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We use the Carreau rheological model which properly account for the shear-thinning be-
havior between the low and high shear rates Newtonian limits to investigate the problem
of a semi-infinite hydraulic fracture propagating at a constant velocity in an imperme-
able linearly elastic material. We show that the solution depends on four dimensionless
parameters: a dimensionless toughness (function of the fracture velocity, confining stress,
material and fluid parameters), a dimensionless transition shear stress (related to both
fluid and material behaviour), the fluid shear thinning index and the ratio between the
high and low shear rate viscosities. We solve the complete problem numerically com-
bining a Gauss-Chebyshev method for the discretization of the elasticity equation, the
quasi-static fracture propagation condition and a finite difference scheme for the width-
averaged lubrication flow. The solution exhibits a complex structure with up to four
distinct asymptotic regions as one moves away from the fracture tip: a region governed
by the classical linear elastic fracture mechanics behaviour near the tip, a high shear rate
viscosity asymptotic and power-law asymptotic region in the intermediate field and a low
shear rate viscosity asymptotic far away from the fracture tip. The occurrence and order
of magnitude of the extent of these different viscous asymptotic regions are estimated an-
alytically. Our results also quantify how shear thinning drastically reduces the size of the
fluid lag compared to a Newtonian fluid. We also investigate simpler rheological models
(power-law, Ellis) and establish the small domain where they can properly reproduce the
response obtained with the complete rheology.
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1. Introduction

In the stimulation of oil and gas wells by hydraulic fracturing, the rheology of the fluid
is the only thing that can be engineered (beside the value of the rate at which the fluid is
injected). Large research efforts have thus led to the development of various fluid types
over the years, essentially trying to maximize fracture opening and minimize particles
settling (Barbati et al. 2016; Economides and Nolte 2000). Although other complex rhe-
ologies are sometimes encountered in practice (viscoelasticity, yield stress etc.), most of
these engineered fluids exhibit a shear thinning behaviour: their viscosity decreases as a
function of the applied shear rate (see figure 1 for examples of the rheology of typical
fracturing fluids). All these fluids exhibit a Newtonian plateau at low shear rate where
their viscosity is maximum and starts to shear thin for value of shear rate larger than a
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Figure 1. Viscosity as function of shear rate for two fracturing fluids: Hydroxypropylguar (HPG
- data taken from Guillot and Dunand (1985)) and in inset a viscoelastic surfactant (VES - data
taken from Kefi et al. (2004)). These experimental data do not cover the large shear rate region
where the viscosity typically tends toward the solvent viscosity (water in those case) - see e.g.
Pipe et al. (2008) for experimental data on Xanthan gum covering the complete range of shear
rates. A number of rheological models can be used to reproduce these data over parts or all of the
range of shear rates. We display here the best fit for the power-law (dashed brown line), Carreau
(continuous black line) and Ellis (dot-dashed red line) rheological models. The corresponding
best-fit parameters are listed in table 1 for these two fluids and the different models.

critical value γ̇c. At very large shear rate, the viscosity tends to the Newtonian viscosity of
the base solvent used (typically water). How such a complex rheological behaviour of the
fluid impacts the actual propagation of a hydraulic fracture has been mostly investigated
using a simple power-law model (e.g. Sousa et al. 1993; Desroches et al. 1994; Adachi
and Detournay 2002). The impact of the low and large shear rate plateau as well as
the amplitude of shear thinning remains poorly understood. Similarly the effect of shear
thinning on the extent of the fluid-less cavity at the fracture tip (fluid lag) observed for
a Newtonian fluid (Garagash and Detournay 2000) remains unknown.
The rheology of a shear thinning fluid over the whole range of shear rates can be well

reproduced by either the Carreau (1972) or Cross (1965) constitutive models. We focus
here on the Carreau rheology, but similar results would be obtained using the Cross
model. Two others rheological models are often used for shear thinning fluids: i) the
power-law model which captures only the shear thinning part of rheological data (over-
estimating viscosity at low shear rate, under-predicting at large shear rate) and ii) the
Ellis model (Brodkey 1969) which reproduces the low shear rate Newtonian plateau as
well as the power-law shear thinning region but does not reproduce the large shear rate
Newtonian limit. The differences between these models can be clearly seen in figure 1
while the corresponding rheological parameters are listed in table 1. In order to best
fit the experimental data, the power-law index may be adjusted independently from the
Carreau index (see examples in Sochi (2015); Myers (2005)). However, in the interest
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Fluid
Power-law Carreau Ellis

n M (Pa.sn) n µo (Pa.s) µ∞ (Pa.s) γ̇c
(

s−1
)

m µo (Pa.s) β (Pa)

HPG (15◦C) 0.46 0.75 0.46 0.44 0.001 3.3 2.22 0.44 2.01

VES (77◦C) 0.1 13 0.1 49 0.0003 0.254 13 49 8.836

Table 1. Rheological parameters of a HPG and VES fluids (for a given temperature) for the
power-law, Carreau and Ellis models corresponding to the experimental data of figure 1. Note
that the majority of fracturing fluids have a power-law index n between 0.1 and 0.5.

of comparison and simplification, we will consider that the power-law index is equal to
the Carreau shear thinning index. The power-law consistency M (dimensions Pa.sn) can
thus be expressed directly from the rheological parameters of the Carreau model:

M =
µo + µ∞

2γ̇c
n−1

(√
2−2/(n−1) − 1

)n−1 (1.1)

where µo, µ∞ are the viscosity at low and high shear rates respectively and γ̇c is the
critical shear rate at which the fluid starts to shear thin in the Carreau model.

Within a fracture, fluid flow occurs under lubrication condition between parallel plates.
For the same average velocity (and the rheological parameters of the HPG fluid listed in
table 1), the different rheologies exhibit a different velocity profile across the cross sec-
tion of the fracture and the corresponding pressure gradient differs significantly between
models as can be seen in figure 2. For that particular example, the power-law fluid has a
profile close to a plug flow around the centerline and yield the largest pressure gradient.
The Carreau and Ellis models exhibit similar velocity profiles except close to the cen-
terline (but with different pressure gradients). We shall see in the following that these
differences between models will impact the solution of the hydraulic fracturing problem.
In order to study the impact of the fluid shear thinning behaviour on hydraulic frac-

turing, we focus our analysis on the case of a semi-infinite hydraulic fracture propagating
at a constant velocity in a linear elastic and impermeable material. Such a configuration
corresponds to a zoom into the tip region of a finite hydraulic fracture (Garagash 2009;
Detournay 2016) where a state of plane-strain locally prevails. Such a semi-infinite frac-
ture problem has been extensively studied for the case of a Newtonian fluid (Spence and

Sharp 1985; Desroches et al. 1994; Garagash and Detournay 2000; Garagash et al. 2011).
It has notably enabled to properly quantify the competition between the dissipative pro-
cesses associated with fracture surface creation and viscous flow. Such a competition is
intrinsically linked to the transition between the classical linear elastic fracture mechanics
asymptotic region near the fracture tip to a viscosity dominated asymptotic region far
from the tip. The extent of the transition being governed by a combination of the fluid
viscosity, material fracture toughness, elasticity and fracture velocity.

Our goal is to perform a similar analysis for a shear thinning fluid. We will use the
Carreau rheology to model the complete shear thinning behaviour of the fluid. We also
allow for the possible presence of a fluid-less cavity of a priori unknown length at the
fracture tip. Using scaling analysis and a numerical solution of the problem, we aim at
understanding the structure of the solution and in particular the extent of the different
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Figure 2. Fluid velocity profiles for a lubrication flow between parallel plates (as it occurs within
a fracture) at a given mean velocity < u >= V = 1 m/s for a Carreau, power-law, Ellis and
Newtonian fluids. The corresponding fluid pressure gradient is also displayed for each model.
The rheological parameters correspond to a HPG fluid (see table 1 for the different models,
figure 1 for the rheogram). For the Newtonian velocity profile (dotted green line), the low shear
rate viscosity of the HPG is used. Note that the solution for a Carreau fluid is semi-analytical
while the solution for the other models can be obtained analytically (see appendices A, B and
C for details).

asymptotic regions (associated with different dissipative mechanisms) as function of the
different problem parameters. We will also investigate how an approximation of the shear
thinning behaviour by either the power-law or the Ellis rheological model compare with
the more precise Carreau rheology. In other words, how precise one needs to be on the
fluid rheology in hydraulic fracturing modeling.

2. Problem formulation

We consider a semi-infinite fluid-driven fracture under plane-strain condition propa-
gating at a constant velocity V in an impermeable linear elastic medium (see figure 3).
The fracture is propagating normal to the minimum in-situ compressive stress σo and is
internally loaded by the spatially non-uniform fluid pressure pf . We also allow for the
presence of zone of a-priori unknown size λ without fluid at the fracture tip (fluid lag).
The fracture is assumed to propagate at a constant velocity V in quasi-static equilibrium
under a pure opening mode loading. The fracture propagation condition is written as the
equality of the mode I stress intensity factor KI to the material fracture toughness KIc

(Rice 1968):

KI = KIc (2.1)

The linear elastic fracture near-tip asymptote for the fracture opening w is related to the
mode I stress intensity factor KI and can be written in view of the propagation condition
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w pf
xV
x

λ

σo

Figure 3. Sketch of a semi-infinite hydraulic fracture propagating at a constant velocity V in
an impermeable elastic material under a pre-existing normal compressive stress σo. A fluid lag
zone of a-priori unknown length λ adjacent to the fracture tip may be present.

