
A semi-incremental recognition method for on-line handwritten Japanese text

Cuong Tuan Nguyen, Bilan Zhu and Masaki Nakagawa

Department of Computer and Information Sciences

Tokyo University of Agriculture and Technology

Abstract—This paper presents a semi-incremental

recognition method for online Japanese handwritten text

recognition, which is used for busy recognition interface

(recognition while writing) and lazy recognition interface

(recognition after writing) without large waiting time. We

employ local processing strategy and focus on a recent

sequence of strokes defined as “scope”. For the latest scope,

we build and update a segmentation and recognition

candidate lattice and advance the best-path search

incrementally. We utilize the result of the best-path search in

the previous scope to exclude unnecessary segmentation

candidates. This reduces the number of candidate character

recognition with the result of reduced processing time. We

also reuse the segmentation and recognition candidate lattice

in the previous scope for the latest scope. Moreover,

triggering recognition processes every few strokes save CPU

time. Experiment made on TUAT-Kondate database shows

the effectiveness of the proposed method not only in reduced

processing time and waiting time, but also in recognition

accuracy.

Keywords—Online recognition, handwriting recognition,

incremental recognition

I. INTRODUCTION

In recent years, due to the development of pen input
devices such as Tablet PCs, electronic whiteboards, PDAs,
digital pens (like the Anoto pen) and touch-based smart
phones, Pad PCs, and so on, online handwritten text
recognition as an input method has been given a
considerable attention after a long period of research [1, 2,
3]. Compared to isolated character recognition,
handwritten text recognition faces the difficulty of
character segmentation and recognition. Moreover, in
continuous handwriting, characters tend to be written more
cursively.

To obtain high recognition rate, it is best to recognize
online handwritten text after the whole text is completed
since the full context information is available. We call this
method as batch recognition [4]. Batch recognition is
appropriate for the user interface that users are writing
while thinking. In this case, users do not need recognition
result when writing and they only need recognized text
when they break writing. We call this user interface as lazy
recognition interface [5] while we call on-the fly
recognition after each character is written as busy
recognition interface. However, waiting time of
recognizing whole text by the batch recognition takes time
as the amount of characters increases.

For the busy recognition interface and the lazy
recognition interface as well, incremental recognition is
essential. Tanaka shows an incremental recognition system
for online Japanese handwriting recognition in his patent
application [6]. Wang, Liu and Zhou have presented an

approach to real-time (incremental) recognition of Chinese
handwritten text [7, 8]. In Wang’s method, the candidate
characters are generated and recognized to assign
candidate classes whenever a new stroke is produced,�and
sentence recognition result is produced whenever pen up
time exceed a specific value. The incremental recognition
is also useful for the lazy recognition interface. We can
apply it in background while a user is writing so that the
whole recognition result is obtained without any noticeable
waiting time.

Here in this paper, we focus on when incremental
recognition processes are triggered. If a system triggers
them whenever every new stroke is given, we classify it as
pure incremental recognition. So far, all the published
incremental recognition systems are classified in this group.
However, we may trigger the processes by a little larger
unit, i.e., several strokes so that we can exploit a little
larger context. We classify such a system as semi-
incremental recognition. This paper presents a semi-
incremental recognition of online handwritten Japanese
text, which is useful for both the busy and the lazy
recognition interfaces. Whenever the number of newly
written strokes reaches to the fixed number Ns named
window size, the new strokes are added to the previous
strokes, character patterns are segmented, candidate
character patterns are recognized, a lattice representing
segmentation and recognition candidates is updated, and
search is processed, while writing continues. This process
is repeated on recent strokes rather than on full text, so that
text recognition result is shown immediately after writing
is finished without noticeable waiting time while keeping
high recognition rate.

Although batch recognition achieves high recognition
rate with low total CPU time, it costs large waiting time as
the amount of characters increases. On the contrary, pure
incremental recognition incurs little waiting time but the
recognition rate may drop due to local processing of every
stroke and the total CPU time is increased due to repeated
processing after receiving every stroke. Semi-incremental
recognition with appropriate value of the window size may
maintain high recognition rate as batch recognition, incur
little waiting time and decrease the total CPU time
compared to pure incremental recognition. Human
recognition is neither too global covering full text nor too
local focusing to each stroke, so that the semi-incremental
recognition may realize the processing similar to human
way of employing context.

