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Abstract

In this paper, a new Navier-Stokes solver based on a finite difference approximation is pro-

posed to solve incompressible flows on irregular domains with open and traction boundary

conditions, which can be applied to simulations of fluid structure interaction, implicit solvent

model for biomolecular applications and other free boundary or interface problems. For this type

of problem, the projection method and the augmented immersed interface method (IIM) do not

work well or does not work at all. The proposed new Navier-Stokes solver is based on the local

pressure boundary method, and a semi-implicit augmented IIM so that a fast Poisson solver

can be used. The time discretization is based on a second order multi-step method. Numerical

tests with exact solutions are presented to validate the accuracy of the method. Application

to fluid structure interaction between an imcompressible fluid and a compressible gas bubble is

also presented.

keywords: Navier-Stokes equations, finite difference approximation, irregular domain, open

and traction boundary condition, local pressure boundary condition, augmented immersed interface

method (IIM).
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1 Introduction

One of our original motivations of this work is to develop new bio-molecular solvation methods for

atomistic simulations. Efficient atomistic simulation of large and complex bio-molecular systems is
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still one of the remaining challenges in computational molecular biology. One approach is to model

the solvation energetics in a mean-field manner by treating the solvent molecules collectively as a

continuum. To further improve the quality of the continuum solvent models, we proposed to further

model the solvent collective motion as that of an incompressible fluid governed by the Navier-Stokes

equations (NSE),

ρ

(

∂u

∂t
+ (u · ∇)u

)

+∇p = µ∆u+G, x ∈ R \ Ω, (1)

∇ · u = 0, x ∈ R \ Ω, u(x, t)
∣

∣

∣

∂R
= ub(x, t), u(x, 0) = u0(x), (2)

where G(x, y, t) is a body force that can include van der Waals and electrostatic forces (due to the

existence of biomolecules), R is the computation domain (often rectangular), u = (u, v) is the fluid

velocity, p is the pressure, and Ω ⊂ R is an inclusion, such as a biomolecule or a gas bubble to begin

with, see Figure 1 for an illustration. ρ and µ are the fluid density and viscosity, respectively. Other

boundary conditions such as Neumann or mixed boundary condition can also be prescribed along

the outer boundary ∂R. Along the interior boundary ∂Ω, there is typically a physical free boundary

condition. In the case that Ω represents a gas bubble, we have

{

nT · µ(∇u+∇uT ) · n = p− pair − γκ,

τ
T · µ(∇u+∇uT ) · n = 0,

on ∂Ω. (3)

Such a boundary condition is also called a traction, or open boundary condition if the right hand

sides are all zero [17, 18]. We refer the reader to [17, 5] and the references therein for the well-

posedness of the problem. The velocity is not necessarily zero along boundaries ∂Ω and ∂R, but it

is consistent with the incompressibility condition for the fluid, i.e.,
∫

∂Ω
u ·n ds+

∫

∂R
u ·n ds = 0. In

Section 3, we give an example about how to enforce this consistency condition.

We will consider both the fixed domain and the free boundary problem. For the free boundary

problem, the evolution of equation for the boundary problem ∂Ω is

dX

dt
= u(X, t), X(t) ∈ ∂Ω(t). (4)

Numerically we use the level set method to capture the free boundary ∂Ω.

While there are many papers in the literature about numerical methods for free boundary prob-

lem, flow problems on irregular domain, few deal with open and traction boundary conditions. For

small to medium Reynolds numbers, the projection method, for example, [2, 3, 4] is one of the

most popular methods to solve the NSE because its stability and accuracy. The NSE can be solved

by solving several Helmholtz/Poisson equations. Nevertheless, the projection method is based on

Helmholtz-Hodge decomposition. The projection method may not work well for open and traction

boundary conditions, see for example, [5]. In fact, There are some similarities between the problem

studied in this paper and the drop spreading problem discussed in [10] in which we have a free

boundary condition (traction boundary condition) on the drop surface but a Dirichlet BC at two

points. The Dirichlet boundary condition does make a difference for numerical simulation. If we
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Figure 1: A diagram of the set-up of the problem. The open traction boundary condition is defined

along the boundary ∂Ω; Dirichlet boundary conditions are defined along the boundary ∂R.

take the Dirichlet BC away with a closed bubble boundary and the entire free boundary condition,

the solution eventually blows up. This is one of our motivations to develop different but more stable

approach.

