
A Semi-Lagrangian Approach For American Asian Options Under
Jump Diffusion

Y. d’Halluin∗, P.A. Forsyth†, and G. Labahn‡

December 15, 2003
version 1.7

Abstract

A semi-Lagrangian method is presented to price continuously observed fixed strike Asian options. At
each timestep a set of one dimensional partial integral differential equations (PIDEs) is solved and the
solution of each PIDE is updated using semi-Lagrangian timestepping. Crank-Nicolson and second order
backward differencing timestepping schemes are studied. Monotonicity and stability results are derived.
With low volatility values, it is observed that the non-smoothness at the strike in the payoff affects the
convergence rate; sub-quadratic convergence rate is observed.
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implicit discretization.
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1 Introduction

An Asian option gives the holder a payoff that depends on the average price of the underlying asset over
a specified period of time. Asian-style derivatives have a wide variety of applications in equity, energy,
interest rate, and insurance markets. To the best of our knowledge, they were first introduced in [11]. For an
historical review of Asian options, see [10].

Asian derivatives are very popular for several economic reasons. First, since the volatility of the average
price is less than the price itself, Asian options are less expensive than regular vanilla options. Second, while
for some classes of derivatives it is possible for large market participants to manipulate the price of illiquid
commodities, it is much harder to manipulate the average price over a period of time. Finally, companies are
often more interested in the average price of oil or foreign exchange rate, than the underlying price or rate
at a specific date when considering long term projects. For example, airline companies are certainly more
interested in buying oil based on its average price instead of its spot price. Consequently, pricing Asian
options accurately is critical.

The price of an Asian option at any time is a function of both the underlying asset at that time and
the average of the underlying prices up to that time; as such these options are considered path-dependent.
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In practice, Asian option contracts typically specify that the average is monitored discretely. A typical
situation would be to base the average on the daily closing price. If daily averaging is used, then for
typical market parameters, for options with expiry times more than three months, we can consider these
options as being continuously monitored, for all practical purposes. In addition, if we need to price long
term (greater than one year) Asian options, then using timesteps of one day (which would be required in a
discrete observation model [42]) would clearly be computationally wasteful. Consequently, in this paper we
focus on continuously observed Asian options. For details on numerical methods for discretely observed
Asian options, we refer the reader to [15, 14, 42, 22]

In general, a two dimensional PDE must be solved to determine the price of an Asian option. In certain
special cases, for example, constant volatility, no barrier features, and a floating strike contract, this problem
can be reduced to a one-dimensional PDE [4]. In addition, for either floating or fixed strike, but not American
style or asset dependent features (e.g. volatility a function of asset price), a one dimensional PDE can be
derived [38].

However, in the general case (that is, American style, asset dependent barriers or volatility), the two
dimensional PDE cannot be reduced to one dimension. This PDE is difficult to solve, since the problem
has no diffusion in one of the coordinate directions. In [41, 44], a flux limiter was used to retain accuracy
while preventing oscillations. In [27], the first order hyperbolic term was discretized using a first order
upwind type method, resulting in at most first order accuracy. In [30], a semi-Lagrangian method was used
to discretize the hyperbolic term in the average direction. Semi-Lagrangian schemes were first introduced
by [18] and [32] for atmospheric and weather numerical predictions. These are time marching schemes
that integrate convection-diffusion equations by tracing backward in time the position of the flow. These
schemes are used to reduce numerical problems raised by convection dominated equations. In principle,
provided an appropriate time discretization is used, and a high enough order of interpolation is used to
recover values at the feet of the characteristic curves [20, 1, 9], then this method is capable of greater than
first order convergence as the grid and timestep size is reduced.

There is increasing empirical evidence that the usual assumption of geometric Brownian motion should
be augmented by discontinuous jump processes[19]. Such models were originally introduced in the option
valuation context in [28]. It is also possible to develop more complex valuation models which include
stochastic volatility as well as jumps [7].

In [3], the authors have suggested that good results can be obtained in practice by combining the de-
terministic volatility approach with lognormally distributed Poisson jumps with constant parameters. They
argue that this avoids most of the difficulties associated with calibrated local volatility surfaces, while re-
taining the simplicity of a single factor model, which is an important practical consideration.

