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1 CNRS et Université Paris-Sud, UMR 8628, Bât. 425, Université de Paris-Sud,
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Summary. We study the convergence of a semi-discretized version of a
numerical scheme for a stochastic nonlinear Schrödinger equation. The non-
linear term is a power law and the noise is multiplicative with a Stratonovich
product. Our scheme is implicit in the deterministic part of the equation as
is usual for conservative equations. We also use an implicit discretization
of the noise which is better suited to Stratonovich products. We consider a
subcritical nonlinearity so that the energy can be used to obtain an a priori
estimate. However, in the semi discrete case, no Ito formula is available and
we have to use a discrete form of this tool. Also, in the course of the proof we
need to introduce a cut-off of the diffusion coefficient, which allows to treat
the nonlinearity. Then, we prove convergence by a compactness argument.
Due to the presence of noise and to the implicit discretization of the noise,
this is rather complicated and technical. We finally obtain convergence of the
discrete solutions in various topologies.

Mathematics Subject Classification (2000): 35Q55, 60H15, 65M06, 65M12

1 Introduction

The nonlinear Schrödinger (NLS) equation is one of the basic models for
the description of weakly nonlinear dispersive waves, and occurs in many
branches of physics : hydrodynamics, plasma physics, nonlinear optics,
molecular biology, · · ·
Correspondence to: A. Debussche
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Recently, more and more attention has been paid to the influence of a
Gaussian white noise on the dynamical properties of solutions of this equa-
tion (see e.g. [2], [7], [16], [29]).

In [2], [29], for example, a conservative multiplicative NLS equation
with a real valued space-time white noise is considered. This equation is two
dimensional with a cubic nonlinearity, and may be written as

i∂tψ + (�ψ + |ψ |2ψ) = η̇ψ, x ∈ R
2, t ≥ 0,

where ψ is a complex-valued process defined on R
+ ×R

2, and η̇ = dη

dt
, with

η a real valued Gaussian process with correlation function

E(η(t, x)η(s, y)) = δx−y(s ∧ t).
The noise is multiplicative and the product here is a Stratonovich product.
Hence, the L2-norm of the solution is formally conserved. This is related to
the fact that |ψ |2 stands for a probability density.

However, from a mathematical point of view, nothing is known concern-
ing the existence of solutions for the initial value problem associated with
this equation. The first reason for this absence of result is the lack of spatial
smoothness of the noise (the unitary group eit� has no smoothing effect in the
usual Sobolev spaces, which are natural spaces to deal with the deterministic
equation). The second reason is that an homogeneous noise on R

d cannot
be treated in the context of L2(Rd) based Sobolev spaces, even of negative
order.

This is why we have considered in [11] a multiplicative NLS equation of
the preceding form, with x ∈ R

d , but in which η is a Wiener process on the
space of square integrable functions on R

d , with a covariance operator��∗

which is roughly speaking of finite trace (we actually need slightly more
regularity of �).

If for example � is defined through a real valued kernel k, that is

�u(x) =
∫

Rd

k(x, y)u(y)dy,

then one may recover the spatial correlation of η:

E(η(t, x)η(s, y)) = c(x, y)s ∧ t
by the formula

c(x, y) =
∫

Rd

k(x, z)k(y, z)dz.

The product in the right hand side of the equation is again a Stratonovich
product. We have then proved that in the subcritical case, that is when the
nonlinearity |ψ |2ψ is replaced by |ψ |2σψ with σ < 2/d, this equation pos-
sesses a global square integrable solution which is unique in a slightly more
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restricted class, provided that the initial data is given and square integrable. If
one assumes more spatial regularity on the noise, then one naturally obtains
more regular solutions, by using the same kind of proofs (see [13]).

In [12], we have studied the influence of a Gaussian additive noise (which
is still a white noise in time) on the blow up of solutions of the nonlinear
Schrödinger equation in the supercritical case σ > 2/d. We have proved that
if the noise is sufficiently spatially correlated, then any initial data imme-
diately leads to a blowing up solution. It is not expected that this kind of
behavior occurs for a multiplicative spatially δ-correlated noise : the absence
of spatial correlation is instead conjectured to stop the blow up of any solution
(see [29] for a formal analysis, and [14] for numerical computations on that
subject).

Here, we investigate the convergence of a numerical scheme for a mul-
tiplicative NLS equation of the preceding type. The noise is again assumed
to be Gaussian, white in time and spatially correlated. The scheme is a semi-
discretized version of the one used in [14]. The deterministic part is a Crank-
Nicolson type scheme, and the Stratonovich product in the right hand side of
the equation is naturally approximated by the product of the increment of the
noise with the value of the solution at the mid point. This has the advantage
that the L2-norm is still a conserved quantity for the numerical scheme. It is
shown in [14] that this numerical method gives good results in the one dimen-
sional case; we also refer to [14] for details on the numerical implementation.
The two dimensional case will appear in a forthcoming paper.

In the absence of noise, the Crank-Nicolson scheme we consider also pre-
serves the energy of the continuous equation. A study of this kind of schemes
for deterministic NLS equations can be found in [1], [8], [15] or [30], in which
the convergence is proved either by energy methods, or using contraction
arguments. In these cases, the existence and uniqueness of the semi-discrete
solution requires a smallness condition on the time step, depending on the
initial data. In the stochastic case, such a smallness condition on the time step
would be random and much too restrictive. For this reason, we do not obtain
the uniqueness of the semi-discrete solution, but we prove that for each time
step, there exists a measurable selection of semi-discrete solutions, that is
there is a semi-discrete solution which is an adapted process; we also prove
that the sequence of processes we obtain in this way by varying the time step
converges to the solution of the continuous Stratonovich equation as the time
step tends to zero.

Note that this problem of non uniqueness of the discrete solution
already occurs in the approximation of finite dimensional stochastic differ-
ential equations with implicit schemes. Milstein et al. in [26] suggest to use
a cut-off of the Gaussian random variables arising in the numerical scheme.
This allows them to obtain a unique discrete solution and to derive an order
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of convergence. This approach could probably be applied in our situation
with, however, many additional difficulties, due to the infinite dimension.
Moreover, this problem never caused any trouble in the implementation of
the method – see [14] – and we chose to analyse the scheme implemented in
[14] without any modification.

The convergence result is obtained via a compactness method and a lemma
of Gyöngy and Krylov [21]. Hence, the first step is to derive bounds indepen-
dent of the time step on the semi-discrete solution. Note that if the L2-norm
is still preserved by the semi-discrete stochastic NLS equation, the same is
not true for the energy. A bound on the L2-norm is not sufficient for the use
of compactness methods. In the continuous case, a bound on the energy may
be obtained by the use of the Ito formula (see [13]). This tool is not available
in the semi-discrete case, but we overcome the difficulty using a kind of
semi-discrete equivalent of the Ito formula: we inject in the expression of the
energy evolution the “integral equation” giving u at time (�+ 1)δt in terms
of u at time �δt , where δt is the time step. We use the “integral equation”
instead of the original semi-discrete equation to avoid the addition of extra
partial differential operators in the remaining terms, which would lead to the
impossibility of estimating these terms.

However we cannot avoid the addition of extra nonlinear terms and we
have to cut off the equation, as is classical for stochastic partial differential
equations. If we truncate the nonlinear term, we loose the conservation of
energy for the deterministic equation, and our estimate on the solution. This
is the reason why we use instead a truncation of the diffusion coefficient. We
then get rid of the cut-off thanks to the uniform bounds on the energy for the
continuous equation. Note that this cut-off is a technical tool, and is not used
in the implemented scheme.

In this way, we are able to prove that the discretized solution converges
to the continuous solution in various topologies. Some of the arguments we
have used have been introduced in the series of work [19], [20], [21], [22] on
the numerical analysis of stochastic partial differential equations of parabolic
type; in particular the idea of using a cut off to obtain a bound on the discrete
solutions and the way to get rid of it at the end. However, the present context
is much more complicated: it deals with NLS equations, implicit schemes,
Stratonovich products, · · · Many new arguments have been necessary. For
instance, the above described idea to overcome the lack of Ito formula in the
discrete case, or the particular way to introduce a cut-off. Also, the compact-
ness argument is quite involved.

Recently, numerical analysis of semilinear stochastic partial differential
equations in the semi-discrete or fully discrete case has been the object of
articles by Printems [28] and Hausenblas [23], [24]. In [23] or [28], only
parabolic equations are considered, while [24] generalizes the framework;
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however, all these works deal with explicit schemes in the nonlinear and
stochastic terms.

Our proof can be extended to the study of a fully discrete scheme, some
estimates need to be modified accordingly. However, this requires long and
technical computations and would probably make the article very technical.
For this reason, we have preferred to start with the semi-discrete case, so that
the ideas can be introduced in a simpler context.

Also, we do not give any result on the order of convergence. This would
require much more smoothness assumptions on the noise and initial data.
Moreover, as is well known, several kind of orders can be defined in the
context of stochastic numerical analysis. If the error is estimated pathwise
(strong order), the order is very small and in our case it cannot be greater than
one half. For the approximation of stochastic differential equations, this prob-
lem may be overcome by some correction terms in the scheme (see [25]). In
the context of stochastic partial differential equations, it is not clear whether
such terms can be designed. When one is interested in the approximation of
averaged quantities (weak order), then one typically obtains a better order
of convergence (see [32]). However, again such a study seems to be very
difficult in the infinite dimensional case.

The paper is organized as follows: in Section 2, we introduce our nota-
tions, afterwhat we first recall a local and global existence and uniqueness
result proved in [13] for the continuous equation; then we write the semi-
discrete scheme and state our main result (convergence theorem). Section 3
is devoted to the proof of the convergence theorem: in Section 3.1 we write
the truncated scheme and show the existence of a measurable selection of
solutions for both schemes; in Section 3.2 we show an estimate on the trun-
cated discrete solution (using a “discrete Ito formula”) and prove the tightness
of the sequence in an appropriate function space. Section 3.3 is devoted to the
passage to the limit in the discrete equation and in the truncature term, and to
the conclusion of the proof. A technical Section 3.4 has been added, where
we have gathered the proof of three technical lemmas used in the course of
the proof of the convergence theorem.

2 Notations and main result

In general, a norm in a vector space X will be denoted by |.|X or some-
times ‖.‖X when dealing with operator norms. We use the classical Lebesgue
space Lp(Rd) (of complex valued functions), and the inner product in the
real Hilbert space L2(Rd) is denoted by (., .), i.e.

(u, v) = Re
∫

Rd

u(x)v̄(x)dx
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for u, v,∈ L2(Rd). If s ∈ R, the usual Sobolev space Hs(Rd) is the space
of tempered distributions u ∈ S ′(Rd) whose Fourier transform û satisfies
(1 + |ξ |2)s/2û ∈ L2(Rd). We will denote by L2(Rd,R) the subspace of
L2(Rd) consisting of real valued square integrable functions, and the same
for Hs(Rd,R). We will sometimes use the shorter notations Lpx or Hs

x to
denote respectively Lp(Rd) and Hs(Rd).

If I is an interval of R, X is a Banach space and 1 ≤ r ≤ +∞, then
Lr(I,X) is the space of strongly Lebesgue measurable functions u from I

into X such that the function t 	→ |u(t)|X is in Lr(I ).
Since we use a compactness method, and because we work in the whole

R
d space, we will have to use local Lebesgue and Sobolev spaces. If p > 1,

the space Lploc(R
d) is the space of complex valued functions defined on R

d

such that for any compact set K ⊂ R
d , u ∈ Lp(K). We refer to Section 2

in [10] for a precise definition of the local Sobolev spaces Hm
loc(R

d) and
H−m

loc (R
d) when m is a positive integer.

