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Abstract

We address the numerical simulation of fluid-structure interaction prob-
lems dealing with an incompressible fluid whose density is close to the
structure density. We propose a semi-implicit coupling scheme based on an
algebraic fractional-step method. The basic idea of a semi-implicit scheme
consists in coupling implicitly the added-mass effect, while the other terms
(dissipation, convection and geometrical non-linearities) are treated explic-
itly. Thanks to this kind of explicit-implicit splitting, computational costs
can be reduced (in comparison to fully implicit coupling algorithms) and
the scheme remains stable for a wide range of discretization parameters. In
this paper we propose to derive this kind of splitting from the algebraic for-
mulation of the coupled fluid-structure problem (after finite-element space
discretization). This approach extends for the first time to fluid-structure
problems the algebraic fractional step methodology that was previously
advocated to treat the pure fluid problem in a fixed domain. More par-
ticularly, for the specific semi-implicit method presented in this report we
adapt the Yosida scheme to the case of a coupled fluid-structure problem.
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This scheme relies on an approximate LU block factorization of the matrix
obtained after the discretization in time and space of the fluid-structure
system.
We analyze the numerical performances of this scheme on 2D fluid-structure
simulations performed with a simple 1D structure model.

1 Introduction

We consider a time dependent computational domain Ω(t) such that Ω(t) =

Ω
f
(t) ∪ Ω

s
(t) in R

d (d = 2 or 3), consisting, at any time t > 0, of a deformable
structure Ωs(t) surrounding a moving volume Ωf (t) filled by fluid under motion
(see Fig. 1). The initial configuration at time t = 0 will be indicated with
the “hat” overscript, that is Ω̂ = Ω(0) and Ω̂f = Ωf (0), Ω̂s = Ωs(0). The fluid-
structure interface is Γ(t) = ∂Ωf (t)∩∂Ωs(t), i.e. the common boundary between
Ωs(t) and Ωf (t).

A fluid-structure problem is defined by a set of governing equations to be ful-
filled in the fluid domain and in the domain of the structure, plus suitable trans-
mission conditions ensuring the continuity of velocity and normal stress across
the fluid-structure interface. From the numerical viewpoint, fluid-structure inter-
actions require the solution of coupled fluid and structure models [17, 22, 18, 19]
and the stability of the numerical simulations relies on the accuracy of the cou-
pled problem solved at each time-step. A key role is played by the transmission
relations which couple at each time level the two physically independent sub-
problems (fluid and structure). A solution algorithm which enforces the discrete
counterpart of both transmission conditions (kinematic and dynamic) is said to
be strongly coupled. Hence, strongly coupled methods are generally stable in the
energy norm. When the coupling conditions are not exactly satisfied at each
time-step, a scheme is called weakly or loosely coupled.

A great variety of strategies have been proposed to solve fluid-structure prob-
lems. A first classification relies on the kind of software adopted. When the fluid
and the structure sub-problems are solved in a unique solver, the method is said
to be monolithic or direct. A monolithic method is strongly coupled by construc-
tion, however this approach requires the development of a specific software and
lacks of modularity. The examples of monolithic methods are far too numerous
to be cited all. We just refer to some recent works [31, 16] and references therein.

When the fluid and the structure are solved with two different codes, the
result is a partitioned procedure. A partitioned scheme can be either weakly or
strongly coupled. In order for a partitioned scheme to be strongly coupled, sub-
iterations need to be performed at each time-step to enforce the transmission
conditions with high accuracy. Nevertheless, partitioned procedures are often
used to implement weakly coupled schemes. This strategy allows to use opti-
mized methods for each sub-problem. Examples of partitioned procedures can
be found in [25, 24].
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In this paper, our primary application concerns the simulation of the me-
chanical interaction between the blood and the wall of large arteries. Dealing
with the internal flow of an incompressible fluid whose density is close to the
structure density, this class of problems differs from those encountered in other
fields (like aeroelasticity) from the numerical point of view. In these cases clas-
sical weakly coupled schemes are apparently unstable (see, e.g., [17, 22, 2]),
irrespectively of the choice of the time-step. The incompressibility of the fluid
and the added-mass effect of the fluid on the structure [17, 2] seem to play an
important role in the observed instabilities.

Up to now, strongly coupled schemes have been the only way of avoiding
those numerical instabilities. For a partitioned approach, enforcing the trans-
mission conditions requires many sub-iterations and this may lead to prohibitive
computational costs. For this reason, over the last years many efforts have
been devoted to set-up efficient methods to solve the non-linear implicit coupled
problem.

Standard and simple strategies are fixed-point based methods [3]. Unfortu-
nately, even if many acceleration strategies may improve their efficiency ([20, 21],
for example), these methods are very expensive and in some cases may fail to
converge [22, 2].

Further advances suggest the use of Newton based methods for their fast
convergence. They rely on the evaluation of the Jacobian associated to the
fluid-solid coupled state. Inexact Newton methods (see, e.g., [11, 35, 12, 36])
and exact Newton algorithms, including differentiation with respect to the fluid
domain [8, 9], have been proposed.

Another strategy that stems from domain decomposition techniques exploits
the physically decoupled structure of the problem itself and allows to obtain
the solution through a sequence of independent solves involving separately each
sub-problem [17, 6, 5].

Despite the significant achievements of all these strategies, to our knowl-
edge none of them is able to circumvent strong coupling without compromising
stability. In this respect, a relevant improvement is the introduction of a semi-
implicit scheme in [7]: although not strongly coupled, it exhibits very good
stability properties. This is due to the fact that the pressure stress is coupled
implicitly, while the remaining terms of the fluid equations (dissipation, con-
vection and geometrical non-linearities) are explicitly coupled to the structure.
In fact, [2] suggests that the explicit treatment of the added-mass term yields
instabilities. Therefore the idea of coupling implicitly only the pressure reduces
drastically the computational costs without affecting too much the stability.