In this paper, we will explore the use of a semi-Lagrangian method for pricing American Asian options
with jump diffusion. As we will make no assumptions regarding the contract, or the form of the volatility
function, this will result, in the European case, in a two dimensional Partial Differential Integral Differ-
ential Equation (PIDE). In the American case, the problem becomes a partial differential integral linear
complementarity problem. After semi-discretization in time, the semi-Lagrangian approach results in a set
of one-dimensional differential integral inequalities. At each timestep, these one dimensional problems are
independent. Hence the methods in [16, 17] can be used to solve each discrete problem. We remark that
although we focus exclusively on Asian options in this paper, similar PDEs (no diffusion in one of the
space-like directions) occur in certain interest rate models [36], and hence the methods developed here will
be applicable to this case as well.

The main results in this paper are

• We demonstrate that a semi-Lagrangian method can be used to price continuously observed Ameri-
can Asian options under jump diffusion processes. The implementation suggested here reduces this
problem to solving a decoupled set of one dimensional nonlinear discrete partial integral differential
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equations (PIDEs) at each timestep. This makes implementation of this method very straightforward
in a software library which is capable of pricing discretely observed path dependent options [42].

• We show that in the fully implicit case, the semi-Lagrangian method is algebraically identical to a
standard numerical method for pricing discretely observed Asian options, if the observation interval
is equal to the discrete timestep. Since lattice methods [39] can be regarded as explicit finite difference
methods it follows that the usual binomial forest method for Asian options [24] can also be regarded
as an explicit semi-Lagrangian method.

• Since the discretized problem at each timestep reduces to a set of decoupled one dimensional PIDEs,
we can make use of the techniques developed in [21, 16, 17] to prove certain properties of the discrete
scheme, including convergence of the iterative method used to solve the implicit discrete equations. In
the fully implicit case, it is straightforward to provel∞ stability and monotonicity, which are important
properties of discrete schemes for option pricing [5, 34, 13, 12].

• We include experimental computations which indicate that, even if second order timestepping meth-
ods are used, observed convergence as the mesh and timestep is refined occurs at a sub-second order
rate. The problem can be traced to the non-smoothness of the payoff function.

The remainder of the paper is organized as follows. In the next section we give the PDE formulation for
the American Asian options problem under jump diffusion. In Section 3 we show how this can be viewed as
a semi-Lagrangian problem while the following section gives a relationship between the semi-Lagrangian
problem and the case of the standard method for pricing discrete Asian options. Sections 5 and 6 includes
a number of important properties of our discretization. Section 7 presents the iterative algorithm along with
its convergence properties. Numerical results appear in section 8 with the last section giving our conclusions
and topics for future research.

2 Mathematical Model

In this section we give the mathematical model for options with jump diffusion processes. We do this for
both European and American options. If the underlying asset follows a jump diffusion process, the usual
portfolio hedging arguments cannot be used. We will also present a brief discussion of various strategies for
hedging jump risk.

Let S represent the underlying stock price. Then potential stock paths followed by the stock can be
modeled by a stochastic differential equation given by

dS
S

= (ξ−κλ)dt + σdZ+(η−1)dq , (2.1)

where

ξ is the drift rate,

dq is the independent Poisson process,=
{

0 with probability 1−λdt
1 with probabilityλdt,

λ is the mean arrival time of the Poisson process,

η−1 is an impulse function producing a jump fromS to Sη,

σ is the volatility,

dZ is an increment of the standard Gauss-Wiener process,

κ is E[η−1],where

E[·] is the expectation operator.
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When the average is monitored continuously [6, 39, 22], the arithmetic averageA is defined as

A =
∫ t

0 S(u)du
t

,

dA =
(S−A)dt

t
. (2.2)

2.1 The PDE for Asian Options

Using standard arguments, [6] the value of an option depending onA (2.2) andS(2.1) is given by (assuming
no jumps, that is,λ = 0)

Vt +
1
2

σ2S2VSS+
(S−A)

t
VA + rSVS− rV = 0, (2.3)

wherer is the continuously compounded risk free interest rate. Since we are solving backward in time from
the expiration timet = T to the present timet = 0, equation (2.3) becomes

Vτ =
1
2

σ2S2VSS+
(S−A)
T− τ

VA + rSVS− rV, (2.4)

whereτ = T− t. It is important to note that equation (2.4) has no diffusion term in theA direction and this
is the source of many numerical difficulties [41].