Given two separable Hilbert spaces H and H̃ , we denote by L2(H, H̃ )

the space of Hilbert-Schmidt operators from H into H̃ , endowed with the
norm

‖�‖2
L2(H,H̃ )

= tr�∗� =
∑
k∈N

|�ek|2H̃ ,

where (ek)k∈N is any orthonormal basis of H . When H = L2(Rd,R) and
H̃ = Hs(Rd,R), L2(H, H̃ ) is simply denoted byL0,s

2 . Given a Banach space
B, we will also consider bounded linear operators fromL2(Rd) intoB, and in
order to replace the notion of Hilbert-Schmidt operators, we use in this case,
as in [5], [6], the notion of γ -radonifying operators. We denote by R(L2, B)

the space of γ -radonifying operators from L2(Rd,R) into B, and we recall
(see [6], Proposition 3.1) that the norm in R(L2, B) may be written as

‖�‖R(L2,B) =

Ẽ

∣∣∣∣∣
∞∑
k=1

γk�ek

∣∣∣∣∣
2

B




1/2

where (ek)k∈N is any orthonormal basis of L2(Rd,R) and (γk)k∈N is any
sequence of independent normal real valued random variables on a probabil-
ity space (�̃, F̃ , P̃).

In all the paper, we assume that we are given a probability space (�,F ,P)
endowed with a filtration (Ft )t≥0. We also assume that Ŵ is a cylindrical
Wiener process on L2(Rd,R) associated with (�,F ,P, (Ft )t≥0), so that for
any orthonormal basis (ek)k∈N of L2(Rd,R), there is a sequence (βk)k∈N of
real independent Brownian motions on (�,F ,P, (Ft )t≥0) such that

Ŵ =
∑
k∈N

βk(t)ek.
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We then consider the Wiener process W = �Ŵ , where � is at least
assumed to be an element of L0,1

2 (more precise assumptions on � will be
stated later). Note that W is a real valued process (when considered as a
function of (t, x)).

In all what follows,� is the Laplace operator on R
d :� = ∑d

k=1
∂2

∂x2
k

, 1A
is the characteristic function of the set A. Also, C, Ck, k ∈ N, will denote
various constants, and if it is necessary to precise, the notation Ck(·) means
that the constant Ck depends on its arguments only (for instance Ck(T ,m)
depends on T and m but not on the other parameters or variables).

We consider the multiplicative (NLS) equation

idu+ (�u+ λ|u|2σu)dt = u ◦ dW(2.1)

where x ∈ R
d , t ≥ 0, u(t, x) ∈ C, σ > 0, λ = ±1 and ◦ stands for a

Stratonovich product in the right hand side of (2.1). We will actually use the
Ito equation equivalent to (2.1). Defining, for x ∈ R

d , the function

F�(x) =
∞∑
k=0

(�ek(x))
2(2.2)

where (ek)k∈N is any orthonormal basis of L2(Rd,R), this equivalent Ito
equation may be written as

idu+ (�u+ λ|u|2σu)dt = udW − i

2
uF�dt.(2.3)

It is easily seen using the kernel K associated with � – which necessarily
exists, since � ∈ L

0,1
2 – that the function F� does not depend on the basis

(ek)k∈N. More precisely, we have

F�(x) = |K(x, ·)|2
L2
y
.

In order to recall the local and global existence theorem proved in [13] in
its most general form, we state different assumptions on σ and λ below.

(A1) d ≤ 5, and



σ > 0 if d = 1 or 2
0 < σ < 2 if d = 3
1/2 ≤ σ < 2/(d − 2) if d = 4 or 5,

(A2) 0 < σ < 2/d or λ = −1,

(A3) d ≤ 3, and

{
σ > 0 if d = 1 or 2
0 < σ < 1 if d = 3.

Assumption (A1) corresponds to the local existence theory in H 1(Rd),
and is a little bit more restrictive than in the deterministic case, due to the
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presence of the stochastic integral. Assumption (A2) allows to obtain global
existence using the energy

H(u) = 1

2

∫
Rd

|∇u(x)|2dx − λ

2σ + 2

∫
Rd

|u(x)|2σ+2dx.(2.4)

Assumption (A3) will be used in the convergence theorem (see Theorem 2.2
and Remark 2.1).

The energy H(u), together with the L2-norm, is an invariant quantity
for the deterministic equation, and allows to bound the H 1(Rd) norm of the
solution under assumption (A2), according to the following Lemma. The
proof of this lemma is an immediate consequence of Gagliardo-Nirenberg’s
inequality (see for example [18])

Lemma 2.1 Assume that (A2) holds. Then,

• if λ = −1, |∇u|2
L2
x

≤ 2H(u)
• if λ = +1, there is a constant Cσ depending only on σ and d such that

|∇u|2
L2
x

≤ 4H(u)+ Cσ |u|2+ 4σ
2−σd

L2
x

.

As was explained in the introduction, due to the lack of regularization of
the operator S(t) = e−it�, the covariance operator � of the Wiener process
W needs some spatial smoothness. The assumptions we require on this spatial
smoothness also depend on the results we want, and we state them below:

(B1) � ∈ L0,1
2 and if d ≥ 2, � ∈ R(L2(Rd),W 1,α(Rd)) for some α > 2d.

(B2) � ∈ L0,s
2 with s > 1 + d/2.

The following theorem, which gives the existence and uniqueness of
H 1-valued solutions of equation (2.3) is proved in [13]. In the statement
of the theorem we use the classical denomination of “admissible pair” to
denote any couple of real valued positive numbers (r, p), with r > 2 and
2/r = d(1/2 − 1/p).

Theorem 2.1 Assume that (A1) and (B1) hold. Then there is an admissible
pair (r, p) such that for any F0-measurable u0 with values inH 1(Rd), there
is a stopping time τ ∗(u0) and a unique solution u of (2.3) starting from u0,
with u ∈ C([0, τ ];H 1(Rd))∩Lr(0, τ ;W 1,p(Rd)), a.s, for any stopping time
τ such that τ < τ ∗(u0) a.s. Moreover, τ ∗(u0) satisfies

τ ∗(u0) = +∞ or lim sup
t↗τ∗(u0)

|u(t)|H 1(Rd ) = +∞ a.s.

If in addition, (A2) holds, then the preceding solution is global, i.e.
τ ∗(u0) = +∞ a.s. In this case, there is an integer k0(σ, d, r) such that
for any integer k ≥ k0 and for any u0 ∈ L(2+ 4σ

2−σd )k(�,H 1(Rd)) (u0 ∈
L2k(�;H 1(Rd)) is sufficient if λ = −1), the solution u is inL2k(�,C[0, T0],
H 1(Rd)) ∩ L1(�,Lr(0, T0;W 1,p(Rd))) for any T0 > 0.
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Some restrictions arise in Theorem 2.1 compared to the deterministic the-
ory (in whichσ < 2

d−2 is allowed in any dimension for local existence). These
restrictions are due to the fact that in order to be able to estimate the stochastic
integral arising from the term udW , one has to work in C([0, T ];H 1(Rd))∩
Lr(0, T ;W 1,p(Rd))withp < 2

d−1 (see [13]), hence possibly withp < 2σ+2
(p = 2σ + 2 is used in the deterministic case).

Global existence is obtained thanks to the use of the energy H(u) and
Lemma 2.1.

From now on, we assume that � and σ satisfy (A3) and (B2). We also
assume that we are given a F0-measurable u0 in L(2+ 4σ

2−σd )k(�;H 1(Rd)),
with k ≥ k0, k0 being as in Theorem 2.1.

In all what follows, we consider a fixed positive T0 and we set for each
n ∈ N, δt = T0/n. We also set for � with 0 ≤ � ≤ n− 1:

χ� = W((�+ 1)δt)−W(�δt)√
δt

and for a, b > 0 and real:

f (a, b) = λ

σ+1

a2σ+2 − b2σ+2

a2 − b2
if a �= b

f (a, a) = λa2σ .

(2.5)

It follows from (B2) that for any integer � ≤ n− 1, χ� is a Gaussian random
variable with values in Hs(Rd) for some s > 1 + d/2. Finally, we use the
notation u�+1/2 = 1

2 (u� + u�+1) for 0 ≤ � ≤ n − 1. Our scheme is then
defined by the following semi-discrete equation, in which � is an integer with
0 ≤ � ≤ n− 1, and u� is an approximation of u(�δt):

i
u�+1 − u�

δt
+�u�+1/2 + f (|u�|, |u�+1|)u�+1/2 = χ�√

δt
u�+1/2.(2.6)

We will say that a process un defined on [0, T0], with values in H 1(Rd) is
a solution of the semi-discrete equation (2.6) if un is constant on each time
interval [�δt, (� + 1)δt), equal to u� on such an interval, and if (u�)0≤�≤n−1

satisfies (2.6) with δt = T0/n. In the sequel, we set u� = un� to emphasize
the dependence of u� on n.

Equation (2.6) is supplemented with the initial condition

u(0) = u0.(2.7)

The discretization of the noise term in the right hand side of (2.6) cor-
responds to the discretization of the Stratonovich product. It is not difficult
to see that the L2 norm of un is constant. For the practical implementation
of the scheme in the fully discrete case (see [14]), this implies that at each
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time step, a random nonlinear equation – whose unknown is un�+1 – has to
be solved. However, our experience shows that this creates no difficulties
during the simulations. Another choice could be to discretize the Ito form of
the equation, but then the L2 norm of the solution would not be constant.

Note that the energy H(u) is preserved by the deterministic semi-
discrete scheme. If un is a solution of (2.6)–(2.7) with W = 0 (i.e. χ� = 0,
0 ≤ � ≤ n − 1), then H(un�+1) = H(un�) = H(u0). This is easily seen by
multiplying (2.6) (with W = 0) by

�ū�+1/2 + f (|u�|, |u�+1|)ū�+1/2

and taking the imaginary part.
We may now state our convergence result for the semi-discrete solution

of equation (2.6)–(2.7).

Theorem 2.2 Assume that (A3) and (B2) hold. Then, for each n ∈ N, there
is a solution un, a.s. in L∞(0, T0;H 1(Rd)) and adapted to (Ft )t∈[0,T0] of the
semi-discrete equation (2.6)–(2.7), with δt = T0

n
. Moreover, the sequence

(un)n∈N converges to the solution u starting from u0 of the continuous equa-
tion (2.3), given by Theorem 2.1. The convergence of un holds in probability
in L∞(0, T ,H r(Rd)) and in Lp(�,L∞(0, T ;L2(Rd))) for any T < T0,
r < 1 and any positive p such that u0 ∈ Lp′

(�,L2(Rd)) for some p′ > p.

Remark 2.1 The supplementary assumption (A3), that is d ≤ 3 and σ < 1 if
d = 3 ensures that the nonlinear term in equation (2.6) is in L2(Rd) as soon
as u� and u�+1 live in H 1(Rd). This assumption could have been weakened,
but the proofs would then be considerably more technical. This point is used
in particular to obtain anH 1-bound on the semi-discrete solution un by using
the energy H(u) (see Section 3.2). Similarly, for the sake of clarity in the
proofs, we have chosen to work with the strong assumption (B2) on the noise.
However, our arguments can be easily generalized to the weaker assumption
that � ∈ R(L2(Rd),W 1,α̃(Rd)) for α̃ large.

The proof of Theorem 2.2 is the object of the next section. As was previ-
ously mentioned, a compactness method will be used. The uniqueness of the
solution of the continuous equation is necessary to derive the convergence
in probability of the original sequence of semi-discrete solutions. Indeed, in
order to obtain the convergence of the original sequence, we will make use
of the following elementary lemma, which was first used by Gyöngy and
Krylov in [21]:

Lemma 2.2 Let Zn be a sequence of random elements in a Polish space
E equipped with the Borel σ -algebra. Then Zn converges in probability to
an E-valued random element if and only if for every pair of subsequences
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(Zϕ(n), Zψ(n)), there is a subsequence of (Zϕ(n), Zψ(n)) which converges in
law to a random element supported on the diagonal {(x, y) ∈ E×E, x = y}.

