), including size
constraint generation and back annotation.

In its current state of development, EinsTuner is capable of
tuning in excess of 3000 gates with run times normally < 24
hours, even for large circuits, such as a 64-bit adder (~2000
gates). Experience has shown that tuning results are largely
independent of the starting point, meaning that a designer can
have a high degree of confidence that the results from a run are
optimal for the conditions and design. While heuristic tuning
can be faster, such algorithms often need coaching for particular
designs, and they offer little certainty as to how close a run is to
the "true optimum". This is an important issue when using this
methodology to compare and select circuit structures.

3.5 Cell generation
A second key component of this methodology is the use of a cell
generator to create layout corresponding to the parameterized
gates. This home-brewed tool, called C-cell, is not a general-
purpose cell compiler, but rather a script-based system designed
to produce optimal layout, but only for the defined parameterized
bookset. The definition of the parameterized gate set is tightly
integrated into this tool, delivering a framework that supports
semi-custom design in a number of ways:

• Generate a set of layouts & associated views for use as a
standard cell library, based upon a list of cell specifications:
(primitive name, NW, PW).

• Parse a schematic, form a list of cells to generate to replace
parameterized gates, minimizing the number of required
cells for a maximum allowed deviation in size. Generate
cells, and create a modified custom schematic referencing
the generated cells.

• Includes a facility to convert between parameterized and
standard (RLM library) cells.

• Has an integrated floorplanning aid with an interface to the
place and route tool.

• Does layout post-processing, including selective layout
flattening and shape trimming.

In the cell generation part of the tool, topology and technology
specific code takes as input the gate type, size parameters NW
and PW, and a global cell image (row height), and generates
layout, after selecting the optimal configuration from a range of
finger partitionings and topology options. In practice the
measure of optimality is cell area, but factors such as wireability,
manufacturability, etc., could also be weighted in the selection.
While this system is not capable of implementing an arbitrary
gate topology, it has been very successful in the domain of
conventional static CMOS, where there are a small number of
effective topologies, and optimization of the simplest (nand/nor)
types is vital. To date, the effort required to migrate and modify
this approach from technology to technology has been easily
justified in its use in both the synthesis environment and in semi-
custom design.

4. DESIGN EXAMPLE – 24 BIT ADDER
4.1 Adder function, timing, and floorplan
This 24 bit adder is used in the branch target address prediction
in the POWER4 microprocessor [4]. The adder performs an
addition between the Current Instruction Address (CIA) and the

sign-extended immediate operand from the I-cache. The adder
includes a 4-way mux to select among 4 possible target
addresses: the link register, the sign-extended immediate field,
the adder result, and the counter register. The mux controls are
from an RLM outside the dataflow stack. The adder and mux,
wrapped by latches manually designed separately, form a
module. There are eight such 24-bit adder modules to handle 8
instructions delivered by the I-cache in parallel. A 10-way mux
(in another macro) selects one of the 8 resulting branch addresses
and 2 other sequential addresses, whose lower 12 bits are then
sent back to I-cache to fetch the next 8 instructions. This loop
path: I-cache->Adder->muxes->I-cache, takes 3 cycles to
complete. It is one of the cycle-limiting paths in POWER4
design. The allotted timing budget for the adder is about half a
cycle.

The floorplan of the macro containing 8 adder modules is shown

in Fig. 3. The 8 adders are arranged as 2 stacks of 4 to meet
constraints in the chip floorplan as well as wiring congestion.
The height is dictated by the unit floorplan and needs to be
minimized, while in the width dimension it is fixed at 14 tracks
per bit as the rest of the dataflow. The address inputs and outputs
flow vertically, while the control signals are from the sides. The
mux inputs for the predicted values of the link register and the
count register are common to all 8 adders; the CIA is formed by
concatenating the word-offset field (0:2) with the I-cache fetch
address (IFAR) <38:58> which is also common to all 8 adders.

4.2 Circuit architecture
The 24-bit adder is a static, carry-look-ahead Ling adder [8],
which is a stage faster than a CLA adder. The 24 bits are
grouped into six 4-bit groups for carry propagation. The local
sum is implemented in parallel with the carry, and the result of
the carry bit is used to select the final value.

One key circuit decision made early in the design was to hide the
mux delay behind the adder. The assumption was that the I-cache
data through the adder would be the critical path, while the mux
selects and register file data will arrive early. Since the carry bit
is the longest path, the partial sums can be pre-muxed with the
other 3 inputs and the final result selected by the carry. This led
to a skewed ‘late-mux’ design as shown in Fig. 4(a). Frequently
it is assumed early in design that controls are non-critical,
however that often turns out not to be true, as will be discussed
later.

sums out

data in

sums out

data in

se
le

ct
s

24-bit adder

24-bit adder

24-bit adder

24-bit adder

24-bit adder

24-bit adder

24-bit adder

24-bit adder

Figure 3. Macro floorplan containing group of 8 24 bit adders.
The muxes discussed in section 4.2 are shown in gray.