The algorithm we propose in this work is based on the same idea but we
perform the implicit-explicit splitting using an algebraic fractional-step method
instead of a differential one. In [7] the coupled system of equations is solved
through the Chorin-Temam projection scheme [4, 34]. The accuracy of projec-
tion methods depends strongly on the boundary conditions chosen for the differ-
ential sub-problems in which the original problem is split. We adopt an algebraic

3



fractional scheme called Yosida method, proposed for a pure fluid problem in
[27, 28]. Algebraic fractional-step methods are based on an algebraic decomposi-
tion of the matrix arising from the full discretization (both in time and space) of
all the equations. In this approach the boundary conditions are incorporated in
the discretized operator and no further boundary conditions have to be selected.
For a pure fluid problem, the Yosida method differs from the algebraic version of
the Chorin-Temam method basically for fulfilling the discrete momentum equa-
tion for the fluid, while the Chorin-Temam method guarantees the conservation
of the mass.

The resulting algorithm shares the same advantages and drawbacks of the
scheme proposed in [7]. In fact, adopting a fractional scheme introduces a split-
ting error in the solution but greatly simplifies the implementation, especially
in comparison to Newton based methods. Moreover our method, being only
semi-implicit, does not conserve energy from a theoretical viewpoint but has
the great advantage of enhancing efficiency, if compared to any strongly coupled
algorithms. In spite of the imperfect energy balance, the scheme is numerically
stable for a reasonable range of discretization parameters, especially for those
for which explicit methods are known to be unstable.

The scheme we propose is just a specific example of a more general approach
exploiting algebraic fractional-step methods to solve fluid-structure interaction
problems. The basic idea is to take advantage of the good accuracy and stabil-
ity properties shown by many algebraic fractional-step schemes (which do not
have a differential counterpart [13, 27, 28, 14]) when solving the incompressible
time-dependent Navier-Stokes equations. To our knowledge it is the first time
that algebraic fractional-step methods are applied to a coupled fluid-structure
problem.

An outline of this report is as follows. In Section 2 we introduce a general
fluid-structure interaction problem, describe its associated mathematical model
and discretize the resulting system in time and space. We also briefly recall
the Yosida fractional-step method. Section 3 presents the new coupling scheme
based on the Yosida method. The numerical results obtained by applying this
new scheme to a simplified problem are presented in Section 4. Finally, some
conclusions and further developments are drawn in Section 5.

2 Problem setting

When considering a Lagrangian approach for the structure, the motion of the
solid medium is described in terms of its displacement η through a smooth
injective mapping:

Ls : Ω̂s × [0, T ] → Ωs(t)

which represents the deformation. Let Fs(x̂, t) = ∇x̂L
s(x̂, t) be the correspond-

ing deformation gradient and Js(x̂, t) its determinant. We introduce the second
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Figure 1: Parametrization of the fluid and structure domains.

Piola-Kirchhoff tensor:
Σ = Js(Fs)−1σs(Fs)−T . (1)

The solid is assumed to be a hyper-elastic material, characterized by a precise
constitutive law relating Σ to η.

We adopt an ALE (Arbitrary Lagrangian Eulerian) description of motion
for the fluid, i. e. we parametrize the motion of the actual computational fluid
volume Ωf (t) by an ALE map:

A : Ω̂f × [0, T ] → Ωf (t).

The corresponding deformation gradient is Ff (x̂, t) = ∇x̂A(x̂, t) and the deter-
minant is Jf (x̂, t). We indicate with u(x, t) the fluid velocity at a point x and
we define the velocity of the computational fluid volume, or ALE velocity, by:

ŵ(x̂, t) =
∂A

∂t
(x̂, t).

We assume the fluid to be homogeneous, Newtonian and incompressible, thus
the stress tensor reads:

σf (u, p) = −pI + 2µǫ(u),

where p is the pressure and

ǫ(u) =
1

2
(∇u + (∇u)T )

is the strain rate tensor. It is useful to describe the ALE map in terms of the
fluid domain displacement d̂(x̂, t) = A(x̂, t) − x̂. Since the fluid is viscous, η|Γ̂
provides the value of d̂ on the interface (condition of fluid adherence). Inside Ω̂f

the displacement d̂(x̂, t) is arbitrary: it can be any reasonable extension of η|Γ̂
over Ω̂f . We will denote the extension operator by Ext. Through d̂ we calculate
the current fluid domain Ωf (t) = (I + d̂)(Ω̂f ).
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The fluid-structure problem that we will consider couples the incompressible
Navier-Stokes equations in conservative ALE form to the elastodynamics equa-
tion for a hyper-elastic solid. Thus it reads:
find d̂ : Ω̂f × [0, T ] → R

d, u : TA → R
d, p : TA → R and η : Ω̂s × [0, T ] → R

d,
such that

• equations for the geometry:

d̂ = Ext(η|Γ̂), ŵ =
∂d̂

∂t
, Ωf (t) = (I + d̂)(Ω̂f ), (2)

• equations for the fluid:

1

Jf

∂Jfu

∂t |x̂
+ div(u ⊗ (u − w) −

1

ρf
σf (u, p)) = 0, in Ωf (t),

div u = 0, in Ωf (t),

u = uD, on ∂Ωf
D,

σf (u, p) · nf = g
f
N , on ∂Ωf

N ,

u = w, on Γ(t),

(3)

• equations for the solid structure:

ρs ∂2η

∂t2
− divx̂(FsΣ) = 0, in Ω̂s,

η = 0, on ∂Ω̂s
D,

FsΣ · ns = Js|(Fs)−Tns|gs
N , on ∂Ω̂s

N ,

FsΣ · ns = Jsσ̂f (u, p)(Fs)−Tns, on Γ̂.

(4)

The first equality in (2) is the geometry coupling condition, i.e. continuity of
displacement at Γ. Boundary condition (3)5 imposes the continuity of velocities
at the interface. In order to ensure the balance of stresses on the interface, we
enforce the continuity of stresses through (4)4. These are the three interface
coupling conditions.

2.1 Variational formulation

In order to reformulate the coupled problem in a weak form, we need a series of
notations. We indicate with Hm(Ω), m > 0, the usual Sobolev spaces for a given
domain Ω ⊂ R

d. The scalar product in L2(Ω) = H0(Ω) is denoted by (·, ·)Ω.

6



To simplify the setting up of the variational formulation of the problem, we
choose ∂Ωf (t)\Γ(t) = ∂Ωf

N (t), see Fig. 1. We define the following spaces of test
functions:

V f = {vf ∈ [H1(Ωf )]d : vf = 0 on Γ},

and
V̂ s = {v̂s ∈ [H1(Ω̂s)]d−1 : v̂s = 0 on ∂Ω̂s

D}.