3 Proof of Theorem 2.2

The proof will be divided into four steps: in the first one, we show the exis-
tence of an adapted semi-discrete solution for (2.6)–(2.7), and for a truncated
version of (2.6)–(2.7); then, in a second step, we prove the tightness of some
sequence related to this latter solution. We proceed with the passage to the
limit in the equation, and the conclusion of the proof of Theorem 2.2. In
Section 3.4, we gather the proofs of the most technical lemmas used in Sec-
tions 3.1 and 3.2, this in order to keep clear the progression of the proof of
Theorem 2.2

In the whole Section 3, we assume that σ satisfies (A3), and we set q =
2(2σ + 1) < 2d

d−2 .

3.1 Existence of an adapted semi-discrete solution

In order to prove, for a fixed n ∈ N, the existence of a solution of (2.6)–(2.7),
we first fix a family (η�)0≤�≤n−1 of deterministic functions in Hs(Rd,R),
s being the exponent arising in (B2). We also fix ũ� ∈ H 1(Rd), and we show
the existence of (at least one) solution ũ�+1 ∈ H 1(Rd) of

i
ũ�+1 − ũ�

δt
+�ũ�+1/2 + f (|ũ�|, |ũ�+1|)ũ�+1/2 = η�√

δt
ũ�+1/2.(3.1)

where we have set as before ũ�+1/2 = 1
2 (ũ�+ ũ�+1) and f is defined by (2.5).

Lemma 3.1 Given η� ∈ Hs(Rd,R) and ũ� ∈ H 1(Rd), (3.1) has at least one
solution ũ�+1 ∈ H 1(Rd).

Proof. The proof uses a standard Galerkin method, together with a Brou-
wer fixed point theorem to obtain a finite dimensional approximation of the
solution. We then make use of the compactness of the injection H 1(Rd) ⊂
Hr

loc(R
d) for any r < 1, after noticing that the following a-priori estimates

hold for the solution ũ�+1 of (3.1).
Assuming that ũ�+1 is anH 1(Rd) solution of (3.1), and multiplying (3.1)

by the complex conjugate of ũ�+1/2, integrating over R
d and taking the imag-

inary part of the resulting identity yields

|ũ�+1|2L2(Rd )
= |ũ�|2L2(Rd )

.(3.2)
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In the same way, we multiply (3.1) by −� ¯̃u�+1/2 − f (|ũ�|, |ũ�+1|) ¯̃u�+1/2,
integrate over R

d and take the imaginary part of the resulting identity. We
obtain:

H(ũ�+1)−H(ũ�) =
√
δt Im

∫
Rd

∇η�.∇ ¯̃u�+1/2ũ�+1/2dx

≤ 1

4
|∇ũ�+1|2L2 + C(δt, |η�|Hs , |ũ�|H 1, |ũ�+1|L2),

Cauchy-Schwarz inequality and the Sobolev embedding Hs−1(Rd) ⊂ L∞

(Rd) – recall that s − 1 > d
2 - have been used in the last step. Note that this

computation can be justified thanks to the finite dimensional approximation
of the equation.

It follows then from (3.2) and Lemma 2.1 that

|ũ�+1|2H 1(Rd )
≤ C(δt, |η�|Hs , |ũ�|H 1).(3.3) ��

We can now define a multivalued application

� : H 1(Rd)×Hs(Rd,R) −→ P(H 1(Rd))

(where P(H 1(Rd)) is the set of subsets of H 1(Rd)) such that for each ũ� ∈
H 1(Rd) and η� ∈ Hs(Rd,R), �(ũ�, η�) is the set of solutions ũ�+1 of (3.1).
It is clear, from Lemma 3.1 and equation (3.1) that � takes its values into
nonempty closed subsets ofH 1(Rd), and that its graph is closed. Hence, from
Theorem 3.1 in [4], there is a universally measurable section of �, that is
there is a univocal application κ : H 1(Rd)×Hs(Rd,R) −→ H 1(Rd) such
that for any (u, η) ∈ H 1(Rd)×Hs(Rd,R), κ(u, η) ∈ �(u, η), and such that
κ is measurable when the spaces are endowed with their Borelian σ -algebras.

Now, let

χ� = W((�+ 1)δt)−W(�δt)√
δt

,

where W is the Wiener process defined in Section 2, and assume that u� is
a F�δt -measurable random variable with values in H 1(Rd) (endowed with
the Borelian σ -algebra). Then u�+1 = κ(u�, χ�) is a F(�+1)δt - measurable
random variable with values in H 1(Rd). Hence, we have proved the follow-
ing proposition.

Proposition 3.1 Let σ and � satisfy (A3) and (B2), and let u0 be F0-
measurable with values in H 1(Rd), then for each n ∈ N and δt = T0

n
there

is an adapted semi-discrete solution un of (2.6) which is almost surely in
L∞(0, T0;H 1(Rd)), such that un(0) = u0.

As was pointed out in the introduction, we will have to use a semi-discrete
scheme in which the noise has been truncated. For that purpose, we introduce
a real valued function ρ ∈ C∞

0 (R) such that supp ρ ⊂ (−2, 2), ρ(x) = 1 for
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x ∈ [−1, 1] and 0 ≤ ρ(x) ≤ 1 for x ∈ R; we then define ρk(x) = ρ(x
k
) for

k ∈ N
∗, and we set for v ∈ Lq(Rd), θk(v) = ρk(|v|qLqx ); assuming now that

k ∈ N
∗ is fixed, we will consider the following truncated equation, giving

uk�+1 in terms of uk� and χ� = 1√
δt
(W((�+ 1)δt)−W(�δt)),

i
uk�+1 − uk�

δt
+�uk�+1/2 + f (|uk�|, |uk�+1|)uk�+1/2

= θk(u
k
�)θk(u

k
�+1)

χ�√
δt
uk�+1/2.(3.4)

In this equation,f is given by (2.5),uk�+1/2 = 1
2 (u

k
�+uk�+1) andq = 2(2σ+1).

Using the same arguments as above, we can easily show that there is for
each k ∈ N a measurable application κk :H 1(Rd)×Hs(Rd,R) −→ H 1(Rd),
such that for any (u�, η�) ∈ H 1(Rd) × Hs(Rd,R), u�+1 = κk(u�, η�) is a
solution of the following equation:

i
u�+1 − u�

δt
+�u�+1/2 + f (|u�|, |u�+1|)u�+1/2

= θk(u�)θk(u�+1)
η�√
δt
u�+1/2.(3.5)

We then define

κ̃k(u, η) = κ(u, η)1{|u|
L
q
x
≤k}(u, η)1{|κ(u,η)|

L
q
x
≤k}(u, η)

+κk(u, η)1{|u|
L
q
x
>k}∪{|κ(u,η)|

L
q
x
>k}(u, η);

this ensures that we will take the same solution of (3.1) and (3.5) as long as
it is possible, that is if u0 = uk0 and (ηm)0≤m≤� are given, and if we define
um+1 = κ(um, ηm) and ukm+1 = κ̃k(u

k
m, ηm), then u� = uk� if supm≤� |um|Lqx ≤

k; κ̃k is clearly also measurable, and using the same arguments as before, we
easily prove the following proposition.

Proposition 3.2 Let σ and � satisfy (A3) and (B2), and let u0 be F0-
measurable with values in H 1(Rd), then for each n ∈ N, δt = T0

n
and

each k ∈ N
∗, there is an adapted semi-discrete solution un of (2.6) and an

adapted semi-discrete solutionun,k of (3.4), which are inL∞(0, T0;H 1(Rd)),
such that un(0) = un,k(0) = u0, and such that un(�δt) = un,k(�δt) if
supm≤� |un(mδt)|Lqx ≤ k .

Remark 3.1 It may seem more natural to use a cut-off of the form
ρk(|un,k�+1/2|qLqx ) to truncate a Stratonovich differential. However, such a term
makes the estimates we need on the solution much more complicated to
obtain. Anyway, this truncating term is artificial and we get rid of it when
passing to the limit (see Section 3.3), so that this has no influence on the final
result.
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3.2 Tightness

We now briefly show how we can derive some estimates, independent of n –
but which depend on k – on the solution un,k given by Proposition 3.1; these
estimates will allow us to obtain the tightness of some sequence related to
un,k. We will explain how they may be proved thanks to an “equivalent of
the Ito formula” for discrete equations, but we postpone the technical part of
the proof until Section 3.4. We now assume that � satisfies (B2), σ satisfies
(A3) and that u0 is as in the statement of Theorem 2.2. We also assume that
un (resp. un,k) is a semi-discrete solution of (2.6) (resp. (3.4)) as given by
Proposition 3.2.

To lighten the notations, we denote in what follows by C(u0, · · · ) a
constant which – among other things – depends on E(|u0|4σ/(2−σd)

L2
x

) and
E(H(u0)).

We have the following lemma.

Lemma 3.3 There is a constant Ck = C(T0, ‖�‖
L

0,s
2
, u0, k), which depends

on k but not on n, such that

E

(
sup

t∈[0,T0]
|un,k(t)|2

H 1(Rd )

)
≤ Ck

and

E

(
sup

t∈[0,T0]
|un,k(t)|2σ+2

L2σ+2(Rd )

)
≤ Ck

for any n ∈ N.

The proof of Lemma 3.3 – which is done in Section 3.4 – is based on the
evolution of the energy for the solutions of equation (3.4). Indeed, it is not
difficult to show (see the proof of Lemma 3.1) that since θk is real valued,

|un,k(t)|2
L2
x

= |un,k(0)|2
L2
x

= |u0|2L2
x

(3.6)

for t ∈ [0, T0]. In the same way, we easily obtain as in the proof of Lemma
3.1, with δt = T0

n
, and setting un,k� = un,k(�δt), � ≤ n,

H(u
n,k
�+1)−H(u

n,k
� )

δt

= 1√
δt
θk(u

n,k
� )θk(u

n,k
�+1) Im

∫
Rd

∇χ�.∇ūn,k�+1/2u
n,k
�+1/2dx.(3.7)

If instead of the term ∇ūn,k�+1/2u
n,k
�+1/2 in the integral on the right hand side

of (3.7), we had a F�δt -measurable term, then the integral would be a mar-
tingale and the right hand side of (3.7) would be much easier to estimate.
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However, (un,k�+1/2)� is not adapted. Copying the classical proof of the Ito for-

mula consists then in plugging the expression of un,k�+1 given by equation (3.4)
into the right hand side of (3.7). But each time we do so, we introduce in the
right hand side of (3.7) a new Laplace operator, and hence we loose regularity.
For that reason, there is no hope of obtaining an estimate in that way.

The idea is then to replace the use of (3.4) by the use of the integral
equation associated to (3.4). Indeed, introducing the operator

Sδt = (i − δt

2
�)(i + δt

2
�)−1(3.8)

and using (3.4) leads to

u
n,k
�+1 = Sδtu

n,k
� − δt(i + δt

2
�)−1f (|un,k� |, |un,k�+1|)un,k�+1/2

+
√
δt(i + δt

2
�)−1θk(u

n,k
� )θk(u

n,k
�+1)χ�u

n,k
�+1/2.(3.9)

Now, we plug (3.9) in the right hand side of (3.7) each time un,k�+1 appears.
In doing so, the right hand side of (3.7) is written as the increment of the
stochastic integral of an adapted process (with a factor 1√

δt
) plus a remaining

term in which the factor 1√
δt

has disappeared. Once the identities obtained in
this way have been summed over all � between 0 and n, the term correspond-
ing to the stochastic integral is estimated thanks to martingale inequalities.
The remaining term is estimated directly, although not so easily due to tech-
nical difficulties (see Section 3.4 for details). In particular, the estimate of
this remaining term requires the use of the cut-off.