(2.1) as (Rice 1968):

w(x) =

√

32

π

KIc

E′
x1/2 x ≪ 1. (2.2)

In the plane-strain pure tensile configuration of figure 3, the elastic deformation of the
material reduces to the following normal traction boundary integral equation between the
net pressure loading p(x) = pf (x)− σo and the fracture opening w(x) (see e.g. Garagash

and Detournay (2000)):

p(x) = pf (x)− σo =
E′

4π

∫

∞

0

∂w(s)

∂s

ds

x− s
(2.3)

where E′ = E/(1− ν2) is the material plane-strain elastic modulus, related to the Young’s
modulus E and Poisson’s ratio ν. We account explicitly for the possible presence of a
region of length λ without fluid near the tip of the fracture due to the possible occurrence
of cavitation. This fluid lag zone is filled with fluid vapor and is under a constant pressure
equal to the fluid cavitation pressure. Such a cavitation pressure is typically smaller than
the confining stress σo such that we write the net loading in this lag zone simply as:

p(x) = pcav − σo ≈ −σo x ∈ [0, λ] (2.4)

The semi-infinite hydraulic fracture propagates under a constant velocity V , such that
for an impermeable medium, in the moving coordinates centered on the fracture tip, the
fluid continuity equation reduces to (Desroches et al. 1994):

Vf = V.

The width-averaged fluid velocity Vf is equal to the fracture velocity V at any distance
from the tip. Under the lubrication approximation, this width-averaged fluid velocity
can be related at any x to the fracture opening and pressure gradient via the solution
of pressure-driven flow between parallel plates. For a Carreau rheology, no analytical
formula exists but the solution can be expressed in a similar form that the well-known
Poiseuille solution for a Newtonian fluid:
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V =
1

12µoΓ (τw, n, µ∞/µo, γ̇c)
w2 ∂pf

∂x
, x ∈]λ,∞[ (2.5)

where the dimensionless apparent width-averaged viscosity for parallel plates flow Γ (τw, n, µ∞/µo, γ̇c)

depends non-linearly on the shear stress at the fracture wall τw =
w

2

∣

∣

∣

∣

∂p

∂x

∣

∣

∣

∣

as well as the

rheological parameters of the Carreau model. This dimensionless apparent viscosity re-
quires the solution of the rheological equation at the fracture wall in order to obtain the
wall shear rate γ̇w = τw/µ(γ̇w) for a given value of wall shear stress (Sochi 2014, 2015)
(see appendix A for details). It is interesting to note that an analytical solution exists for
the lubrication of a power-law rheology as well as for the Ellis rheological model (Myers

2005).

The aim is to solve for both the fracture opening w(x) and net pressure p(x) profiles
as well as the extent of the lag λ as function of the fracture velocity V , solid material
properties (elastic modulus E′, fracture toughness KIc) and fluid rheological properties.

3. Scaling

We follow the scaling first introduced by Garagash and Detournay (2000) for the case
of a semi-infinite hydraulic fracture driven by a Newtonian fluid. A characteristic viscous
lengthscale Lµo

scales all distances, while the fracture width is scaled by ϵLµo
(with ϵ a

small number) and the characteristic pressure is taken as the in-situ compressive stress
σo. We thus define the normalized moving coordinate ξ = x/Lµo

and the normalized
fracture opening Ω(ξ), net pressure Π(ξ) and fluid lag Λ size as

w = ϵLµo
Ω(ξ) p = σoΠ(ξ) λ = Lµo

Λ

The scaling parameters (Lµo
, ϵ) can be obtained from the elasticity equation (2.3) and

the lubrication relation (2.5): Lµo
is a fracture characteristic lengthscale related to the

viscosity propagation regime and its expression depends on the fluid rheological model.
The small dimensionless parameter ϵ is independent of the fluid rheology and is defined as
the ratio between confining stress and the solid material plane-strain Young’s modulus.
For a Carreau rheology, choosing the low-shear rate viscosity µo as a representative value
of viscosity, we write similarly to Garagash and Detournay (2000)

Lµo
=

12µoV E′2

σ3
o

ϵ =
σo

E′
.

These scales for the slightly different cases of a power-law and Ellis rheology are discussed
in appendices B and C.

The corresponding dimensionless governing equations in that scaling simplify to the
following:

• Elasticity equation relating net pressure to fracture opening

Π(ξ) =
1

4π

∫

∞

0

∂Ω(ξ′)

∂ξ′
dξ′

ξ − ξ′
(3.1)

• The fracture propagation expressed as a near tip width asymptotic

Ω(ξ) = κ
√

ξforξ → 0 (3.2)
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where κ is a dimensionless toughness defined in such a scaling as

κ =

√

8

3π

(

σo

V µo

)1/2
KIc

E′
(3.3)

• The net pressure in the lag region

Π = −1forξ ∈ [0,Λ] (3.4)

• The lubrication flow equation

1

Γ

(

Ω

2

∣

∣

∣

∣

∂Π

∂ξ

∣

∣

∣

∣

, α, n, µ∞/µo

)Ω2 ∂Π

∂ξ
= 1forξ ∈]Λ,∞[ (3.5)

The dimensionless apparent viscosity Γ

(

1

2
Ω

∣

∣

∣

∣

∂Π

∂ξ

∣

∣

∣

∣

, α, n, µ∞/µo

)

can be written as

a function of the dimensionless fluid shear stress at the wall
Ω

2

∣

∣

∣

∣

∂Π

∂ξ

∣

∣

∣

∣

, the fluid shear

thinning index n, the viscosity ratio µ∞/µo and a parameter α which is defined as the
ratio between the characteristic shear stress at the wall ϵ σo and the critical fluid shear
stress τ c = µoγ̇c corresponding to the critical shear rate γ̇c at which the fluid starts to
shear-thin (see figure 1):

α =
ϵ σo

µoγ̇c
=

σ2
o

µoγ̇cE′
. (3.6)

For typical order of magnitude of the far field stress σo (MPa) and elastic modulus E′

(GPa), such a dimensionless transition shear stress α ranges from 10 for a fluid with a
large low shear-rate Newtonian plateau (large value of γ̇c) to 105 for a fluid with a shorter
transition to a shear thinning behaviour (small γ̇c). The fluid index n varies for most of
hydraulic fracturing fluids between 0.1 and 0.5. For a fluid with large shear thinning
magnitude, the viscosity ratio is about 10−3 versus 0.1 for a fluid with a small shear
thinning magnitude.

The dimensionless solution of the problem thus depends on four dimensionless parame-
ters: the dimensionless toughness κ defined in (3.3), dimensionless transition shear stress
α (3.6), fluid index n and the overall extent of the shear thinning behaviour of the fluid
captured by the ratio between the large and low shear rate viscosity µ∞/µo.

4. Asymptotes

The knowledge of the solution for the case of a Newtonian fluid (Garagash and Detour-

nay 2000) as well as the limiting solution for zero-lag / zero toughness for a power-law
rheology (Desroches et al. 1994) will provide some guideline to understand how the so-
lution for a Carreau rheology is structured as one moves away from the fracture tip.
The different tip asymptotes can be expressed in terms of the following characteristic
lengthscales:

ℓk =
32

π

(

KIc

E′

)2

, ℓmo
=

12µo

E′
V, ℓmn

=

(

M ′

E′

)1/n

V, ℓm∞
=

12µ∞

E′
V,

(4.1)

where M ′ =
2n+1(2n+ 1)n

nn
M , and M is the power-law consistency which is defined from

the Carreau parameters as per equation (1.1).
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Near field asymptote

The near tip asymptote of the fracture opening is governed by linear elastic fracture
mechanics (LEFM). In this region, the fracture width evolves with the square-root of
distance to the tip and the toughness characteristic lengthscale ℓk (see equation 4.1):

κ− asymptote : wk = ℓ
1/2
k x1/2 +O(x3/2), pk = −σo

which takes the following form in the scaling previously defined:

Ωk = κξ1/2 +O(ξ3/2), Πk = −1 (4.2)

For the strictly zero toughness case (κ = 0), the width evolves as ξ3/2 which corresponds
to the higher order term in the linear elastic fracture mechanics asymptotic development
(see e.g. Rice (1968);Garagash (2009)). In the complete problem, the extent of this LEFM
region depends on the viscous lengthscale Lµo

as well as the value of the dimensionless
toughness (i.e. the corresponding lag size).

Far field asymptotes

In the case where both the fluid lag and toughness are negligible (κ ≪ 1, Λ ≪ 1), the
behaviour of the solution is governed by the coupling between lubrication flow and elas-
ticity which yields a different power-law dependence of the opening with distance from
the tip. The solution for a power-law rheology (for zero-lag and zero toughness) have been
obtained in Desroches et al. (1994). Such a solution corresponds to a far-field asymptote
valid at a distance from the tip where the effect of dimensionless toughness and the
presence of the lag vanishes (see e.g. Garagash and Detournay (2000); Garagash (2009);
Garagash et al. (2011) for discussion). For a Carreau rheology, as the average shear rate
V/w decreases as one moves away from the fracture tip, we can expect to see two or more
viscosity dominated asymptotes. Far away from the fracture tip, i.e. for very low shear-
rate, one should recover the viscosity asymptote for a Newtonian with the low shear-rate
viscosity (see figure 1), i.e:

mo−asymptote(κ = Λ = 0) : wmo
= βoℓ

1/3
mo

x2/3, pmo
= − βo

6
√
3
E′ℓ1/3mo

x−1/3,

where

βo = 21/3 × 35/6.