Extending equation (2.4) to the case of jumps gives

Vτ =
(S−A)
T− τ

VA +
1
2

σ2S2VSS+(r−λκ)SVS− rV +
(

λ
∫ ∞

0
V(Sη)g(η)dη−λV

)
, (2.5)

where

g(η) is the probability density function of the jump amplitudeη,

thus for allη : g(η)≥ 0 and
∫ ∞

0
g(η)dη = 1. (2.6)

As a specific example, consider the probability density function suggested by [28, 37]:

g(η) =
e

(
− (log(η)−µ)2

2γ2

)
√

2πγη
. (2.7)

If E[·] is the expectation operator,

E[η] =
∫ ∞

0
ηg(η) dη (2.8)

then,E[η] = exp(µ+ γ2/2), which means that the expected relative change in the stock price is given by
κ = E[η− 1] = exp(µ+ γ2/2)− 1. For brevity, the details of the derivation of equation (2.5) have been
omitted (see [3, 28, 39]). In general, it is not possible to construct a hedging portfolio which eliminates
jump risk. However, by adding options to the hedging portfolio, a hedging strategy can be constructed
which minimizes jump risk [3]. If equation (2.5) is calibrated to market prices, then the parameters so
obtained should be regarded as risk-adjusted [26], not historical.

If we define

H V ≡Vτ−
(

S−A
T− τ

VA +
σ2S2

2
VSS+(r−λκ)SVS− (r + λ)V + λ

∫ ∞

0
V(Sη)g(η)dη

)
(2.9)

and ifV∗(S,A) is the payoff, then the American option pricing problem can be stated as [31]

min(H V;V−V∗) = 0 . (2.10)
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2.2 Boundary Conditions for our PIDE

In order to completely specify our problem we still need to give boundary conditions for our American
Asian option pricing PIDE.

For the terminal boundary conditions, a number of common payoffs for pricing different types of Asian
securities can be used. Typical examples include

• fixed strike call:V(S,A,τ = 0) = max(A−K,0.0),

• fixed strike put:V(S,A,τ = 0) = max(K−A,0.0).

For the non-terminal boundary conditions, note first that atS= 0 we have thatH V reduces to

H V = Vτ−
(
−A

T− τ
VA + rV

)
; S→ 0 . (2.11)

The boundary condition atS→∞ is, however, more difficult to specify and requires additional justifica-
tion. If we make the common assumption thatVSS→ 0 asS→ ∞, then this implies that

V ' f (A,τ)S+g(A,τ) (2.12)

asS→ ∞ which then means that equation (2.9) becomes

H V 'Vτ−
(

S−A
T− τ

VA + rSVS− rV

)
; S→ ∞. (2.13)

For A� K andS→ ∞, we can approximate the solution toH V = 0 by

V ' H1(τ)A+H2(τ)S+H3(τ) (2.14)

so that

V ' D1

T
e−rτ(T− τ)A+

[
D1

rT
(1−e−rτ)+D2

]
S+D3e−rτ (2.15)

whereD1,D2,D3 are independent of(S,A,τ) and are determined by the payoff. For example, for a fixed
strike call,D1 = 1,D2 = 0,D3 =−K. We then use equation (2.15) at all points onS= Smax (which is clearly
an approximation forA small) so that

VS '
[

D1

rT
(1−e−rτ)+D2

]
; S→ ∞ . (2.16)

Substituting equation (2.16) into equation (2.13) gives

H V ≡Vτ−
(

S−A
T− τ

VA + χ(S,τ)− rV

)
;S→ ∞ , (2.17)

where

χ(S,τ) =
[

D1

rT
(1−e−rτ)+D2

]
rS . (2.18)

The use of approximation (2.16) is discussed in [29], where it is mentioned that estimate (2.16) is in fact
an upper bound forVS. It must be admitted that use of equation (2.15) at all points alongS= Smax is not
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rigorously justified. However, we note that other authors [27] simply specify that the boundary condition at
S= Smax is set to the payoff. In [27], the size of the computational domain is increased as the grid size is
reduced, so that the effect of poor specification of the boundary condition becomes negligible. However, as
discussed in [29], the boundary condition (2.17) is at least qualitatively correct.