Another type of methods are called local pressure boundary conditions [8, 9]. There are similar-

ities between local pressure boundary conditions and the local vorticity boundary conditions. The

simplicity of the local pressure boundary condition approach and its easy application to more general

flow settings make the resulting scheme an attractive alternative to the projection type methods for

solving incompressible Navier-Stokes equations in the velocity-pressure formulation. This approach

is also implemented using a finite element formulation [17]. The key idea in the local pressure

boundary condition approach is to solve the pressure from the momentum equation. A Neumann or

Dirichlet boundary condition and the incompressibility condition are used to evaluate the pressure

boundary condition for the pressure, which is the key to the stability. In the original local pressure

boundary method [8, 9], the Neumann boundary condition is derived while in this paper, a Dirichlet

boundary condition is used. Note that the original local pressure boundary method [8, 9] does not

directly apply to traction boundary conditions for which derivatives of the velocity and the pressure

are coupled together. A direct interpolation of the velocity to get the Laplacian from the previous

step is likely unstable. Note that most of the methods using finite difference discretization are based

on rectangular domains. The same treatments are often quite sensitive to curved boundaries.

Another challenging is how to solve NSE on irregular domain efficiently. In [7], the authors

proposed the augmented immersed interface method (AIIM) for NSE on irregular domain. The most

important advantage of AIIM is that we can treat the irregular domain problem on a rectangular

domain so that fast solvers for Poisson/Helmholtz equations or Navier-Stokes equations can be

applied after we introduce a co-dimension one quantity along the irregular boundary. The question
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here is how to combine the AIIM with the new local pressure boundary condition approach. In this

paper, we use the AIIM for solving the velocity, then use our existing fast Poisson solver (also based

on AIIM) for irregular domains to solve the pressure.

In our previous work on AIIM for Navier-Stokes equations, we were using the traditional projec-

tion method that is based on Crank-Nicholson (trapezoidal) type of scheme for the prediction step.

The augmented variable is also split in two time steps. One of obvious advantage of this approach is

that the method can be second order both in space and time with only two step quantities and it is

relatively simple to implement. However, it is known that the Crank-Nicholson type discretizetion

is marginal stable which may not be ideal for non-linear problems or curved boundaries. Thus it is

more stable if we can use a fully implicit discretization for the diffusion term. This is why we called

our discretization as a semi-implicit method since other terms in the Navier-Stokes equations are

still discretized explicitly.

The rest of papers are organized as follows. In the next section, we outline the main steps of our

algorithm and explain the new ideas of our method and the rationality. In Section 3, we validate

our method using examples that have exact solutions. Then we present some numerical simulations

of fluid structure interaction of a fluid with a gas bubble. We conclude in the last section.

2 The AIIM using local pressure boundary condition

As mentioned before, we assume that the domain R is a rectangle [a, b]× [c, d] with a gas bubble

inclusion Ω. The spatial spacing is chosen as hx = (b− a)/M , hy = (d− c)/N , where M and N are

the number of grid lines in the x and y directions, respectively. Let the time step size be ∆t. We

use a standard uniform Cartesian grid for simplicity. Here we emphasize the spatial discretization.

The time discretization is based on a multi-step method.

From one time step tk to the next time level tk+1, our proposed new algorithm has the following

steps.

Step 1: Solve the velocity with a fixed free boundary using the AIIM.

3uk+1 − 4uk + uk−1

2∆t
+ (u · ∇u)

k+1
+∇p̃k+1 = µ∆uk+1 +Gk+1, (5)

(

−p̃k+1 + nT · µ
(

∇uk+1 +∇
(

uk+1
)T
)

· n + γκ+ pair

)∣

∣

∣

∂Ω
= 0, (6)

τ
T · µ

(

∇uk+1 +∇
(

uk+1
)T
)

· n
∣

∣

∣

∂Ω
= 0, (7)

[

uk+1
]

∂Ω
= 0,

[

∂uk+1

∂n

]

∂Ω

= qk+1, (8)
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where

p̃k+1 = 2pk − pk−1, (9)

(u · ∇u)
k+1

= 2 (u · ∇u)
k
− (u · ∇u)

k−1
(10)

Gk+1 = 0, if (x, y) ∈ Ω, (11)

κ is the curvature of the free boundary ∂Ω, and γ is the coefficient of the surface tension.