 Here we define several terms. A stroke is a sequence
of pen-tip coordinates from pen-down to pen-up. An off-
stroke is a vector from pen-up to pen-down. Digital ink is a
sequence of strokes and off-strokes.

In the rest of this paper, Section 2 gives an overview of
the baseline batch recognition method. Section 3 describes

2013 12th International Conference on Document Analysis and Recognition

1520-5363/13 $26.00 © 2013 IEEE

DOI 10.1109/ICDAR.2013.25

84

the semi-incremental recognition method. Section 4
presents experimental result of the semi-incremental
recognition method. Section 5 draws our conclusion.

II. OVERVIEW OF THE BATCH RECOGNITION METHOD

This section describes the overview of the batch

recognition method��It processes all on-line handwritten

text patterns at a time, i.e., after all strokes are added, it
estimates the average character size and the center line,
applies segmentation based on them, recognizes each
segment of strokes and finally employs context
information to find the best recognition of handwritten text.

A. Segmentation

Using the technique presented in [9], we first separate
multiple text lines into each text line. Then, we segment
each text line into candidate character patterns as shown in
Figure 1. Here, we employ the strategy of over-
segmentation, using SVM to classify each off-stroke into
three classes, segmentation point (SP), non-segmentation
point (NSP) and undecided point (UP) according to some
geometric features4]. A segmentation point SP separates
two characters at the off-stroke while a non-segmentation
point NSP indicates the off-stroke is within a character.
Off-strokes with low confidence are classified as UP. An
off-stroke between two text lines is treated as SP. A sub-
sequence of strokes delimited by SP or UP off-strokes is
called a primitive segment. A primitive segment and
consecutive primitive segments beside UP form candidate
character patterns. Concatenation of consequent primitive
segments is limited by their total lengths.

Figure 1. Segmentation process.

B. Candidate lattice construction

Employing character recognition, each candidate
character pattern is associated with a number of candidate
classes with confidence scores. All the possible
segmentations and recognition candidate classes are
represented by a segmentation-recognition candidate
lattice (src-lattice in short) as shown in Figure 2, where
each node denotes a candidate segmentation point and
each arc denotes a character class assigned to a candidate
character pattern.

Figure 2. Segmentation-recognition candidate lattice

For implementation, we employ candidate character
blocks and each of them represents a set of all the
candidate character patterns separated by two adjacent SP
off-strokes. Figure 3 shows them for the src-lattice with
two SP off-strokes and three candidate character blocks.

Figure 3. Candidate character blocks.

C. Best-path search and recognition

From a src-lattice, paths are evaluated by combining
the scores of character recognition, geometric features and
linguistic contexts as proposed in [4]. By applying the
Viterbi algorithm, the optimal path which has the highest
evaluation score is found. Text recognition result is
obtained from this path.

III. SEMI-INCREMENTAL RECOGNITION METHOD

The main objective to develop the semi-incremental
recognition method is to perform possible computation as
much as possible while a user is writing. Moreover, it
should keep the recognition rate as high as possible
compared with the batch recognition method. In the batch
recognition, the majority of computing time is spent for the
recognition of candidate character patterns. If those can be
processed in the background of user’s handwriting, text
recognition result will be displayed without any noticeable
waiting time.

A. Strategy of local processing

Semi-incremental recognition performs recognition
process after receiving some newly written strokes. Ideally,
we only have to process the newly received strokes and
update the src-lattice. In fact, the newly added strokes
affect recognition of a small number of strokes previously
received. Thus, the section we must process includes these
strokes and the newly received strokes. We call it “scope”.

85

As for best-path search, it is made from the first stroke
to the last stroke in the batch recognition while it can be
made incrementally using scope. Therefore, if the scope is
well defined, the semi-incremental recognition should
produce almost the same recognition result without
incurring much waiting time.

