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Abstract—This paper presents a semi-incremental 

recognition method for online Japanese handwritten text 

recognition, which is used for busy recognition interface 

(recognition while writing) and lazy recognition interface 

(recognition after writing) without large waiting time. We 

employ local processing strategy and focus on a recent 

sequence of strokes defined as “scope”. For the latest scope, 

we build and update a segmentation and recognition 

candidate lattice and advance the best-path search 

incrementally. We utilize the result of the best-path search in 

the previous scope to exclude unnecessary segmentation 

candidates. This reduces the number of candidate character 

recognition with the result of reduced processing time. We 

also reuse the segmentation and recognition candidate lattice 

in the previous scope for the latest scope. Moreover, 

triggering recognition processes every few strokes save CPU 

time. Experiment made on TUAT-Kondate database shows 

the effectiveness of the proposed method not only in reduced 

processing time and waiting time, but also in recognition 

accuracy. 

Keywords—Online recognition, handwriting recognition, 

incremental recognition 

I. INTRODUCTION 

In recent years, due to the development of pen input 
devices such as Tablet PCs, electronic whiteboards, PDAs, 
digital pens (like the Anoto pen) and touch-based smart 
phones, Pad PCs, and so on, online handwritten text 
recognition as an input method has been given a 
considerable attention after a long period of research [1, 2, 
3]. Compared to isolated character recognition, 
handwritten text recognition faces the difficulty of 
character segmentation and recognition. Moreover, in 
continuous handwriting, characters tend to be written more 
cursively. 

To obtain high recognition rate, it is best to recognize 
online handwritten text after the whole text is completed 
since the full context information is available. We call this 
method as batch recognition [4]. Batch recognition is 
appropriate for the user interface that users are writing 
while thinking. In this case, users do not need recognition 
result when writing and they only need recognized text 
when they break writing. We call this user interface as lazy 
recognition interface [5] while we call on-the fly 
recognition after each character is written as busy 
recognition interface. However, waiting time of 
recognizing whole text by the batch recognition takes time 
as the amount of characters increases. 

For the busy recognition interface and the lazy 
recognition interface as well, incremental recognition is 
essential. Tanaka shows an incremental recognition system 
for online Japanese handwriting recognition in his patent 
application [6]. Wang, Liu and Zhou have presented an 

approach to real-time (incremental) recognition of Chinese 
handwritten text [7, 8]. In Wang’s method, the candidate 
characters are generated and recognized to assign 
candidate classes whenever a new stroke is produced,�and 
sentence recognition result is produced whenever pen up 
time exceed a specific value. The incremental recognition 
is also useful for the lazy recognition interface. We can 
apply it in background while a user is writing so that the 
whole recognition result is obtained without any noticeable 
waiting time.  

Here in this paper, we focus on when incremental 
recognition processes are triggered. If a system triggers 
them whenever every new stroke is given, we classify it as 
pure incremental recognition. So far, all the published 
incremental recognition systems are classified in this group. 
However, we may trigger the processes by a little larger 
unit, i.e., several strokes so that we can exploit a little 
larger context. We classify such a system as semi-
incremental recognition. This paper presents a semi-
incremental recognition of online handwritten Japanese 
text, which is useful for both the busy and the lazy 
recognition interfaces. Whenever the number of newly 
written strokes reaches to the fixed number Ns named 
window size, the new strokes are added to the previous 
strokes, character patterns are segmented, candidate 
character patterns are recognized, a lattice representing 
segmentation and recognition candidates is updated, and 
search is processed, while writing continues. This process 
is repeated on recent strokes rather than on full text, so that 
text recognition result is shown immediately after writing 
is finished without noticeable waiting time while keeping 
high recognition rate. 

Although batch recognition achieves high recognition 
rate with low total CPU time, it costs large waiting time as 
the amount of characters increases. On the contrary, pure 
incremental recognition incurs little waiting time but the 
recognition rate may drop due to local processing of every 
stroke and the total CPU time is increased due to repeated 
processing after receiving every stroke. Semi-incremental 
recognition with appropriate value of the window size may 
maintain high recognition rate as batch recognition, incur 
little waiting time and decrease the total CPU time 
compared to pure incremental recognition. Human 
recognition is neither too global covering full text nor too 
local focusing to each stroke, so that the semi-incremental 
recognition may realize the processing similar to human 
way of employing context. 

 Here we define several terms. A stroke is a sequence 
of pen-tip coordinates from pen-down to pen-up. An off-
stroke is a vector from pen-up to pen-down. Digital ink is a 
sequence of strokes and off-strokes. 