Note that no boundary conditions are required atA = 0 or asA→ ∞, since the characteristics of the
PIDE are outgoing in theA direction. In practice, we solve for the solution of equation (2.10) on the finite
computational domain[0,Smax]× [0,Amax]. UsuallySmax= Amax. If Smax is sufficiently large, then the errors
introduced by imposing condition (2.17) are small in regions of interest. This will be verified in some
numerical experiments.

For the payoffs mentioned earlier, the corresponding formulae forχ(τ,S) are given by

• fixed strike call:χ(τ,S) = (1−e−rτ)
T S

• fixed strike put:χ(τ,S) = 0 .

2.3 Additional Observations

In general, there may be no smooth solutions to equation (2.10). In what follows it will be understood that
we are seeking weak viscosity solutions to equation (2.10). A detailed discussion concerning existence and
uniqueness of viscosity solutions to equation (2.10), can be found in [31, 2], for European and American
options under jump diffusion. In addition, sufficient conditions to ensure convergence of a discrete numerical
scheme to the viscosity solution, is given in [5]. Finally, an application of the results in [5] to the case of
European options with jump diffusion is given in [12, 13].

Typically when pricing continuously observed arithmetic average Asian option, a two dimensional prob-
lem must be solved (2.4). In [41], the authors use a finite volume approach combined with flux limiters to
solve equation (2.4). This requires solution of a set of nonlinear discretized algebraic equations at each
timestep. When the convection terms becomes very large, (note that the convection term in theA direction
in equation (2.5) becomes infinite asτ→T), flux-limiters revert to a first order upwind scheme which affects
the accuracy of the solution [1]. In this paper, we suggest an alternative approach to solve equation (2.4)
using a semi-Lagrangian scheme. This idea was also suggested for American Asian options (without jumps
but with stochastic volatility) in [30].

3 Semi-Lagrangian Discretization

This section explores different discretization methods for the partial differential equation using the semi-
Lagrangian approach. Before proceeding any further, let us introduce the following definitions. We use an
unequally spaced grid inScoordinates for the PDE discretization[S0, . . . ,SM], and similarly use an unequally
spaced grid in theA direction[A0, . . .AM]. Let

Vn
i, j = V(Si ,A j ,τn) (3.1)

denote the solution at asset price nodeSi for the averageA j and time leveln. Let C be the differential
operator represented by

CV =
1
2

σ2S2VSS+(rS−λκ)VS− (r−λ)V, (3.2)

and

BV = λ
∫ ∞

0
V(Sη)g(η)dη . (3.3)
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Equation (2.5) can then be rewritten as

Vτ +
(A−S)
T− τ

VA = CV + BV. (3.4)

We will use a penalty method [16, 21, 43] to impose the American early exercise constraint. Briefly, this
replaces equation 2.10 by a non-linear PIDE

Vτ +
(A−S)
T− τ

VA = CV + BV +q(V). (3.5)

where the penalty term is such that

q(V) = ρmax(V∗−V,0). (3.6)

The penalty parameterρ is selected so that

|V−V∗| < tol whenV <V∗ (3.7)

wheretol is a user specified tolerance. It is easy to solve the discrete equations withtol less than the
discretization error, so this error in determining the numerical solution to equation (2.10) is not of practical
concern. We refer the reader to [21] for more details about this method.

We use standard finite difference methods to discretize the operatorCV [34] (see Appendix A). If we
impose boundary condition (2.17), and use forward and backward differencing as appropriate, it is easy to
see that the discrete form ofI − CV is an M-matrix (see Section 5.2). As discussed in [34], for typical
values ofσ, r, upwind differencing of theVS term in equation (3.5) is required only rarely, and usually
remote from regions of interest, so that in practice this does not impact solution quality. Requiring the
discrete form ofCV to be an M-matrix has interesting theoretical properties. In the following, we denote
the discrete form ofCV at S= Si ,A = A j ,τ = τn by (CV)n

i, j . As described in [17, 16] the integral(BV)i, j

can be efficiently computed by transforming to equally spaced logScoordinates, approximating the integral
using a Trapezoidal rule, using an FFT, and then transforming back toScoordinates. Special care is taken
to avoid problems with wrap around [17]. If linear interpolation is used to transform from equally spaced
logS coordinates to unequally spacedS coordinates (and vice versa), this introduces a second order error
consistent with the discretization of the PDE terms [17]. Effectively, we are approximatingBV by