We also introduce a pointer named segmentation
resuming pointer, or Seg_rp in short. This is a SP up to
which the result of segmentation and character recognition
is considered stable and fixed. Segmentation and
recognition is resumed from the latest Seg_rp according
the evaluation on the latest scope.

B. Processing flow

From the previously described strategy, Figure 4 shows
the processing flow of the semi-incremental recognition
method.

Figure 4. Flow of semi-incremental recognition

First, we receive new strokes. Secondly, we update
Seg_rp. Thirdly, we determine the scope. Since this
processing step includes segmentation, we do not need to
apply it in the successive processing steps. Fourthly, we
update the src-lattice. Finally, we resume the best-path
search from the beginning in this scope to get text
recognition result. The result is used for next processing
cycle.

C. Determination of scope

To determine the scope, we use the result from the
segmentation process. The segmentations of the strokes
before and after the system has received new strokes are
compared with each other. If classification-changed off-
strokes are detected, we consider the strokes before the
earliest classification-changed off-strokes are stably
classified while the strokes after that are not classified
stably. Otherwise, the off-stroke before the newly added
strokes is considered as the earliest classification-changed
off-stroke. This earliest classification-changed off-stroke
may occur within some candidate character block or
between two candidate character blocks. We define the
scope as the sequence of strokes starting from the first
stroke of the candidate character block containing or just
preceding the earliest classification-changed off-stroke to
the last stroke.

If we had to compare the results of segmentation before
and after new strokes are added over a long range strokes,
however, it slows down the process and contradicts the
local processing strategy. Therefore, we employ Seg_rp
from which we compare segmentation.

D. Seg_rp and segmentation point determination

The pointer: Seg_rp is determined from SP off-strokes.
From the result of text recognition up to the latest scope,
i.e., the best-path up to the latest scope in the src-lattice, an
off-stroke between two recognized characters can be
considered as SP confidently. Among those off-strokes, we
choose Seg_rp based on the number of characters from
each off-stroke to the last character in the recognition
result. If this number equals to N_CHAR, that off-stroke
will be determined as a new Seg_rp. N_CHAR is defined
as a fixed number of characters required to determine a
new Seg_rp. The idea behind this is that SPs away from
new strokes are stable.

Determination of SP off-strokes has large effect to the
recognition rate and performance of the system. Although
SP off-strokes can be detected based on the result of
segmentation process, the performance of segmentation by
SVM for detecting SP off-strokes is still limited. Due to
the uncertainty of segmentation, a large number of outputs
from SVM are marked as UP. Each UP roughly doubles
the number of candidate character patterns for which
character recognition is applied. To overcome this problem,
we also use the result of text recognition up to the latest
scope to determine UP to SP off-strokes. UP off-strokes
between recognized characters, before the latest
N_CHAR_MIN characters in the recognition result are
determined as SP off-strokes. Here, N_CHAR_MIN
denotes a predefined constant for the minimum number of
characters that follow an UP off-stroke to make it a stable
SP off-stroke. Generally, N_CHAR_MIN is smaller than
or equal to N_CHAR.

By setting Seg_rp, the maximum number of characters
in the last block is bounded by N_CHAR plus the number
of new characters in newly added strokes. This is the main
factor to reduce the maximum waiting time in each
processing. Moreover, changing more UP off-strokes to SP
in lattice blocks also reduces the time cost to rebuild the
src-lattice due to shortened block size.

E. An example of the processes

Figure 5 shows an example to determine the scope.
Assume the latest scope with segmentation and text
recognition results in Figure 5(a). Then, the new strokes
marked red are added. We update Seg_rp and apply
segmentation from the updated Seg_rp (Figure 5(b)). Next
we change UPs to SPs if they satisfy the above-mentioned
condition and find the earliest classification-changed off-
stroke (Figure 5(c)). Finally, we locate the character block
including or just preceding this off-stroke and update the
scope (Figure 5(d)).

(a). Latest scope with segmentation and text recognition results.

86

(b). Receiving new strokes, updating Seg_rp and applying segmenation.