From now on we will consider a (d − 1)-dimensional structure and so Ωs = Γ.
All the results we will find in what follows can be generalized, with proper
adaptations, to the case of d-dimensional structure.

We write the velocity as u = u0 + uΓ, with u0 = 0 on Γ and uΓ = ∂η

∂t
on Γ,

that is uΓ satisfies the coupling condition (3)5.
By multiplying the fluid equations (3)1,2 by vf , after integration by parts

and taking into account the boundary conditions, we get the following variational
formulation of the fluid sub-problem:
Find u0 ∈ V f , p ∈ L2(Ωf ) for all t ∈ R

+, such that:

d

dt
((u0 + uΓ),vf )Ωf (t) + (div((u0 + uΓ) ⊗ (u0 + uΓ − w)),vf )Ωf (t)+

1

ρf
((σf (u0 + uΓ, p),∇vf ))Ωf (t) =

1

ρf
(gf

N ,vf )
Ωf

N
(t)

, ∀vf ∈ V f , (5)

(q, div u0)Ωf (t) +(q, div uΓ)Ωf (t) = 0, ∀q ∈ L2(Ωf (t)).

On the other hand, by multiplying (4)1 by v̂s and after integration by parts, it
follows that the variational formulation for solid sub-problem is:
Find η ∈ V̂ s such that

(ρs ∂2η

∂t2
, v̂s)Ω̂s + (FsΣ,divx̂v̂s)Ω̂s = (6)

(Js|(Fs)−Tns|gs
N , v̂s)

∂Ω̂s
N
− (σf (u, p)nf ,vs)Γ(t), ∀v̂s ∈ V̂ s.

The fluid interface load can be seen as the variational residual of (5) when the
test functions are not vanishing at the interface; indeed,

(σf (u, p)nf ,vs)Γ(t) = ρf d

dt
(u, Evs)Ωf (t) + ρf (div(u ⊗ (u − w)), Evs)Ωf (t)+

((σf (u, p),∇Evs))Ωf (t), ∀vs ∈ V s,

where the operator E represents a continuous extension operator from V s into
the space W f = {vf ∈ [H1(Ωf )]d : vf = 0 on ∂Ωf (t)\Γ(t)}.
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2.2 Space and time discretization: the fully discrete problem

Let us introduce a triangulation T̂h [30] of the reference configuration Ω̂ and its
image Th through a discrete ALE mapping Ah,t. As customary, h represents the

maximum size of the elements of T̂h. The triangulation Th induces a partition
Ih on Γ(t). Let IH be an independent partition of Γ(t) whose maximum size
of the elements is H. Being the diameters of the general elements of the two
meshes, h, H refer to the level of refinement of the triangulations. We also
assume the triangulations to be quasi-uniform [30]. For the sake of simplicity,
we will consider the case of geometric conforming meshes, i.e. Ih ≡ IH .

Let V f
h ⊂ [H1(Ωf )]d, Qf

h ⊂ L2(Ωf ) and V̂ s
H ⊂ V̂ s be the finite element

spaces approximating the corresponding continuous ones [30]. We introduce the

Lagrange basis {φi}
Nv

i=1 ⊕{φb
j}

N b
v

j=1, {πi}
Np

i=1 and {ψi}
Ns

i=1 associated, respectively,

to V f
h , Qf

h and V̂ s
H . The set {φb

j}
N b

v

j=1 corresponds to the nodes on Γ(t). The fluid

sub-problem requires that the pair (Qf
h, V f

h ) satisfy the inf-sup condition:

inf
qh∈Q

f
h

sup
v

f
h
∈V

f
h

∫
Ωf div v

f
hqh dΩ

||vf
h||H1(Ωf )||qh||L2(Ωf )

≥ β, (7)

where the constant β > 0 is independent of h ([1, 30]). We remind that this
property is necessary for the well posedness of the discrete problem.
Moreover, let Eh be a discrete extension operator from V̂ s

H into V f
h .

We can write the finite element approximation of the unknowns:

uh(x, t) =

Nv∑

i=0

U0i
(t)φi(x, t) +

Nb
v∑

j=0

UΓj
(t)φb

j(x, t), ph(x, t) =

Np∑

k=0

Pk(t)πk(x, t),

(8)
where the nodal values UΓj

depend on the structure velocity. We also set:

ηH(x̂, t) =

Ns∑

i=0

ηi(t)ψi(x̂), η̇H(x̂, t) =

Ns∑

j=0

η̇j(t)ψj(x̂). (9)

Let U0, P, UΓ,η and η̇ be the vectors of the coefficients of the linear combina-
tions (8) and (9).

We divide the time interval [0, T ] using a time-step δt and solve the problem
at each time level tn = n · δt, with n = 1, ..., N and N = T/δt.

There are many strategies for discretising in time the coupled fluid-structure
problem. Here, for the sake of simplicity, we employ the implicit Euler scheme
for the fluid and the mid-point rule for the structure. The latter applied to the
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structure equation after being discretized in space reads:

ρs(
η̇n+1

H − η̇n
H

δt
, v̂s

H)Ω̂s +
1

2
(Fs,n+1Σ(ηn+1

H ) + Fs,nΣ(ηn
H),divx̂v̂s

H)Ω̂s =

−(σf (un+1
h , pn+1

h )nf ,vs
H)Γ(t), ∀v̂s

H ∈ V̂ s
H ,

(
η̇n+1

H + η̇n
H

2
, v̂s

H)Ω̂s = (
ηn+1

H − ηn
H

δt
, v̂s

H)Ω̂s , ∀v̂s
H ∈ V̂ s

H .

