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A SEMI-INFINITE HIGHER-ORDER DISPLACEMENT DISCONTINUITY
METHOD AND ITS APPLICATION TO THE QUASISTATIC ANALYSIS

OF RADIAL CRACKS PRODUCED BY BLASTING

HASAN HOSSEINI_NASAB AND MOHAMMAD FATEHI MARJI

We introduce a higher-order indirect boundary element method in a traction-free half-plane known as
semi-infinite displacement discontinuity method. The method is modified to use the linear elastic fracture
mechanics principles for radial crack analysis in brittle materials like rocks. In this numerical method
there is no need to discretize the traction-free boundary of the half-plane into higher-order elements
thus decreasing the number of elements without affecting the accuracy of the solution to the desired
problems. The use of higher-order elements increases the accuracy so that it is possible to discretize both
the boundary of the body and radial cracks by the same higher-order elements, therefore there may be no
need to use the more complicated hybrid methods. A special crack tip element is added for each crack
tip to increase the accuracy of displacement discontinuities near the crack ends due to their singularities.
Based on the brittle behavior of most rocks, linear elastic fracture mechanics principles have been used
to find the fracture mechanics parameters (mode-I and mode-II mixed mode stress intensity factors) of
radial cracks occurring in common blasting operations. Arbitrary fracture criteria can be implemented in
this code, but here a simple maximum tangential stress criterion is used to predict the angle of deviation
(initiation) of radial cracks. Although this code is specially designed to include the traction-free half-
plane problems, it is somewhat comprehensive so that any number of radial cracks with any length in
the finite, infinite and semi-infinite planes can be treated easily. The validity of the method is proved by
solving simple examples and some previously solved problems in the literature.

1. Introduction

In this work we formulate a new higher-order semi-infinite displacement discontinuity method and use
it to analyze a number of crack problems. This method assumes linear or quadratic variation of dis-
placement discontinuity in a semi-infinite body with a traction-free surface. It is based on the use of
two or three collocation points (for linear or quadratic displacement discontinuity variation, respectively)
over a two-element or three-element “patch” centered at the source element. This method is suitable
for solving some fracture mechanics problems, because the special crack tip elements can easily be
incorporated in this algorithm. We adopt the hybrid element formulation: higher-order elements are
used for the discretization of all boundaries excluding the crack tips, and a special crack tip element is
used for discretization of the crack ends.

Fracture mechanics has been suggested as a possible tool for solving a variety of rock engineering
problems, such as rock cutting, hydrofracturing, explosive fracturing, rock stability, etc. In 1957, Irwin
modified the basic theory of fracture of Griffith [1925] and introduced the important parameters called

Keywords: DDM, half-plane problems, higher-order elements, radial cracks, LEFM.

439



440 HASAN HOSSEINI_NASAB AND MOHAMMAD FATEHI MARJI

stress intensity factors (SIFs), to express the stress and displacement fields near the crack tip. Three SIFs,
denoted by K I , K II and K III , were introduced, corresponding to three basic fracture modes: opening or
tensile (mode I), sliding or shearing (mode II) and tearing (mode III).

Recently linear elastic fracture mechanics (LEFM) principles have been widely used in rock fracture
mechanics (RFM) [Rossmanith 1983; Whittaker et al. 1992; Aliabadi 1998]. Based on LEFM principles,
a superposition of the three fracture modes describes the general case of loading called mixed mode load-
ing. For a given cracked body under a certain type of loading, the SIFs are known and the displacements
and stresses near the crack tip are accordingly determined. Therefore, the problem of LEFM reduces to
the determination of the crack tip SIFs. Hybrid element formulations have been used in the literature of
fracture mechanics [Guo et al. 1992; Scavia 1992; Scavia 1995; Tan et al. 1996; Carpinteri and Yang
1997; Bobet 2001; Shen et al. 2004]. Because of their complexity, fracture mechanics problems are
usually solved numerically by using the complicated hybrid methods [Scavia 1995; Stephansson 2002].
Due to brittle behavior of most rocks, the linear elastic fracture mechanics principles have been used to
find the fracture mechanics parameters; that is, the (I and II) mixed-mode stress intensity factors (SIFs)
of radial cracks occur in the common blasting operations. For the prediction of crack initiation and its
angle of deviation the maximum tangential stress criterion introduced in [Erdogan and Sih 1963], is used
which compares the computed SIFs with the fracture toughness (material properties like yield strength)
that should be obtained experimentally [Huang and Wang 1985; Ouchterlony 1988; Stephansson et al.
2001; Backers et al. 2004; Shen et al. 2004]. A general numerical modeling for quasistatic crack analysis
in semi-infinite plane is given and as a practical problem, the radial cracks around the blast holes are
numerically analyzed. Any number of blast holes with any gas pressurization ratios along the emanating
cracks can be studied by this model. Suitable normal gas pressurization ratios along the radial cracks are
used, to solve the problem. As it was expected, the radial crack propagation takes place under tension
(Mode I or opening mode of fracture), which is mainly responsible for rock blasting [Ouchterlony 1983].