In the rest of this paper, Section 2 gives an overview of 
the baseline batch recognition method. Section 3 describes 
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the semi-incremental recognition method. Section 4 
presents experimental result of the semi-incremental 
recognition method. Section 5 draws our conclusion. 

II. OVERVIEW OF THE BATCH RECOGNITION METHOD 

This section describes the overview of the batch 

recognition method��It processes all on-line handwritten 

text patterns at a time, i.e., after all strokes are added, it 
estimates the average character size and the center line, 
applies segmentation based on them, recognizes each 
segment of strokes and finally employs context 
information to find the best recognition of handwritten text.  

A. Segmentation 

Using the technique presented in [9], we first separate 
multiple text lines into each text line. Then, we segment 
each text line into candidate character patterns as shown in 
Figure 1. Here, we employ the strategy of over-
segmentation, using SVM to classify each off-stroke into 
three classes, segmentation point (SP), non-segmentation 
point (NSP) and undecided point (UP) according to some 
geometric features4]. A segmentation point SP separates 
two characters at the off-stroke while a non-segmentation 
point NSP indicates the off-stroke is within a character. 
Off-strokes with low confidence are classified as UP. An 
off-stroke between two text lines is treated as SP. A sub-
sequence of strokes delimited by SP or UP off-strokes is 
called a primitive segment. A primitive segment and 
consecutive primitive segments beside UP form candidate 
character patterns. Concatenation of consequent primitive 
segments is limited by their total lengths. 

 

 
Figure 1.  Segmentation process. 

B. Candidate lattice construction 

Employing character recognition, each candidate 
character pattern is associated with a number of candidate 
classes with confidence scores. All the possible 
segmentations and recognition candidate classes are 
represented by a segmentation-recognition candidate 
lattice (src-lattice in short) as shown in Figure 2, where 
each node denotes a candidate segmentation point and 
each arc denotes a character class assigned to a candidate 
character pattern. 

 
Figure 2.  Segmentation-recognition candidate lattice 

For implementation, we employ candidate character 
blocks and each of them represents a set of all the 
candidate character patterns separated by two adjacent SP 
off-strokes. Figure 3 shows them for the src-lattice with 
two SP off-strokes and three candidate character blocks.  

 

 
Figure 3.  Candidate character blocks. 

C. Best-path search and recognition 

From a src-lattice, paths are evaluated by combining 
the scores of character recognition, geometric features and 
linguistic contexts as proposed in [4]. By applying the 
Viterbi algorithm, the optimal path which has the highest 
evaluation score is found. Text recognition result is 
obtained from this path. 

III. SEMI-INCREMENTAL RECOGNITION METHOD 

The main objective to develop the semi-incremental 
recognition method is to perform possible computation as 
much as possible while a user is writing. Moreover, it 
should keep the recognition rate as high as possible 
compared with the batch recognition method. In the batch 
recognition, the majority of computing time is spent for the 
recognition of candidate character patterns. If those can be 
processed in the background of user’s handwriting, text 
recognition result will be displayed without any noticeable 
waiting time.  

A. Strategy of local processing 

Semi-incremental recognition performs recognition 
process after receiving some newly written strokes. Ideally, 
we only have to process the newly received strokes and 
update the src-lattice. In fact, the newly added strokes 
affect recognition of a small number of strokes previously 
received. Thus, the section we must process includes these 
strokes and the newly received strokes. We call it “scope”.  
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As for best-path search, it is made from the first stroke 
to the last stroke in the batch recognition while it can be 
made incrementally using scope. Therefore, if the scope is 
well defined, the semi-incremental recognition should 
produce almost the same recognition result without 
incurring much waiting time. 

We also introduce a pointer named segmentation 
resuming pointer, or Seg_rp in short. This is a SP up to 
which the result of segmentation and character recognition 
is considered stable and fixed. Segmentation and 
recognition is resumed from the latest Seg_rp according 
the evaluation on the latest scope. 

B. Processing flow  

From the previously described strategy, Figure 4 shows 
the processing flow of the semi-incremental recognition 
method. 

   
Figure 4.  Flow of semi-incremental recognition 

First, we receive new strokes. Secondly, we update 
Seg_rp. Thirdly, we determine the scope. Since this 
processing step includes segmentation, we do not need to 
apply it in the successive processing steps. Fourthly, we 
update the src-lattice. Finally, we resume the best-path 
search from the beginning in this scope to get text 
recognition result. The result is used for next processing 
cycle. 