Now, because we will use a compactness method, it is easier to work
with time continuous processes; it is then natural to interpolate linearly the
values of un,k(�δt) for two neighbors � and � + 1. However, since we need
the process to be adapted to the filtration (Ft )t≥0, we do the interpolation in
the following way: we define vn,k(t) for t ∈ [0, T0] by



vn,k(t) = u0 if t ∈ [0, δt] with δt = T0
n

and
vn,k(α�δt + (1 − α)(�+ 1)δt)

= αun,k((�− 1)δt)+ (1 − α)un,k(�δt)

for α ∈ [0, 1], � ∈ {1 · · · , n− 1}.

(3.10)

We also define vn(t), t ∈ [0, T0] in the same way with un,k replaced by un.
It is clear that defined in this way, vn,k (resp. vn) is an adapted process,

which is continuous on [0, T0] with values in H 1(Rd). Moreover, we have
immediately

Corollary 3.1 The estimates of Lemma 3.3 hold with un,k replaced by vn,k

defined by (3.10).



748 A. De Bouard, A. Debussche

From now on, we will mainly work with vn,k instead of un,k. Our aim is
still to show the tightness of some sequence related to vn,k. This is a conse-
quence of the following lemma.

Lemma 3.4 There are constants α, β, γ , δ > 0 and Cj,k = Cj(T0, u0, k,

‖�‖
L

0,s
2
), j = 1, · · · , 5, independent of n such that

E(|vn,k|2
L2σ+2(0,T0;H 1(Rd ))

) ≤ C1,k(3.11)

E(|vn,k|2/2σ+1
Wα,2σ+2(0,T0;H−1(Rd ))

) ≤ C2,k(3.12)

E(|vn,k|2/2σ+1
Cβ([0,T0];H−1(Rd ))

) ≤ C3,k(3.13)

E(||vn,k(·)|q
L
q
x
|δCγ ([0,T0])) ≤ C4,k.(3.14)

Again, Lemma 3.4 is proved in Section 3.4. The idea, for proving the
estimates in Lemma 3.4 involving fractional time derivatives of vn,k is to use
that, by (3.4),

vn,k(t) = u0 +
∫ t

0
∂tv

n,k(s)ds

= u0 +
n−1∑
�=1

∫ t

0

u
n,k
� − u

n,k
�−1

δt
1[�δt,(�+1)δt)(s)ds

= u0 + i

n−1∑
�=1

∫ t

0

(
�u

n,k
�−1/2 + f (|un,k�−1|, |un,k� |)un,k�−1/2

−θk(un,k�−1)θk(u
n,k
� )

χ�−1√
δt
u
n,k
�−1/2

)
1[�δt,(�+1)δt)(s)ds;(3.15)

again, the last term in the right hand side of (3.15) is written as the sum of the
stochastic integral of an adapted process plus a remaining term. This remain-
ing term is estimated directly with the use of Corollary 3.1, while the expec-
tation of the square of the stochastic integral is bounded in Wα,2σ+2(0, T0;
L2(Rd)) for any α < 1/2, thanks to Lemma 2.1 in [17].

We may now state and prove the proposition concerning the tightness of
the sequence of semi-discrete solutions. We set, for each n, k ∈ N

zn,k = (vn,k, |vn,k(·)|q
L
q
x
)

Zn = (zn,k)k∈N(3.16)

and we define, for r ≥ 0 the space

XrT0
= L2σ+2(0, T0;Hr

loc(R
d)) ∩ C([0, T0];H−2

loc (R
d))× C([0, T0]; R).

(3.17)
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We then prove the following proposition (note that we will use Lemma
2.1 to obtain the convergence of vn in probability), in whichW is the Wiener
process.

Proposition 3.3 Let 0 ≤ r < 1 and s ′ < s; then for any pair of sub-
sequences (ϕ(n), ψ(n))n∈N, the family of laws (L(Zϕ(n), Zψ(n),W))n∈N is
tight in (XrT0

)N × (XrT0
)N × C([0, T0];Hs′

loc(R
d)).

Proof of Proposition 3.3 The proof follows from the fact that for any α <
1/2, W ∈ L2(�;Wα,2p(0, T0;Hs(Rd))) ⊂ L2(�;Cβ([0, T0];Hs(Rd))) if
0 < β < α − 1/2p, Tychonov Theorem, Lemma 3.4, Tchebychev inequal-
ity and the following lemma, which is proved by using a classical compact
embedding theorem, Ascoli-Arzela theorem and a diagonal extraction. ��
Lemma 3.5 Let α, β > 0, 0 ≤ r < 1 and let δ = (δm)m∈N be a sequence
of positive numbers; the set A(δ) of functions u in L2σ+2(0, T0;H 1

loc(R
d))∩

C([0, T0];H−1
loc (R

d)) such that for any m ≥ 1,

|u|2
L2σ+2(0,T0;H 1(Bm))

+ |u|2
Wα,2σ+2(0,T0;H−1(Bm))

+ |u|2
Cβ([0,T0];H−1(Bm))

≤ δm

is compactly embedded into L2σ+2(0, T0;Hr
loc(R

d))∩C([0, T0];H−2
loc (R

d)),
where Bm = B(0,m) is the ball centered at 0 of radius m in R

d .

3.3 Passage to the limit and conclusion

We now fix a pair of subsequences (ϕ(n), ψ(n))n∈N and positive numbers
r, s ′, with 0 ≤ r < 1, r sufficiently close to 1 so that Hr(Rd) ⊂ Lq(Rd),
q = 2(2σ + 1), and s ′ < s with s ′ > 1 + d/2. We infer from Proposi-
tion 3.3, Prokhorov and Skorokhod Theorems that there is a subsequence
of (Zϕ(n), Zψ(n),W) which we still denote by the same letters, a probabil-
ity space (�̃, F̃ , P̃) and random variables (Z̃n1 , Z̃

n
2 , W̃

n), (Z̃1, Z̃2, W̃ ) with
values in

(XrT0
)N × (XrT0

)N × C([0, T0];Hs′
loc(R

d))

such that for any n ∈ N,

L(Z̃n1 , Z̃n2 , W̃ n) = L(Zϕ(n), Zψ(n),W)
and such that

Z̃nj → Z̃j as n → +∞, P̃ a.s. in (XrT0
)N, for j = 1, 2,

W̃ n → W̃ as n → +∞, P̃ a.s. in C([0, T0];Hs′
loc(R

d)).

Defining then

F̃t = σ
{
Z̃j (s), W̃ (s), 0 ≤ s ≤ t, j = 1, 2

}

and
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F̃n
t = σ

{
Z̃nj (s), W̃

n(s), 0 ≤ s ≤ t, j = 1, 2
}
,

it is easily seen that W̃ and W̃ n are Wiener processes associated respectively
with (F̃t )t≥0 and (F̃n

t )t≥0, with covariance operator ��∗.
Writing then Z̃nj = (ṽ

n,k
j , γ̃

n,k
j )k∈N and Z̃j = (ṽkj , γ̃

k
j )k∈N, for j = 1, 2,

it is clear that for each k ∈ N and j = 1, 2 the function ṽn,kj (t) is lin-
ear on each time interval [�δt, (� + 1)δt], 1 ≤ � ≤ n − 1, and is in
L∞(0, T0;Hr

loc(R
d))∩C([0, T0];H−2

loc (R
d)); hence it is continuous on [0, T0]

with values in Hr
loc(R

d).
Also, since ṽn,kj is adapted with respect to (F̃n

t )t≥0, it follows that ṽn,kj ((�+
1)δt) is Fn

�δt -measurable for � = 0, · · · , n−1.Also, it follows from the equal-
ity of the laws of (ṽn,k1 , γ̃

n,k
1 ) and (vϕ(n),k, |vϕ(n),k|q

L
q
x
), and the equivalent for

(ṽ
n,k
2 , γ̃

n,k
2 ), in XrT0

, that

γ̃
n,k
j (t) = |ṽn,kj (t)|q

L
q
x
, ∀ t ∈ [0, T0], j = 1, 2.(3.18)

It follows in particular from the preceding facts and (3.18), that γ̃ n,kj ((�+1)δt)

is F̃n
�δt -measurable for � = 0, · · · , n− 1.

Finally, we infer from (3.15) and the equality of the laws that ṽn,kj (t)

satisfies

ṽ
n,k
j (t) = ṽ0 + i

n−1∑
�=1

∫ t

0
�ṽ

n,k
j ((�+ 1

2
)δt)1[�δt,(�+1)δt)(s)ds

+i
n−1∑
�=1

∫ t

0
f

(
|ṽn,kj (�δt)|, |ṽn,kj ((�+ 1)δt)|

)
ṽ
n,k
j ((�+ 1

2
)δt)

×1[�δt,(�+1)δt)(s)ds

−i
n−1∑
�=1

∫ t

0
ρk(γ̃

n,k
j (�δt))ρk(γ̃

n,k
j ((�+ 1)δt)ṽn,kj ((�+ 1

2
)δt)

× 1

δt

(
W̃ n(�δt)− W̃ n((�− 1)δt)

)
1[�δt,(�+1)δt)(s)ds.(3.19)

We now let n → +∞ in equation (3.19), using the fact that (ṽn,kj , γ̃
n,k
j ) →

(ṽkj , γ̃
k
j ) P̃ a.s. in XrT0

.
The passage to the limit in equation (3.19) is rather technical and we only

state the lemma giving the limit equation, while we postpone the proof until
Section 3.4. The idea for proving this lemma is again to write the last inte-
gral in the right hand side of (3.19) as the sum of the stochastic Ito integral
with respect to W̃ n of a discrete adapted process, and of a remaining term.



A scheme for the stochastic NLS equation 751

A part of this remaining term converges to the Ito correction in the continu-
ous equation, while the other part converges to zero. Finally, the stochastic
Ito integral converges to the stochastic Ito integral with respect to W̃ of a
continuous adapted process.

Lemma 3.6 For any k ∈ N and j = 1, 2, ṽkj and γ̃ kj satisfy the Ito equation

idṽkj + (
�ṽkj + λ|ṽkj |2σ ṽkj

)
dt = ρ2

k (γ̃
k
j )ṽ

k
j dW̃ − i

2
ρ4
k (γ̃

k
j )ṽ

k
jF�dt(3.20)

with F�(x) defined as in (2.2).

Note that u 	→ |u(·)|Lqx is not continuous for the topology of XrT0
. This

is the reason why we have to consider the couple (vn,k, |vn,k(·)|q
L
q
x
). In this

way, we have been able to take the limit n → ∞. However, we do not know
yet whether |ṽkj (t)|qLqx = γ̃ kj . Next lemma states that this is in fact true.

Lemma 3.7 For any k ∈ N, j = 1, 2 and for any t ∈ [0, T0], ṽn,kj (t) con-
verges to ṽkj (t) in L2(�;Lq(Rd)) as n goes to infinity, and |ṽkj (t)|qLq(Rd ) =
γ̃ kj (t) almost surely.