2. Higher order (linear and quadratic elements) displacement discontinuity in a half-plane

General solutions and higher-order elements. Many boundary-value problems are set in traction-free
half-spaces. Here we consider a two-dimensional traction-free half-plane. To implement the higher-
order displacement discontinuity elements numerically, we need the analytical solution to the problem
of a constant displacement discontinuity Di integrated over a line element along the x-axis in an infinite
elastic solid Crouch [1976] showed that the general solution to this problem, over a line element of length
2a, can be expressed in terms of two harmonic functions f (x, y) and g(x, y) of x and y, in which the
displacements are

ux =
(
2(1 − ν) f,y − y f,xx

)
+
(
−(1 − 2ν)g,x − yg,xy

)
,

u y =
(
(1 − 2ν) f,x − y f,xy

)
+
(
2(1 − ν)g,y − yg,yy

) (1)

and the stresses are
σxx = 2Gs(2 f,xy + y f,xyy) + 2Gs(g,yy + yg,yyy),

σyy = 2Gs(−y f,xyy) + 2Gs(g,yy − yg,yyy),

σxy = 2Gs(2 f,yy + y f,yyy) + 2Gs(−yg,xyy),

(2)

where f,x = ∂ f ∂x and so on.
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Shou and Crouch [1995] proposed a new higher-order displacement discontinuity method for solving
plane elasticity problems, exploiting the use of quadratic elements for analysis of crack problems in
infinite bodies. In this paper the same kind of the higher-order displacement discontinuity elements is
used for the analysis of crack problems in semi-infinite bodies, but both linear and quadratic elements
are considered. The general higher-order expression of harmonic functions f (x, y) and g(x, y) can be
rearranged as

f (x, y) =
−1

4π(1 − ν)

k∑
j=1

D j
x F j (I j−1), g(x, y) =

−1
4π(1 − ν)

k∑
j=1

D j
y F j (I j−1). (3)

Here k ranges over 1, 2 for linear elements and over 1, 2, 3 for quadratic elements. Similarly, the higher-
order displacement discontinuity Di (ε) can be expressed as

Di (ε) =

k∑
j=1

N j (ε)D j
i with k as above and i = x, y. (4)

The displacement discontinuity using linear elements is based on analytical integration of linear collo-
cation shape functions over collinear, straight-line displacement discontinuity elements. Figure 1a shows
the linear displacement discontinuity distribution, which can be written as

Di (ε) = N1(ε)D1
i + N2(ε)D2

i , i = x, y, (5)

where D1
i and D2

i are the linear nodal displacement discontinuities and

N1(ε) = −(ε − a1)/2a1, N2(ε) = (ε + a1)/2a1 (6)

are the linear collocation shape functions using a1 = a2. A linear element has two nodes, which are at
the centers of its two equal subelements (Figure 1a).

Similarly, the quadratic element displacement discontinuity is based on the analytic integration of
quadratic collocation shape functions over collinear, straight-line displacement discontinuity elements.
Figure 1b shows the quadratic displacement discontinuity distribution, which can be written as

Di (ε) = N1(ε)D1
i + N2(ε)D2

i + N3(ε)D3
i , i = x, y, (7)

ε
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y
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Figure 1. Linear (left) and quadratic (right) collocations for the higher-order displace-
ment discontinuity elements.
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where D1
i , D2

i , and D3
i are the quadratic nodal displacement discontinuities and

N1(ε) = ε(ε − 2a1)/8a1
2, N2(ε) = −(ε2

− 4a2
1)/4a1

2, N3(ε) = ε(ε + 2a1)/8a1
2 (8)

are the quadratic collocation shape functions using a1 = a2 = a3. A quadratic element has three nodes,
at the centers of its three equal subelements (Figure 1b).

Considering a linear variation for Di (ε) as given in (5), the common function F j in (3) is defined as

F j (I0, I1) =

∫
N j (ε) ln

(
(x − ε) + y2)

1/2
dε, j = 1, 2. (9)

Here the integrals I0 and I1 are expressed as

I0(x, y) =

∫ a

−a
ln
(
(x − ε)2

+ y2)1/2
dε = y(θ1 − θ2) − (x − a) ln(r1) + (x + a) ln r2 − 2a (10)

I1(x, y) =

∫ a

−a
ε ln

(
(x − ε)2

+ y2)1/2
dε = xy(θ1 − θ2) +

1
2(y2

− x2
+ a2) ln

r1

r2
− ax, (11)

where we have defined

θ1 = arctan
y

x − a
, θ2 = arctan

y
x + a

, r1 =
(
(x − a)2

+ y2)1/2
, r2 =

(
(x + a)2

+ y2)1/2
. (12)

Similarly, considering a quadratic variation for Di (ε) as given in Equation (7), the common function
F j in (3) is defined as

F j (I0, I1, I2) =

∫
N j (ε) ln

(
(x − ε) + y2)1/2

dε, j = 1, 2, 3, (13)

where I0 and I1 are as in (5) and (13) and

I2(x, y) =

∫ a

−a
ε2 ln

(
(x − ε)2

+ y2)1/2
dε

=
y
3
(3x2

−y2)(θ1−θ2) +
1
3(3xy2

−x3
+a3) ln(r1) −

1
3(3xy2

−x3
−a3) ln(r2) −

2a
3

(
x2

−y2
+

a2

3

)
.

(14)

A routine computation yields the partial derivatives of the integrals I0, I1 and I2 with respect to x and
y. These derivatives are needed in the calculation of displacements and stresses in semi-infinite plane
problems. As an example,

I2,yyyy = −2
(

(x − a)

r2
1

−
(x + a)

r2
2

)
+ 2a

(
(x − a)2

− y2

r4
1

+
(x + a)2

− y2

r4
2

)

−2a2
(

(x − a)2(r2
1 − 4y2)

r6
1

−
(x + a)2(r2

2 − 4y2)

r6
2

)
,

where r1, r2, θ1, and θ2 are defined in (12).
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Figure 2. The actual and image displacement discontinuities in half-plane y ≤ 0.

Half-plane solution. The analytical solution to a constant element displacement discontinuity over the
line segment |x | ≤ a, y = 0 in the semi-infinite region y ≤ 0 is found in [Crouch and Starfield 1983]
using the method of images to be

ui = u A
i + u I

i + uS
i , σi j = σ A

i j + σ I
i j + σ S

i j , (15)

where the displacements and stresses due to the actual displacement discontinuity are denoted by a
superscript A, those due to its image by I and those resulting from the supplementary solution by S.