This mo-asymptote in the scaling previously defined in section 3 has the following form:

Ωmo
= βoξ

2/3, Πmo
= − βo

6
√
3
ξ−1/3. (4.3)

As we move closer to the fracture tip, the fluid will exhibit shear thinning. The fracture
opening should thus eventually follow the viscosity asymptote for a power-law fluid. We
will refer to this power-law asymptote -first derived by Desroches et al. (1994)- as mn:

wmn
= βnℓ

n/(2+n)
mn

x2/(n+2),

pmn
= − βn

2(n+ 2)
cot

(

−2π

n+ 2

)

E′ℓn/(2+n)
n x−n/(n+2)

where

βn =

(

2
(n+ 2)2

n
tan

(

−2π

n+ 2

))1/(n+2)

.
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We can re-express this asymptote using the expression of the the power-law consistency
M as function of the Carreau rheological parameters (see equation (1.1)). Moreover,
using the low shear rate scaling defined in the section 3, such mn asymptote (κ = Λ = 0)
reads:

Ωmn
= α

n−1
n+2 βµβnξ

2/(n+2), Πmn
= −α

n−1
n+2 βµβn

2(n+ 2)
cot

(

−2π

n+ 2

)

ξ−n/(n+2)

where

βµ =







(

2n+ 1

6n

)n
1 + µ∞/µo

(√
2−2/(n−1) − 1

)n−1







1/(n+2)

.

Finally, as we move closer to the fracture tip, for larger average shear rate, it may
well be that another Newtonian viscous asymptote linked to the Newtonian behaviour at
large shear-rate µ∞ could be observed (see equation 4.4). In the low-shear rate scaling,
this large shear rate asymptote is given by :

m∞−asymptote(κ = Λ = 0) : wm∞
= βoℓ

1/3
m∞

x2/3, pm∞
= − βo

6
√
3
E′ℓ1/3m∞

x−1/3

(4.4)
or alternatively in dimensionless form in the lag scaling:

Ωm∞
= βo (µ∞/µo)

1/3
ξ2/3, Πm∞

= − βo

6
√
3
(µ∞/µo)

1/3
ξ−1/3. (4.5)

The evolution of the complete solution between these different asymptotes as well as
the extent of the regions where these asymptotes may be valid will depend on the values
of the different dimensionless parameters governing the problem, namely κ, α, n and
µ∞/µo.

5. Numerical scheme

We develop a numerical scheme for the solution of the complete problem for a given set
of dimensionless parameters (κ, α, n and µ∞/µo). In our simulation, following Garagash

and Detournay (2000), we actually prescribe the dimensionless lag size Λ such that the
domain where the lubrication equation is enforced is known a-priori. We thus solve for
the corresponding value of dimensionless toughness κ, as well as dimensionless pressure
and opening.
We use a Gauss-Chebyshev quadrature for the discretization of the elasticity equation.

We embed the linear fracture mechanics asymptote directly in the discretization of the
dislocation density:

dΩ

dξ
=

κ√
ξ
+
√

ξϕ(ξ),

We also perform the following changes of coordinates to map the semi-infinite interval
ξ ∈ [0,∞[ to v ∈ [−1, 1] so as the Gauss-Chebyshev quadrature to become applicable to
the numerical solution (Ioakimidis and Theocaris 1980; Viesca and Garagash 2015)

ξ =
1 + v

1− v
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in order to discretize the elasticity equation using a Gauss-Chebyshev quadrature of the
third kind at N collocation points:

Π[ξ(vj)]

1− vj
=

1

4π

N
∑

i=1

Ai

1− ui

ϕ[s(ui)]

vj − ui
(5.1)

where ui = cos

(

π(i− 0.5)

N

)

and Ai =
π

N
(1 + ui). The net pressure is evaluated at points

vj = cos

(

πj

N

)

for j = 1, 2, ..., N , whereas the dislocation density ϕ[s(ui)] is evaluated at

points ui for i = 1, 2, ..., N .

The lubrication equation is discretized at the mid distance ξi+1/2 between net pressure
collocation points, and the pressure gradient is approximated by centered finite difference.
The discretization of equation (3.5) is thus:

Ω2(ξi+1/2)
Π(ξi+1)−Π(ξi)

ξi+1 − ξi
= Γ

(

Ω(ξi+1/2)

2

Π(ξi+1)−Π(ξi)

ξi+1 − ξi
, α, n, µ∞/µo

)

(5.2)

The opening Ω(ξi+1/2) at ξi+1/2 is evaluated from a linear interpolation of the opening
evaluated at ξi and ξi+1. The non-linear tangent viscosity Γ function of the wall shear
stress is estimated from the interpolated function built for the given values of α, n and
µ∞/µo over the whole range of dimensionless wall shear stress (see appendix A). The net
pressure Π is directly set in the lag zone for the collocation points i ∈ [1, NΛ] where NΛ

is the number of points in the lag region:

Π(ξi) = −1, (5.3)

while at infinity the net pressure is set to zero, i.e. we set the following constraint at the
last collocation point

Π(ξN ) = 0. (5.4)

It follows that the solution for the fracture opening Ω is positive while the net pressure
Π is everywhere negative. This is a direct consequence of the semi-infinite nature of this
problem where pressure is determined up to a constant (see e.g. Garagash and Detournay

(2000) for discussion).

The resulting non-linear system of equations is solved via a quasi-Newton root-finding
scheme using the dimensionless net pressure at the collocation points and κ as the pri-
mary unknown variables. The algorithm has been implemented in Mathematica with
computational accuracy in mind (but not efficiency). The numerical results reported in
the remaining of this paper have been obtained with a total number of collocation points
between 1600 and 3000. Convergence of the lubrication equation (5.2) has been obtained
with an accuracy of 10−8 on the norm of the residuals. A simulation typically takes from
few minutes up to three hours on a modern personal computer (Macbook Pro, Early
2015, 2.9 GHz Intel core i5) depending on the prescribed size of the lag, the amplitude
of shear thinning and the number of collocation points.
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6. Results for a finite fluid lag

6.1. Effect of dimensionless toughness κ

We first investigate the effect of dimensionless toughness κ for a given set of rheological
dimensionless parameters representative of a Carreau fluid: µ∞/µo = 10−3, n = 0.5,
and α = 102. The profile of dimensionless fracture opening with distance from the tip
for different values of dimensionless lag size/ dimensionless toughness is displayed on
figure 4, while the corresponding dimensionless net pressure profiles (in semi-log) and
the apparent viscosity Γ are displayed on figures 5 and 6. We can directly observe the
extent of the lag on the net-pressure profiles which depart from the value Π = −1 at the
fluid front ξ = Λ. The relation between the dimensionless toughness and the dimensionless
lag size for these simulations are better grasped on figure 7. The dimensionless lag size
Λ is decreasing function of dimensionless toughness κ. This is similar to the Newtonian
case (see Garagash and Detournay (2000)) with the difference that for a given value of
dimensionless toughness, due to shear thinning, the dimensionless lag is always smaller
compared to the Newtonian case (see figure 10 for more simulations with different shear
thinning index n, and figure 8 for different transition shear-stress α).

The dimensionless opening profiles (figure 4) also evolve in a similar way to that in
the Newtonian case with a region dominated by the LEFM toughness κ-asymptote (4.2)
near the fracture tip (for x ≪ Lµo

) and a region in the far-field (for x ≫ Lµo
) dominated

by the low shear-rate viscosity asymptote mo (equation (4.3)). However, here due to
the shear thinning nature of the Carreau rheology, an intermediate region following the
power-law dominated asymptote mn can be observed for intermediate distances between
the LEFM near-tip region and the far-field low shear rate viscosity region. It is worth
noting the particularity of the zero toughness case (κ = 0) for which the dimensionless
lag is maximum and the opening in the near-tip LEFM region evolves as ξ3/2 (see figure
4).

The same evolution can be seen on the net pressure profiles (figure 6). The different
viscosity regimes as function of distance from the tip are also visible in figure 5 where the
dimensionless apparent viscosity Γ is plotted along the fracture for the two cases κ = 0
(Λ = 0.049) and κ = 0.74 (Λ = 8.3 × 10−8). The largest shear rate and therefore the
lowest tangent apparent viscosity is always located at the fluid front. For the largest lag
case, a smaller shear thinning region can be observed (see figure 5). On the other hand,
for a very small lag (κ = 0.74), the fluid strongly shear thin, although the value of the
tangent viscosity at the fluid-front (ξ = Λ) remains larger than the large shear rate value
µ∞/µo. It is important to note that the large shear rate asymptote is absent for all the
simulations performed with this given set of rheological parameters (n = 0.5, α = 102,
and µ∞/µo = 10−3).

The relative extent of these different asymptotic regions depends on the values of the
dimensionless problem parameters. In order to picture the variation of the size of these
asymptotic regions as function of dimensionless toughness κ, we determine from our
numerical results the spatial locations (ξκ, ξn and ξo) where our numerical results for the
fracture opening are within 1% of these different asymptotes. The results are displayed
on figure 7 for that same set of parameters (α = 102, µ∞/µo = 10−3, and n = 0.5)
where we see that the extent of the power-law and low shear-rate viscosity regions do not
significantly change with dimensionless toughness while the LEFM near-tip region shrinks
when the dimensionless toughness decreases (and the lag size increases) as expected. We
also see that the fluid lag region is always localized in the toughness asymptotic region
(for large κ) - or in the transition between the toughness and power-law region (small κ).
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Figure 4. Dimensionless fracture opening w/ϵLµo
along the frac-

ture for κ = 0, 0.002, 0.008, 0.043, 0.33, 0.74 (with corresponding lag size
Λ = 0.049, 0.048, 0.047, 0.041, 0.008, 8.3 × 10−8) in log-log scale for α = 102, µ∞/µo = 10−3,
and n = 0.5. The dashed lines correspond to the asymptotic solution in the toughness dom-
inated regime (κ-asymptote), power-law viscosity regime (mn-asymptote) and low shear-rate
Newtonian viscosity regime (mo-asymptote).
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Figure 5. Dimensionless apparent viscosity Γ along the fracture starting from the fluid front
ξ = Λ for κ = 0 (Λ = 0.049) and κ = 0.74 (Λ = 8.3 × 10−8) in log-log scale for α = 102,
µ∞/µo = 10−3, and n = 0.5.