(10)

The superscript n denotes the approximation of the unknown at time tn. We
replace un+1

Γh
with its first order discretization, so that Un+1

Γ = (ηn+1 − ηn)/δt.
In the sequel, we will consider the linearized fluid structure problem: we

linearize the non-linear convective term in (3)1 around u∗ = un
h and σs in

(1) stands for the linearized stress tensor. To simplify the problem without
compromising its generality, we assume gs

N = 0.
In order to write the fully discretized coupled problem, we set:

• the mass matrices: Mf
i,j =

∫
Ωf,n+1 φjφi, M sf

i,j =
∫
Ωf,n+1 φj Ehψi, M sb

i,j =∫
Ωf,n+1 φ

b
j Ehψi, M s

i,j =
∫
Ω̂s ψjψi;

• the matrices C:
Cf

i,j = 1
δt

Mf
i,j + ν

∫
Ωf,n+1 ∇φj : ∇φi +

∫
Ωf,n+1 [(u

∗ − wn+1
h ) · ∇]φj · φi,

Csf
i,j = 1

δt
M sf

i,j + ν
∫
Ωf,n+1 ∇φj : ∇Ehψi +

∫
Ωf,n+1 [(u

∗ −wn+1
h ) · ∇]φj · Ehψi,

Csb
i,j = 1

δt
M sb

i,j + ν
∫
Ωf,n+1 ∇φ

b
j : ∇Ehψi +

∫
Ωf,n+1 [(u

∗ −wn+1
h ) · ∇]φb

j · Ehψi;

• the matrices B: Bf
i,j = −

∫
Ωf,n+1(divφj)πi, Bs

i,j = −
∫
Ωf,n+1(divEhψj)πi;

• the matrix Ks and D: Ks
i,j = δt

2ρf

( ∫
Ω̂s Fs,n+1Σn+1(ψj) : divψi

)
,

D = 2
δt

ρs

ρf M s + Ks + Csb;

• the vectors FN : F
f
Ni

= 1
ρf

∫
Ωf,n+1 g

f
Nφi, Fs

Nj
= 1

ρf

∫
Ωf,n+1 g

f
Nφ

b
j .

Then we use the shortened notations for the matrix transposes: Mfs = (M sf )T

and Cfs = (Csf )T .
Except for M s, all the matrices need to be calculated at each time tn+1, yet

we drop the superscript n + 1 for ease of notation. For the discretization of the
time derivatives we also need some matrices at time tn: those will be named
with the superscript n.

It is worthwhile pointing out that the fluid and fluid-structure matrices are
calculated over Ωf,n+1 = Ωf (tn+1), which depends on the unknown ηn+1

H through
the ALE velocity wn+1

h (2).
Then at each time level tn+1, the discretization in time yields the system:

An+1Xn+1 = Fn+1, (11)
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where

An+1 =




Cf (Bf )T Cfs

Bf 0 Bs

Csf (Bs)T D


 , Xn+1 =




Un+1
0

Pn+1

Un+1
Γ


 ,

and

Fn+1 =




Fn+1
1

Fn+1
2

Fn+1
3


 ,

Fn+1
1 = F

f
N + 1

δt
Mf,nUn

Fn+1
2 = 0

Fn+1
3 = Fs

N + 2
δt

Ks,nηn + 2
δt

ρs

ρf M sη̇n.

Once Un+1
Γ is known, the structure displacement and velocity nodal values can

be retrieved by explicit calculations:

ηn+1 = δtUn+1
Γ + ηn, η̇n+1 = 2Un+1

Γ − η̇n. (12)

To summarize, we describe the procedure above as follows: given the initial
solution uh0, ph0, ηH0 and η̇H0, for every n ≥ 0, find un+1

h ∈ V f
h , pn+1

h ∈ Qf
h,

ηn+1
H , η̇n+1

H ∈ V̂ s
H by solving system (11) and the equations in (12) to get the

nodal values to be used in the linear combinations (8) and (9).

2.3 The exact LU factorization of the coupled system

To solve system (11) one could use a global approach such as a preconditioned
Krylov method (with proper choice of preconditioner).

Alternatively, system (11) can be solved by a block LU factorization of An+1,
that is

An+1 = LU. (13)

In order to find the two factors L and U , we introduce the matrix:

S := −Bf (Cf )−1(Bf )T (14)

called pressure Schur complement since it is the Schur complement of Cf in the
following submatrix of An+1:

A0 =

[
Cf (Bf )T

Bf 0

]
,

that corresponds to the pure fluid discretization. In analogy, we write the Schur
complements

S1 := Bs − Bf (Cf )−1Cfs, (15)

S2 := (Bs)T − Csf (Cf )−1(Bf )T , (16)

S3 := D − Csf (Cf )−1Cfs, (17)

respectively related to the following submatrices of An+1:

A1 =

[
Cf Cfs

Bf Bs

]
, A2 =

[
Cf (Bf )T

Csf (Bs)T

]
, A3 =

[
Cf Cfs

Csf D

]
.
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The factors L and U in (13) have the following form:

L =




Cf 0 0
Bf S 0
Csf S2 S3 − S2S

−1S1


 , U =




I (Cf )−1(Bf )T (Cf )−1Cfs

0 I S−1S1

0 0 I


 .

(18)
Solving system (11) through the block LU factorization (13) involves the

solution of the following subsystems:

L - step: find Ũn+1
0 , P̃n+1, Ũn+1

Γ :

CfŨn+1
0 = Fn+1

1

BfŨn+1
0 + SP̃n+1 = Fn+1

2

CsfŨn+1
0 + S2P̃

n+1 + (S3 − S2S
−1S1)Ũ

n+1
Γ = Fn+1

3 ,

(19)

U - step: find Un+1
0 ,Pn+1,Un+1

Γ :

Un+1
Γ = Ũn+1

Γ

Pn+1 + S−1S1U
n+1
Γ = P̃n+1

Un+1
0 + (Cf )−1(Bf )TPn+1 + (Cf )−1CfsUn+1

Γ = Ũn+1
0 .

(20)

The computational complexity of the LU scheme can be reduced provided (Cf )−1

in (14), (15), (16), (17) is replaced by a simpler matrix. This is the basic idea un-
derlying algebraic fractional step algorithm in general, and the Yosida algorithm
in particular, see e.g. [28].

2.4 The inexact LU factorization of the coupled system: the

Yosida scheme

The Yosida method is characterized by replacing the factors L and U of An+1

(13) with an inexact LU factorization of the form Ân+1 = L̂Û . The approximate
factors L̂ and Û are determined as follows. First of all we approximate the Schur
complements (14), (15), (16), (17) by replacing (Cf )−1 with the zero-th order
truncation of its Neumann expansion:

Ŝ := −Bfδt(Mf )−1(Bf )T , Ŝ1 := Bs − Bfδt(Mf )−1Cfs,

Ŝ2 := (Bs)T − Csfδt(Mf )−1(Bf )T , Ŝ3 := D − Csfδt(Mf )−1Cfs.
(21)

Thus we can write the inexact factors as:

L̂ =




Cf 0 0

Bf Ŝ 0

Csf Ŝ2 Ŝ3 − Ŝ2Ŝ
−1Ŝ1


 , Û =




I (Cf )−1(Bf )T (Cf )−1Cfs

0 I Ŝ−1Ŝ1

0 0 I


 .