C. Determination of scope 

To determine the scope, we use the result from the 
segmentation process. The segmentations of the strokes 
before and after the system has received new strokes are 
compared with each other. If classification-changed off-
strokes are detected, we consider the strokes before the 
earliest classification-changed off-strokes are stably 
classified while the strokes after that are not classified 
stably. Otherwise, the off-stroke before the newly added 
strokes is considered as the earliest classification-changed 
off-stroke. This earliest classification-changed off-stroke 
may occur within some candidate character block or 
between two candidate character blocks. We define the 
scope as the sequence of strokes starting from the first 
stroke of the candidate character block containing or just 
preceding the earliest classification-changed off-stroke to 
the last stroke. 

If we had to compare the results of segmentation before 
and after new strokes are added over a long range strokes, 
however, it slows down the process and contradicts the 
local processing strategy. Therefore, we employ Seg_rp 
from which we compare segmentation.  

D. Seg_rp and segmentation point determination 

The pointer: Seg_rp is determined from SP off-strokes. 
From the result of text recognition up to the latest scope, 
i.e., the best-path up to the latest scope in the src-lattice, an 
off-stroke between two recognized characters can be 
considered as SP confidently. Among those off-strokes, we 
choose Seg_rp based on the number of characters from 
each off-stroke to the last character in the recognition 
result. If this number equals to N_CHAR, that off-stroke 
will be determined as a new Seg_rp. N_CHAR is defined 
as a fixed number of characters required to determine a 
new Seg_rp. The idea behind this is that SPs away from 
new strokes are stable. 

Determination of SP off-strokes has large effect to the 
recognition rate and performance of the system. Although 
SP off-strokes can be detected based on the result of 
segmentation process, the performance of segmentation by 
SVM for detecting SP off-strokes is still limited. Due to 
the uncertainty of segmentation, a large number of outputs 
from SVM are marked as UP. Each UP roughly doubles 
the number of candidate character patterns for which 
character recognition is applied. To overcome this problem, 
we also use the result of text recognition up to the latest 
scope to determine UP to SP off-strokes. UP off-strokes 
between recognized characters, before the latest 
N_CHAR_MIN characters in the recognition result are 
determined as SP off-strokes. Here, N_CHAR_MIN 
denotes a predefined constant for the minimum number of 
characters that follow an UP off-stroke to make it a stable 
SP off-stroke. Generally, N_CHAR_MIN is smaller than 
or equal to N_CHAR. 

By setting Seg_rp, the maximum number of characters 
in the last block is bounded by N_CHAR plus the number 
of new characters in newly added strokes. This is the main 
factor to reduce the maximum waiting time in each 
processing. Moreover, changing more UP off-strokes to SP 
in lattice blocks also reduces the time cost to rebuild the 
src-lattice due to shortened block size. 

E. An example of the processes 

Figure 5 shows an example to determine the scope. 
Assume the latest scope with segmentation and text 
recognition results in Figure 5(a). Then, the new strokes 
marked red are added. We update Seg_rp and apply 
segmentation from the updated Seg_rp (Figure 5(b)). Next 
we change UPs to SPs if they satisfy the above-mentioned 
condition and find the earliest classification-changed off-
stroke (Figure 5(c)). Finally, we locate the character block 
including or just preceding this off-stroke and update the 
scope (Figure 5(d)). 

  
(a). Latest scope with segmentation and text recognition results. 
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(b). Receiving new strokes, updating Seg_rp and applying segmenation. 

  

(c). Determining UPs to SPs and finding classification-changed 

offstrokes. 

  
(d). Locating the character block and updating the scope 

Figure 5.  An example of determining scope. 

F. Update of src-lattice 

For updating the src-lattice in the latest scope, to 
maximize the reuse of the src-lattice in the previous scope, 
we use the following method. It takes advantage of 
previously built lattice candidates in the previous scope. 
From the beginning of the scope, the method finds SP off-
strokes and splits candidate character blocks by these SP 
off-strokes. Each SP off-stroke divides a candidate 
character block into two parts: the preceding part and the 
succeeding part beside this SP off-stroke. The src-lattice in 
these lattice blocks will be checked if a candidate character 
pattern already exists in the previous scope. When exists, 
we get it from the previous scope, otherwise we rebuild it.  

Figure 6(a) represents the lattice blocks of the previous 
scope, when new strokes are added as shown in Figure 
6(b), classification of the off-stroke between the two first 
characters in the updated scope is changed to SP. From this 
SP off-stroke, the previously built candidate character 
block is divided into three candidate character blocks and 
the candidate character patterns of the previous scope is 

reused for the updated scope. Then, only one candidate 
character pattern (shown in gray) are rebuilt due to the new 
strokes. 

  

 
(a) Previous scope. 

  
(b) Updated scope. 

Figure 6.  Reuse of candidate character patterns. 