(BV)i, j ' ∑
k

bikVk j

= B·Vj

0≤ bik ≤ 1 and∑
k

bik ≤ 1. (3.8)

The dense matrix multiplyB·Vj can be evaluated efficiently using an FFT. For details, see [17, 16].
The Lagrangian derivative along a trajectoryA = A(S,τ), for Sfixed, is

DV
Dτ

=
∂V
∂τ

+
∂V
∂A

dA
dτ

. (3.9)

Along the trajectory
dA
dτ

=
A−S
T− τ

(3.10)

equation (3.5) can be written as
DV
Dτ

= CV + BV +q(V). (3.11)
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Let A= A(Si ,A j ,τn+1,τ) along a trajectory satisfying equation (3.10), which passes through the discrete grid
point (Si ,A j) at τ = τn+1 for Si being held constant. LetAn

j(i,n+1) be the departure point of this trajectory at
τ = τn. Note thatAn

j(i,n+1) will not necessarily coincide with a grid pointA j . RatherAn
j(i,n+1) is determined

by solving

dA
dτ

=
A−Si

T− τ
A = A j ; τ = τn+1 , (3.12)

from τ = τn+1 to τ = τn, that is,

An
j(i,n+1) = An+1

j +
∫ τn

τn+1

A−Si

T− τ
dτ. (3.13)

Let Vn
i, j(i,n+1) = V(Si ,An

j(i,n+1),τ
n) denote the value of the option price at the departure point of the

trajectory. Then discretizing equation (3.11) along the characteristic trajectory for different timestepping
schemes gives, in the case of fully implicit timestepping:

Vn+1
i, j −Vn

i, j(i,n+1)

∆τ
= (CV)n+1

i, j +(BV)n+1
i, j +q(Vn+1

i, j ) , (3.14)

and for Crank-Nicolson timestepping (CN),

Vn+1
i, j −Vn

i, j(i,n+1)

∆τ
=

1
2

(
(CV)n+1

i, j +(BV)n+1
i, j

)
+

1
2

(
(CVi, j(i,n+1))

n +(BV)n
i, j(i,n+1)

)
+q(Vn+1

i, j ) , (3.15)

and for second order backward differencing (BDF) [8]

1
2Vn+1

i, j −2Vn
i, j(i,n+1) + 1

2Vn−1
i, j(i,n+1)

∆τ
= (CV)n+1

i, j +(BV)n+1
i, j +q(Vn+1

i, j ) . (3.16)

For ease of exposition, we have written equation (3.16) for constant timesteps. This is trivially generalized
to non-constant timesteps [8].

Unlike traditional applications of the semi-Lagrangian approach where the characteristic curve must
be estimated numerically, for Asian options the solution along the characteristic curve can be determined
exactly. RegardingSas a constant, and solving equation (3.10) gives

A = Si +
D

T− τ
, (3.17)

whereD is a constant independent ofA (but a function ofSi). At τ = τn+1, A = An+1
j , so that

At time τn : An
j(i,n+1) = An+1

j +
(Si−An+1

j )(τn+1− τn)
T− τn ,

At time τn−1 : An−1
j(i,n+1) = An+1

j +
(Si−An+1

j )(τn+1− τn−1)
T− τn−1 , (3.18)

whereT ≥ τn+1 > τn > τn−1. It is interesting to observe that for the last step whenτn+1 = T, equation
(3.18) simplifies toAn

j(i,n+1) = An−1
j(i,n+1) = Si . The various quantities(·)n

i, j(i,n+1) in equations (3.14-3.16) are
determined by interpolation along lines of constantS= Si . Assuming that theSderivatives and the integral
term are discretized using second order accurate methods, then it follows from [9] that at least quadratic
interpolation should be used for(·)n

i, j(i,n+1) in order to retain global second order convergence.
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4 Semi-Lagrangian Timestepping and Discrete Observations

It is common to consider continuously observed Asian options as the limit of discretely observed Asian
options as the observation interval tends to zero [15, 37]. In this section, we show that if the discrete
sampling period is equal to the discrete PDE timestep, then a fully implicit, discretely sampled model is
algebraically identical to a fully implicit semi-Lagrangian discretization of a continuously observed model.
In the following, we ignore the effect of the boundary condition (2.17).