Note that this step is to approximate the velocity at time step k + 1. It is obvious that the

discretization of the momentum equations is second order accurate both in space and time, see also

[5]. The momentum equation is extended to the entire rectangular domain so that a fast Helmholtz

solver, say from [1] can be applied. The equivalent Helmholtz can be written as

∆uk+1 −
3

2µ∆t
uk+1 =















1

µ

(

(u · ∇u)k+1 +∇p̃k+1 +
−4uk + uk−1

2∆t
−Gk+1

)

if (x, y) ∈ R \ Ω,

0 if (x, y) ∈ Ω.

The pressure p̃k+1 is extrapolated from the pressure at previous two steps and so is the non-

linear term (u · ∇u)
k+1

. The augmented variable qk+1 which is the jump in the normal derivative

of the velocity is chosen such that the velocity uk+1 satisfy the open traction condition (3) with an

approximated pk+1. We refer the readers to [12, 13, 7] for the AIIM for Navier-Stokes equations. Note

that, here we use the backward Euler’s method instead of the Crank-Nicholson type discretization for

the stability consideration as we explained in the Introduction section. This seems to be important

for the stability of the algorithm for open and traction boundary conditions.

Since we are only interested in the quantities outside of Ω (the gas bubbles), p̃k+1 and (u · ∇u)
k+1

can be moved to the right hand side as a source term for the Helmholtz equation of uk+1. The quan-

tities of p̃k+1 and (u · ∇u)
k+1

are approximated use standard second order central finite difference

schemes if they are two grid distance away from the boundary. At grid points near or on the bound-

ary, they can be approximated using a first order approximation without affecting second order

accuracy, see for example [12]. We will see that the coefficient matrix for the augmented variable

qk+1 is well-conditioned with almost O(1) condition number.

Step 2: Solve the pressure from the equation obtained after applying the gradient operator to

the momentum equation,

∆pk+1 =

{

−∇ · (u · ∇u)
k+1

+∇ ·Gk+1 if (x, y) ∈ R \ Ω,

0 if (x, y) ∈ Ω,
(12)

pk+1
∣

∣

∂Ω
=

(

nT · µ
(

∇uk+1 +∇
(

uk+1
)T
)

· n + γκ+ pair

)∣

∣

∣

∂Ω
, (13)

where the boundary condition is satisfied from the pressure outside of the air bubble. This is a

Poisson equation defined on an exterior irregular domain. We simply call the IIM packages for

Poisson equations on irregular domain [11], see also [6, 12, 16] for more technical details.

5



2.1 Some discretization details

In the AIIM, the key step is to obtain the matrix-vector multiplication for the linear system of

equations for the augmented variable. It contains two major steps. One step is to solve the Navier-

Stokes equation given the augmented variable; The second step is to evaluate the residual of the

boundary condition, we refer the readers for Chapter 6 of the book [12] for the detail.

Given a value of the augmented variable, here is the jump of normal derivative of the velocity

across the air bubble boundary. We briefly explain how to discretize the Helmholtz and Poisson

equations. Consider a grid point (xi, yj), if the boundary does not cut the centered five-point finite

difference stencil, then we use the standard second order central finite difference scheme to discretize

the Helmholtz and Poisson equations. Those grid points are call regular. Otherwise a grid point

(xi, yj) is called irregular at which the boundary ∂Ω cuts through the centered five-point stencil.

At an irregular grid point (xi, yj), assume that the boundary ∂Ω cuts the grid line at (x∗
i , yj),

x∗
i = xi + αhx, −1 ≤ α ≤ 1, then the second order partial derivative in x can be approximated by

∂2u

∂x2
(xi, yj) =

ui−1,j − 2ui−1,j + ui+1,j

h2
x

−
C(xi, α)

h2
x

+O(h), (14)

where
C(xi, α)

h2
x

= [u] + [ux] (1− |α|) h+ [uxx]
(1− |α|)

2
h2
x

2
, (15)

see Lemma 1 in [14]. From [ ∂u∂n ] = q, we can get [ ∂u∂x ], [
∂2

u

∂x2 ] as described below. For simplicity of

notation, we have dropped the index k + 1.