(c). Determining UPs to SPs and finding classification-changed

offstrokes.

(d). Locating the character block and updating the scope

Figure 5. An example of determining scope.

F. Update of src-lattice

For updating the src-lattice in the latest scope, to
maximize the reuse of the src-lattice in the previous scope,
we use the following method. It takes advantage of
previously built lattice candidates in the previous scope.
From the beginning of the scope, the method finds SP off-
strokes and splits candidate character blocks by these SP
off-strokes. Each SP off-stroke divides a candidate
character block into two parts: the preceding part and the
succeeding part beside this SP off-stroke. The src-lattice in
these lattice blocks will be checked if a candidate character
pattern already exists in the previous scope. When exists,
we get it from the previous scope, otherwise we rebuild it.

Figure 6(a) represents the lattice blocks of the previous
scope, when new strokes are added as shown in Figure
6(b), classification of the off-stroke between the two first
characters in the updated scope is changed to SP. From this
SP off-stroke, the previously built candidate character
block is divided into three candidate character blocks and
the candidate character patterns of the previous scope is

reused for the updated scope. Then, only one candidate
character pattern (shown in gray) are rebuilt due to the new
strokes.

(a) Previous scope.

(b) Updated scope.

Figure 6. Reuse of candidate character patterns.

G. Resuming best-path search and recognition

From the first character lattice block in current scope,
we resume best-path search and get text recognition result.

IV. EXPERIMENTS

For evaluating our proposed semi-incremental
recognition method, we use horizontally written character
string patterns extracted from the TUAT Kondate database
collected from 100 people. We employ 10,174 strings for
training and 3,511 strings for testing. The experiments are
implemented on an Intel(R) Core™2 Quad Q9400 CPU
2.66GHz CPU with 3.25GB memory.

The first experiment is to evaluate recognition rate. We
test the recognition rate with changing the N_CHAR
parameter and the number of strokes received in each
recognition (N_STROKE). Table I shows the test result.
While the batch recognition rate is 93.03%, the semi-
incremental recognition method outperform the batch
recognition with the maximum rate being 93.16% at N_
CHAR = 7 and N_STROKE = 4. This reflects the effect of
recognition in a local scope.

To evaluate processing time, average CPU time per
stroke is shown in Table II. Compared to the pure
incremental method, i.e. when N_STROKE = 1, the semi-
incremental method with N_STROKE = 4 saves about
50% in the CPU time.

TABLE I. RECOGNITION RESULT (%).

N_STROKE
N_CHAR

3 4 5 6 7 8

1 92.64 92.75 92.89 93.01 92.93 92.93

2 92.71 92.94 92.96 92.97 92.97 92.97

3 92.82 92.95 92.97 92.99 92.99 93.03

4 93.00 93.10 93.12 93.15 93.16 93.11

5 93.02 93.08 93.07 93.08 93.12 93.07

87

TABLE II. PROCESSING TIME PER STROKE (MS).

Semi-Incremental Batch

N_STROKE
N_CHAR

3.04
3 4 5 6 7 8

1 8.47 9.60 10.81 11.46 11.57 11.95

4 4.60 5.16 5.60 5.82 5.75 6.04

To evaluate the segmentation, we also extract

segmentation results after the recognition process and
compare them with those by the batch recognition method.
Table III shows the evaluation result on three measures:
precision, recall and f-measure. From f-measure, the
performance of the semi-incremental recognition method
is slightly better than the batch recognition method when
N_ CHAR > 5.

TABLE III. SEGMENTATION RESULT (%).

The next experiment is to evaluate waiting time of the

method. We also make reflection of the method without
reuse of the src-lattice. This evaluation is done on 5
different pages of handwritten text captured from touch
screen devices with the number of strokes for each page
being 347, 398, 590, 262, or 554, respectively.

Figure 7 shows average waiting time when increasing
N_CHAR from 3 to 9 and N_STROKE is fixed at 1. When
N_CHAR increases, the average waiting time slightly
increases. Figure 8 shows it when increasing N_STROKE
while fixing N_CHAR at 3.