Based on the local x̄ , ȳ coordinates and the image local x̄ ′, ȳ′ coordinates shown in Figure 2, the dis-
placements and stresses given in (15) can be obtained in global x , y coordinates by using the coordinate,
displacement and stress transformation rules explained in [Crouch and Starfield 1983]. Considering the
geometry shown in Figure 2, the displacements and stresses due to actual displacement discontinuities can
be written directly from (1) and (2). The local x̄ , ȳ coordinates are related to the global x , y coordinates
by the transformation formulas

x̄ = (x − cx) cos β + (y − cy) sin β,

ȳ = −(x − cx) sin β + (y − cy) cos β.
(16)

Denoting the common potential function F j (x, y) by F A
j (x̄, ȳ) = F A

j1 and its derivatives by F A
j,x̄ = F A

j2,
F A

j,ȳ = F A
j3, F A

j,xy = F A
j4, F A

j,xx = −F A
j,yy = F A

j5, F A
j,x̄ yy = F A

j6, F A
j,yyy = F A

j7, for the actual displacement



444 HASAN HOSSEINI_NASAB AND MOHAMMAD FATEHI MARJI

discontinuities, the actual displacements in terms of the global x, y coordinates are given by

u A
x =

−1
4π(1 − ν)

3∑
J=1

((
−(1 − 2ν) sin βF A

j2 + 2(1 − ν) cos βF A
j3 + ȳ(sin βF A

j4 − cos βF A
j5)
)
D j

x̄

+
(
−(1 − 2ν) cos βF A

j2 − 2(1 − ν) sin βF A
j3 − ȳ(cos βF A

j4 + sin βF A
j5)
)
D j

ȳ

)
,

u A
y =

−1
4π(1 − ν)

3∑
J=1

((
(1 − 2ν) cos βF A

j2 + 2(1 − ν) sin βF A
j3 − ȳ(cos βF A

j4 + sin βF A
j5)
)
D j

x̄

+
(
−(1 − 2ν) sin βF A

j2 + 2(1 − ν) cos βF A
j3 − ȳ(sin βF A

j4 − cos βF A
j5)
)
D j

ȳ

)
, (17)

and the actual stresses by

σ A
xx =

−2G
4π(1 − ν)

3∑
j=1

(
2 cos2 βF A

j4 + sin 2βF A
j5 + ȳ(cos 2βF A

j6 − sin 2βF A
j7
)
D j

x̄

+
(
−F A

j5 + ȳ(sin 2βF A
j6 + cos 2βF A

j7)
)
D j

ȳ

)
,

σ A
yy =

−2G
4π(1 − ν)

3∑
j=1

((
2 sin2 βF A

j4 − sin 2βF A
j5 − ȳ(cos 2βF A

j6 + sin 2βF A
j7)
)
D j

x̄

+
(
−F A

j5 − ȳ(sin 2βF A
j6 + cos 2βF A

j7)
)
D j

ȳ

)
,

σ A
xy =

−2G
4π(1 − ν)

3∑
j=1

((
sin 2βF A

j4 − cos 2βF A
j5 + ȳ(sin 2βF A

j6 + cos 2βF A
j7)
)
D j

x̄

− ȳ(cos 2βF A
j6 − sin 2βF A

j7)D j
ȳ

)
. (18)

The displacements and stresses due to the image displacement discontinuity can be expressed in term
of a single function F I

j (x̄ ′, ȳ′) in which the image local x̄ ′, ȳ′ coordinates (as shown in Figure 2) are
related to the x, y coordinates by the transformation formula

x̄ ′
= (x − cx) cos β − (y + cy) sin β,

ȳ′
= (x − cx) sin β + (y + cy) cos β,

(19)

which is obtained by replacing cy and β in (16) by cy and −β.
It can be shown that the supplementary solution for the displacements and stresses can be expressed in

term of the function F I
j (x̄ ′, ȳ′) and its derivatives. The final expressions for the combined displacements

u I
i + uS

i and stresses σ I
i j + σ S

i j as given in the Appendix.
The displacement discontinuity functions Di (ε) in (4) can be used either in a constant element form

or in a higher-order element form as follows, to solve the displacements and stresses of (1), (2) and (15).
Two degrees of freedom are used for each node at the center of each element. Crawford and Curran
[1982] have developed a higher-order displacement discontinuity for linear and quadratic elements using
four and six degrees of freedom respectively. Shou and Crouch [1995] have introduced a new higher-
order displacement discontinuity for two-dimensional infinite plane problems using only two degrees of
freedom for each element while still preserving the advantages of the approach in [Crawford and Curran
1982].
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In this study, Shou and Crouch’s approach is extended and modified for both linear and quadratic
displacement discontinuity variations (the original formulation covers only quadratic displacement vari-
ations in infinite plane problems) in order to solve the half-plane boundary-value problems with traction-
free surfaces. For linear and quadratic displacement variations, the interpolation of displacement values
over two- and three-element patches, respectively, is the basis of our formulation (recall Figure 1).