Proof. Since ṽkj ∈ L2(�;L1(0, T0;H 1(Rd))) and satisfies (3.20), it satisfies

also the mild form of the equation and lives P̃-almost surely in C([0, T0];
L2(Rd)). Moreover, for a fixed t ∈ [0, T0], ṽn,kj (t) converges weakly to ṽkj (t)
in L2(�;H 1(Rd)), hence

E

(
|ṽkj (t)|2L2(Rd )

)
≤ lim inf

n→+∞ E

(
|ṽn,kj (t)|2

L2(Rd )

)
.(3.21)

Now, applying Ito formula to |ṽkj (t)|2L2(Rd )
, it follows from (3.20) and a stan-

dard regularization procedure (see [13]) that

|ṽkj (t)|2L2
x

= |ṽ0|2L2
x
−

∫ t

0
(ṽkj , ρ

4
k (γ̃

k
j )ṽ

k
jF�)ds +

∑
m∈N

∫ t

0
ρ4
k (γ̃

k
j )|ṽkj�em|2

L2
x
ds

= |ṽ0|2L2
x

almost surely. On the other hand, it follows from (3.6) and (3.19) that for
� = 1, · · · , n− 1,

|ṽn,kj (�δt)|L2(Rd ) = |ṽ0|L2(Rd ),

and using the convexity of the L2 norm and the fact that ṽn,kj is piecewise
linear,

|ṽn,kj (t)|L2(Rd ) ≤ |ṽ0|L2(Rd ) = |ṽkj (t)|L2(Rd ), ∀t ∈ [0, T0]

almost surely. Hence,
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lim sup
n→+∞

|ṽn,kj (t)|L2(�;L2(Rd )) ≤ |ṽkj (t)|L2(�;L2(Rd ))

and together with (3.21) and the weak convergence of ṽn,kj (t) to ṽkj (t) in
L2(�;L2(Rd)), this implies the strong convergence of this sequence in
L2(�;L2(Rd)).To prove the strong convergence inL2(�;Lq(Rd)), we make
use of Gagliardo-Nirenberg’s inequality:

|u|Lq(Rd ) ≤ C|∇u|θ
L2(Rd )

|u|1−θ
L2(Rd )

with 1
q

= θ
(

1
2 − 1

d

) + 1−θ
2 , from which it follows that for each t ∈ [0, T0],

|ṽn,kj (t)− ṽkj (t)|L2(�;Lqx)

≤ |ṽn,kj (t)− ṽkj (t)|1−θ
L2(�;L2

x)
sup
n∈N

(
|ṽn,kj (t)|θ

L2(�;H 1
x )

+ |ṽkj (t)|θL2(�;H 1
x )

)
.

Corollary 3.1 yields then the conclusion. ��
It follows from Lemma 3.7 and the continuity of ρk that ṽkj satisfies

idṽkj + (
�ṽkj + λ|ṽkj |2σ ṽkj

)
dt = θ2

k (ṽ
k
j )ṽ

k
j dW̃ − i

2
θ4
k (ṽ

k
j )ṽ

k
jF�dt.(3.22)

Now, we would like to conclude that ṽk1 = ṽk2. However, we do not know
whether the solution of (3.22) with initial data ṽ0 is unique or not; indeed,
the truncating term in the noise does not allow us to obtain easy estimates
on the difference of the stochastic integrals corresponding to two solutions.
Thus, we first have to get rid of this truncating term.

Let ṽ be the solution of (2.3) given by Theorem 2.1, with W replaced by
W̃ and with initial data ṽ0. We set

τ̃k = inf
{
t ∈ [0, T0], |ṽ(t)|q

Lq(Rd )
≥ k

}
;

it follows then from the uniqueness part of Theorem 2.1 and (3.22) that

ṽ1[0,τ̃k] = ṽkj1[0,τ̃k] for j = 1, 2.(3.23)

We then define

τ̃
n,k
j = sup

{
t = �T0

n
, � = 0, · · · , n such that

|ṽn,kj (s)|q
Lq(Rd )

≤ k for any s ≤ t
}

and

ṽ
n,∞
j (t) =

{
ṽ
n,k
j (t) if t ≤ τ̃

n,k
j for some k ∈ N

0 if t ≥ limk↗+∞ τ̃
n,k
j

(3.24)

(note that the definition is consistent since ṽn,kj (t) = ṽ
n,k+1
j (t) if t ≤ τ̃

n,k
j ).
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Lemma 3.8 ṽ
n,∞
j converges in probability to ṽ in C([0, T0];Lq(Rd)) as n

goes to infinity, for j = 1, 2.

Proof. First of all, from Lemma 3.3, (3.13) in Lemma 3.4 – which are also
satisfied by ṽn,kj – and Gagliardo-Nirenberg’s inequality, we easily obtain that

for a fixed k ∈ N, ṽn,kj and ṽn,∞j are uniformly equicontinuous in time with
values in Lq(Rd). More precisely, for some positive γ , one can find for each
positive ε a positive δ such that

E

(
sup

|t−s|≤δ
|ṽn,kj (t)− ṽ

n,k
j (s)|γ

Lq(Rd )

)
≤ ε.

Together with Lemma 3.7, this implies without difficulty that ṽn,kj converges
in probability to ṽkj in C([0, T0];Lq(Rd)) for any k ∈ N. Defining then, for
a fixed ε > 0, with ε ≤ 1,

τ̃
ε,n
j (ω) = inf{t ∈ [0, T0], |ṽn,∞j (t)− ṽ(t)|Lq(Rd ) ≥ ε}

we have

P̃

(
sup

t∈[0,T0]
|ṽn,∞j (t)− ṽ(t)|Lq(Rd ) ≥ ε

)

≤ P̃


 sup
t∈[0,T0∧τ̃k∧τ̃ ε,nj ]

|ṽn,∞j (t)− ṽ(t)|Lq(Rd ) ≥ ε




+P̃

(
sup

t∈[0,T0]
|ṽ(t)|q

Lq(Rd )
≥ k

)
.(3.25)

Note that for t ∈ [0, T0 ∧ τ̃k ∧ τ̃ ε,nj ], one has

ṽ(t) = ṽkj (t) = ṽk
′
j (t), ∀ k′ ≥ k

and
|ṽn,∞j (t)|q

Lq(Rd )
≤ (|ṽ(t)|Lq(Rd ) + ε

)q ≤ 2q(k + 1).

The conclusion of Lemma 3.8 is then implied by (3.25), the fact that ṽ is
bounded in probability inC([0, T0];H 1(Rd)) ⊂ C([0, T0];Lq(Rd)), the fol-
lowing Lemma, which states that on [0, T0 ∧ τ̃k ∧ τ̃ ε,nj ], one has ṽn,∞j = ṽ

n,k′
j

for some integer k′ ≥ k, provided that n is sufficiently large, and the conver-
gence of ṽn,k

′
j to ṽk

′
j . ��

Lemma 3.9 For a given k ∈ N, there is a deterministic integer k′, which
does not depend on n, and a random integer n0(k), such that for j = 1, 2
and for any t ∈ [0, T0 ∧ τ̃k∧ τ̃ ε,nj ], one has ṽn,∞j (t) = ṽ

n,k′
j (t) if n ≥ n0(k, ω).
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Proof of Lemma 3.9 Note that the proof of Lemma 3.9 needs some estimates,
and is not an immediate consequence of the definition of ṽn,∞j . This is because

T0 ∧ τ̃k ∧ τ̃ ε,nj may not coincide with a point τ̃ n,k
′

j . The only thing we know
is (3.26) below.

Let us fix k, j, n and ε ≤ 1, and set �ε,nj = �n(T0∧τ̃k∧τ̃ ε,nj )

T0
�, where �x�

stands for the smallest integer greater than or equal to x.
On the one hand, we know that

|ṽn,∞j ((�
ε,n
j − 1)δt)|q

Lq(Rd )
≤ 2q(k + 1);(3.26)

on the other hand, using the definition of ṽn,∞j (see (3.24)), (3.8), (3.9), and
setting ṽ� = ṽ

n,∞
j (�δt), we easily have, with � = �

ε,n
j :

ṽ� = Sδt ṽ�−1 + δt(i + δt

2
�)−1

[
−f (|ṽ�|, |ṽ�−1|)ṽ�−1/2 + χ̃�√

δt
ṽ�−1/2

]
;

We then apply Hörmander-Mikhlin Theorem (see Section 3.4), make use of
the obvious fact that the operator

√
δt(i + δt

2 �)
−1 is bounded from L2(Rd)

into H 1(Rd) with a bound that does not depend on δt ≤ 1, and of (3.26) to
bound the right hand side of the above equality as follows:

|ṽ�|Lqx ≤ C1|ṽ�−1|Lqx + √
δt

{|√δt(i + δt
2 �)

−1f (|ṽ�|, |ṽ�−1|)ṽ�−1/2|H 1
x

+ 1
2 |χ̃�|Hs

x

(|ṽ�|Lqx + |ṽ�−1|Lqx
) }

≤ C1k
1/q + √

δt
{|f (|ṽ�|, |ṽ�−1|)ṽ�−1/2|L2

x

+ 1
2 |χ̃�|Hs

(|ṽ�|Lqx + |ṽ�−1|Lqx
) }
,

from which we infer, using (3.26) again, that

|ṽ�|Lq(Rd ) + |ṽ�−1|Lq(Rd ) ≤ 2(C1 + 1)k1/q

provided that δt is sufficiently small, depending on k and ω, that is provided
that n ≥ n0(k, ω). Setting k′ = 2q(C1 +1)qk, we then have for n ≥ n0(k, ω),

|ṽnj (�ε,nj δt)|qLq(Rd ) ≤ k′

which proves the lemma. ��
We are now able to conclude the proof of Theorem 2.2; indeed, Lemma

3.8 says that (ṽn,∞1 , ṽ
n,∞
2 ) converges in law to (ṽ, ṽ) in C([0, T0];Lq(Rd)).

Now, we have

L
(
(ṽ
n,k
1 , ṽ

n,k
2 )k∈N

)
= L (

(vϕ(n),k, vψ(n),k)k∈N

)
.
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Also, by (3.7), and the conservation of the L2 norm, there is a deterministic
constant C1, which does not depend on k, such that

H(vn,k((�+ 1)δt))−H(vn,k(�δt))

≤ C1
√
δt |u0|L2

x
|χ�|Hs

x

(|vn,k(�δt)|H 1
x

+ |vn,k((�+ 1)δt)|H 1
x

) ;
this easily implies, using Lemma 2.1, that

E

(
sup

t∈[0,T0]
|vn,k(t)|2

H 1(Rd )

)
≤ C2(n)(3.27)

where the constant C2 depends on n, ‖�‖
L

0,s
2

and E

(
|u0|2+ 4σ

2−σd
H 1(Rd )

)
. The same

is true with vn,k replaced by vn. Hence, if

τn,k = inf
{
t ∈ [0, T0]; |vn,k(t)|H 1(Rd ) ≥ k

}
,

we have limk→+∞ τn,k = T0, almost surely. It follows that the laws of
(vϕ(n), vψ(n)) and (ṽn,∞1 , ṽ

n,∞
2 ) are equal in C([0, T ];Lq(Rd)) for any T <

T0. Applying Lemma 2.2, we derive that for T < T0, vn converges in proba-
bility in C([0, T ];Lq(Rd)) to some v with L(v) = L(ṽ).

Together with the fact that vn,k is bounded in probability in C([0, T0];
H 1(Rd)) (if k is fixed), this implies that vn is bounded in probability in
C([0, T ];H 1

x ). Then, the same arguments as in the proof of Lemma 3.7 show
that vn converges in probability to v in C([0, T ];L2(Rd)) and by interpola-
tion inC([0, T ];Hs(Rd)) for any s < 1. The same arguments as those used in
the proof of Lemma 3.6 also say that v is the solution of equation (2.3) starting
from u0. The convergence of un to v follows from the uniform equicontinuity
of vn,k, for a fixed k, and the convergence of vn. Finally, the conservation
of the L2 norm and the equi-integrability Lemma say that un converges to v
in Lp(�;L∞(0, T ;L2(Rd))) for any p such that u0 ∈ Lp

′
(�;L2(Rd)) for

some p′ > p. ��

3.4 Proof of technical lemmas.

In this subsection, we prove Lemma 3.3, 3.4 and 3.6.