Average waiting time without reuse of the src-lattice is
shown in those figures where we can see the effect is
significant.

When N_STROKE is less than 5, the maximum
waiting time is about 55ms, which is too small for a user to
notice the delay.

Figure 7. Waiting time with N_CHAR.

Figure 8. Waiting time with N_STROKE.

V. CONCLUSION

In this paper, we presented a semi-incremental
recognition method for on-line handwritten Japanese text.
By employing local processing, average waiting time has
been reduced. Moreover, determining SP off-strokes based
on recognition result shortens block lengths, bounds
waiting time and even increases the recognition rate
slightly. The reuse of the src-lattice is also shown effective.

The semi-incremental recognition method is superior to
the batch recognition method clearly in waiting time and
even in recognition rate. It also excels the pure incremental
recognition method in recognition rate and total CPU time.

The semi-incremental recognition method should also
work for other languages by changing the parameters.

The disadvantage of this method arises also from local
processing. Delayed strokes occurring before the latest
Seg_rp will not be processed and it could cause
misrecognition result. This can be solved by keeping all
the lattice blocks. When new strokes are added, the system
determines the lattice block, updates the candidate lattice
in the lattice block and produces recognition result.

ACKNOWLEDGMENT

This work is being supported by the Grant-in-Aid for
Scientific Research (B)-224300095.

REFERENCES

[1] C. L. Liu, S. Jaeger, and M. Nakagawa, "Online Recognition of
Chinese Characters: The State-of-the-Art," IEEE Trans. Pattern
Analysis and Machine Intelligence, vol. 26, no. 2, pp. 198-213,
February 2004.

[2] R. Plamondon and S. N. Srihari, "On-Line and Off-Line
Handwriting Recognition: A Comprehensive Survey," IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 22, no. 1, pp. 63-
85, January 2000.

[3] A. Graves, S. Fernandez, M. Liwicki, H. Bunke, and J.
Schmidhuber, "Unconstrained Online Handwriting Recognition
with Recurrent Neural Networks," Advances in Neural Information
Processing Systems, vol. 20, pp. 577-584, 2008.

[4] B. Zhu, X.D. Zhou, C.L. Liu, and M. Nakagawa, "A robust model
for on-line handwritten japanese text recognition," International
Journal on Document Analysis and Recognition, vol. 13, no. 2, pp.
121-131, June 2010.

[5] M. Nakagawa, K. Machii, N. Kato, and T. Souya, "Lazy
Recognition as a Principle of Pen Interfaces," in ACM INTERCHI,
1993, pp. 89-90.

[6] H. Tanaka, “Implementation of real-time box-free online Japanese
handwriting recognition system,” Japanese Patent 3925247, issued
March 13, 2002 (in Japanese).

[7] D.H. Wang and C.L. Liu, "An Approach to Real-Time Recognition
of Chinese Handwritten Sentences," in CJKPR, Fukuoka, Japan,
2010.

[8] D.H. Wang, C.L. Liu, and X.D. Zhou, "An approach for real-time
recognition of online Chinese handwritten sentences," Pattern
Recognition, no. 45, pp. 3661-3675, 2012.

[9] X.D. Zhou, D.H. Wang, and C.L. Liu, "A robust approach to text
line grouping in online handwritten Japanese documents," Pattern
Recognition, vol. 42, no. 9, pp. 2077-2088, 2009.

0
10
20
30
40
50

3 4 5 6 7 8 9

A
v

er
a

g
e

w
a

it
in

g
 t

im
e

N_CHAR

without

reuse
with

reuse

0
10
20
30
40
50

1 2 3 4 5A
v

er
a

g
e

w
a

it
in

g

ti
m

e

N_STROKE

without

reuse
with

reuse

Eval.

measure

Recognition method

Semi-incremental�N_CHAR
Batch

3 4 5 6 7 8 9

Recall 98.95 98.91 98.90 98.88 98.85 98.84 98.82 98.75

Precision 99.05 99.20 99.26 99.30 99.31 99.33 99.33 99.37

F-measure 99.00 99.06 99.08 99.09 99.08 99.09 99.08 99.06

88