The general solution to plane elasticity problems involves two types of boundary conditions: the stress
boundary conditions σs

i
= (σs

i )0, σn
i
= (σn

i )0 and the displacement boundary conditions us
i
= (us

i )0,
un

i
= (un

i )0. In these equations the right-hand sides stand for the given boundary values of the stresses
and displacements for the local s and n coordinates (that is, the same as the local x̄, ȳ coordinates shown
in Figure 2) defining at the center of each two-element patch (linear variation) or three-element patch
(quadratic variation). Finally, then, we obtain a system of 2 × 2N or 2 × 3N algebraic equations in as
many unknown displacement discontinuity components:

bi
s =

N∑
j=1

Css(i, j)D j
s +

N∑
j=1

Csn(i, j)D j
n , bi

n =

N∑
j=1

Cns(i, j)D j
s +

N∑
j=1

Cnn(i, j)D j
n , i = 1, N . (20)

The quantities bi
s and bi

n stand for the known boundary values of stress and displacement, and Css(i, j),
etc., are the corresponding influence coefficients [Crouch and Starfield 1983]. For the solution of
cracked body problems in half-planes with traction-free surfaces, we developed two computer programs:
SIDDLCR for semi-infinite displacement discontinuity method using linear displacement discontinuity
elements for crack analysis and SIDDQCR for semi-infinite displacement discontinuity method using
quadratic displacement discontinuity elements for crack analysis. Since the solution of the infinite plane
case is part of the solution of the half-plane problems (i.e., the actual solution part given in (17) and (18)),
these two computer codes can actually solve general elasticity problems in finite, infinite and semi-infinite
planes.

3. Crack tip element formulation and stress intensity factor computation

Consider a body of arbitrary shape with a crack of arbitrary size, subjected to arbitrary tensile and shear
loadings (mode-I and mode-II loading). The stresses and displacements near the crack tip are given
in [Rossmanith 1983; Whittaker et al. 1992] and other textbooks; but since we use the displacement
discontinuity method here we need the formulations given for the SIFs K I and K II in terms of the
normal and shear displacement discontinuities [Whittaker et al. 1992; Scavia 1995]:

K I =
G

4(1 − ν)

(2π

a

)1/2
Dy(a), K II =

G
4(1 − ν)

(2π

a

)1/2
Dx(a). (21)

Due to the singularity variations 1/
√

r and
√

r for the stresses and displacements in the vicinity of the
crack tip the accuracy of the displacement discontinuity method decreases, and usually a special treatment
of the crack at the tip is necessary. A special crack tip element which already has been introduced in
literature (see [Crouch and Starfield 1983], for example) is used here to represent the singularity. Using
a special crack tip element of length 2a as shown in Figure 3, we obtain the parabolic displacement
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Figure 3. Displacement correlation technique for the special crack tip element.

discontinuity variations along this element as

Di (ε) = Di (a)(ε/a)1/2, i = x, y, (22)

where ε is the distance from crack tip and Dy(a) and Dx(a) are the opening (normal) and sliding (shear)
displacement discontinuities at the center of special crack tip element.

The potential functions fC(x, y) and gC(x, y) for the crack tip element can be expressed as

fC(x, y) =
−1

4π(1 − ν)

∫ a

=a

Dx(a)

a1/2 ε1/2 ln
(
(x − ε)2

+ y2)1/2dε,

gC(x, y) =
−1

4π(1 − ν)

∫ a

=a

Dy(a)

a1/2 ε1/2 ln
(
(x − ε)2

+ y2)1/2dε.

(23)

These functions have a common integral of the form

IC =

∫ 2a

0
ε1/2 ln

(
(x − ε)2

+ y2)1/2dε. (24)

The derivatives of this integral, which are used in calculation of the crack tip displacement disconti-
nuities in semi-infinite plane problems, are easily computed:

Ic,x =

∫ 2a

0

ε1/2(x − ε)

(x − ε)2 + y2 dε = x A1 − A2, Ic,y =

∫ 2a

0

ε1/2 y
(x − ε)2 + y2 dε = y A1,
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where we have introduced

A1 =
1
ρ

(
1
2

(
cos ϕ −

x
y

sin ϕ
)

ln
2a − 2

√
2aρ cos ϕ + ρ2

2a + 2
√

2aρ cos ϕ + ρ2
+

(
sin ϕ +

x
y

cos ϕ
)

arctan
(

2
√

2aρ sin ϕ

ρ2 − 2a

))
,

A2 = ρ

(
1
2

(
cos ϕ +

x
y

sin ϕ
)

ln
2a − 2

√
2aρ cos ϕ + ρ2

2a + 2
√

2aρ cos ϕ + ρ2
+

(
sin ϕ +

x
y

cos ϕ
)

arctan
(

2
√

2aρ sin ϕ

ρ2 − 2a

))
,

with ρ = (x2
+ y2)1/4 and ϕ =

1
2 arctan(y/x). Moreover,

Ic,xy = y A1,x ,

Ic,yy = A1 + y A1,y = −Ic,xx ,

Ic,xyy = A1,x + y A1,xy,

Ic,yyy = 2A1,y + y A1,yy,

Ic,xyyy = 2A1,xy + y A1,xyy,

Ic,yyyy = 3A1,yy + y A1,yyy .

4. Crack initiation and direction of its propagation

Several mixed mode fracture criteria are well known from the literature [Ingraffea 1981; 1987; Huang
and Wang 1985; Zipf and Bieniawski 1989; Ouchterlony 1988; Stephansson et al. 2001; Rao et al. 2003;
Backers et al. 2004; Shen et al. 2004], any of them can be applied to crack analysis problems using this
model. In this study as the blast hole radial cracks are mostly in opening mode case, the simple maximum
tangential stress criterion or σ -criterion is used here to predict the angle of crack initiation. This criterion
is a mixed mode fracture criterion which is widely used and well fitted with the experimental results
[Ingraffea 1983; Broek 1989; Guo et al. 1992; Carpinteri and Yang 1997].