Proof of Lemma 3.3 We first show that

sup
t∈[0,T0]

E

(
|un,k(t)|2

H 1(Rd )

)
≤ C(T0, ‖�‖

L
0,s
2
, u0, k).(3.28)

As was announced in Section 3.2, we will make use of (3.6)–(3.9). In (almost)
all the proof, we omit the indices n and k, since these are fixed. Also, in order
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to shorten the formulas, we use the notations u� = un,k(�δt), u�+1/2 =
1
2 (u� + u�+1), θ� = θk(u�), f� = f (|u�|, |u�+1|)u�+1/2 and Bδt = (i + δt

2 �).
Now, using (3.9), we easily have

∇χ�.∇ū�+1/2u�+1/2 = 1

4
(u� + u�+1)∇χ�.∇(ū� + ū�+1)

= 1

4

(
A0
� +

√
δtA1

� + δtA2
� + (δt)3/2A3

� + (δt)2A4
�

)
(3.29)

with

A0
� = (1 + Sδt )u�∇χ�.∇(1 + S̄δt )ū�,

A1
� = B−1

δt

(
θ�θ�+1χ�u�+1/2

)∇χ�.∇(1 + S̄δt )ū�

+(1 + Sδt )u�∇χ�.∇B̄−1
δt

(
θ�θ�+1χ�ū�+1/2

)
,

A2
� = −B−1

δt f�∇χ�.∇(1 + S̄δt )ū� − (1 + Sδt )u�∇χ�.∇B̄−1
δt f�

+B−1
δt

(
θ�θ�+1χ�u�+1/2

)∇χ�.∇B̄−1
δt

(
θ�θ�+1χ�ū�+1/2

)
,

A3
� = −B−1

δt

(
θ�θ�+1χ�u�+1/2

)∇χ�.∇B̄−1
δt f̄�

−B−1
δt f�∇χ�.∇B̄−1

δt

(
θ�θ�+1χ�ū�+1/2

)

and finally,
A4
� = B−1

δt f�∇χ�.∇B̄−1
δt f̄�.

In order to estimate the right hand side of (3.29), we will use the fact that
under our assumptions, we haveu� ∈ Lq(Rd) for any �, so that ∇f� ∈ Lr(Rd)

with 1
r

= 2σ
q

+ 1
2 = 1 − 1

q
. (Recall that q = 2(2σ + 1)). Moreover

|∇f�|Lrx ≤ C|u�|2σLqx |u�|H 1
x

Also, Sδt and B−1
δt are Fourier multipliers, obviously bounded on Hm(Rd)

for anym ∈ N, and it is not difficult to see, using Hörmander-Mikhlin Theo-
rem (see for example [31]), that they are also bounded on Lp(Rd) for any p
with 1 < p < +∞. We then deduce from these arguments and the Sobolev
embedding Hs

x ⊂ L∞
x

|A2
�|L1

x
≤ C|χ�|Hs

x

(
|u�|2σ+1

L
q
x

+ |u�+1|2σ+1
L
q
x

)
|u�|H 1

x

+C|χ�|Hs
x
|u�|Lqx |∇f�|Lrx

+C|χ�|3Hs
x
|u�+1/2|H 1

x
|u�+1/2|Lqx

≤ C
(|u�|Lqx , |u�+1|Lqx

) (
1 + |χ�|4Hs

x

) (|u�|H 1
x

+ |u�+1|H 1
x

)
.(3.30)

In the same way, we have for j = 1 or 3,

|Aj� |L1
x

≤ C
(|u�|Lqx , |u�+1|Lqx

) |χ�|2Hs
x

(|u�|H 1
x

+ |u�+1|H 1
x

)
.(3.31)
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Finally, we estimate A4
� by noticing that the operator

√
δt∇B−1

δt is also
bounded on L2(Rd), independently of

√
δt ≤ 1, so that

|
√
δtA4

�|L1(Rd ) ≤ C|χ�|Hs(Rd )

(
|u�|2(2σ+1)

Lq(Rd )
+ |u�+1|2(2σ+1)

Lq(Rd )

)
.(3.32)

Note that, up to now, the constant C only depends on σ , the dimension d and
|u�|Lq(Rd ), |u�+1|Lq(Rd ).

Collecting (3.30)–(3.32), using the fact that θk(u) = 0 for |u|Lq(Rd ) ≥ 2k,
that χ� is a Gaussian random variable, and assuming that δt ≤ 1, leads to

E

(
θ�θ�+1|A1

� +
√
δtA2

� + δtA3
� + (δt)3/2A4

�|L1(Rd )

)

≤ C1E

(
|u�|2H 1(Rd )

+ |u�+1|2H 1(Rd )

)
+ C2

(
k, ‖�‖

L
0,s
2

)
(3.33)

where C1 is a constant which does not depend on anything (and in particular
it does not depend on k). It remains to treat the term coming from A0

�, in
which there is no factor

√
δt . The idea, which stems from the proof of Ito

formula, is to extract from θ�θ�+1A0
� a term which has zero expectation, and

such that we may estimate the remaining part as the preceding terms. With
this aim in view, we write

θ�θ�+1A�0 = θ�ρk(|Sδtu�|Lq(Rd ))A0
�

+θ�
(
ρk(|u�+1|qLq(Rd ))− ρk(|Sδtu�|qLq(Rd ))

)
A0
�.(3.34)

It is clear that the expectation of the first term on the right hand side of (3.34)
is zero. For the second term, we write, using (3.9) again,

∣∣∣ρk
(
|u�+1|qLqx

)
− ρk(|Sδtu�|qLqx )

∣∣∣
≤ |ρ ′

k|L∞
(
|u�|q−1

L
q
x

+ |u�+1|q−1
L
q
x

)
|u�+1 − Sδtu�|Lqx

≤
√
δt |ρ ′

k|L∞
(
|u�|q−1

L
q
x

+ |u�+1|q−1
L
q
x

)

×
(

|
√
δtB−1

δt f�|H 1
x

+ 1

2
|χ�|Hs

x
θ�θ�+1 (|u�|Lqx + |u�+1|Lqx

))
.(3.35)

Using again the fact that
√
δtB−1

δt is bounded from L2(Rd) into H 1(Rd)

independently of δt ≤ 1, and the conservation of the L2 norm (see (3.6)), we
deduce from the preceding inequality,

1√
δt

∣∣∣θ�
(
ρk(|u�+1|qLqx )− ρk(|Sδtu�|qLqx )

)
A0
�

∣∣∣
L1(Rd )

≤ |θ�|C (|u�|Lqx , |u�+1|Lqx , |u0|L2
x

) (
1 + |χ�|2Hs

x

) (|u�|H 1
x

+ |u�+1|H 1
x

)
.(3.36)
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The right hand side above is zero if |u�|qLq(Rd ) ≥ 2k; in the case where both

|u�|qLqx and |u�+1|qLqx are less than 2k, it may be bounded above by

C(k, u0)
(

1 + |χ�|2Hs
x

) (|u�|H 1
x

+ |u�+1|H 1
x

)
.

It remains to treat the case where |u�+1|qLqx ≥ 2k, but |u�|qLqx < 2k. In this
case, the right hand side of (3.4) vanishes, and it is not difficult to see that we
have an estimate of the form

|u�+1|Lqx ≤ C|u�|Lqx + Cδt
(
|u�|2σ+1

L
q
x

+ |u�+1|2σ+1
L
q
x

)
.

Hence,

|u�+1|Lqx1{|u�|Lqx≤2k} ≤ C(k)+ Cδt |u�+1|2σ+1
L
q
x

1{|u�|Lqx≤2k}

where the constants C are deterministic constants. It follows that

|u�+1|Lqx1{|u�|Lqx≤2k} ≤ 2C(k)(3.37)

provided that δt ≤ C3(k), that is provided that n ≥ n0(k) for some integer
n0 which only depends on k.

Collecting (3.7), (3.29), (3.33)–(3.36) and the preceding estimate shows
that

1

δt
E (H(u�+1)−H(u�))

≤ C4E

(
|u�|2H 1

x
+ |u�+1|2H 1

x

)
+ C5

(
k, u0, ‖�‖

L
0,s
2

)

≤ 4C4E (H(u�)+H(u�+1))+ C6

(
k, u0, ‖�‖

L
0,s
2

)

provided that n ≥ n0(k), where we have used Lemma 2.1 and the conserva-
tion of L2 norm if λ = +1. We deduce from this last estimate that

E (H(u�+1)) ≤ 1+4C4δt
1−4C4δt

E (H(u�))+ C7

(
k, u0, ‖�‖

L
0,s
2

)

≤ e8C4δtE (H(u�))+ C7

provided that n ≥ max(n0(k),N0) for some integer N0; hence,

E (H(u�)) ≤ e8C4nδtE (H(u0))+ C8

for n ≥ max(n0(k),N0) and (3.28) easily follows for n in this range. It
remains to treat the case where n < max(n0(k),N0), that is it remains to

obtain an estimate on supt∈[0,T0] E

(
|un,k(t)|2

H 1
x

)
which may depend on k and

n.
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Actually, it easily follows from (3.7), Lemma 2.1 and the fact that θk ≤ 1,
that

sup
t∈[0,T0]

E

(
|un,k(t)|2

H 1(Rd )

)
≤ C9

(
n, ‖�‖

L
0,s
2
, u0, T0

)

with a constant C9 which does not depend on k, so that (3.28) holds for any
n and k.

We will now use a martingale inequality to derive a bound on the expecta-
tion of the sup norm in time: coming back to (3.7), (3.29), and using (3.33)–
(3.37) yields for n ≥ n0(k)

1

δt
(H(u�+1)−H(u�)) ≤ θ�

4
√
δt
ρk(|Sδtu�|qLqx )Im

∫
Rd

A0
�dx

+C4

(
|u�|2H 1

x
+ |u�+1|2H 1

x

)
+ C10 (ω, k,�, u0)(3.38)

whereC4 is the preceding deterministic constant andC10 is a positive random
variable depending on its arguments, and which satisfies E(C10) < +∞.
Next, we will sum (3.38) from � = 0 to � = m− 1, with m ≤ n. We use

√
δt

m−1∑
�=0

(
Im

∫
Rd

A0
�dx

)
θ�ρk(|Sδtu�|qLqx )

= Im
m−1∑
�=0

∫
Rd

θ�ρk(|Sδtu�|qLqx ) ((1 + Sδt )u�)∇(1 + S̄δt )ū�

· ∇ (W((�+ 1)δt)−W(�δt)) dx

= M(mδt)

with

M(t) =
∫ t

0

(
Fn,k(s),∇dW(s))

and

Fn,k(s) = −iρk(|un,k(s)|qLqx )ρk(|Sδtu
n,k(s)|q

L
q
x
)

× (
(1 + Sδt )u

n,k(s)
)∇(1 + S̄δt )ū

n,k(s).

In this way, we obtain

(3.39)

H(um) ≤ H(u0)+ 1

4
M(mδt)+ C4δt

n−1∑
�=0

(
|u�|2H 1

x
+ |u�+1|2H 1

x

)
+ C10mδt.

It is clear that under our assumptions, M is a square integrable real valued
martingale. Using a standard martingale inequality (see Theorem 3.14 in [9],
or [27]), and the fact that ρk ≤ 1, we deduce
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E

(
sup
t≤T0

|M(t)|
)

≤ 3E

((∫ T0

0
|(1 + Sδt )u

n,k∇�|2
L

0,0
2

|∇(1 + Sδt )u
n,k|2

L2
x
ds

)1/2
)

≤ CE

(
‖�‖

L
0,s
2

|u0|L2
x

(∫ T0

0
|un,k(s)|2

H 1
x
ds

)1/2
)

≤ C11

(
‖�‖

L
0,s
2
, u0

)
+ C12 sup

t∈[0,T0]
E

(
|un,k(t)|2

H 1
x

)

where we have used the conservation of L2 norm again. This last estimate,
together with (3.39) and (3.28) yield

E

(
sup

t∈[0,T0]
H

(
un,k(t)

)) ≤ C
(
T0, ‖�‖

L
0,s
2
, u0, k

)
.

The conclusion of Lemma 3.3, in the case n ≥ n0(k), follows immediately
after the use of Lemma 2.1.

Now, we have already observed that when n is fixed, an estimate of the
form

E

(
sup

t∈[0,T0]
|un,k(t)|2

H 1(Rd )

)
≤ C

(
T0, ‖�‖

L
0,s
2
, u0, n

)

holds, with a constant depending on n on the right hand side. Hence the
conclusion. ��
Proof of Lemma 3.4 Estimate (3.11) follows from Corollary 3.1. In order to
prove (3.12), we will use the equation satisfied by vn,k, that is (3.15). Again,
we omit the indices n and k most of the time, and we use the notations
introduced in the proof of Lemma 3.3.