Let (X,Y ) be a point on the interface ∂Ω which is a smooth closed interface. Let the unit

outward normal direction be n = (cos θ, sin θ), where θ is the angle between the outward normal

direction and the x-axis, see Figure 1. we define the local coordinates at (X,Y ) as

ξ = (x−X) cos θ + (y − Y ) sin θ,

η = −(x−X) sin θ + (y − Y ) cos θ.
(16)

Then ∂Ω can be represented by ξ = χ(η) in the neighborhood of (ξ, η) = (0, 0), which satisfies

χ(0) = 0, χ′(0) = 0, and χ′′(0) = κ, the curvature of ∂Ω at (0, 0). The following interface relations

at (X,Y ) can be derived from the NSE and the interface conditions.

[u] = 0, [uξ ] = q, [uη ] = 0,

[uηη ] = −κq, [uξη ] = −
∂q

∂η
,

[uξξ ] = −[uηη ] + [pξ]n+ [pη] τ + [uξ]u · n− [G].

(17)

Once we have the jump relations in the local coordinate system, then it is easy to transform them
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back in the original coordinate system and get the following relations:

[ux] = [uξ] cos θ − [uη] sin θ,

[uy] = [uξ] sin θ + [uη] cos θ,

[uxx] = [uξξ ] cos
2 θ − 2[uξη] cos θ sin θ + [uηη] sin

2 θ,

[uyy] = [uξξ] sin
2 θ + 2[uξη] cos θ sin θ + [uηη] cos

2 θ.

(18)

With these jump condition, we can approximate ux, uy, uxx, uxy according to (14)-(15) to get the

finite difference equations for the Helmholtz and Poisson equations.

2.2 Pressure boundary condition along outer boundary

We need a boundary condition along outer boundary ∂R for the Poisson equation for the pressure.

Often it is an approximates normal derivative condition. However, with a prescribed velocity, the

incompressibility condition, and the NSE equations, we can use the techniques described in [9, 15]

to get more accurate normal derivative boundary condition for the pressure. We use the side x = a

to explain the process. For simplicity and preciseness, we will ignore the time index. Since we know

the velocity u = (u, v) along x = a which is a function of y, we also know uy and vy. From the

incompressibility condition ux + vy = 0, we also know ux which is −vy along x = a. Thus along

x = a, we have

(u · ∇)u · n = uux + vuy = −uvy + vuy, (19)

which is known quantity. The key part is how to approximate the Laplacian of u · n = uxx + uyy.

Since we know u along x = a, we just need to approximate uxx. Note that

u(a+ h, y) = u(a, y) + ux(a, y)h+
h2

2
uxx(a, y) +O(h2),

from which we get an approximation for uxx in terms of the values of u at the grid point

uxx(a, yj) ≈ 2
u1,j − u0,j − vy(a, yj)h

h2
. (20)

The normal derivative of the pressure along x = a can be approximated by

px(a, yj) = µuxx(a, yj) +G1 − ut(a, yj)− (u · ∇)u(a, yj), (21)

where G1 is the x- component of the external force G.

3 Numerical examples

As a first numerical test for our proposed method, we consider an example in a stationary irregular

domain in which the exact solution is known analytically. We use it as an accuracy check. The
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analytic solution is

u(x, y, t) = w(t)

(

y
√

x2 + y2
− 2y

)

, (22)

v(x, y, t) = w(t)

(

x
√

x2 + y2
+ 2x

)

, (23)

p(x, y, t) =

(

(x2 + y2)2 −
1

4

)2

. (24)

The domain of the interest is the domain bounded by x2 + y2 ≥ 1/4 and −1 ≤ x, y ≤ 1. The

source term G is derived directly from the exact solution. The Dirichlet boundary condition is

prescribed also using the exact solution along the rectangular boundary.

In Table 1, we show the grid refinement analysis to check the order of the accuracy of our method.

In the test, we take T = 5, w(t) = 1− e−t. Since we are interested in the computed solutions in the

domain Ω, we set

‖Eu‖∞ = max
rij≥1/2

{|Uk
ij − u(xi, yj , T )|+ max

rij≥1/2
{|V k

ij − v(xi, yj , T )|},

‖Ep‖∞ = max
rij≥1/2

{|P k
ij − p(xi, yj , T )|},

to be the error in the velocity and the pressure at time T . The number order is the approximated

order of accuracy from the two consecutive errors,

orderu =
log
(

‖Eu‖∞,2N/‖Eu‖∞,N

)

log 2
; orderp =

log
(

‖Ep‖∞,2N/‖Ep‖∞,N

)

log 2
. (25)

Second order accuracy is clearly seen for both the velocity and the pressure.