Based on this criterion the crack tip will start propagating when

cos
θ0

2

(
K I cos2 θ0

2
−

3
2

K II sin θ0
2

)
= K I C , (25)

where K I C is the mode-I fracture toughness of the material and θ0 is the propagation angle. The latter
value corresponding to the crack tip should satisfy the condition

K I sin θ0 + K II (3 cos θ0 − 1) = 0. (26)

5. Verification of higher-order semi-infinite displacement discontinuity

Verification of this method is made through the solution of simple example problems. We first take a
center slant crack in an infinite body, as shown in Figure 4. The slant angle, β, changes counterclockwise
from the x-axis, and the tensile stress σ = 10 MPa acts parallel to the x-axis. A half crack length b =

1 meter, modulus of elasticity E = 10 GPa, Poisson’s ratio ν = 0.2, fracture toughness K I C = 2 MPa
√

m
are assumed. The analytical solution of the first and second mode stress intensity factors K I and K II for
the infinite body problem are given as (see [Guo et al. 1990; Whittaker et al. 1992])

K I = σ(πb)1/2 sin2 β H⇒
K I

σ
√

πb
= sin2 β,

K II = σ(πb)1/2 sin β cos β H⇒
K II

σ
√

πb
= sin β cos β.

(27)
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0
θ

y σx=σ

x
β

Figure 4. Center slant cracks in an infinite body under far-field tension.

The normalized mixed mode stress intensity factors, K I /(σ
√

πb) and K II /(σ
√

πb), are obtained analyt-
ically for different crack inclination from Equations (27), and numerically by means of the two software
programs SIDDLCR and SIDDQCR (page 445), using a total of 98 nodes and a crack tip length equal to
one-tenth the half crack length — that is, an L/b ratio of 0.1. Some of the results obtained are tabulated
in Table 1, and give an idea of the accuracy and usefulness of the programs.

To investigate the effect of the number of elements on accuracy, we solved numerically two problems,
respectively with 45◦ and 30◦ slanted cracks, choosing L/b = 0.1 and a varying number of nodes. The
normalized numerical results are given in Table 2. They show that using any number of nodes above 24
gives very accurate values for both SIDDLCR and SIDDQCR.

K I /(σ
√

πb) K II /(σ
√

πb)

Angle β Analytic SIDDQCR SIDDLCR Analytic SIDDQCR SIDDLCR

10◦ 0.0302 0.0302 0.0309 0.1711 0.1711 0.1752
20◦ 0.1170 0.1171 0.1198 0.3214 0.3216 0.3292
30◦ 0.2500 0.2502 0.2561 0.4330 0.4334 0.4435
40◦ 0.4132 0.4135 0.4176 0.4924 0.4920 0.4977
50◦ 0.5868 0.5864 0.5932 0.4924 0.4921 0.4977
60◦ 0.7500 0.7495 0.7581 0.4330 0.4327 0.4369
70◦ 0.8830 0.8824 0.8926 0.3214 0.3212 0.3249
80◦ 0.9696 0.9692 0.9803 0.1711 0.1709 0.1713
90◦ 1.0000 0.9996 1.011 0.0000 0.0000 0.0000

Table 1. Analytical and numerical values of the normalized stress intensity factors for
the slant center crack at different orientation from the loaded axis (x-axis), for L/b = 0.1
and 98 nodes.
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K I /(σ
√

πb) (45◦) K I /(σ
√

πb) (30◦) K II /(σ
√

πb) (30◦)

Nodes SIDDQCR SIDDLCR SIDDQCR SIDDLCR SIDDQCR SIDDLCR

12 0.5116 0.5396 0.2558 0.2698 0.4431 0.4673
24 0.5014 0.5160 0.2507 0.2580 0.4342 0.4469
36 0.4999 0.5097 0.2500 0.2549 0.4330 0.4414
48 0.4997 0.5069 0.2499 0.2535 0.4327 0.4390
60 0.4997 0.5054 0.2498 0.2527 0.4327 0.4377
72 0.4997 0.5044 0.2498 0.2522 0.4327 0.4368
84 0.4998 0.5038 0.2499 0.2517 0.4328 0.4363
96 0.4998 0.5033 0.2499 0.2516 0.4328 0.4358

108 0.4999 0.5029 0.2499 0.2514 0.4328 0.4355
120 0.4999 0.5026 0.2499 0.2513 0.4329 0.4353

Table 2. Numerical values of the stress intensity factors for the 45◦ and 30◦ slant center
cracks using varying number of nodes and L/b = 0.1.

Finally, to show the effect of the length of the crack tip element on the accuracy of the results, the
same two problems are solved numerically using 98 nodes and different L/b ratios. The results are given
in Table 3. We see that for any L/b ratio above 0.025, both programs give very accurate values.

Because of its simplicity, the center slant crack problem has been solved by various investigators
such as Guo et al. [1990], who used constant element displacement discontinuity with a special crack
tip element for angles 30◦, 40◦, 50◦, 60◦, 70◦ and 80◦. These authors used a different fracture criterion
for evaluating the crack initiation angle θ0 and compared their results with the results obtained by other

K I /(σ
√

πb) (45◦) K I /(σ
√

πb) (30◦) K II /(σ
√

πb) (30◦)

L/b SIDDQCR SIDDLCR SIDDQCR SIDDLCR SIDDQCR SIDDLCR

0.025 0.5028 0.5166 0.2514 0.2614 0.4354 0.4467
0.050 0.5000 0.5072 0.2500 0.2536 0.4330 0.4393
0.075 0.4998 0.5045 0.2498 0.2523 0.4328 0.4369
0.100 0.4998 0.5033 0.2499 0.2516 0.4328 0.4358
0.125 0.4999 0.5026 0.2499 0.2513 0.4329 0.4352
0.150 0.5001 0.5021 0.2500 0.2511 0.4331 0.4349
0.175 0.5003 0.5019 0.2501 0.2510 0.4333 0.4347
0.200 0.5005 0.5018 0.2503 0.2509 0.4335 0.4346
0.225 0.5008 0.5018 0.2504 0.2509 0.4337 0.4346
0.250 0.5011 0.5019 0.2506 0.2510 0.4340 0.4347
0.275 0.5015 0.5021 0.2507 0.2510 0.4343 0.4348
0.300 0.5019 0.5023 0.2509 0.2512 0.4346 0.4350

Table 3. Numerical values of the stress intensity factors for the 45◦ and 30◦ slant center
cracks using varying L/b ratios and 98 nodes.
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θ0, present work θ0 as reported in [Guo et al. 1990]
Angle β SIDDQCR SIDDLCR σ -criterion S-criterion Exper. Numer.