6.2. Effect of the dimensionless transition shear stress α

The value of the dimensionless transition shear stress ratio α reflects the extent of the low
shear rate plateau: α is inversely proportional to the critical shear rate γ̇c (see equation
(3.6)). For large α, the fluid shear thin faster and as a result the dimensionless lag is
getting smaller for a similar value of dimensionless toughness. This can be clearly seen
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Figure 6. Dimensionless fluid pressure p/σo along the fracture for
κ = 0, 0.002, 0.008, 0.043, 0.33, 0.74 in semi-log scale for α = 102, µ∞/µo = 10−3, and
n = 0.5. The dashed lines correspond to the asymptotic solution of pressure in power-law
viscosity regime (mn-asymptote) and in Newtonian viscosity regime (mo-asymptote).
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Figure 7. Extent of the regions where the numerical solution can be approximated by the
different asymptotes (κ-asymptote, mn-asymptote, and mo-asymptote) with accuracy of 10−2

as function of dimensionless toughness with α = 102, µ∞/µo = 10−3, n = 0.5. The position of
the fluid lag is also displayed for comparisons.
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on figure 8 where the Λ− κ evolution is plotted for different values of α for n = 0.5 and
µ∞/µo = 10−3.
More interestingly, the structure of the solution also changes for larger value of α.

We present on figure 9 the evolution of the dimensionless fracture opening and apparent
viscosity for a large dimensionless transition shear stress ratio α = 107 while the shear
thinning index n and extent µ∞/µo are kept the same as in the previous sub-section:
n = 0.5 and µ∞/µo = 10−3. For this case, the dimensionless opening profiles (for different
κ) involve an additional viscosity asymptote corresponding to the large shear rate m∞

viscosity asymptote located in between the toughness and shear thinning asymptotic
regions. Even though the toughness region increases with κ, the validity of the m∞

asymptote roughly starts at the same distance from the fracture tip ξ ≃ 0.01 for all
values of κ. This can also be clearly seen on the apparent viscosity profiles depicted on
figure 9b: the apparent viscosity close to the fluid front reaches the large shear rate value
at about ξ ≈ 0.1.
The opening in the shear thinning region actually do not coincide exactly with the mn

power-law asymptote (red dashed line on figure 9a). This is the case for all dimensionless
toughness. This difference is rooted in the behaviour of the Carreau viscosity at large
shear rate. If we zoom in the region of large γ̇ > 1000 on figure 1, one can observe that
the transition from the power-law behaviour to the Newtonian high shear rate behaviour
occur over a large range of shear rate for a Carreau rheology. This large transition region
can be clearly seen on the apparent viscosity profiles (figure 9b), where it departs from the
large shear rate value at ξ ≈ 0.1 and reaches the power-law branch at about ξ ≈ 100 (or
more). As a result the opening profile beyond the large shear rate viscosity asymptotic
region are shifted from the mn power-law asymptote although they exhibit a similar
power-exponent. This difference is negligible for sufficiently small dimensionless shear
stress α as observed in the previous section (see e.g. figure 4), where the large shear-rate
viscosity asymptote was not visible. The difference between the Carreau opening profile
and the power-law asymptote in the shear thinning region becomes more significant for
large α. It is also worthwhile to point out that for the simulations for α = 107 reported
in figure 9a, the extent of our computational domain (ξmax = 104) was not sufficient to
observe the low shear rate asymptotic region.
It is also worth noting that the value of dimensionless toughness (and thus the extent

of the lag region) has an effect limited to the near-tip region, such that the transition
between the different far-field viscosity asymptotes are not influenced by κ.

6.3. Effect of the fluid shear thinning index n

The shear thinning index n dictates how fast the Carreau fluid transition from the low
to high shear rate viscosity. For the same value of dimensionless toughness κ, same shear
thinning extent µ∞/µo and transition shear stress α, a smaller shear thinning index
results in a significantly smaller dimensionless fluid lag as can be seen on figure 10. This
result is expected as the extent of the fluid lag is governed mostly by the value of the
apparent viscosity near the fluid front. The apparent viscosity actually gets toward the
large shear rate limit µ∞/µo near the fluid front for small n (steeper shear thinning
branch).

6.4. Effect of the viscosity ratio µ∞/µo

The overall magnitude of the shear thinning behaviour (between low and high shear
rate) is governed by the ratio µ∞/µo. We have so far set this ratio to 10−3, a value
corresponding to a relatively large shear thinning magnitude. We now vary this ratio as
well as the dimensionless toughness while keeping α = 103 and n = 0.5. The lag size -
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Carreau

Power law

Figure 8. Dimensionless lag length λ/Lµo
versus the dimensionless toughness κ for a Carreau

rheology for different value of α (µ∞/µo = 10−3, n = 0.5). The corresponding results for a
power-law rheology are also displayed for α = 105 and α = 103 for comparisons.

dimensionless toughness relation for different values of µ∞/µo can be seen on figure 11.
As expected, the fluid lag is smaller for smaller µ∞/µo (larger shear thinning magnitude).
For µ∞/µo = 1, we obviously recover the Newtonian case.

6.5. Comparison between the Carreau, power-law & Ellis Models

The numerical solver previously discussed can be easily adapted to solve the same problem
for a different fluid rheology. Here, we investigate the differences obtained if one use
either a power-law or an Ellis model to model the fluid shear thinning behaviour instead
of the more complete Carreau rheology. We refer to figure 1 for the difference between
these models. The only difference in the solution between the different rheologies lies
in the lubrication relation (equation (2.5)). As a result, the scalings for the power-law
and Ellis models are slightly different than for Carreau. The details of the lubrication
equations and the corresponding scalings are described in appendix B and C respectively
for these two rheologies. The solution for the power-law rheology can actually be re-
expressed in the Carreau scaling (see appendix B) using the expression of the power-law
consistency parameter as function of the Carreau rheological parameters (see equation
(1.1)). The solution for the Ellis model is expressed with the same low shear-rate viscosity
scaling than for the Carreau rheology but the dimensionless parameter αe related to
the transition from the low shear-rate plateau to the shear thinning branch is defined
differently for the Ellis model (see appendix C, equation (C 3)).
In order to compare the solution obtained with these different rheological models, we

set the rheological parameters of the different models to the ones reproducing the rheology
of a HPG fluid (see figure 1, and table 1 for the corresponding rheological parameters of
the different models). It is worth re-emphasizing that the large shear rate / low viscosity
limit is absent from both the power-law and Ellis models. The power-law rheology also
overestimates the viscosity for low shear rate. The deviation of the responses obtained
with these two models can be grasped by comparing them with the solution obtained
with the Carreau rheology.
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Figure 9. a) Dimensionless fracture opening w/ϵLµo
along the frac-

ture for κ = 0, 0.013, 0.045, 0.085, 0.11 (with corresponding lag size
Λ = 0.0004, 0.00025, 5.8 × 10−5, 2.5 × 10−6, 8.3 × 10−8) in log-log scale for α = 107,
µ∞/µo = 10−3, and n = 0.5 (the dashed lines correspond to the asymptotic solution of opening
in the toughness dominated regime (κ-asymptote), high shear rate Newtonian viscosity regime
(m∞-asymptote) and the power-law viscosity regime (mn-asymptote)). b) Corresponding
dimensionless apparent viscosity Γ starting from the fluid front ξ = Λ for κ = 0, 0.11.

We perform simulations for two different values of transition shear stress and dimen-
sionless toughness: α = 7 × 103, κ = 0.01, and α = 106, κ = 0.002 respectively. In
order to set the dimensionless shear stress, we set the ratio σ2

o/E
′ and thus using the

rheological parameters reproducing the HPG fluid, obtain the corresponding transition
shear stress for the Ellis model: αe = 4975 and 7.2 × 105 (for α = 7 × 103, and 106

respectively). The results of the power-law model are also dependent on both µ∞/µo

and α via the relation between the consistency index and the Carreau parameters. The
dependence of the power-law results on µ∞/µo is weak however as can be seen from the
contribution of µ∞/µo on the correspondence between the power-law - Carreau scaling
(1 + µ∞/µo)

1/n ≃ 1 (see equation (B 3) in appendix B).
A similar structure for the fracture opening profile is observed for the Ellis and Carreau

on figure 12 for the case α = 7 × 103, κ = 0.01. The toughness region is larger for
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Newtonian

Figure 10. Dimensionless lag length λ/Lµo
versus the dimensionless toughness κ for different

values of n, (µ∞/µo = 10−3, α = 102).
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Figure 11. Dimensionless lag length λ/Lµo
versus the dimensionless toughness κ for a Carreau

rheology with respect to µ∞/µo (α = 103, n = 0.5). The results for a power-law rheology are
also displayed for µ∞/µo = 10−3.