N ‖Eu‖∞ orderu ‖Ep‖∞ orderp
16 3.2956 10−2 3.0911 10−1

32 5.9132 10−3 2.4786 8.1862 10−2 1.9168

64 1.1330 10−3 2.3838 2.0834 10−2 1.9743

128 2.6351 10−4 2.1042 5.2709 10−3 1.9828

256 7.5585 10−5 1.8017 1.3087 10−3 2.0099

512 1.8711 10−5 2.0142 3.2783 10−4 1.9971

Table 1: A grid refinement analysis against the exact solution at a final time T = 5 with w(t) =

1− e−t, where ‖Eu‖∞ is the sum of the maximal error in the velocity component u and v, order is

the approximated convergence order computed from the two consecutive errors.
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It is interesting to note that the convergence seems to be independent of the initial data for long

time computations. If we start with u0 = u(x, 0)/2.5, u−1 = u(x,−∆t)/2.5, p0 = 0, p−1 = 0, we

still get almost the exact same results if the final time is large enough.

In Table 2, we show the grid refinement result for w(t) = sin t. In this test, there is no steady

state solution since the source term depends on time t all the time. We still see clean second order

accuracy in the infinity norm.

N ‖Eu‖∞ orderu ‖Ep‖∞ orderp
16 3.2727 10−1 3.0214 10−1

32 1.8534 10−2 4.1422 7.2537 10−2 2.0584

64 5.2028 10−3 1.8328 1.8357 10−2 1.9824

128 1.1859 10−3 2.1333 4.5648 10−3 2.0077

256 2.9045 10−4 2.0296 1.1103 10−3 2.0396

512 6.2627 10−5 2.2134 2.7829 10−4 1.9962

Table 2: A grid refinement analysis against the exact solution at a final time T = 5 with w(t) = sin t.

Surprisingly, we also got almost the same result if we do not use the exact initial data but with

u0 = u(x, 0)/2.5, u−1 = u(x,−∆t)/2.5, p0 = 0, p−1 = 0.

3.1 An example for fluid and air bubble interaction

Here we use a simple model to simulate fluid and air bubble interaction. The fluid is incompressible

and is modeled by the NSE. The air bubble is compressible and is governed by ideal gas law pgas(t) =

λ/V γ(t), where pgas(t) is the pressure in the gas bubble, V (t) is the volume of the bubble, and λ

is a constant. Again we first test our code for a steady state case with γ = 1 in which we have an

analytic solution,

u(x, y, t) =
x

x2 + y2
, (26)

v(x, y, t) =
y

x2 + y2
, (27)

p(x, y, t) = −
1

2(x2 + y2)
, (28)

G = 0, (29)

outside the unit circle r = 1 but within the domain [−2, 2] × [−2, 2]. The Dirichlet boundary

condition is prescribed using the exact solution along the rectangular boundary. Note that n ·u 6= 0

at the boundary r = 1 in this example. In Table 3, we show the grid refinement analysis at T = 1.5.

We can see second order convergence for all the variables.
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N ‖Eu‖∞ orderu ‖Ep‖∞ orderp
16 4.844 10−2 5.0781 10−3

32 1.5468 10−2 1.6470 1.6917 10−3 1.5859

64 3.8509 10−3 2.0060 5.3791 10−4 1.6530

128 1.1232 10−3 1.7775 1.3885 10−4 1.9538

256 3.0374 10−4 1.8868 3.6570 10−5 1.9248

512 7.8641 10−5 1.9495 9.0872 10−6 2.0088

Table 3: A grid refinement analysis against the exact solution at a final time T = 1.5.

Now we show the test results for the dynamic case. To be more realistic, we now use γ = 1.4.

We start with a circular boundary and set σ = 1, λ = π. The initial velocity and pressure are all set

to zero. The initial boundary was set as the zero level set of a Lipschitz continuous function ϕ(x, t)

at t = 0, often the signed distance function (or approximated) to the boundary ∂Ω. The level set is

updated by the level set equation

ϕt +∇ϕ · u = 0 (30)

along with a re-initialization process.