30 60.00 60.00 60.2 63.5 62.4 67.0
40 55.65 55.65 55.7 56.7 55.1 59.0
50 50.29 50.29 50.2 49.5 51.1 51.0
60 43.22 43.22 43.2 41.9 43.1 41.0
70 33.26 33.26 33.2 31.8 30.7 29.0
80 18.91 18.91 19.3 18.5 17.3 15.0

Table 4. Crack initiation angle θ0 obtained by different methods for the center slant
crack problem.

researchers using different fracture theories. Table 4 compares the results obtained for crack initiation
angle θ0 with SIDDLCR and SIDDQCR, using the maximum tangential stress theory proposed by Er-
dogan and Sih [1963], and the results obtained by other methods as given by Guo et al. The numerical
results obtained here are very close to those predicted by the σ -criterion.

For the verification of the semi-infinite higher-order displacement discontinuity method, the problem
of a 45◦ slant crack with different depths (C/b ratio) from the free surface of the half-plane is considered.
This is the problem shown in Figure 5, where C = Cy is the depth at the center of the slant crack from
the free surface of the half-plane as shown in Figure 3.

The normalized stress intensity factors K I /(σ
√

πb) and K II /(σ
√

πb) of the upper and lower crack
tips were obtained using SIDDQCR. The numerical results for the 45◦ crack are given in Table 5, where

2b

0
θ

y

σx=σ

β

x

C

Figure 5. Slant cracks in a semi-infinite body under far field tension.
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K I /(σ
√

πb) K II /(σ
√

πb)

C/b ratio Upper Tip Lower Tip Upper Tip Lower Tip

1 0.6147 0.5278 0.4603 0.5530
2 0.5115 0.5067 0.4669 0.4957
3 0.4989 0.4996 0.4785 0.4907
4 0.4959 0.4971 0.4841 0.4905
5 0.4951 0.4961 0.4874 0.4911
6 0.4950 0.4958 0.4895 0.4919
7 0.4951 0.4958 0.4909 0.4927
8 0.4953 0.4959 0.4920 0.4930
9 0.4956 0.4960 0.4929 0.4938

10 0.4958 0.4962 0.4935 0.4943

Table 5. Normalized stress intensity factors K I /(σ
√

πb) and K II /(σ
√

πb) of the upper
and lower crack tips for a 45 degrees inclined crack in a semi-infinite body with different
C/b ratios, using 98 nodes and L/b = 0.1.

we have used a total of 98 nodes (including the two crack tip elements) and an L/b ratio of 0.1. The table
shows that as the crack becomes very close to the free surface of the half-plane, the mode-I stress intensity
factor K I of the upper crack tip (the one nearer the free surface) increases more rapidly compared to that
of the lower tip, but the mode-II stress intensity factor K II decreases. The analytical solution for the 45◦

center slant crack in an infinite plate gives K I /(σ
√

πb) = K II /(σ
√

πb) = 0.5, and as can be seen from
the table, the numerical values tend to this analytical value as the depth C increases to infinity.

6. Numerical analysis of radial cracks in blasting

Radial crack propagation in blasting operations is a complicated and interesting phenomenon. The initi-
ation and propagation mechanisms have been investigated in [Ingraffea 1983; Mortazavi and Katsabanis
2001; Cho et al. 2004]. Generally, two forms of radial crack analysis have been used: dynamic crack
analysis (considering stress wave and/or gas pressurization theories) and quasistatic crack analysis (con-
sidering only gas pressurization theory); see [Kutter and Fairhurst 1971; Courtesen 1979; Ash 1985;
Donzé et al. 1997; Cho et al. 2004]. Dynamic crack analysis is far beyond our scope; instead we briefly
consider quasistatic radial crack analysis due to gas pressurization, to show the effectiveness of the present
model for solving some crack problems occurring in rock fracture mechanics. Analytical solutions of the
radial crack propagation in an infinite elastic rock have been discussed in the literature; see [Ouchterlony
1983; Whittaker et al. 1992] and references therein. Ouchterlony has extensively analyzed various load
configurations in relation to rock blasting and determined the stress intensity factors for them by using
the conformal mapping method. This has provided valuable information on crack-growth behavior due
to internal pressure, and the effect of gas penetration in the radial cracks has also been investigated.

In this section we discuss bench blasting problems based on Outcherlony’s setup and the present
approach. We solve the problems shown in Figure 6, considering two limiting cases: empty cracks,
meaning that no gas pressure penetrates through the radial cracks during blasting; and fully pressurized
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Figure 6. Pressurized circular holes (blast holes) with radial cracks in infinite planes.
The examples shown have two (left) and eight (right) radial cracks.

cracks, meaning that the gas pressure fully penetrates the radial cracks, so the gas pressure in the radial
cracks equals the total blast hole pressure.