(22)
At each time-step, system (11) is replaced by:

Ân+1Xn+1 = Fn+1. (23)
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The Yosida method computes an approximate solution affected by the splitting
error. Indeed, Xn+1 in (23) is an approximation of the solution of (11) and
the right hand side takes into account the approximated solutions from pre-
vious steps. Although they should better be indicated with X̂n+1 and F̂n+1,
nonetheless we prefer to keep the notation unchanged for simplicity.

Solving system (11) through the inexact factorization L̂Û at each time level
consists in solving the following simpler subsystems (instead of (19), (20)):

L̂ - step: find Ũn+1
0 , P̃n+1, Ũn+1

Γ :

CfŨn+1
0 = Fn+1

1

BfŨn+1
0 + ŜP̃n+1 = Fn+1

2

CsfŨn+1
0 + Ŝ2P̃

n+1 + (Ŝ3 − Ŝ2Ŝ
−1Ŝ1)Ũ

n+1
Γ = Fn+1

3 ,

(24)

Û - step: find Un+1
0 ,Pn+1,Un+1

Γ :

Un+1
Γ = Ũn+1

Γ

Pn+1 + Ŝ−1Ŝ1U
n+1
Γ = P̃n+1

CfUn+1
0 + (Bf )TPn+1 + CfsUn+1

Γ = CfŨn+1
0 .

(25)

The computational convenience with respect to the exact LU factorization con-
sists in the fact that the approximated Schur complements are considerably
easier to solve than the exact ones.

An important issue for differential splitting scheme, such as the Chorin-
Temam projection method, is the prescription of pressure boundary conditions.
In solving a differential problem for the pressure, unphysical boundary conditions
are prescribed, which in general induce boundary layers in the behavior of the
pressure error. In particular, this can negatively affect the numerical solution of
a fluid-structure problem, in which it is important to evaluate at each time-step
the normal stress exerted by the fluid on the structure. Algebraic subproblems
are easined by the fact that no additional boundary condition on the pressure
has to be provided, since this information is intrinsically carried out by the
(inexact) factorization. This usually reflects in a better behavior of the pressure
on the boundary, as shown in [28] for the case of the Yosida scheme applied to
the incompressible Navier-Stokes equations in a domain with rigid boundaries.

3 A Yosida based semi-implicit coupling

We rearrange the two steps (24) and (25) in a semi-implicit coupling scheme
which will resemble, at the algebraic level, the differential fractional step pre-
sented in [7]. Suppose that we know Ωn, Un

0 , Pn, Un
Γ, and therefore ηn, η̇n, at

time tn; then we calculate Ωn+1, Un+1
0 , Pn+1, Un+1

Γ with the following proce-
dure:

12



• Step 0: definition of the new domain, by approximating the fluid-structure
interface with ηn:

d̂n+1 = Ext(ηn

|Γ̂
), Ωf,n+1 = Ω̂f + d̂n+1, wn+1 =

d̂n+1 − d̂n

δt
; (26)

• Step 1 (explicit flow computation): computation of the intermediate ve-
locity Ũn+1

0 :

CfŨn+1
0 = Fn+1

1 ; (27)

• Step 2 (implicit coupling): computation of pressure Pn+1 and interface
velocity Un+1

Γ :

ŜPn+1 + Ŝ1U
n+1
Γ = Fn+1

2 − BfŨn+1
0 ,

Ŝ2P
n+1 + Ŝ3U

n+1
Γ = Fn+1

3 − CsfŨn+1
0 ,

(28)

and then calculation of structure displacement and velocity through (12);

• Step 3 (explicit flow computation): velocity correction:

CfUn+1
0 = CfŨn+1

0 − (Bf )TPn+1 − CfsUn+1
Γ . (29)

The equation (28)1 is obtained by combining (24)2 and (25)2, whereas equation
(28)2 is given by the combination of (24)3 and (25)2.

At each time-step we have to solve three linear systems; two of them (Step
1 and 3) share the same matrix Cf and can be solved by preconditioned Krylov
methods (such as Bi-CGStab or GMRES) with incomplete LU preconditioner
[32]. The linear system in step 2 is a little more critical. We remark at first that
(28) can be equivalently reformulated as:

Ŝ Pn+1 = (Fn+1
2 − BfŨn+1

0 − Ŝ1U
n+1
Γ ),

(Ŝ3 − Ŝ2Ŝ
−1Ŝ1)U

n+1
Γ = Fn+1

3 − CsfŨn+1
0 − Ŝ2(Ŝ)−1(Fn+1

2 − BfŨn+1
0 )Ũn+1

0 .
(30)

We will provide in the next Proposition a sufficient condition that guarantees
that matrix Ŝ3 − Ŝ2Ŝ

−1Ŝ1 is positive definite. This will prove that the existence
and uniqueness of Un+1

Γ . Then from the first equation in (30) we derive that

Pn+1 exists and is unique too, since Ŝ is symmetric, negative definite if the
inf-sup condition is satisfied (thus Bf is a full-rank matrix).

Proposition 3.1 Suppose we are using quasi-uniform conforming meshes whose
elements have maximum diameter h. We assume that, for a suitable positive
constant C (to be introduced later),

h <
2

C

ρs

ρf
. (31)

13



A sufficient condition for matrix Ŝ3 − Ŝ2Ŝ
−1Ŝ1 to be positive definite is that the

time-step δt obey the following restriction:

δt ≤ δtcr =
h2

C2
I γsf

(
− 1 +

√
2

Ch

ρs

ρf

)
, (32)

where γsf is the continuity constant of the operator associated to Asf (33) and
CI is the constant in the inverse inequality (see (34) below). Then, equation
(30)2 has a unique solution Un+1

Γ , system (28) is non-singular and the Yosida
based semi-implicit algorithm (26)-(27)-(28)-(29) is well defined.

Proof. Since ∀η ∈ R
Ns , with η 6= 0, we have that −ηT Ŝ2Ŝ

−1Ŝ1η ≥ 0, ∀t > 0, being
Ŝ2 = (Ŝ1)

T , it suffices to prove that (31) and (32) are sufficient conditions for matrix
Ŝ3 to be positive definite.