Enforce the consistent boundary condition

To ensure the consistent condition
∫

∂R +
∫

∂Ω u · n ds = 0. We adjust the outer Dirichlet boundary

condition at each time step. In many applications, the outer boundary often is a truncated one.

Various approaches have been developed to approximate the boundary condition. Here we also

propose a one for our problem. With an approximate Dirichlet boundary condition, we can solve

the system to get the velocity. Then we compute the flux along the traction boundary
∫

∂Ω
u ·n ds. It

is reasonable to assume that problem is symmetric and fluid can freely get in and out only along the

normal direction. Thus we can distribute the flux along four sides of the outer boundary. Assume

that the rectangular domain is [a, b] × [c d]. We take the side x = a as example. We would set

v = 0, u = C(d − y)(y − c). The constant is take as C = 1

4

∫

∂Ω u · n ds/
∫ d

c (d− y)(y − c)dy. In this

way, the velocity is continuous up to all the boundaries.

Due to the symmetry, if we start with a circular gas bubble, the bubble should remain circular.

The pressure inside the gas bubble is pgas(t) = λ/V 1.4(t), where V (t) is the volume of the gas bubble

at time t. The driving force is due to the difference in the pressure

δp = pgas − Tsurf − p0 =
π

(πR2(t))1.4
−

1

R(t)
− p0. (31)

If p0 = 0, the equilibrium Re is the solution of π/(πR2)1.4 = 1/R, which is Re = π−2/9 = 0.7753 · · · .

If we start with R(0) > Re, then the gas bubble will shrink otherwise it will expand. In Fig. 2,

we plot the the radius R(t) versus time when µ = 2 or Re = 1 with the mesh size m = n = 64
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for the domain [−2, 2] × [−2, 2]. In this case, the boundary of the gas bubble converges to its

equilibrium monotonically. The error of the equilibrium radius is of O(10−4) indicating second

order convergence.

(a)

0 2 4 6 8 10 12 14 16 18 20

0.5

1

1.5

time

r
0
=1.4 and r

0
=0.6, µ=2, m=n=64 (b)
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0.6
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0.8
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1

1.1

1.2

1.3

1.4

Figure 2: The radius versus time. The initial circle is R = 1.4 and R = 0.6 respectively. (a) µ = 2,

the radius converges to its equilibrium monotonically. (b), µ = 0.5, the radius first converges to its

equilibrium, then overshoots, then stabilizes around the equilibrium.
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(b)
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Figure 3: The radius versus time when µ = 0.2. The inertial of the gas bubble causes some

oscillations around the equilibrium but eventually stabalized. The The left plot, R(0) = 0.9; The

right plot, R(0) = 0.6. In each case, the bottom plot is a zoom-in plot.

If we increase the Reynolds number by reducing µ to µ = 0.2, then the effect of the inertial

term in the Navier-Stokes becomes more apparent, we can see larger overshoot and more oscillatory

behavior of the radius around the equilibrium, see Fig. 3. The error in the radius when it approaches

equilibrium is about 7.000× 10−3 for the contracting case, and 1.900× 10−3 for the expanding case.

Similar behaviors are also observed in [19].

If we increase the Reynolds number further by reducing µ to µ = 0.15, we see the bubble oscillates

around the equilibrium, see Fig. 4. Note that in the figure, the axis in time and the radius have
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very different scales. Over a short period of time, the change in the radius is rather smooth as in

the bottom plots of Fig. 2 if the same scale is used.
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Figure 4: The radius versus time when µ = 0.15. The inertial of the gas bubble causes oscillations

around the equilibrium. The left plot, R(0) = 0.9; The right plot, R(0) = 0.6.

Finally we start with an initial bubble with more complicated geometry

r = 1 + 0.3 sin(7θ), 0 ≤ θ < 2π. (32)

In Fig. 5, we present a few snap-shots of the bubble interface at several time instances with µ = 0.5.