SIDDLCR and SIDDQCR have been used for the numerical solution. The following assumptions and
data have used throughout: hole radius, R = 1 m; inside pressure, p = 10 MPa; modulus of elasticity,
E = 10 GPa; Poisson’s ratio, ν = 0.2; rock fracture toughness, K I C = 2 MPa m1/2; ratio of crack tip
element to crack length, L/b = 0.1. Exploiting symmetry, 30 quadratic elements or 40 linear elements
are used to discretize the boundary of a circular hole, and 10 quadratic elements or 15 linear elements
are used for the discretization of each radial crack (excluding the crack tip elements). We compute
numerically the normalized mode-I stress intensity factor K I /(p

√
πµR) for different crack length ratios

µ = (b + R)/R of a pressurized blast hole under uniform inside pressure p with 2 and 8 symmetric
radial cracks emanating from the hole. These numerical results, for empty and fully pressurized radial
cracks, are compared in Figures 7 and 8 with the corresponding analytical values given in [Ouchterlony
1983]. We see that, particularly for long radial cracks, the analytical and numerical values of normalized
stress intensity factors (mode-I) are very close to each other. The blasting pressures p are around 0.56
to 1.0 GPa, but the results plotted here are normalized in the form of K I /(p

√
πµR).

In a similar manner we analyzed numerically the problem shown in Figure 9 using SIDDQCR. The
calculated fracture parameters are shown in Table 6 for the two extreme cases of empty cracks and fully
pressurized cracks against different ratios B/R of burden radius to blast hole (B/R can be viewed as
a normalized hole depth relative to the free surface of the half-plane). All these results were obtained
through SIDDQCR, using a constant value of µ = 2.5 for the crack length ratio.

The analytical results for the problem of a pressurized circular hole with four symmetric empty radial
cracks in an infinite plane are: K I /(p

√
πµR) = 0.1966 and K II /(p

√
πµR) = 0.0, and for the fully pres-

surized radial cracks are: K I /(p
√

πµR) = 0.9085 and K II /(p
√

πµR) = 0.0 respectively [Ouchterlony
1983].

Table 6 compares the different results obtained for the upper crack (the crack near to the free surface
of the half-plane), and the lower crack. The results given in this table show that as the burden (B/R ratio)
increases the mixed mode stress intensity factors K I and K II tend to their corresponding analytical values
for the infinite plane case.
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Figure 7. Blast hole with 2 and 8 empty radial cracks: comparison of analytical and
numerical values of K I /(p

√
πµR) for varying crack length ratio µ.

0.9152 0.9028 0.907 0.6718 0.6568 0.6619

0.9322 0.9292 0.9337 0.6724 0.6578 0.6624

0.9491 0.9469 0.9517 0.6729 0.6593 0.6637

0.9627 0.9594 0.9642 0.6734 0.6606 0.6649

0.9695 0.9683 0.9733 0.6729 0.662 0.6659

0.9763 0.975 0.98 0.6724 0.6625 0.6666

0.9831 0.98 0.9851 0.6719 0.663 0.6671

0.9898 0.9838 0.9889 0.6716 0.6635 0.6675

0.9966 0.9868 0.9919 0.6712 0.6638 0.6678
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Figure 8. Blast hole with 2 and 8 fully pressurized radial cracks: comparison of analyt-
ical and numerical values of K I /(p

√
πµR) for varying crack length ratio µ.

The results obtained in this paper show that, as the Mode II stress intensity factor (K II ) is very small
compared to the Mode I (K I ), and for the practical problems; the crack initiation angle θ0 is also very
small, for both upper and lower cracks, then it may be concluded that the radial cracks produced in
blasting operations propagates nearly in their own planes due to the high influence of K I . However,
when the radial cracks become very close to the free surface (that is, for small B/R ratios), the upper
cracks divert away from the free surface in the direction of the crack deviation angle θ0.
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Figure 9. A blast hole in a semi-infinite plane with 4 symmetric radial cracks.

7. Conclusion

The higher-order displacement discontinuity method is used to solve boundary value problems in finite,
infinite and semi-infinite plane problems. The special crack tip formulation is also modified and used for
solving the crack problems in semi-infinite planes. Then based on the formulation derived in Sections 2
and 3, the two computer programs SIDDLCR (semi-infinite displacement discontinuity method with
linear elements for crack analysis) and SIDDQCR (semi-infinite displacement discontinuity method with
quadratic elements for crack analysis) were developed. These programs use a special crack tip element

K I /(p
√

πµR) K II /(p
√

πµR) θ0 (degrees)
B/R Up. crack Lo. crack Up. crack Lo. crack Up. crack Lo. crack

2.00 2.2036 1.3534 0.1954 0.0194 −10.0 −1.6
2.25 1.8940 1.2366 0.1230 −0.0307 −7.4 2.8
2.50 1.6993 1.1766 0.1285 −0.0465 −8.6 4.5
2.75 1.5298 1.1352 0.1229 −0.0565 −9.1 5.7
3.00 1.3937 1.1022 0.1109 −0.0626 −9.0 6.5
3.25 1.2690 1.0578 0.0949 −0.0552 −8.5 5.9
3.50 1.1927 1.0392 0.0862 −0.0573 −8.2 6.3
3.75 1.1116 1.0230 0.0609 −0.0587 −6.2 6.5
4.00 1.0344 1.0085 0.0470 −0.0580 −5.5 6.5
4.25 1.0114 0.9960 0.0362 −0.0573 −4.1 6.5
4.50 0.9863 0.9903 0.0223 −0.0523 −2.5 6.0
4.75 0.9582 0.9816 0.0091 −0.0510 −1.1 5.9
5.00 0.9390 0.9745 0.0044 −0.0487 −0.5 5.7

Table 6. Normalized stress intensity factors and crack propagation angle θ0 for a pres-
surized hole under uniform inside pressure p, with four fully pressurized radial cracks,
for varying values of B/R (corresponding to different depths).
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with a simple mixed mode fracture criterion — the maximum tangential stress criterion, based on linear
elastic fracture mechanics principles — to quasistatically analyze the radial cracks. For the verification of
this method some example problems of cracked bodies in infinite and semi-infinite planes are solved and
the results are compared with their existing analytical results and/or with the results obtained by some
previous researchers. The computed results obtained by these codes are very accurate as compared to the
previous results (given in the literature), which proves the validity and accuracy of the proposed method.
For completeness, some of the necessary formulations which are derived and used in these computer
codes are also given in the appendices of this paper.