the Carreau model compared to the other two models as well as the lag size (Carreau
Λ = 8.7 × 10−4, Ellis Λ = 3 × 10−4, and power-law Λ = 1.9 × 10−4). As one moves
away from the tip (ξ > 10−2), the Ellis model follows closely the Carreau solution all the
way to the far field zero shear rate viscosity asymptote mo (slope in 2/3). Similarly, the
power-law model also follows closely the Carreau solution in the intermediate power-law
region but starts to deviate in the far-field (ξ > 105) where the low shear rate plateau
(absent from the power-law model) start to dominate. For such a value of dimensionless
transition shear stress (α = 7×103), the tangent apparent viscosity of the Carreau model
did not reach the large shear rate Newtonian plateau near the fluid front, and thus the
m∞ asymptote is not visible in the corresponding Carreau opening profiles.
On the contrary, for α = 106 and κ = 0.002, the large shear rate asymptote is reached

near the fluid front for the Carreau model and the m∞ asymptote is clearly visible on
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Figure 12.Dimensionless fracture opening w/ϵLµo
along the fracture in log-log scale for Carreau

(with µ∞/µo = 10−3), Ellis, power-law rheology: left- α = 7 × 103 (αe = 4975, Ellis Model),
n = 0.46 and κ = 0.01, right- α = 106 (αe = 7.2× 105, Ellis Model), n = 0.46 and κ = 0.002.

the opening profile (figure 12 right). As a result, both the power-law and Ellis models -
which do not capture the large shear rate viscosity - are significantly off from the Carreau
rheology for that case. This difference observed in the transition between the near-tip
toughness asymptote and the far-field shear thinning regions increases with increasing
α. The value of the corresponding dimensionless lag size are respectively Carreau Λ =
3.3 × 10−4, Ellis Λ = 8 × 10−8, and power-law Λ = 1.2 × 10−8. The power-law and
Ellis model actually always underestimate the value of the fluid lag for any value of
dimensionless shear stress and toughness. This is due to their over-estimation of the
shear thinning behavior over the complete range of shear rates.

7. Case of a vanishing fluid lag / large dimensionless toughness (Λ ≈ 0
/ κ ≫ 1)

7.1. Scaling

The limiting case of large dimensionless toughness κ ≫ 1 corresponds to a vanishing lag.
As can be observed from equation (3.3), large confining stress σo implies large dimension-
less toughness. A situation that will necessarily occur at great depth in the sub-surface
(σo > 1MPa). The limit of zero lag is therefore particularly important in hydraulic frac-
turing practice. Moreover, as observed previously, the effect of the fluid lag is localized
near the tip region and does not readily influence the transition between the different
viscosities - power-law asymptotic regions (see figure 7 for example). We will therefore
analyze in more depth the influence of the different governing parameters on the extent
of these different asymptotic regions on the zero lag case.
The zero lag assumption leads to the disappearance of the pressure boundary condition

p = σo and the net pressure becomes singular at the fracture tip (see Garagash and

Detournay (2000); Garagash et al. (2011) for discussion on the Newtonian case). As a
result, another scaling -following Garagash et al. (2011)- has to be adopted (see appendix
D). We can choose for example to scale the width, net pressure and distance from the tip
using the scaling for the transition between the toughness and low shear rate viscosity
asymptote. We therefore use a new characteristic opening wmok, pressure pmok and length
ℓmok (see table 2) and express the solution as:

w = wmokΩ̄ p = pmokΠ̄ x = ℓmok ξ̄ (7.1)

where Ω̄, Π̄ and ξ̄ are the dimensionless width, net pressure and spatial coordinates. The
lengthscale ℓmok characterizes the transition from the toughness dominated regime to



A semi-infinite hydraulic fracture driven by a shear thinning fluid 19

Characteristic Carreau/Ellis Power-law (n)

length ℓ ℓmok =
211K6

Ic

32π3V 2µ2
oE′4

ℓmnk =

(

(

π

32K2
Ic

)2+n

V 2nE′2+2nM ′2

) 1
n−2

net pressure p pmok =
3π

8

µoE
′2V

K2
Ic

pmnk =

((

πV

32K2
Ic

)n

M ′E′1+n

)
−1
n−2

width w wmok
27K4

Ic

3π2V µoE′3
wmnk =

(

(

π

32K2
Ic

)2

V nE′3M ′

) 1
n−2

Table 2. Characteristic scales for the zero lag case for the three different rheology. The low
shear rate viscosity Newtonian scaling is used for both the Ellis and Carreau model.

the mo viscosity regime. It is defined as the distance x from the tip where the toughness

asymptote and the low shear rate viscosity asymptote intersect: w ∼ ℓ
1/2
k x1/2 ∼ ℓ1/3mo

x2/3

(see section 4 for the expression of the different asymptotes). Similarly wmok and pmok

are the corresponding characteristic pressure and width where these two asymptotes
intersect.
In such a zero-lag scaling, the solution of the problem depends now on three remaining

dimensionless parameters: the fluid index n, dimensionless transition shear stress and the
extent of the shear thinning magnitude µ∞/µo. The dimensionless transition shear stress
is now defined slightly differently due to the different definition of the characteristic
lengthscale and pressure for this zero lag case. We obtain (see appendix D for more
details):

ᾱ =

(

3π

8

)2
µoE

′3V 2

γ̇cK4
Ic

(7.2)

The value of this dimensionless transition shear stress varies significantly depending on
both fluid and rock properties. It may actually span an interval as wide as ᾱ ∈ [10, 107],
taking values for shear thinning fluid (see table 1) and typical ranges of rock properties.
The general solution follows the same structure as in the non-zero lag case. In the

region near the fracture tip, the fracture toughness is the dominating dissipative process
and govern the fracture width. As we move away from the tip, the dissipation in the fluid
takes over as the dominant mechanism. Depending on the dimensionless transition shear
stress ᾱ, fluid index n and extent of the shear thinning µ∞/µo, three different viscosity
asymptotic regions can be observed: high shear rate viscosity asymptote m∞ for large
values of the wall shear stress when the low shear rate Newtonian viscosity plateau γ̇c
is small enough (large ᾱ), power-law viscosity asymptote mn in an intermediate shear
thinning region and the low shear rate viscosity asymptote mo for small value of shear
rate / large distance from the tip.
The extent, occurrence and transition between these asymptotic regions can be esti-

mated based on the different limiting asymptotes (see section 4), by defining transition
lengthscales where two given asymptotes intersect. For example, one can define ℓm∞k as
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the transition lengthscale between the k-asymptote to the m∞−asymptote as the dis-

tance x from the tip where the two asymptotes are comparable: w ∼ ℓ
1/2
k x1/2 ∼ ℓ1/3m∞

x2/3

such that we obtain x = ℓm∞k = ℓ3k/ℓ
2
m∞

. We can also define a transition length-
scale between the toughness k and power-law mn asymptotes, the distance x where

w ∼ ℓ
1/2
k x1/2 ∼ ℓn/(2+n)

mn

x2/(n+2), i.e. x = ℓmnk =
(

ℓ2+n
k /ℓ2nmn

)
1

2−n . Similarly, we can de-
fine ℓm∞mn

and ℓmomn
as the boundaries of the high shear rate-power-law viscosity and

low shear rate viscosity-power-law asymptotic regions. The expressions of theses different
transition lengthscales can be found in table 3 as function of the problem parameters as
well as function of the lengthscales ℓk, ℓm∞

, ℓmn
, and ℓmo

.
It is important to realize that depending on the dimensionless transition shear stress

ᾱ, shear thinning index n and extent µ∞/µo, not all of the different asymptotes may be
realized in the solution. For example, the high shear rate viscosity regime can only be
seen if the solution transitions first from the toughness k asymptote to the m∞ and then
mn asymptotes. In other words, if the mnk transition lengthscale is larger than the m∞k
transition lengthscale: ℓmnk > ℓm∞k. This condition ℓmnk > ℓm∞k can be re-expressed as
the boundary of a region in the parametric space n − ᾱ − µ∞/µo. For a given n, this
region can be seen on figure 13, and expressed in terms of a limiting transition shear
stress ᾱl∞ (µ∞/µo, n) (ᾱl∞ is a decreasing function of µ∞/µo). For ᾱ > ᾱl∞ (µ∞/µo, n),
the solution exhibits all the possibles asymptotes: k, m∞, mn and mo as one moves away
from the fracture tip. This limit can be obtained from the equality ℓmnk = ℓm∞k and can
actually be expressed analytically as function of n and µ∞/µo :

ᾱl∞ =

√
2−2/(n−1) − 1
(

6n
1+2n

)
n

1−n

(

(µ∞/µo)
2−n

1 + µ∞/µo

)1/(n−1)

(7.3)

Another case worth considering is when ℓmnk > ℓmomn
. This means that the distance at

which the solution transition from the power-law to the low shear rate viscosity is smaller
than the distance at which the solution transition from the toughness to the power-law
region. In other words, because the shear-rate decreases as one moves away from the
tip, such a situation indicates that no power-law asymptotic region exist. The condition
ℓmnk = ℓmomn

therefore defines another boundary of a region in the parametric space
where the solution exhibits only two asymptotic regions: the toughness k asymptote near
the tip and the low shear-rate viscosity mo away from the tip. Similarly, for a given n,
this boundary can be recasted in term of a limiting value of the dimensionless transition
shear-stress ᾱln (µ∞/µo, n) expressed as function of n and µ∞/µo (ᾱln increases with
µ∞/µo):

ᾱln =

√
2−2/(n−1) − 1
(

6n
1+2n

)
n

1−n

(

1

1 + µ∞/µo

)1/(n−1)

(7.4)

The two limits are actually related as

ᾱl∞ = ᾱln ×
(

µ∞

µo

)

−
2−n

1−n

.