We consider:

ηT Ŝ3η = ηT
( 2

δt

ρs

ρf
Ms +

1

δt
Msb + As − δtCsf (Mf )−1Cfs

)
η,

where matrix As is defined as follows:

As = Ks + Ksb + Nsb(u∗),

with Ksb
i,j = ν

∫
Ωf,n+1 ∇φ

b
j : ∇Ehψi and Nsb

i,j(u
∗) =

∫
Ωf,n+1 [(u

∗ − wn+1
h ) · ∇]φb

j · Ehψi.
Note that the entries of As are independent of time-step δt.

Multiplying both members by δt, we find:

δtηT Ŝ3η = 2
ρs

ρf
||ηH ||2L2(Γ) + ||EhηH ||2L2(Ωf ) + δtηT Asη − δt2ηT Csf (Mf )−1Cfsη.

For geometric conforming meshes Ehψi = φb
i , for i = 1, ...,Ns with Ns = N b

v . Then
matrix Msb is symmetric and associated to a scalar product: ηT Msbη = ||EhηH ||2

L2(Ωf ),

with EhηH =
∑Ns

i=1 ηi φb
i . For matrix As we have:

ηT Asη = ηT Ksη + ηT (Ksb + Nsb(u∗))η ≥ αs||ηH ||2H1(Γ) + αsb||EhηH ||2H1(Ωf ),

where αs and αsb are the coercivity constants of the operators associated respectively
to Ks and (Ksb + Nsb(u∗)).

Set u = (Mf )−1Cfsη. Then:

ηT Csfu = ηT
( 1

δt
Msf + Asf

)
u =

1

δt
ηT Msfu + ηT Asfu

≤
1

δt
||EhηH ||L2(Ωf )||uh||L2(Ωf ) + γsf ||EhηH ||H1(Ωf )||uh||H1(Ωf )

≤
( 1

δt
+

C2
I γsf

h2

)
||EhηH ||L2(Ωf )||uh||L2(Ωf ),

where γsf = γsf (||u∗ −wn+1
h ||) is the continuity constant of the operator associated to:

Asf = Ksf + Nsf (u∗), (33)
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with Ksf
i,j = ν

∫
Ωf,n+1 ∇φj : ∇Ehψi and Nsf (u∗) =

∫
Ωf,n+1 [(u

∗ − wn+1
h ) · ∇]φj · Ehψi,

and CI is the constant showing up in the following inverse inequality:

||vh||H1(Ωf ) ≤ CIh
−1||vh||L2(Ωf ), ∀vh ∈ V f

h . (34)

that holds under the assumption that the triangulation in Ωf is quasi-uniform (see, e.g.,
[30]). Since Cfsη = Mfu, it follows that ηT Csf = uT Mf and so:

(h2 + C2
I γsfδt

h2δt

)
||EhηH ||L2(Ωf )||uh||L2(Ωf ) ≥ η

T Csfu = uT Mfu = ||uh||
2
L2(Ωf ).

Therefore we get ||uh||L2(Ωf ) ≤
(

h2+C2
I γsf δt

h2δt

)
||EhηH ||L2(Ωf ).

Using Lemma 1 in [7], which states that

||EhηH ||2L2(Ωf ) ≤ Ch||ηH ||2L2(Γ), ∀ηH ∈ V̂ s
H , (35)

where C > 0 is a mesh-independent constant, we have:

δtηT Ŝ3η ≥ 2
ρs

ρf
||ηH ||2L2(Γ) + ||EhηH ||2L2(Ωf )+

δt
(
αs||ηH ||2H1(Γ) + αsb||EhηH ||2H1(Ωf )

)
− δtηT (Msf + δtAsf )u

≥ 2
ρs

ρf
||ηH ||2L2(Γ) + ||EhηH ||2L2(Ωf ) + δt

(
αs||ηH ||2H1(Γ)+

αsb||EhηH ||2H1(Ωf )

)
− δt

(
1 + δt

C2
I γsf

h2

)
||EhηH ||L2(Ωf )||uh||L2(Ωf )

≥ 2
ρs

ρf
||ηH ||2L2(Γ) + ||EhηH ||2L2(Ωf ) + δt

(
αs||ηH ||2H1(Γ)+

αsb||EhηH ||2H1(Ωf )

)
−

(h2 + C2
I γsfδt

h2

)2

Ch||ηH ||2L2(Γ)

≥
[
2
ρs

ρf
−

C

h3
(h2 + C2

I γsfδt)2
]
||ηH ||2L2(Γ) + ||EhηH ||2L2(Ωf )+

δt
(
αs||ηH ||2H1(Γ) + αsb||EhηH ||2H1(Ωf )

)
.

To simplify the calculations, since the last two terms are positive, we impose the first
one to be positive too, that is:

2
ρs

ρf
−

C

h3
(h2 + C2

I γsfδt)2 > 0. (36)

This is a more restrictive condition. We calculate the critical time-steps:

δt1,2
cr =

h2

C2
I γsf

(
− 1 ±

√
2

Ch

ρs

ρf

)
.

One of the two critical time-steps must be positive, so we get a restriction on the densities
ratio:

ρs

ρf
> C

h

2
,
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which can however be regarded as a restriction on the mesh-size h, see (31).
From (36) it follows that, under condition (31), matrix Ŝ3 is positive definite for

δt ≤ δtcr =
h2

C2
I γsf

(
− 1 +

√
2

Ch

ρs

ρf

)
.

This proves our Proposition. �

Remark 3.1 In order to simplify the proof of the non-singularity of system
(28), we derived two conditions on mesh-size and time-step (respectively (31)
and (32)) which are more restrictive than necessary.
Numerical evidence suggests that matrix Ŝ3− Ŝ2Ŝ

−1Ŝ1 is positive definite for all
the physical and discrete parameters we tested.

Remark 3.2 In view of our previous results, for δt ≤ δtcr, matrix

[
Ŝ Ŝ1

Ŝ2 Ŝ3

]

is indefinite, however its eigenvalues are real with variable sign. The system
(28) has therefore a unique solution and we solve it by a preconditioned Krylov
method with incomplete LU preconditioner.

The explicit treatment of the expensive ALE-advection-viscous term is based
on the approximation of the domain shape at time tn+1 with the domain Ωn

calculated at the previous time-step (Step 0). A standard strongly coupled
approach, with d̂n+1 = Ext(ηn+1

|Γ̂
) at step 0, would require to iterate the whole

procedure, increasing the overall computational cost. Thanks to the implicit
coupling of the pressure (Step 2) we can avoid these iterations without severely
affecting the stability.