G. Resuming best-path search and recognition 

From the first character lattice block in current scope, 
we resume best-path search and get text recognition result. 

IV. EXPERIMENTS 

For evaluating our proposed semi-incremental 
recognition method, we use horizontally written character 
string patterns extracted from the TUAT Kondate database 
collected from 100 people. We employ 10,174 strings for 
training and 3,511 strings for testing. The experiments are 
implemented on an Intel(R) Core™2 Quad Q9400 CPU 
2.66GHz CPU with 3.25GB memory.  

The first experiment is to evaluate recognition rate. We 
test the recognition rate with changing the N_CHAR 
parameter and the number of strokes received in each 
recognition (N_STROKE). Table I shows the test result. 
While the batch recognition rate is 93.03%, the semi-
incremental recognition method outperform the batch 
recognition with the maximum rate being 93.16% at N_ 
CHAR = 7 and N_STROKE = 4. This reflects the effect of 
recognition in a local scope. 

To evaluate processing time, average CPU time per 
stroke is shown in Table II. Compared to the pure 
incremental method, i.e. when N_STROKE = 1, the semi-
incremental method with N_STROKE = 4 saves about 
50% in the CPU time. 

TABLE I.  RECOGNITION RESULT (%). 

N_STROKE
N_CHAR 

3 4 5 6 7 8 

1 92.64 92.75 92.89 93.01 92.93 92.93

2 92.71 92.94 92.96 92.97 92.97 92.97

3 92.82 92.95 92.97 92.99 92.99 93.03

4 93.00 93.10 93.12 93.15 93.16 93.11

5 93.02 93.08 93.07 93.08 93.12 93.07
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TABLE II.  PROCESSING TIME PER STROKE (MS). 

Semi-Incremental Batch 

N_STROKE 
N_CHAR 

3.04
3 4 5 6 7 8 

1 8.47 9.60 10.81 11.46 11.57 11.95 

4 4.60 5.16 5.60 5.82 5.75 6.04 

 
To evaluate the segmentation, we also extract 

segmentation results after the recognition process and 
compare them with those by the batch recognition method. 
Table III shows the evaluation result on three measures: 
precision, recall and f-measure. From f-measure, the 
performance of the semi-incremental recognition method 
is slightly better than the batch recognition method when 
N_ CHAR > 5. 

TABLE III.  SEGMENTATION RESULT (%). 

 
The next experiment is to evaluate waiting time of the 

method. We also make reflection of the method without 
reuse of the src-lattice. This evaluation is done on 5 
different pages of handwritten text captured from touch 
screen devices with the number of strokes for each page 
being 347, 398, 590, 262, or 554, respectively. 

Figure 7 shows average waiting time when increasing 
N_CHAR from 3 to 9 and N_STROKE is fixed at 1. When 
N_CHAR increases, the average waiting time slightly 
increases. Figure 8 shows it when increasing N_STROKE 
while fixing N_CHAR at 3.  

Average waiting time without reuse of the src-lattice is 
shown in those figures where we can see the effect is 
significant. 

When N_STROKE is less than 5, the maximum 
waiting time is about 55ms, which is too small for a user to 
notice the delay. 

 
Figure 7.  Waiting time with N_CHAR. 

 

 
Figure 8.  Waiting time with N_STROKE. 

V. CONCLUSION 

In this paper, we presented a semi-incremental 
recognition method for on-line handwritten Japanese text. 
By employing local processing, average waiting time has 
been reduced. Moreover, determining SP off-strokes based 
on recognition result shortens block lengths, bounds 
waiting time and even increases the recognition rate 
slightly. The reuse of the src-lattice is also shown effective. 

The semi-incremental recognition method is superior to 
the batch recognition method clearly in waiting time and 
even in recognition rate. It also excels the pure incremental 
recognition method in recognition rate and total CPU time. 

The semi-incremental recognition method should also 
work for other languages by changing the parameters. 

The disadvantage of this method arises also from local 
processing. Delayed strokes occurring before the latest 
Seg_rp will not be processed and it could cause 
misrecognition result. This can be solved by keeping all 
the lattice blocks. When new strokes are added, the system 
determines the lattice block, updates the candidate lattice 
in the lattice block and produces recognition result.  
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Eval. 

measure 

Recognition method 

Semi-incremental�N_CHAR 
Batch

3 4 5 6 7 8 9 

Recall 98.95 98.91 98.90 98.88 98.85 98.84 98.82 98.75

Precision 99.05 99.20 99.26 99.30 99.31 99.33 99.33 99.37

F-measure 99.00 99.06 99.08 99.09 99.08 99.09 99.08 99.06
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