Figure 13 displays these two limits for n = 0.46 which therefore define three regions
in the parametric space. In region A (ᾱ < ᾱln (µ∞/µo)), only two asymptotic regions
(k and mo) are present in the solution. In region B, for ᾱln(µ∞/µo) < ᾱ < ᾱl∞(µ∞/µo),
three asymptotic regions k, mn and mo are present as one moves away from the tip.
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)2/(2−n)

ℓm∞mn

(

ℓ2+n
m∞

ℓ3nmn

) 1
2−2n

V

(

(12µ∞)2+n

M ′3E′n−1

)1/(2−2n)

ℓmomn

(

ℓ2+n
mo

ℓ3nmn

) 1
2−2n

V

(

(12µo)
2+n

M ′3E′n−1

)1/(2−2n)

Table 3. Transition lengthscales between the different asymptotic regions expressed as function
of the asymptotes characteristic scales (equation (4.1)) and directly as function of the problem
parameters.

Finally, ᾱ > ᾱl∞(µ∞/µo) defines a third region where all the different asymptotes may
be visible: k, m∞, mn and mo in that order from the tip.

7.2. Evolution of the different asymptotic regions

In the previous sub-section, based on scaling considerations, we have defined three distinct
regions in the parametric space, where two, three or four asymptotic regions may be
observed. Here we compare a large series of numerical results (57 simulations in total)
with the limits established previously. We plot as function of the scaled distance from
the tip x/ℓmok the limits where the numerical results are within 1% of the different
asymptotes as function of ᾱ (for a given n and µ∞/µo) or µ∞/µo (for a given n and ᾱ).
For comparison, we also plot the analytical asymptotic transitions based on the defined
lenghtscales (table 3).

We perform 4 series of simulations corresponding to 2 vertical and 2 horizontal cross
sections of the parametric space ᾱ − µ∞/µo (see figure 13). All reported simulations
are for n = 0.46 (HPG fluid index). The value of n modifies the shape of the different
boundaries but do not change qualitatively the over-all picture. The results of these four
series of simulations are summarized in figure 14.

Let us first discuss the cases where we vary ᾱ in the range
[

10−8, 108
]

for two distinct
values of the shear thinning magnitude µ∞/µo = 10−3 and µ∞/µo = 10−1 (top plots in
figure 14). The overall extent of the different asymptotic regions as function of tip distance
and dimensionless transition shear stress follow the structure presented previously. For
small value of ᾱ, only the toughness (near the tip) and low shear rate viscosity mo asymp-
totes are visible. Above a given value of ᾱ, the power-law asymptote start to be visible on
our numerical results albeit in a very narrow region (for a relative asymptotic error of 1%).
Finally, for large ᾱ for µ∞/µo = 10−1, the large shear rate viscosity m∞ asymptote can
be clearly seen on the numerical results. For these two series of simulations for µ∞/µo =
10−3 and 10−1, the limiting value ᾱln under which only the toughness and low shear
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B

A

C

Figure 13. Occurrence of the different viscous asymptotes as function of ᾱ and µ∞/µo

for n = 0.46. Three distinct regions separate the parametric space: region (A) defined as
ᾱ < ᾱln(µ∞/µo, n) where the solution transition from k directly to mo, region (B) defined as
ᾱln(µ∞/µo, n) < ᾱ < ᾱl∞(µ∞/µo, n) where three asymptotes k, mn and mo can be observed,
and region (C) defined for ᾱ > ᾱl∞(µ∞/µo, n) where up to four asymptotes k, m∞, mn and
mo may be observed. The dot-dashed orange lines refer to the coordinates of the numerical
simulations performed in figure 14.

rate viscosity asymptotes are present is respectively ᾱln

(

µ∞/µo = 10−1
)

= 3.03, and

ᾱln

(

µ∞/µo = 10−3
)

= 2.55. Our numerical results report a smaller value for this lower

limit ᾱln : ᾱlnnum

(

µ∞/µo = 10−1
)

≃ 10−4 and ᾱlnnum

(

µ∞/µo = 10−3
)

≃ 10−2. For the
small shear thinning magnitude case (µ∞/µo = 10−1), the high shear rate viscosity region
is visible in the figure 14b for value of ᾱ greater than ᾱl∞

(

µ∞/µo = 10−1
)

= 2.1× 104,
while the numerical value at which we start to observe the m∞ asymptote is slightly
larger ᾱl∞num

(

µ∞/µo = 10−1
)

≃ 4.6× 104. Note that for µ∞/µo = 10−3, the high shear
rate viscosity region is pushed out of the dimensionless transition shear stress interval in-
vestigated here, the analytical expression gives ᾱl∞

(

µ∞/µo = 10−3
)

= 9.1× 108 in that
case, and the m∞ asymptote is not visible on our numerical results.

The extent of the toughness region near the fracture tip is roughly constant for small
ᾱ, then increases with ᾱ until reaching a constant value for sufficiently large ᾱ (above
the limit ᾱl∞) for which the m∞ asymptote becomes visible. For small enough values
of ᾱ (below ᾱln), the distance at which the numerical results can be approximated by
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the toughness and low shear rate viscosity asymptote are respectively x ≈ 10−7ℓmok and
x ≈ 1.3ℓmok which is exactly consistent with the bounds obtained by (Garagash et al.

2011). Similarly for the case of large dimensionless transition shear stress ᾱ > ᾱl∞ , the
numerical boundaries demonstrate that the m∞ asymptote starts at x ≈ 101ℓmok from
the fracture tip regardless the value of ᾱ.

Similarly we have studied the effect of the viscosity ratio in the range [10−3, 0.75] for
two distinct dimensionless transition shear stress ᾱ = 102 and 105, see figures 14c and
14d. In both cases, the extent of the toughness region (scaled by ℓmok) is decreasing with
larger value of µ∞/µo. In fact, the evolution of the toughness region tracks the evolution
of ℓmnk and ℓm∞k as function of ᾱ and µ∞/µo for all cases.

For the series of simulation with ᾱ = 102, the mo low shear rate viscosity region has
the same domain of validity regardless of the value of µ∞/µo (figure 14c). This low shear
rate region can not, however, be observed for the series of simulation with ᾱ = 105, where
it is estimated to appear for distances away from the tip above 107ℓmok. A value which
is larger than the extent of our computational domain.
The high shear rate viscosity region m∞ can be seen for values of µ∞/µo larger than

0.33 (ᾱ = 102) and 0.025 (ᾱ = 105) respectively from the scaling arguments. These
values are in line with the numerical results which gives respectively (µ∞/µo)num = 0.75
(ᾱ = 102, where this m∞ region can be seen for the largest value of µ∞/µo only), and
(µ∞/µo)num = 0.07 (ᾱ = 105).
It is also worthwhile to note that for all the simulations reported on figure 14, the

extent of the power-law region where the numerical results obtained are within 1% of
the mn asymptote is extremely limited, and significantly smaller than the predictions
obtained from scaling arguments.

7.3. Comparison between the Carreau, power-law & Ellis Models

In this section, we compare these three models in the zero lag case and investigate how
close the predictions based on Ellis and power-law models are to the complete Carreau
model depending on the occurrence of the different asymptotic regions highlighted in
figure 13. We use the zero lag scaling (equation 7.1) in all cases. The expressions of the
characteristic opening, pressure and length for the power-law model (see table 2) are
different from the Carreau model (while they are similar for the Ellis model). The scaling
and dimensionless problem are detailed in appendix D.
Like previously for the lag case, we fix the rheological parameters to the ones repro-

ducing the rheology of a HPG fluid (see table 1 for the different models). We vary the

value of the dimensionless transition shear stress ᾱ (by varying
E′3V 2

K4
Ic

at fix rheological

parameters), as well as the shear thinning amplitude ratio µ∞/µo.
We first fix the shear thinning magnitude µ∞/µo at 10−3. Figures 15a, b, c and d

exhibit the fracture opening for the three models for four different values of ᾱ (small ᾱ
- figure 15a, intermediate ᾱ - figure 15b and c, and large ᾱ - figure 15d). As discussed
in section 13, there are two limits that define the behaviour of solution for the Carreau
model (ᾱln , ᾱl∞) for a given viscosity ratio and power-law index. These values of the
dimensionless transition shear stress can be approximated analytically using the transi-
tion lengthscales (see sub-section 7.1). For µ∞/µo = 10−3, the high shear rate viscosity
asymptote may become visible for values of ᾱ larger than ᾱl∞ = 9.1× 108,whereas the
power-law region may appear for ᾱ larger than ᾱln = 2.55.

For value of ᾱ smaller than ᾱln (see figure 15a), as expected the Carreau dimensionless
opening transition from the toughness k asymptote near the tip to the far-field low shear
viscosity asymptote without any visible power-law region. The solution for the Ellis model
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Figure 14. Numerical bounds and transition lengthscales (black solid lines) between the dif-
ferent asymptotic regions:(a) variations of ᾱ for n = 0.46, µ∞/µo = 10−3, (b) variations of ᾱ
for n = 0.46, µ∞/µo = 10−1, (c) variations of µ∞/µo for n = 0.46, ᾱ = 102, and (d) µ∞/µo

for n = 0.46, ᾱ = 105. The regions where the numerical results fall within 1% of accuracy of an
asymptote are also displayed. For the power-law region, limits where the numerical results are
within 1% accuracy of the mn asymptote are displayed in red, and in orange when within 5%
of accuracy.

is matching perfectly the solution of the Carreau rheology for that case (figure 15a). As
expected, the prediction of the power-law rheology widely differ from Carreau for this
small ᾱ case (due to the large effect of the low shear rate plateau). As the value of ᾱ
exceeds ᾱln , a power-law region appear just beyond the near-tip toughness region. For
ᾱ = 74 (see figure 15b), the Ellis model still follows closely the complete Carreau rheology
- pending a small deviation in the transition between the power-law and far-field region
(for x/ℓmok ∈ [1− 100]). Here again, the power-law model still significantly deviates in
the far-field due to the effect of the low shear rate viscosity absent from the power-law
model. For larger value of ᾱ (figure 15c), the difference between the Ellis and Carreau
rheology slightly increases in the intermediate power-law mn region where the effect of
the transition from the power-law branch to the high shear rate Newtonian plateau in the
Carreau rheology starts to influence the overall solution (see section 6.2 for details) even
tough ᾱ did not yet reach the bound ᾱl∞ . However, the Ellis model still match exactly
the Carreau solution in the near-tip toughness region and in the far-field low shear-rate
mo region. The power-law model gets closer to the predictions of the Carreau and the
Ellis models except in the far-field low-shear rate mo region (x/ℓmok > 104) as expected.