4.3 Circuit tuning and layout
In its final form, the design consisted of 485 gates of the
following types and number: inv(164), nand2(63), nor2(31),
aoi21(15), aoi22(176), oai21(25), oai22(11). Once the schematic
design was complete and verified, the physical design followed
much of the flow shown in Fig. 2. These steps were used: gate
level flatten, tune, cell generation, place & route, full extraction,
re-tune with actual parasitics, and incremental placement and re-
route. Since the schematic was flattened before tuning, all gates
could be sized independently by EinsTuner. Wiring use was
limited to all of M1, and a portion of the M2 and M3 tracks, as
some tracks are reserved for the macro level routing through the
stack. Cell occupancy was maintained through EinsTuner's area
constraint to about 70% of the floorplan area. No mapping to the
standard cell library was done, and 297 cells were generated,
since only a +/- 5% size variation was allowed. If a +/- 25% size
variation had been allowed, this would have still required 143
cells. After place and route, the layout was flattened into shapes
since the maximum reuse of any cell was 10, and most cells had
only 1 or 2 instances. In addition flattening allowed the use of the
trimming process to cut excess metal and poly shapes to reduce
parasitics, which was found to improve the delay by an additional
2-3%. The turnaround time was less than a day; usually 2 to 3
iterations were sufficient to bring the design to convergence after
a change in design and/or timing assertions.

4.4 Design iterations and timing convergence
The key issue of the semi-custom design is the timing assertions
fed to the tuner. As the control signal timing is unknown in the
beginning, the timing assertions are largely estimates that may
not be substantiated as the chip timing stabilizes. In the 24-bit
adder example, the assumption of the mux select timing turned
out to be wrong after the first tape-out. The gating path was from
the selects, thus the circuit construct in Fig. 4(a) was improper.
The mux was re-designed using a balanced AOI-NAND scheme
in Fig. 4(b). The new schematic was then re-tuned and iterated
based on the correct timing assertions. The new design was
completed in a week, and the negative slack was reduced by
more than 80 ps, about 20% of the timing budget for the adder.
Thanks to the contract based place and route, the adder re-design
did not cause any global wiring change.

The other issue is that a new microprocessor design project like

POWER4 often straddles across several technology generations.
Each technology migration induces device model changes (e.g.
different p/n strength ratio) which full-custom designs are
difficult to adjust to. With the semi-custom design approach,
timing shift can be readily accommodated by the tuner, and with
the flexible physical design, adjustments can be made in a timely
fashion. We estimate that the semi-custom design at least
reduces the total design time by 50%, even for designers
unfamiliar with the place and route environment, who need to
make an initial investment in learning the tools.

5. OVERALL IMPACT ON CHIP DESIGN
Application of this semi-custom methodology to custom macro
design has shown that benefits come in two distinct waves. The
first is an improvement in cycle time performance, primarily
associated with the circuit tuning process. Generally designers
apply it directly to their existing designs, looking for rapid turn-
around, combined with some performance or area improvement.
The second wave comes when a designer makes a more basic
change in approach to design, concentrating more effort on
circuit architecture, then using the rapid turnaround to quantify
the performance of multiple designs. Each design approach can
be tried in a real design context, optimally sized, including real
parasitics and timing assertions. This leads to greater investment
in optimizing the circuit architecture, rather than selecting one
design early, and optimizing the sizing and physical design
manually.

The difference this change in philosophy makes can be put in the
context of the overall design closure shown in Fig 5. This shows
the convergence of chip cycle time as a function of time for the
latest S/390 processor, BlueFlame, [3] along with some of the
typical design activities driving the improvement at each point,
up through tape-out. The custom design phase extends up until
the point where cycle time is ~1.25x the target, by which time
full physical design is required for reliable extraction-based
timing. With the conventional approach to custom design, the
time required to implement physical design often requires

Figure 5. Chip timing closure progress as a function of time.
The labels indicate the dominant activities used to improve
timing at each stage.

sum_bar
selects

count

stack

immed
sum

selects

count

stack

immed

(a)

(b)
restructure

Figure 4. Mux implementations at output of adder. Initial
implementation (a) assumed selects (from controls) were not
critical, and final (b) with optimized control and sum paths.