In this case, the surface tension force is more dominant and the bubble relaxes to the circular shape

quickly before it converges to its equilibrium circular shape. It over-shoots a couple of times around

the equilibrium before it stabilizes.
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Figure 5: (a), Snap-shots of the bubble at t = 0, t = 0.096798, t = 0.19306, and t = 13.740,

respectively. (b), The averaged radius versus time when µ = 0.5.
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4 Conclusions and acknowledgments

In this paper, we have developed an efficient and stable second order method for Navier-Stokes

equations on irregular domain with open and traction boundary conditions. The method is based on

the AIIM for the velocity prediction, and a separate Poisson solver for the pressure on the irregular

domain with an approximate Dirichlet boundary condition. Numerical examples have shown the

robustness and stability of the proposed method.

The author was partially supported by the US ARO grants 550694-MA, the AFSOR grant

FA9550-09-1-0520, the US NSF grant DMS-0911434, and the NIH grant 096195-01. Zhao is partially

supported by NSF grant DMS-1115698.

References

[1] J. Adams, P. Swarztrauber, and R. Sweet. Fishpack: Efficient Fortran subprograms for the

solution of separable elliptic partial differential equations. http://www.netlib.org/fishpack/.

[2] J. B. Bell, P. Colella, and H. M. Glaz. A second-order projection method for the incompressible

Navier-Stokes equations. J. Comput. Phys., 85:257–283, 1989.

[3] D. L. Brown, R. Cortez, and M. L. Minion. Accurate projection methods for the incompressible

Navier-Stokes equations. J. Comput. Phys., 168:464, 2001.

[4] W. E and J. Liu. Projection method: I. convergence and numerical boundary-layers. SIAM J.

Numer. Anal., 32:1017–1057, 1995.

[5] J. L. Guermond, P. Minev, and J. Shen. Error analysis of pressure-correction schemes for

the time-dependent Stokes equations with open boundary conditions. SIAM J. Numer. Anal.,

43:239–258, 2005.

[6] J. Hunter, Z. Li, and H. Zhao. Autophobic spreading of drops. J. Comput. Phys., 183:335–366,

2002.

[7] K. Ito, Z. Li, and M-C. Lai. An augmented method for the Navier-Stokes equations on irregular

domains. J. Comput. Phys., 228:2616–2628, 2009.

[8] H. Johnston and J. Liu. Finite difference schemes for incompressible flow based on local pressure

boundary conditions. J. Comput. Phys., 180:120–154, 2002.

[9] H. Johnston and J. Liu. Accurate, stable and efficient Navier-Stokes solvers based on explicit

treatment of the pressure term. J. Comput. Phys., 188:221–259, 2004.

[10] Z. Li, , M-C. Lai, G. He, and H. Zhao. An augmented method for free boundary problems with

moving contact lines. Computers and Fluids, 39:1033–1040, 2010.

13



[11] Z. Li. IIMPACK: A collection of fortran codes for interface problems. Anony-

mous ftp at ftp.ncsu.edu under the directory: /pub/math/zhilin/Package and

http://www4.ncsu.edu/~zhilin/IIM, last updated: 2008.

[12] Z. Li and K. Ito. The Immersed Interface Method – Numerical Solutions of PDEs Involving

Interfaces and Irregular Domains. SIAM Frontier Series in Applied mathematics, FR33, 2006.

[13] Z. Li, K. Ito, and M-C. Lai. An augmented approach for Stokes equations with a discontinuous

viscosity and singular forces. Computers and Fluids, 36:622–635, 2007.

[14] Z. Li and M-C. Lai. The immersed interface method for the Navier-Stokes equations with

singular forces. J. Comput. Phys., 171:822–842, 2001.

[15] Z. Li, X. Wan, K. Ito, and S. Lubkin An augmented pressure boundary condition for a Stokes

flow with a non-slip boundary condition. Communications in Computational Physics, 1:874–

885, 2006.

[16] Z. Li, H. Zhao, and H. Gao. A numerical study of electro-migration voiding by evolving level

set functions on a fixed cartesian grid. J. Comput. Phys., 152:281–304, 1999.

[17] J. Liu. Open and traction boundary conditions for the incompressible Navier-Stokes equations.

J. Comput. Phys., 228:7250–7267, 2009.

[18] A. Poux, S. Glockner, and M. Azaiz. Improvements on open and traction boundary conditions

for Navier-Stokes time-splitting methods. J. Comput. Phys., 230:4011–4027, 2011.

[19] M. Sussman and E.G. Puckett. A coupled level set and volume-of-fluid method for computing

3D and axisymmetric incompressible two-phase flows. J. Comput. Phys., 162:301-337, 2000.

14