All the results depicted in figures 15a, b and c are for the case of a large shear thinning
amplitude (µ∞/µo = 10−3). The effect of its influence can be seen in figure 15d for a
large value of ᾱ (46.2× 103). For such a large value of ᾱ, the power-law region stretches
out far away from the tip, actually driving the low-shear rate region outside of our nu-
merical grid. Over those lengthscale, the Ellis and the power-law models are very close
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to one another. They both differ however from the Carreau rheology outside the near-tip
toughness k region. Such a difference increases as the shear thinning amplitude decreases
(i.e. for smaller viscosity ratio µ∞/µo). The power-law region significantly decreases in
the Carreau solution with increasing viscosity ratio µ∞/µo. The high shear rate viscos-
ity region m∞ dominates the Carreau response in the intermediate field for the case
µ∞/µo = 10−1 for ᾱ > ᾱl∞(µ∞/µo = 10−1) = 2.1× 104. For both cases µ∞/µo = 10−2

and µ∞/µo = 10−3, the high shear rate viscosity m∞ region is still absent from the Car-
reau solution (ᾱln(µ∞/µo = 10−2) = 2.59 < ᾱ < ᾱl∞(µ∞/µo = 10−2) = 1.3× 106, and
ᾱ < ᾱl∞(µ∞/µo = 10−3) = 9.1× 108) but the solution is already significantly affected
by the rather long transition from the power-law branch to the high shear rate viscosity
intrinsic to the Carreau model.

These comparisons are in line with the structure of the solution with respect to the
different limiting asymptotes depicted in the previous sub-section. We notably see that
the scaling estimate of ᾱln and ᾱl∞ provide the overall trend of the validity of the different
models, with the caveat that the transition from the power-law branch to the high shear
rate viscosity plateau has a significant effect on the solution even for ᾱ lower than ᾱl∞ . In
summary, for value of ᾱ sufficiently lower than ᾱl∞(µ∞/µo, n), the Ellis model reproduce
relatively well the results obtained with the Carreau rheology. Deviations start to occur
for larger values of the dimensionless shear stress ᾱ. The power-law model reproduce
poorly the results of the complete Carreau solution in the far-field region in all cases. It
may only provide an acceptable approximation up to a distance x/ℓmok ≈ 10 from the
tip for intermediate values of ᾱ in between the limits ᾱln(µ∞/µo, n) and ᾱl∞(µ∞/µo, n).
This intermediate region between ᾱln(µ∞/µo, n) and ᾱl∞(µ∞/µo, n) drastically shrinks
for increasing µ∞/µo ratio (i.e. decreasing shear thinning amplitude).

8. Conclusions

The use of shear thinning fluid is ubiquitous in hydraulic fracturing applications. By
focusing on the near-tip behaviour, we have clarified the impact of the details of the fluid
rheological behaviour on the complex coupling between lubrication flow and linear elastic
fracture mechanics. Depending on the problem parameters, three scenarios are possible.
First (region A in figure 13), for small values of dimensionless transition shear stress case:
the solution for the Carreau rheology reduces to the Newtonian model with a viscosity
given by the low shear rate value. Secondly (region B in figure 13) for the case charac-
terised by intermediate values of the dimensionless transition shear stress and large shear
thinning amplitude, the solution exhibits three distinct asymptotic regions (and transi-
tions in between) as one moves away from the tip: toughness, shear thinning/power-law
and a far-field low shear rate viscosity region. Finally for large dimensionless transition
shear stress, the solution depends on all the details of the Carreau rheology with up to
four different asymptotic regions: toughness, high shear rate viscosity, shear thinning/
power-law and low shear rate viscosity (region C in figure 13). The fluid lag always fall
within the toughness dominated region near the fracture tip.
For small dimensionless toughness κ, the extent of the fluid lag is drastically im-

pacted by the shear thinning behaviour, with smaller lag for stronger shear thinning
fluid. The approximations of the complete rheology by simpler shear thinning models
(Ellis, power-law) always under-predict the actual fluid lag size compared to the Carreau
model, whereas it is over estimated using a Newtonian model with the low-shear rate vis-
cosity. In order to grasp some order of magnitude, let us compare the dimensional extent
of the fluid lag for both a HPG fluid (see table 1) and a Newtonian fluid with a viscosity
equal to the low shear rate viscosity of the HPG fluid. First, if we take values akin to a
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Figure 15. Zero lag case. Dimensionless fracture opening w/wmok as function of the dimension-
less distance from the tip x/ℓmok for the three rheologies (see table 2 for the expressions of the
characteristic scales wmok and ℓmok). The rheological parameters of the fluid are the one of a
HPG. Influence of ᾱ with µ∞/µo = 10−3: (a) ᾱ = 74×10−8 (Ellis ᾱe = 53.4×10−8), (b) ᾱ = 74
(Ellis ᾱe = 53.4; (c) ᾱ = 103 (Ellis ᾱe = 2088.7), (d) ᾱ = 46.2 × 103 (Ellis ᾱe = 33.4 × 103)
with also the solution for different µ∞/µo for the Carreau model. The Ellis model starts to
depart from the Carreau in the intermediate region for α ≥ 103 even for a large shear thinning
magnitude (µ∞/µo = 10−3).

laboratory experiment performed in PMMA under a small confinement (σo = 0.1 MPa),
and an average value of the propagation velocity realistic for a laboratory experiment
(V = 0.002 m/s), one obtains a dimensionless toughness κ = 3.24 (see table 4 for the
values of the different parameters used). The corresponding estimate of the fluid lag
λ = ΛLµo

of 0.0011 cm for the Carreau fluid while for the low shear rate Newtonian fluid
we obtain λ = ΛLµo

≈ 1.63cm, i.e. a extend of the lag three order of magnitude larger
for the Newtonian fluid compared to the shear thinning one. Similarly, for a hydraulic
fracture propagating under significant confinement (σo = 20 MPa) in a sandstone at an
average velocity of 0.5m/s (see table 4 for the corresponding parameters), we obtain a
dimensionless toughness κ = 0.527. The corresponding lag size for a HPG fluid is essen-
tially zero (λ < 10−7 cm - see figure 8 for α = 104) whereas for a Newtonian fluid (low
shear rate viscosity equivalent) the corresponding lag would be of 2.5 cm (see figure 10
for Λ(κ) in that case).
The limiting case of a large dimensionless toughness / vanishing lag is especially rel-

evant in industry practice as it corresponds to the case of a fracture propagating at
depth under a sufficient level of confining stress. In that limit, the structure of the solu-
tion for a given fluid index and extent of the shear thinning magnitude µ∞/µo can be
readily grasped by computing the large κ dimensionless shear stress ᾱ defined in equa-
tion (7.2). Depending on the value of ᾱ with respect to the limits ᾱln(µ∞/µo, n) and
ᾱl∞(µ∞/µo, n), the solution as one moves away from the tip consist of two (region A),
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three (region B) or four (region C) asymptotic regions. An order of magnitude of these
different regions can also be readily grasped by computing the different transition length-
scales listed in table 3. Furthermore, the computation of these limits ᾱln(µ∞/µo, n) and
ᾱl∞(µ∞/µo, n) can help in deciding if one of the alternative rheological models (power-
law, Ellis and Newtonian) can provide similar results if the complete Carreau model is
required. Notably, we have seen that the domain where simpler models (power-law, Ellis)
approximate sufficiently well the Carreau solution can also be directly grasped by esti-
mating the relative ordering of ᾱ, ᾱln(µ∞/µo, n) and ᾱl∞(µ∞/µo, n). The Ellis model is
a good approximation for values of ᾱ sufficiently lower than ᾱl∞(µ∞/µo, n). The power-
law model has a narrow domain of validity: it is a good approximation of the complete
solution only up to a distance x/ℓmok ≈ 10 from the tip and this only for intermediate
values of ᾱ, above ᾱln(µ∞/µo, n) but still sufficiently lower than ᾱl∞(µ∞/µo, n). As an
example of illustration, let us consider a hydraulic fracture driven by a HPG-like fluid
(see table 1) in a rock with stiffness E′ = 30 GPa and fracture toughness of KIc = 1
MPa

√
m propagating at a velocity V = 1 m/s resulting in a dimensionless shear stress

ᾱ = 50 × 103. For a HPG fluid with a shear thinning extent µ∞/µo = 10−3, this case
falls within region B (ᾱln (µ∞/µo) < ᾱ < ᾱl∞ (µ∞/µo)) where the Ellis model (and to
a lesser extent the power-law model) can properly reproduce the tip behavior especially
because the transition lengthscale ℓmomn

is extremely large (ℓmomn
≈ 12.8× 103 meters)

and thus unlikely to be probed in finite hydraulic fractures in the field. In the case where
the shear thinning magnitude is smaller - e.g. for µ∞/µo = 10−1, the dimensionless shear
stress is larger than ᾱl∞ (ᾱ = 50× 103 > ᾱl∞(µ∞/µo = 10−1) = 2.1× 104) and the solu-
tion structure is akin to the one of region C (see figure 13): the large shear rate range of
the Carreau rheology affect the tip structure (with values for the transition lengthscales
ℓm∞k = 0.5 meters, ℓm∞mn

≈ 40 meters respectively). This example illustrates how one
can easily estimate which asymptotic region may appear at the scale of the finite fracture
for a given set of problem parameters from the transition lengthscales defined in table 3
and the expression of the critical dimensionless shear stress (equations (7.3) and (7.4))
defining the boundaries between regions A and B, and B and C.