3.1 The Yosida scheme vs the algebraic version of the Chorin-

Temam method for fluid-structure interaction

The Yosida scheme is just one out of many algebraic fractional step methods
which could be extended to fluid-structure interaction problems.

Another possibility, suggested by the scheme in [7], would be to adapt the
algebraic version of the Chorin-Temam method (e.g. [28]) to solve the system

(11). In this case matrix An+1 would be approximated by A
n+1

= L̂U , where

U =




I δt(Mf )−1(Bf )T δt(Mf )−1Cfs

0 I Ŝ−1Ŝ1

0 0 I


 ;

only the form of the approximate factor U changes with respect to the Yosida
inexact factors (22). The algebraic Chorin-Temam method for fluid-structure
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interaction shares step (24) and equations (25)1,2 with the Yosida based scheme
but it replaces equation (25)3 with:

1

δt
MfUn+1

0 + (Bf )TPn+1 + CfsUn+1
Γ =

1

δt
MfŨn+1

0 . (37)

This means that by the simple substitution of equation (29) with equation (37)
in Step 3, we obtain a semi-implicit algorithm based on the algebraic version of
the Chorin-Temam scheme. This algorithm, its analogies and differences from
the algebraic counterpart of the method proposed in [7] will be presented in a
future work.

In this report we focus on the Yosida based semi-implicit algorithm (26)-
(27)-(28)-(29).

4 Application: blood flow in large arteries

In this section we illustrate the numerical performances of the coupling scheme
proposed in Sec. 3 on a simplified blood flow problem.

4.1 A generalized string model

We consider a very simple structure model derived from the equations of linear
elasticity for a cylindrical tube of small thickness, under the hypotheses of plane
stress and membrane deformations (i.e. negligible elastic bending terms). Given
a cylindrical reference surface of radius R0, we neglect the longitudinal and
angular displacement while the radial displacement η = η(z, t) satisfies:

ρsh
∂2η

∂t2
− kGh

∂2η

∂z2
+

Eh

1 − ν2

η

R2
0

− γ
∂3η

∂z2∂t
= fΓ(z, t). (38)

Here z indicates the axial direction, h is the wall thickness, k is the so called Tim-
oshenko shear correction factor, G, E and ν are respectively the shear modulus,
the Young modulus and the Poisson ratio, while γ is a viscoelastic parameter.

Finally fΓ(z, t) is an external forcing term. The term kGh∂2η
∂z2 accounts for shear

deformations, while γ ∂3η
∂z2∂t

introduces the viscoelastic behavior. This model has
been widely used in previous works devoted to blood flows (see, for instance,
[29, 26]).

The conditions η = 0 at z = 0 and z = L, corresponding to clamped wall
ends, are not realistic in the blood flow context. Since the structural model is of
propagative type, first order absorbing boundary conditions are a better choice:

∂η

∂t
−

√
kG

ρs

∂η

∂z
= 0 at z = 0,

∂η

∂t
+

√
kG

ρs

∂η

∂z
= 0 at z = L.
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4.2 A simplified 2D problem

We want to simulate the propagation of a pressure pulse coming from the heart in
a straight artery of length L. Blood can be assumed to behave like a Newtonian
fluid in large arteries (those whose diameter is larger than 0.2 cm ca). To this
purpose we adopt a 2D model obtained by intersecting a portion of blood flow
vessel with a plane. The 2D problem arises from the combination of the 2D
Navier-Stokes equations for the fluid with the generalized string model (38) to
describe the motion of the upper and lower boundaries. This 2D benchmark
proposed in [10] maintains the peculiar aspects of the coupled fluid-structure
problem, although it is not completely realistic for blood flow problems.

0    0.002 0.004 0.006 0.008 0.01 0.012 0.014
−1

−0.5

0

0.5

1

1.5

2

2.5

3
x 10

4

t (s)

dy
ne

/c
m

2

Pressure input profile

Figure 2: Input profile of the inflow Neumann boundary condition on the normal
stress.

4.3 Numerical results

The initial domain is a rectangle of height H = 1 cm and length L = 6 cm,
whose upper and lower edges are deformable in the vertical direction.

As in [22], we take the following parameters for the fluid: µ = 0.035 poise,
ρf = 1 gr/cm3; and for the structure: ρs = 1.1 gr/cm3, h = 0.1 cm, E =
0.75 · 106 dynes/cm2, ν = 0.5, k = 1 and γ = 10−2 dyne · s. These parameters
have been chosen in the physiological range for a human body.

On the inflow section we impose the following Neumann boundary condition:

σ
f
in = −

Pin

2

[
1 − cos

( πt

2.5 · 10−3

)]
n,
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while on the outflow section an homogeneous Neumann condition has been
imposed. The amplitude Pin of the pressure pulse has been taken equal to
2 · 104 dynes/cm2 and the time duration of the pulse is 5 ms. Fig. 2 shows the

input profile σf
in · n. We solve the problem over the time interval [0, 0.012] s.

We choose a conforming space discretization between fluid and structure:
(P1isoP2) - P1 finite elements for the fluid and P1 finite elements for the structure.
We have solved the problem with algorithm described in Sec. 3 on the elliptic
mesh of 31 × 21 P1 fluid nodes (2501 P1isoP2 nodes) shown in Fig. 3.

0 1 2 3 4 5 6
0

1

Figure 3: Elliptic mesh used for the simulations.

Fig. 4 shows the fluid pressure contour lines together with the structural
deformation at time t = 4, 8 and 12 ms. The solid displacement, definitely non-
negligible, has not been magnified. We see that initial pressure pulse propagates
in the artery at a finite speed, although the fluid is modelled as incompressible.
The reason of this fact lies in the compliance of the vessel wall.

Figure 4: Propagation of the initial pressure pulse, moving from the inflow to
the outflow section. Solutions every 4 ms.