Consider the discrete average computed at discrete averaging timest` = `∆t.

A(t`) =
1
`

`

∑
p=1

S(t p) (4.1)

Equation (4.1) can be written

A(t`+1) = A(t`)+
S(t`+1)−A(t`)

`+1
(4.2)

When using a PDE method to price a discretely observed Asian option, we consider thatV = V(S,A, t), and
regard(S,A) as independent variables. Suppose we haveN observation dates, at the times∆t,2∆t, ...,N∆t
with N∆t = T. Then at thè -th observation date we must have, by no arbitrage [39],

V(S,A(t`+1), t(`+1)+) = V(S,A(t`), t(`+1)−)

A(t`+1) = A(t`)+
S−A(t`)
`+1

(4.3)

wheret(`+1)+, t(`+1)− are the instants just after and just before the observation datet`+1. Note thatA(t`+1)
is regarded as constant fort`+1 < t < t`+2. Let ` = N− k, so thatk counts backwards. Sinceτk = k∆τ we
have that

t` = `∆t = (N−k)∆t = T− (k∆τ) = T− τk (4.4)

and similarlyt`+1 = T− τk−1. As well, we have thatt(`+1)+ = T− τ(k−1)−, t(`+1)− = T− τ(k−1)+. Writing
the jump condition (4.3) in terms of the variableτ = T− t rather thant then gives

V(S,A(τk+1),τk+) = V(S,A(τk),τk−)

A(τk) = A(τk+1)+
S−A(τk+1)

N−k
(4.5)

Note that in this case we regardA(τk+1) as fixed duringτk < τ< τk+1.
Consider the case of a discretely observed European Asian option. In this case we solve

Vτ = CV + BV +q(V) (4.6)

on the domain[0,Smax]× [0,Amax], with the jump conditions (4.5) imposed at observation times. Away from
observation dates, if we discretize equation (4.6) in theA direction then equation (4.6) represents a set of
one dimensional PIDEs, which communicate only through jump conditions [15].

SetAk = A(τk). Then we can write the jump condition (4.5) as

V(S,Ak,τk−) = V(S,Ak+1,τk+)

Ak = Ak+1 +
(S−Ak+1)∆τ

T− τk . (4.7)
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Recalling thatAk+1 is constant duringτk+ ≤ τ≤ τ(k+1)−, then a fully implicit discretizaton of equation (4.6)
gives

V(Si ,A
k+1
j ,τ(k+1)−)−V(Si ,A

k+1
j ,τk+)

∆τ
= (CV)k+1

i, j +(BV)k+1
i, j +q(Vk+1

i, j ) . (4.8)

Note that this is a set of independent one dimensional PDEs (there are noA derivatives in equation (4.8),
Ak+1

j appears only as a parameter). Using the jump condition (4.7) in equation (4.8) gives

V(Si ,A
k+1
j ,τ(k+1)−)−V(Si ,Ak

j(i,k+1),τ
k−)

∆τ
= (CV)k+1

i, j +(BV)k+1
i, j +q(Vk+1

i, j )

Ak
j(i,k+1) = Ak+1

j +
(S−Ak+1

j )∆τ
T− τk (4.9)

which we recognize from equation (3.14) and equation (3.18) as being algebraically identical to a semi-
Lagrangian, fully implicit discretization.

Note that in order for this result to hold, we must have discrete observations att = ∆t,2∆t, ...,N∆t, that
is, no observation att = 0. Of course, in the limit as∆t→ 0, adding an extra observation att = 0 will be the
same toO(∆t) as the semi-Lagrangian solution.