The shear thinning tip solution presented here could eventually be used in numerical
scheme for the propagation of finite hydraulic fracture (see Peirce and Detournay (2008);
Detournay and Peirce (2014); Peirce (2015) for discussion for a Newtonian fluid). How-
ever, in order to be used efficiently in a finite hydraulic fracture simulator, this tip solution
needs to be computed extremely fast (as it needs to be inverted), and thus approximated
analytically or semi-analytically (see Dontsov and Peirce (2015, 2017) for the Newtonian
case). Such an approximation for a Carreau fluid (for which the lubrication relation is
not analytical) is far from obvious and would require significant developments.

Besides the importance of shear thinning fluid in hydraulic fracturing industrial prac-
tice, it is also interesting to note that the propagation of magmatic dykes toward the
earth’s surface (see e.g. Spence and Turcotte (1985); Lister (1990)) may also be affected
by the shear thinning behaviour of some magmas (Caricchi et al. 2007).
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Material Fluid KIc E′ σo V α κ Lµo
ϵ

MPa.
√
m GPa MPa m/s − − m −

PMMA HPG 1.3 3.93 0.1 0.002 1.75 3.24 163.09 0.000025

Bebertal sandstone HPG 1.2 20 20 0.5 1.37× 104 0.527 0.132 0.001

Table 4. Values of the dimensionless parameters for example hydraulic fracturing fluids and
materials for propagating velocity V . PMMA data from Bunger and Detournay (2008) and
Bebertal sandstone data from Stoeckhert et al. (2015).

Appendix A. Poiseuille flow for a Carreau fluid

The solution for the uni-dimensional pressure-driven flow of a Carreau fluid between
parallel plate can be solved semi-analytically (Sochi 2015). The dimensionless apparent

viscosity Γ
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where I(n, ˙̃γw, α, µ∞/µo) is an analytical function derived by Sochi (2015) which depends
on the rheological parameters (n, µ∞/µo, α) and the dimensionless wall shear rate ˙̃γw:
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where n′ = n− 1, δ = 1− µ∞/µo, and 2F1 is the hypergeometric function with real
variables. The dimensionless shear rate at the wall ˙̃γw is related to the dimensionless
wall shear stress τ̃w via the Carreau rheological equation:

τ̃w =
Ω
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In the scaling of section (3), the characteristic shear stress and shear rate are given by

τ∗ = ϵσo = αµoγ̇c, γ̇∗ = αγ̇c

where α is defined by equation (3.6).

For a given value of dimensionless shear stress at the wall τ̃w =
Ω
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, the equation

(A 2) can be solved for the corresponding dimensionless wall shear rate ˙̃γw using quasi-
Newton root-finding scheme. We are thus able to get the correspondent apparent viscosity
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Figure 16. Exact and interpolated values of the dimensionless tangent viscosity in log-log scale
with respect to the wall shear stress for different values of α and: n = 0.46, µ∞/µo = 10−3.

Γ (τ̃w, α, n, µ∞/µo) from equation (A 1). In order to speed up our computation, for a given
set of dimensionless rheological parameters (n, µ∞/µo, α), we tabulate the evolution of
this dimensionless apparent viscosity Γ as function of the dimensionless wall-shear stress.
We then built an interpolation using Mathematica built-in spline routine and use it to
solve the semi-infinite hydraulic fracture problem. The tabulated data and the created
interpolated function can be seen on figure 16 for a given set of dimensionless rheological
parameters.

Appendix B. Power-law model

The governing equations for a semi-infinite fracture driven by a power-law fluid propa-
gating at constant velocity V involve the elasticity equation (2.3), the near-tip asymptotic
solution (2.2), the boundary condition (2.4) and the flow equation for a power-law fluid.
According to lubrication theory, the equation governing the flow of power-law fluid within
the fracture is given by Bird et al. (1987)

V n =
wn+1

M ′

∂pf
∂x

, x ∈]λ,∞[ (B 1)

with M ′ =
2n+1(2n+ 1)n

nn
M , and M is defined in equation (1.1).

Following section 3, we scale the fracture opening Ωn, the net pressure Πn and the
moving coordinate ξn by the characteristic opening ϵLn, the far field stress σo and the
lengthscale Ln respectively, where:

Ln = V

(

M ′

σo

)1/n(
E′

σo

)
n+1
n

, ϵ =
σo

E′

The dimensionless equations to be solved are : the elasticity equation (3.1), the prop-
agation condition (3.2), the boundary condition (3.4) and the following dimensionless
lubrication equation for the power-law fluid:

Ωn+1
n

∂Πn

∂ξn
= 1, ξn ∈]Λ,∞[ (B 2)
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The numerical results includes the fracture opening Ωn, fluid pressure Πn profiles over
the whole fracture as well as the corresponding value of the dimensionless lag Λn which
depend only on the fluid index n and the dimensionless toughness κn:

κn =

√

32

π

1

V 1/2

(

σ2−n
o

M ′E′3n+1

)1/2n

KIc

The transition from power-law scaling to the low shear rate viscosity scaling is established
via the given length ratio

Ln

Lµo

=

(

2n+ 1

6n

)

α(n−1)/n







µi/µo + 1
(√

2−2/(n−1) − 1
)n−1







1/n

(B 3)

such that the dimensionless opening (the dimensionlesss fluid lag and the moving coor-
dinate) in Carreau scaling is calculated as:

Ω =
Ln

Lµo

Ωn.

The dimensionless toughness in the low shear rate viscosity scaling, can be finally ob-
tained as:

κ =

√

Ln

Lµo

κn

Appendix C. Ellis model

The lubrication flow of an Ellis fluid in a channel has been investigated byMyers (2005)
analytically (see also Matsuhisa and Bird (1965)). The flow is subject to no-slip at the
top and bottom surfaces. The driving force is the pressure gradient. The fluid pressure
is linked to the fracture opening using the following non linear equation:

V = − 1

µo

∂pf
∂x

[

w2

12
+

(

− 1

β

∂pf
∂x

)m−1
wm+1

2m+1(m+ 2)

]

(C 1)

with m is the Ellis index, and β is a characteristic shear stress.

In the low shear rate viscosity scaling, the dimensionless form of this equation is given
by

−∂Π

∂ξ

[

Ω2 +
12

2m+1(m+ 2)

(

−αe
∂Π

∂ξ

)m−1

Ωm+1

]

= −1, (C 2)

with:

αe =
σ2
o

βE′
; (C 3)

where :

w = ϵLµo
Ω p = σoΠ λ = Lµo

Λ

Lµ
o

and ϵ have the same definitions than the ones introduced in section 3 for a Carreau
fluid.
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Appendix D. Scaling for the zero lag / large κ case

Making use of the elasticity equation (2.3), the lubrication equation on the entire
length of the fracture (equations (2.5), (B 1), or (C 1) for λ = 0), and the propagation
condition (equation (2.2)), we find the corresponding expression for the characteristic
scales (see table 2 for the Carreau/ Ellis model (same expression based on the low shear
rate viscosity) and the power-law rheology).
The resulting dimensionless system of equations are: the elasticity equation (equation

(3.1)), the fluid flow (equations (3.5) for the Carreau model, (B 2) for power-law, or (C 2)
for an Ellis model) and the propagation condition (equation (D 1)). These equations are
solved for the new unknowns (Ω̄, Π̄) using a scheme similar to the non-zero lag case. The
only difference

Ω̄ =

√

ξ̄forξ̄ → 0 (D 1)

The new dimensionless viscosity for the Carreau rheology Γ̄

(

Ω̄

2

∣

∣

∣

∣

∂Π̄

∂ξ̄

∣

∣

∣

∣

, n, µ∞/µo, ᾱ

)

depends on four parameters: the shear stress
Ω̄

2

∣

∣

∣

∣

∂Π̄

∂ξ̄

∣

∣

∣

∣

, the fluid index n, the viscosity ratio

µ∞/µo, and the dimensionless transition shear stress ᾱ characterizing the transitional
shear stress from Newtonian plateau to the shear thinning behaviour. Due to the change
of scales, the dimensionless transition shear stress ratio has now the following expression
for the Carreau model:

ᾱ =

(

3π

8

)2
µoE

′3V 2

γ̇cK4
Ic

(D 2)

In the case of the Ellis model, the dimensionless apparent viscosity depends on a different
dimensionless transition shear rate (see equation (C 2)) which we defined for the zero lag
case as:

ᾱe =
9π2

26
E′3µ2

oV
2

βK4
Ic

. (D 3)

It is worthwhile to note that one can switch from the power-law scaling to the low
shear rate viscosity scaling for the three dimensionless parameters (ξ̄, Ω̄, andΠ̄) via the
following relations:

ℓmnk

ℓmok
=







(

2n+ 1

6n

)n
µ∞/µo + 1

(√
2−2/(n−1) − 1

)n−1







2/(n−2)

ᾱ
2(n−1)
n−2

wmnk

wmok
=

√

ℓmnk

ℓmok

pmnk

pmok
=

√

ℓmok

ℓmnk
.

where the superscript n denotes the characteristic scale for the power-law scaling listed
in table 2.
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