By (3.11), the term

n−1∑
�=1

∫ t

0
�u�−1/21[�δt,(�+1)δt)(s)ds

in (3.15) is clearly bounded in L2(�;W 1,2σ+2(0, T0;H−1(Rd))), and the
term

n−1∑
�=1

∫ t

0
f�−11[�δt,(�+1)δt)(s)ds

is bounded inL2/(2σ+1)(�;W 1,2σ+2(0, T0;L2(Rd))) sinceH 1(Rd)⊂L2(2σ+1)

(Rd).
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Now, for the last term in the right hand side of (3.15), we write

1√
δt

n−1∑
�=1

∫ t

0
θ�−1θ�χ�−1u�−1/21[�δt,(�+1)δt)(s)ds

= 1√
δt

n−1∑
�=1

∫ t

0
θ�−1ρk(|Sδtu�−1|qLqx )χ�−1u�−11[�δt,(�+1)δt)(s)ds

+ 1
2
√
δt

n−1∑
�=1

∫ t

0
θ�−1θ�χ�−1(u� − u�−1)1[�δt,(�+1)δt)(s)ds

+ 1√
δt

n−1∑
�=1

∫ t

0
θ�−1

[
ρk(|u�|qLqx )− ρk(|Sδtu�−1|qLqx )

]

×χ�−1u�−11[�δt,(�+1)δt)(s)ds

= I + II + III.

We first have, with u(t) = un,k(t),

I =
∫ t−δt

0
ρk(|u(s)|qLqx )ρk(|Sδtu(s)|

q

L
q
x
)u(s)dW(s)

and thanks to Lemma 2.1 in [17], for any α with 0 ≤ α < 1/2,

E

(∣∣∣∣
∫ t−δt

0
ρk(|u(s)|qLqx )ρk(|Sδtu(s)|

q

L
q
x
)u(s)dW(s)

∣∣∣∣
2σ+2

Wα,2σ+2(0,T0;L2
x)

)

≤ CE

(∫ T0

0
‖ρk(|u(s)|qLqx )ρk(|Sδtu(s)|

q

L
q
x
)u(s)�‖2σ+2

L
0,0
2
ds

)

≤ CT0E

(
|u0|2σ+2

L2
x

)
‖�‖2σ+2

L
0,s
2
.

Hence I is bounded in L2σ+2(�;Wα,2σ+2(0, T0;L2(Rd))) for any α with
0 ≤ α < 1/2.

In order to estimate II , we replace u� − u�−1 by its expression using
equation (3.4); we then obtain

II = − i
2

n−1∑
�=1

∫ t

0
θ�−1θ�χ�−1

×
[√
δt�u�−1/2 +

√
δtf�−1 − θ�−1θ�χ�−1u�−1/2

]
1[�δt,(�+1)δt)(s)ds.

The first term is bounded in L1(�;W 1,2σ+2(0, T0;H−1(Rd))) as follows
(assuming δt ≤ 1)
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E




∣∣∣∣∣
n−1∑
�=1

√
δt

∫ t

0
θ�−1θ�χ�−1�u�−1/21[�δt,(�+1)δt)(s)ds

∣∣∣∣∣
W 1,2σ+2(0,T0;H−1

x )




≤ C(T0)E




(
n−1∑
�=1

δt |χ�−1�u�−1/2|2σ+2
H−1
x

)1/2σ+2



≤ C(T0)

(
E

n−1∑
�=1

δt |χ�−1|2(2σ+2)
Hs
x

)1/2(2σ+2) (
E sup
t∈[0,T0]

|u(t)|2
H 1
x

)1/2

≤ C(T0, ‖�‖
L

0,s
2
, k, u0)

by Lemma 3.3 and the Gaussianity of (χ�)0≤�≤n−1. In the same way, we have

E




∣∣∣∣∣
n−1∑
�=1

√
δt

∫ t

0
θ�−1θ�χ�−1f�−11[�δt,(�+1)δt)(s)ds

∣∣∣∣∣
2

W 1,2σ+2(0,T0;L2
x)




≤ C(T0)E




(
n−1∑
�=1

δtθ�θ�−1|χ�−1f�−1|2σ+2
L2
x

)1/2σ+2



≤ C(T0)E




(
n−1∑
�=1

δt |χ�−1|2σ+2
Hs
x

)1/2σ+2

sup
�≤n−1

θ�θ�−1
(
|u�|qLqx + |u�−1|qLqx

)
≤ C(T0, ‖�‖

L
0,s
2
, k).

The last term in II is bounded similarly in L1(�;W 1,2σ+2(0, T0;L2(Rd))).
Hence, II is bounded in L1(�;W 1,2σ+2(0, T0;H−1(Rd))). We prove in
the same way that III is bounded in L1(�;W 1,2σ+2(0, T0;H−1(Rd))), by
using (3.35) and the ingredients of the proof of Lemma 3.3 to estimate
ρk(|u�|qLqx )− ρk(|Sδtu�−1|qLqx ). Then, (3.12) follows with 0 ≤ α < 1/2. Esti-
mate (3.13) with 0 ≤ β < σ/2(σ + 1) follows from (3.12) and the embed-
ding Wα,2σ+2(0, T0) ⊂ Cβ([0, T0]) if β < α − 1

2σ+2 . It remains to prove
(3.14). Note that for t, s ∈ [0, T0],

∣∣∣|v(t)|q
L
q
x
− |v(s)|q

L
q
x

∣∣∣ ≤ C sup
r∈[0,T0]

|v(r)|q−1
L
q
x

|v(t)− v(s)|Lqx .

Since by interpolation we have

|v(t)− v(s)|Lqx ≤ C|v(t)− v(s)|ε
H−1
x

sup
t∈[0,T0]

|v(r)|1−ε
H 1
x
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with 1
q

= 2ε
d

+ d−2
2d , it follows that if γ = εβ,

∣∣∣|v(·)|q
L
q
x

∣∣∣
Cγ ([0,T0])

≤ C sup
r∈[0,T0]

|v(r)|q−ε
H 1
x

|v|ε
Cβ(0,T0;H−1

x )
.

Choosing β such that (3.13) holds and δ > 0 such that (q − ε)δ ≤ 1 and
δε ≤ 2/(2σ +1), (3.14) is then implied by (3.13) and Lemma 3.3. The proof
of Lemma 3.4 is complete. ��

The last thing to prove is Lemma 3.6, that is the passage to the limit in
equation (3.19).

Proof of Lemma 3.6 In what follows, since j and k are fixed, we omit them in
the notations, that is we set ṽn,kj = ṽn, ṽkj = ṽ, γ̃ n,kj = γ̃ n, γ̃ kj = γ̃ ; moreover,
a lower index � means that we take the value of the corresponding quantity
at time �δt . We recall that ṽn → ṽ as n goes to infinity, almost surely in
L2σ+2(0, T0;Hr

loc(R
d)) ∩ C([0, T0];H−2

loc (R
d)); hence by the bounds given

in Lemma 3.3, ṽn → ṽ in Lp(�;L2σ+2(0, T0;Hr
loc(R

d))) for any p with
1 ≤ p < 2. We also have γ̃ n → γ̃ almost surely in C([0, T0]), hence also
in Lp(�;C([0, T0])) for any p ≥ 1 since γ̃ n ≤ 1 almost surely. Finally,
W̃ n → W̃ almost surely in C([0, T0];Hs′

loc(R
d)). It follows that

n−1∑
�=1

∫ t

0
�ṽn�+1/21[�δt,(�+1)δt)(s)ds tends to

∫ t

0
�ṽ(s)ds almost surely

in L∞(0, T0;Hr−2
loc (R

d)).

Also, for the third term in the right hand side of (3.19), it easily follows from
the embedding Hr

loc(R
d) ⊂ L

q

loc(R
d), with q = 2(2σ + 1), that

n−1∑
�=1

∫ t

0
f (|ṽn� |, |ṽn�+1|)ṽn�+1/21[�δt,(�+1)δt)(s)ds tends to λ

∫ t

0
|ṽ(s)|2σ ṽ(s)ds almost surely in L∞(0, T0;L2

loc(R
d)).

Now, as was announced in Section 3.3, in order to find the limit of the last
term in the right hand side of (3.19), we have to separate the adapted part, in
the time integral, from the remaining part. We thus write, using the equivalent
of (3.4) for ṽn which easily follows from (3.18), (3.19):

n−1∑
�=1

∫ t

0
ρk(γ̃

n
� )ρk(γ̃

n
�+1)ṽ

n
�+1/2

(W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds

=
n−1∑
�=1

∫ t

0
ρk(γ̃

n
� )ρk(γ̃

n
�+1)ṽ

n
�

(W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds
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− i
2

n−1∑
�=1

∫ t

0
ρ2
k (γ̃

n
� )ρ

2
k (γ̃

n
�+1)ṽ

n
�+1/2

(W̃ n
� − W̃ n

�−1)
2

δt
1[�δt,(�+1)δt)(s)ds

+ i
2

n−1∑
�=1

∫ t

0
ρk(γ̃

n
� )ρk(γ̃

n
�+1)(W̃

n
� − W̃ n

�−1)1[�δt,(�+1)δt)(s)

× [
�ṽn�+1/2 + f (|ṽn� |, |ṽn�+1|)ṽn�+1/2

]
ds

= I + II + III.(3.40)

We first treat the term I , which is actually the most tricky: we write

I =
n−1∑
�=1

∫ t

0
θk(ṽ

n
� )θk(Sδt ṽ

n
� )ṽ

n
�

(W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds

+
n−1∑
�=1

∫ t

0
θk(ṽ

n
� )

(
θk(ṽ

n
�+1)− θk(Sδt ṽ

n
� )

)

× ṽn�
(W̃ n

� − W̃ n
�−1)

δt
1[�δt,(�+1)δt)(s)ds

= I1 + I2.

Concerning I1, we obtain

I1 =
n−1∑
�=1

∫ t

0
θ2
k (ṽ

n
� )ṽ

n
�

(W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds

+
n−1∑
�=1

∫ t

0
θk(ṽ

n
� )

(
θk(Sδt ṽ

n
� )− θk(ṽ

n
� )

) (W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds

= I1,1 + I1,2.

The same regularization procedure as in [3] and the adaptivity of θ2
k (ṽ

n
� )ṽ

n
�

easily shows that

I1,1 =
n−1∑
�=1

∫ t

0
θ2
k (ṽ

n
� )ṽ

n
�

(W̃ n
� − W̃ n

�−1)

δt
1[�δt,(�+1)δt)(s)ds converges

to
∫ t

0
ρ2
k (γ̃ (s))ṽ(s)dW(s) asngoes to infinity, weakly inL2(�;L2

loc(R
d))

for any t ∈ [0, T0].

To treat the term I1,2, we write

|θk(Sδt ṽn� )− θk(ṽ
n
� )| = (

�n
�, (I − Sδt )ṽ

n
�

)

where (., .) is the inner product in L2(Rd),

�n
� =

∫ 1

0
θ ′
k

(
(1 − λ)ṽn� + λSδt ṽ

n
�

)
dλ
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and
θ ′
k(v) = q|v|q−2vρ ′

k(|v|qLqx ).
Note that �n

� is bounded in Lq
′
(Rd), with 1

q ′ + 1
q

= 1, by a constant C(k),
and that it is an adapted process. Hence, we have for any t ∈ [0, T0],

E

(∣∣I1,2(t)
∣∣2
L2
x

)
≤

n−1∑
�=1

E

(
θ2
k (ṽ

n
� )

(
�n
�, (I − Sδt )ṽ

n
�

)2 |ṽn��|2
L

0,0
2

)
δt

≤ C(k, ‖�‖2
L

0,s
2
)

n−1∑
�=1

δtE
(
|(I − Sδt )ṽ

n
� |2Lqx |ṽ

n
� |2L2

x

)
.