We have computed average quantities on each vertical line of the mesh [22],
corresponding to the position zi = i · h, with i = 0, ..., 30 and h = 0.2 cm.
We calculated the diameter of the artery, the average pressure and the flux at
each time-step. From Fig. 5, 6 and 7, it is evident that a propagative pulse is
associated to all these three quantities.
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In Fig. 5 we report the comparison between the average pressure profiles
computed every 2 milliseconds on the same mesh but with two different time-
steps (δt = 10−4 and δt = 10−6). Fig. 6 shows the same comparison for the
flow rate. The choice of discretizing the fluid equations with the implicit Euler
scheme and the structure equation with the mid-point rule turns out to be quite
dissipative.

The diameter of the artery section along its axis is reported in Fig. 7. In order
to understand the influence of spatial discretization on the numerical solution,
we compare the solution calculated on the mesh of Fig. 3 with the solution
computed on a refined grid. The fine grid has 61 × 26 P1 fluid nodes (6171
P1isoP2 nodes). In both cases the time-step is δt = 10−4. We notice that the
solution for the fine grid is slightly faster than the one computed on the coarse
grid, as already pointed out in [22].

t = 2 ms t = 4 ms
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Figure 5: Average pressure profiles at different time levels for δt = 10−4 (dashed
line) and for δt = 10−6 (solid line).

4.4 Accuracy of the algorithm

We solve the problem with a sequence of decreasing time-steps: δt = 4 · 10−4, 2 ·
10−4, 10−4, 5 · 10−5, 4 · 10−5, on the mesh in Fig. 3. We compute the solution
of a semi-implicit monolithic algorithm on the same mesh but with a time-
step δt = 10−6: we will address to this solution as the “exact” solution. The
semi-implicit monolithic scheme shares the Step 0 with the algorithm of Sec.
3 but solves the system (11) by a global preconditioned GMRES. We compare
the solutions computed by the Yosida based method at the different time-steps
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Figure 6: Flow rate profiles at different time levels for δt = 10−4 (dashed line)
and for δt = 10−6 (solid line).
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Figure 7: Diameter of the artery section along its axis at different time levels
for the coarse mesh (solid line) and for the fine mesh (dashed line).

with the “exact” solution. We repeat the same procedure on the refined grid
61 × 26. Fig. 8 shows the error on the fluid velocity, pressure and the structure
displacement at time t = 10 ms, both evaluated in the L2-norm, for the two
meshes. We remark that the “exact” solutions are different for the two grids, so
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Figure 8: Error on the fluid velocity, pressure and structure displacement in the
L2-norm at time t = 10 ms: difference between the solution of the Yosida based
algorithm and the “exact” solution.

it can happen that the errors on the fine mesh are bigger than the ones on the
coarse grid, as in Fig. 8. As it was expected, since we approximate in time the
fluid equations by the backward Euler scheme, we recover a linear convergence
(no matter the refinement of the grid).

We check that the solution of a semi-implicit algorithm converges to the
solution of an implicit algorithm. We compare the solution of the semi-implicit
monolithic method with the solution of the implicit monolithic scheme for δt =
10−6, both on the coarse grid. In Fig. 9 we report the L2-error on the fluid
velocity and structure displacement. Again we find linear convergence. This
means that we can avoid to sub-iterate over the shape domain with important
time savings and without compromising the solution accuracy.

In order to evaluate the splitting error introduced by the Yosida method, we
compare at the different time-steps the solution of our scheme with the solution
of the semi-implicit monolithic method, computed on the same mesh (Fig. 3)
and with the same time-step. In Fig. 10 we report the splitting errors for fluid
velocity, pressure and structure displacement. The Yosida method introduces
an error that behaves like δt2 for all the three quantities. This means that the
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Figure 9: Error on the fluid velocity and structure displacement in the L2-
norm at time t = 10 ms: difference between the solution of the semi-implicit
monolithic algorithm and the solution of the implicit monolithic algorithm for
δt = 10−6.

splitting error is smaller than the time discretization error. Thus, the global error
in time for fluid velocity, pressure and structure displacement can be written as
the sum of two errors, the first one due to the time discretization scheme and
the second one due to the Yosida scheme:

err(δt) = cTD δt + cY os δt2, (39)

where cTD and cY os are two positive constants independent of δt. In [14] the
same behavior is observed in the case of the Yosida method applied to Navier-
Stokes in a fixed domain. So the empirical formula (39) holds for the Yosida
scheme applied to the fluid problem in both moving and fixed domains.

Finally, we can state that the Yosida based semi-implicit coupling scheme
converges linearly to the solution of an implicit monolithic scheme with the
advantage of great computational cost reduction, due to the explicit treatment
of the ALE-convection-viscous term and the use of a fractional step method.

5 Concluding remarks

In this paper we have focused on the numerical simulation of fluid-structure
interaction problems in the case of an internal flow of incompressible fluid whose
density is close to the structure density. Blood flow simulations belong to this
category of problems known to be critical for the strong added-mass effect. In
such situations fully implicit coupling schemes, preserving the energy balance,
are free of instabilities, at the expense of high computational costs, though. Good
stability properties are shown by a semi-implicit coupling method introduced
in [7]: it remains stable for a wide range of physical and discrete parameters.
The basic idea behind that scheme is to couple implicitly the pressure stress
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Figure 10: Splitting error on the fluid velocity and structure displacement in the
L2-norm at time t = 10 ms: difference between the solution of the Yosida based
algorithm and the monolithic solution computed with the same time-step.

to the structure with the double advantage of ensuring stability and reducing
computational costs, since the remaining fluid expensive terms are explicitly
treated. In [7] they perform the implicit-explicit splitting using a Chorin-Temam
projection scheme for the fluid.

In this report we propose an algebraic fractional-step method to split the
procedure in explicit and implicit steps. Unlike differential splitting, algebraic
fractional-step schemes need no auxiliary boundary conditions for the differential
sub-problems in which the original problem is divided. The importance of this
feature is even greater for fluid-structure interaction problems, in which the
accuracy of the transmission conditions plays a key role.

In our specific example we used the Yosida method to solve a simplified 2D
problem simulating the propagation of a pressure pulse in a straight pipe.

There exist many possible ways of extending the work here presented. First
of all, we shall evaluate how the added-mass effect affects the Yosida based
algorithm. We may apply our method to three-dimensional problems (3D model
for the fluid with 2D or 3D model for the structure). More realistic applications
would also allow us to compute the computational costs reduction of our scheme
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when compared to other algorithms. We shall also investigate the applicability of
other algebraic fractional-step methods, like Yosida scheme modifications called
Yosida3 [33] and Yosida4 [14].
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