Appendix: Supplementary and image solutions for displacements and stresses

We maintain the notation of Section 2 and Figure 2 and define

F I
j8(x̄ ′, ȳ′) ==

∂4 F I
j (x̄ ′, ȳ′)

∂ x̄ ′∂ ȳ′3 , F I
j9(x̄ ′, ȳ′) =

∂4 F I
j (x̄ ′, ȳ′)

∂ ȳ′4 .

The combined displacements u I
i + uS

i are

u I
x + uS

x =
−1

4π(1 − ν)

×

3∑
j=1

((
(1 − 2ν) sin βF I

j2 − 2(1 − ν) cos βF I
j3 +

(
(3 − 4ν)(y sin 2β − ȳ sin β) + 2y sin 2β

)
F I

j4

+
(
(3 − 4ν)(y cos 2β − ȳ cos β) − y(1 − 2 cos 2β)

)
F I

j5

+ 2y(y sin 3β − ȳ sin 2β)F I
j6 − 2y(y cos 3β − ȳ cos 2β)F I

j7

)
D j

x̄

+

(
(1 − 2ν) cos βF I

j2 + 2(1 − ν) sin βF I
j3 −

(
(3 − 4ν)(y cos 2β − ȳ cos β) − y

)
F I

j4

+ (3 − 4ν)(y sin 2β − ȳ sin β)F I
j5

− 2y(y cos 3β − ȳ cos 2β)F I
j6 − 2y(y sin 3β − ȳ sin 2β)F I

j7

)
D j

ȳ

)
,

u I
y + uS

y =
−1

4π(1 − ν)

×

3∑
j=1

((
(1 − 2ν) cos βF I

j2 − 2(1 − ν) sin βF I
j3 −

(
(3 − 4v)(y cos 2β − ȳ cos β) + y(1 − 2 cos 2β)

)
F I

j4

+
(
(3 − 4ν)(y sin 2β − ȳ sin β) − 2y sin 2β)

)
F I

j5

+ 2y(y cos 3β − ȳ cos 2β)F I
j6 + 2y(y sin 3β − ȳ sin 2β)F I

j4

)
D j

x̄

+

(
(1 − 2ν) sin βF I

j2 − 2(1 − ν) cos βF I
j3 − (3 − 4v)(y sin 2β − ȳ sin β)F I

j4

−
(
(3 − 4ν)(y cos 2β − ȳ cos β) + y

)
F I

j5

+ 2y(y sin 3β − ȳ sin 2β)F I
j6 − 2y(y cos 3β − ȳ cos 2β)F I

j7

)
D j

ȳ

)
,

The stresses σ I
i j + σ S

i j associated with these displacements are
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σ I
xx + σ S

xx =
−2G

4π(1 − ν)((
F I

j4 − 3
(
cos 2βF I

j4 − sin 2β
)
F I

j5 +
(
2y(cos β − 3 cos 3β) + 3ȳ cos 2β

)
F I

j6

+
(
2y(sin β − 3 sin 3β) + 3ȳ sin 2β

)
F I

j7

− 2y(y cos 4β − ȳ cos 3β)F I
j8 − 2y(y sin 4β − ȳ sin 3β)F I

j9

)
D j

x̄

+

(
F I

j5 +
(
2y(sin β − 2 sin 3β) + 3ȳ sin 2β

)
F I

j6 −
(
2y(cos β − 2 cos 3β) + 3ȳ cos 2β

)
F I

j7

− 2y(y sin 4β − ȳ sin 3β)F I
j8 + 2y(y cos 4β − ȳ cos 3β)F I

j9

)
D j

ȳ

)
,

σ I
yy + σ S

yy =
−2G

4π(1 − ν)((
F I

j4 − (cos 2βF I
j4 − sin 2β)F I

j5 − (4y sin 2β − ȳ cos 2β)F I
j6

+ (4y sin β cos 2β + ȳ sin 2β)F I
j7 + 2y(y sin 4β − ȳ sin 3β)F I

j9

)
D j

x̄

+

(
F I

j5 − (2y sin β − ȳ sin 2β)F I
j6 + (2y cos β − ȳ cos 2β)F I

j7

+2y(y sin 4β − ȳ sin 3β)F I
j8 − 2y(y cos 4β − ȳ cos 3β)F I

j9

)
D j

ȳ

)
,

σ I
xy + σ S

xy =
−2G

4π(1 − ν)((
(sin 2β + cos 2β)F I

j4 +
(
2y sin β(1 + 4 cos 2β) − ȳ sin 2β

)
F I

j6

+
(
2y cos β(3 − 4 cos 2β) + ȳ sin 2β

)
F I

j7

+ 2y(y sin 4β − ȳ sin 3β)F I
j8 − 2y(y cos 4β − ȳ cos 3β)F I

j9

)
D j

x̄

+

(
(4y sin β sin 2β + ȳ cos 2β)F I

j6 − (4y sin β cos 2β − ȳ sin 2β)F I
j7

−2y(y cos 4β − ȳ cos 3β)F I
j8 − 2y(y sin 4β − ȳ sin 3β)F I

j9

)
D j

ȳ

)
,
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