Now, I − Sδt = δt(i + δt
2 �)

−1� and

|(I − Sδt )ṽ
n
� |2Lqx ≤ Cε|(I − Sδt )ṽ

n
� |2εL2

x
|(I − Sδt )ṽ

n
� |2(1−ε)
H 1
x

with 1
q

= ε
2 + (1−ε)(d−2)

2d . Since it is clear that
√
δt�(i + δt

2 �)
−1 is bounded

from H 1(Rd) into L2(Rd) independently of δt ≤ 1, we obtain

|(I − Sδt )ṽ
n
� |2εL2(Rd )

≤ (δt)ε/2Cε|ṽn� |εH 1(Rd )
|ṽn� |εL2(Rd )

;
hence

E

(∣∣I1,2

∣∣2
L2(Rd )

)
≤ C(k, ‖�‖2

L
0,s
2
)

n−1∑
�=1

(δt)1+ε/2
E

(
|ṽ0|ε+2

L2(Rd )
|ṽn� |2−ε

H 1(Rd )

)

≤ C(k, ‖�‖2
L

0,s
2
, ṽ0, T0)(δt)

ε/2

and E

(∣∣I1,2(t)
∣∣2
L2(Rd )

)
goes to zero as n goes to infinity for any t ∈ [0, T0].

We now consider the term I2: we have

θk(ṽ
n
�+1)− θk(Sδt ṽ

n
� ) =

(
�̃n
�, ṽ

n
�+1 − Sδt ṽ

n
�

)

with

�̃n
� =

∫ 1

0
θ ′
k

(
(1 − λ)Sδt ṽ

n
� + λṽn�+1

)
dλ.

Note that �̃n
� is no more adapted, but we still have θk(ṽn� )|�̃n

� |Lq′ (Rd ) ≤ C(k)

for n ≥ n0(k) (see the proof of Lemma 3.3). Also, we make use of the
“integral equation” for ṽn, that is

ṽn�+1 − Sδt ṽ
n
� = −δt(i + δt

2
�)−1f�

+
√
δt θk(ṽ

n
� )θk(ṽ

n
�+1)(i +

δt

2
�)−1(χ̃n� ṽ

n
�+1/2),
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where we have set

f� = f (|ṽn� |, |ṽn�+1|)ṽn�+1/2 and χ̃n� = W̃ n(�δt)− W̃ n((�− 1)δt)√
δt

.

We then write I2 = I2,1 + I2,2 with

I2,1(t) = −
n−1∑
�=1

∫ t

0
δt θk(ṽ

n
� )

(
�̃n
�, (i +

δt

2
�)−1f�

)

×ṽn�
(W̃ n

� − W̃ n
�−1)

δt
1[�δt,(�+1)δt)(s)ds

and

I2,2(t) =
n−1∑
�=1

∫ t

0

√
δt θ2

k (ṽ
n
� )θk(ṽ

n
�+1)

(
�̃n
�, (i +

δt

2
�)−1(χ̃n� ṽ

n
�+1/2)

)

×ṽn�
(W̃ n

� − W̃ n
�−1)

δt
1[�δt,(�+1)δt)(s)ds.

The term I2,1 is treated as follows: we have

√
δt

∣∣∣
(
�̃n
�, (i + δt

2 �)
−1f�

)∣∣∣
≤ √

δt |�̃n
� |Lq′x

∣∣(i + δt
2 �)

−1f�
∣∣
L
q
x

≤ √
δtCε|�̃n

� |Lq′x
∣∣(i + δt

2 �)
−1f�

∣∣ε
L2
x

∣∣(i + δt
2 �)

−1f�
∣∣1−ε
H 1
x

and since
√
δt(i + δt

2 �)
−1 is bounded from L2(Rd) into H 1(Rd) indepen-

dently of δt , and (i + δt
2 �)

−1 is bounded in L2(Rd), we have

√
δt

∣∣∣
(
�̃n
�, (i + δt

2 �)
−1f�

)∣∣∣ ≤ Cε(δt)
ε/2|�̃n

� |Lq′x |f�|L2
x

≤ Cε(δt)
ε/2|�̃n

� |Lq′x
(
|ṽn� |2σ+1

L
q
x

+ |ṽn�+1|2σ+1
L
q
x

)
.

Once more, we have

θk(ṽ
n
� )

∣∣∣�̃n
�

∣∣∣
L
q′
x

(
|ṽn� |2σ+1

L
q
x

+ |ṽn�+1|2σ+1
L
q
x

)
≤ C(k)

for n ≥ n0(k) (see the proof of Lemma 3.3), hence for such integers n,

E

(∣∣I2,1(t)
∣∣
L2
x

)
≤ C(k, ε)

n−1∑
�=1

(δt)1+ε/2
E

(|χ̃n� |Hs
x
|ṽn� |L2

x

)

≤ C(k, ε, ‖�‖2
L

0,s
2
,E(|v0|2L2

x
), T0)(δt)

ε/2(3.41)
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for any t ∈ [0, T0] and I2,1(t) tends to zero in L1(�;L2(Rd)) for any t ∈
[0, T0].

Let us now consider the term I2,2. Since

(i + δt

2
�)−1 + i = i

δt

2
�(i + δt

2
�)−1,

we derive(
�̃n
�, (i +

δt

2
�)−1(χ̃n� ṽ

n
�+1/2)

)

= −
(
�̃n
�, iχ̃

n
� ṽ

n
�+1/2

)
+ δt

2

(
�̃n
�, i�(i +

δt

2
�)−1(χ̃n� ṽ

n
�+1/2)

)
.

In the same way as before, we obtain∣∣∣iδt�(i + δt
2 �)

−1χ̃n� ṽ
n
�+1/2

∣∣∣
L
q
x

≤ (δt)ε/2Cε

∣∣∣√δt�(i + δt
2 �)

−1(χ̃n� ṽ
n
�+1/2)

∣∣∣ε
L2
x

∣∣∣χ̃n� ṽn�+1/2

∣∣∣1−ε

H 1
x≤ (δt)ε/2Cε

(|ṽn� |H 1
x

+ |ṽn�+1|H 1
x

) |χ̃n� |Hs
x
.

On the other hand, since (θ ′(ṽn�+1/2), iχ̃
n
� ṽ

n
�+1/2) = 0 – note that χ̃n� is real

valued – we have(
�̃n
�, iχ̃

n
� ṽ

n
�+1/2

)
=

(
�̃n
� − θ ′

k(ṽ
n
�+1/2), iχ̃

n
� ṽ

n
�+1/2

)

and∣∣∣�̃n
� − θ ′

k(ṽ
n
�+1/2)

∣∣∣
L
q′
x

≤
∫ 1

0

∣∣θ ′
k

(
(1 − λ)Sδt ṽ

n
� + λṽn�+1

) − θ ′
k(ṽ

n
�+1/2)

∣∣
L
q′
x
dλ

≤ C|ρ ′
k|L∞

(
|ṽn� |q−1

L
q
x

+ |ṽn�+1|q−1
L
q
x

) (|ṽn�+1 − Sδt ṽ
n
� |Lqx + |Sδt ṽn� − ṽn� |Lqx

)
.

Using the same kind of estimates as above, it is not difficult to see that∣∣∣�̃n
� − θ ′

k(ṽ
n
�+1/2)

∣∣∣
L
q′
x

≤ (δt)ε/2C(k, |ṽn� |Lqx , |ṽn�+1|Lqx )(1 + |χ̃n� |Hs
x
)|ṽn� |H 1

x
.

Hence, for any t ∈ [0, T0],

E

(∣∣I2,2(t)
∣∣
L2
x

)

≤
n−1∑
�=1

(δt)1+ε/2
E
(
C(k, |ṽn� |Lqx , |ṽn�+1|Lqx )θ2

k (ṽ
n
� )θk(ṽ

n
�+1)

× (1 + |χ̃n� |Hs
x
)|ṽn� |H 1

x
|ṽn� |L2

x

)
≤ C(k, T0, v0, ‖�‖

L
0,s
2
)E

(∫ T0

0
|ṽn(s)|2

H 1
x
ds

)
(δt)ε/2

and limn→+∞ E

(∣∣I2,2(t)
∣∣
L2(Rd )

)
= 0 for any t ∈ [0, T0].
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This achieves the treatment of I in (3.40). We will not treat the term III ,
which is easily shown to go to zero in L2(�;H−1(Rd)) for any t ∈ [0, T0].
We thus consider II , which will give rise to the Ito correction when passing
to the limit. We write:

II = − i
2

n−1∑
�=1

∫ t

0
θ4
k (ṽ

n
� )ṽ

n
�

(W̃ n
� − W̃ n

�−1)
2

δt
1[�δt,(�+1)δt)(s)ds

− i
2

n−1∑
�=1

∫ t

0
θ2
k (ṽ

n
� )

(
θ2
k (ṽ

n
�+1)− θ2

k (ṽ
n
� )

)

× ṽn�
(W̃ n

� − W̃ n
�−1)

2

δt
1[�δt,(�+1)δt)(s)ds

− i
4

n−1∑
�=1

∫ t

0
θ2
k (ṽ

n
� )θ

2
k (ṽ

n
�+1)(ṽ

n
�+1 − ṽn� )

× (W̃ n
� − W̃ n

�−1)
2

δt
1[�δt,(�+1)δt)(s)ds

= II1 + II2 + II3.

By the same estimates as above, it can easily be proved that for any t ∈ [0, T0],
II1(t) tends to zero in L1(�;L2(Rd)) as n → +∞, and that II3(t) tends to
zero in L1(�;H−1(Rd)) as n → +∞. We thus show that II1(t) converges
to

− i
2

∫ t

0
γ̃ 4(s)ṽ(s)F�ds

in L1(�;L2
loc(R

d)) as n → +∞, where F�(x) = ∑∞
k=0(�ek)

2(x), (ek)k∈N

being any complete orthonormal system in L2(Rd,R). Hence, we have to
estimate

E

∣∣∣∣∣
n−1∑
�=1

{
θ4
k (ṽ

n
� )ṽ

n
� (W̃

n
� − W̃ n

�−1)
2 −

∫ �δt

(�−1)δt
γ̃ 4(s)ṽ(s)F�ds

}∣∣∣∣∣
L2(BR)

≤ E

∣∣∣∣∣
n−1∑
�=1

{
θ4
k (ṽ

n
� )ṽ

n
�

[
(W̃ n

� − W̃ n
�−1)

2 − F�δt
]}∣∣∣∣∣

L2(BR)

+E

∣∣∣∣∣
n−1∑
�=1

∫ �δt

(�−1)δt

(
θ4
k (ṽ

n
� )ṽ

n
� − γ̃ 4(s)ṽ(s)

)
F�ds

∣∣∣∣∣
L2(BR)

.

The second term in the right hand side above converges to zero, since
|F�|Hs(Rd ) ≤ ‖�‖2

L
0,s
2

and ṽn → ṽ asn → +∞ inL3/2(�;L2(0, T ;L2(BR)))

while θk(ṽn) → γ̃ as n → +∞ in Lp(�;C([0, T0])) for any p ≥ 1. On the
other hand, thanks to the Cauchy-Schwarz inequality in the expectation, the
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independence property of the family (W̃ n
� − W̃ n

�−1)� and the fact that ṽn� is
F(�−1)δt measurable, the square of the first term is bounded above by

n−1∑
�=1

E

(∣∣∣θ4
k (ṽ

n
� )ṽ

n
�

[
(W̃ n

� − W̃ n
�−1)

2 − F�δt
]∣∣∣2

L2(BR)

)

≤ CE(|v0|2L2)

n−1∑
�=1

E

(∣∣∣(W̃ n
� − W̃ n

�−1)
2 − F�δt

∣∣∣2

Hs

)

and this last term tends to zero as n goes to infinity.
Collecting all the terms leads to the fact that ṽ satisfies equation (3.20)

and ends the proof of Lemma 3.6. ��
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