Fl
oo

rp
la

nn
in

g,
 a

ss
er

tio
n

fe
ed

ba
ck

G
ro

ss
 re

st
ru

ct
ur

in
g

Pi
n

op
tim

iz
at

io
n

H
D

L
 tu

ni
ng

L
ow

 V
t f

et
s

C
ir

cu
it/

w
ir

e
tu

ni
ng

G
lo

ba
l E

C
 m

od
e

N
oi

se
 a

na
l/f

ix

T
ap

e
ou

t

D e v e lo p me n t time

0

0.5

1

1.5

2

C
yc

le
 ti

m
e

(r
el

at
iv

e
to

 ta
rg

et
)

commitment to a particular circuit architecture when the chip
timing still exceedes the 1.8x-target range. As with the adder in
section 4, this can lead to selecting a less than optimal circuit
architecture. Being able to adapt quickly to changes associated
with global timing convergence is a major advantage to semi-
custom design. Experience suggests that these advantages are
more valuable than any loss associated with the use of place and
route in the physical design.

Net improvements in designer productivity, above and beyond
achieving a superior design, are also of interest. Since this
methodology was most heavily applied in the instruction unit of
the BlueFlame processor, we have done some analysis there to
try to understand its overall impact. This involved a code-based
and manual survey of the design to gather specific statistics,
followed by some interviews with designers to make work time
estimates. Table 2 breaks down the circuits in this unit by their
construction method. While the total semi-custom area was fairly
small, the impact on the design work was significant, as it was
applied to the most difficult functions. The survey indicated that
most of the remaining full custom design was bit-slice in nature
(working registers, muxes, and 3 register files), having relatively
large areas implemented with a small number of cells. Table 3
lists the 23 semi-custom blocks by function type, giving the
number of unique designs for each.

Table 2. Macro circuit area by construction method in
BlueFlame instruction unit.

Circuit construction area %
Custom 55.3
Semi-custom 15.2
RLM (synthesized) 29.5

Table 3. Number of semi-custom functions by type in BlueFlame
instruction unit.

Function type Number of blocks
Adder 3
Increment 4
Compare 8
Error check 2
Other 6

No truly valid quantification of the productivity improvements
associated with semi-custom design could be made, due to a lack
of both a detailed recording of design effort and any form of a
control, since previous design points were different and the
design teams and overall methodology have changed too.
Instead, we made an effort to estimate the improvement, giving
quantities that were derived from discussions with several
designers. A proto-typical set of times are given in Table 4 for 7
stages of design, for the full custom approach and the equivalent
design in semi-custom. Once a design has been through the
complete semi-custom flow once, an iteration typically only
requires a couple of days, including structural changes to the
design. When one includes all stages of circuit and physical
design and analysis, the semicustom approach requires roughly
one half the time, yields as good or better results, and provides

the ability to change the design quickly and reliably late in the
design process.

Table 4. Estimated time (arbitrary units) by design phase for
full- and semi-custom design flows.

Design steps Full-C Semi-C

Circuit arch, initial schematic 5 5
Floorplan, area estimate, wire util. 3 3
Parasitic estimation, circuit sizing 3 -
Post-initial timing circuit struct/sizing 6 -
Physical design – leaf cells 12 2
Automated tuning - 2
Physical design – assembly 6 2
TOTAL 35 14
Time for each additional iteration ? +2

6. ACKNOWLEDGMENTS
Our thanks to Chandu Visweswariah, Phil Strenski, and Ee Cho
(circuit tuning), Joe Nocerra and Ching Zhou (cell generation),
Keith Barkley (place and route), Brian Curran, Tom McPherson
(timing convergence), and many designers for their patience,
experiences, and suggestions.

7. REFERENCES
[1] Averill, R.M. et. al., Chip integration methodology for the

IBM S/390 G5 and G6 custom microprocessors. IBM
Journal of Research and Development, 43, 1999, 681-706.

[2] Check, M.A., Slegel, T.J., Custom S/390 G5 and G6
microprocessors. IBM Journal of Research and
Development, 43, 1999, 671-680.

[3] Curran, Brian, et. al., A 1.1 GHz First 64b Generation Z900
Microprocessor, ISSCC Digest of Technical Papers, 238-
239, Feb 2001.

[4] Anderson, Carl J., et. al., Physical Design of a Fourth-
Generation POWER GHz Microprocessor, ISSCC Digest of
Technical Papers, 232-233, Feb 2001.

[5] C. Visweswariah and A. R. Conn, Formulation of static
circuit optimization with reduced size, degeneracy and
redundancy by timing graph manipulation, IEEE
International Conference on Computer-Aided Design, pages
244-251, November 1999.

[6] A. R. Conn, I. M. Elfadel, W. W. Molzen, Jr., P. R. O'Brien,
P. N. Strenski, C. Visweswariah, and C. B. Whan,
Gradient-based optimization of custom circuits using a
static-timing formulation, Proc. Design Automation
Conference, pages 452-459, June 1999.

[7] A. R. Conn, N. I. M. Gould, and Ph. L. Toint, LANCELOT:
A Fortran Package for Large-Scale Nonlinear Optimization
(Release A). Springer Verlag, 1992.

[8] Huey Ling, “High-Speed Binary Adder,” IBM J. Res.
Develop., Vol. 25, No. 3, May 1981, pp. 156-166.