Remark 4.1. As discussed in [22], it is straightforward to show that the common lattice methods used
to price Asian options [24] are simply explicit finite difference methods for discretely observed models of
Asian options. In many lattice applications, the observation interval is set to the lattice timestep, hence
the continuously observed price is computed in the limit of vanishing timestep. A straightforward extension
of the results above can be used to show that these lattice methods are simply explicit semi-Lagrangian
methods. In this case, it is also easy to derive the conditions on the order of interpolation and the spacing
on the lattice in the average direction to ensure optimal convergence. We note that, as discussed in [22], this
is a point of confusion in the finance literature, and has led to schemes which are not, in fact, convergent
[22, 6].

5 Monotonicity and Stability of the Discrete Equations

As shown in [34], in the case of nonlinear option pricing problems, seemingly reasonable discretization
schemes can converge to an incorrect (i.e. non-viscosity) solution. Convergence to the viscosity solution is
guaranteed if the discretization is consistent, monotone andl∞ stable [5, 12, 13]. Usually, consistency fol-
lows if any reasonable discretization method is used, although in the case of jump-diffusion, the non-locality
of the integral term requires care in showing consistency [12, 13].l∞ stability is usually a consequence of
monotonicity. Consequently, the most interesting requirement is monotonicity.

In the following, we will investigate the monotonicity and stability properties of the discrete equations.
We will use a definition of monotonicity which is somewhat stricter than is usually the case in financial
applications [5], but more in line with the definition used in computational fluid dynamics (CFD) [25]. It
appears to us that the CFD definition is a more useful aid to the design of suitable discrete schemes. We will
also indicate how these results can be extended to the case of more difficult nonlinear problems as in [34].

We remind the reader that use of semi-Lagrangian timestepping decouples the discrete equations at
each timestep, resulting in a set of one dimensional discrete PIDEs. Hence we can use our techniques in
[21, 34, 16, 17] to prove the desired properties of the discretized equations.
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5.1 Preliminaries

Define the matricesB andC such that[
B·Vn

j

]
i

= (BV)n
i, j + truncation error (5.1)[

C ·Vn
j

]
i

= (CV)n
i, j + truncation error (5.2)

whereVn
j is the vector of discrete solution values

[
Vn

j

]
i
= V(A j ,Si ,τn) for fixed A j . A detailed description

of B is given in [17, 16]. For our purposes, we note thatB has the properties given by equation (3.8). A
detailed description of matrixC is given in Appendix A.

To avoid algebraic complication, we will describe the discrete equations and the method used to solve
the algebraic equations, only for the fully implicit and Crank-Nicolson timestepping methods. The reader
should have no difficulty generalizing the results to the BDF case.

Let Φn+1 be the Lagrange interpolation operator such that

(Φn+1 ·Vn)i, j = V(Si ,A
n
j(i,n+1),τ

n)+ interpolation error (5.3)

whereΦn+1 is a linear operator for any order (linear, quadratic) of interpolation. We also letV∗ be the vector
of payoffs obtained upon exercise andP be the diagonal matrix given by

P(Vn+1
j )ii =

{
Large if Vn+1

i, j <V∗i, j
0 otherwise.

(5.4)

Then the matrix form of the discrete equations for the penalized method is given by

[I − (1−θ)∆τC+P(Vn+1
j )]Vn+1

j = [Φn+1[I + θ∆τC]Vn] j +(1−θ)λ∆τBVn+1
j (5.5)

+[Φn+1θλ∆τBVn] j +
[
P(Vn+1

j )
]
V∗j + ∆τFn+1

j (5.6)

for j = 1, .., imax. Hereθ = 0 is fully implicit, and θ = 1/2 is Crank-Nicolson timestepping. The term
Fn+1

j is used to approximate the boundary condition atS= Smax, as discussed in subsection 2.2. Boundary
condition (2.17) is enforced ati = imaxby setting

Bimax,l = 0 (5.7)

for l = 1, ..., imax, adjustingCimax,l as discussed in Appendix A, and letting[
Fn+1

j

]
i
=
{

0 , i 6= imax
(1−θ)χ(Smax,τn+1)+ θχ(Smax,τn) , i = imax

(5.8)

whereχ(S,τ) is discussed in subsection 2.2.

Remark 5.1 (Viscosity Solution). In general, we may have non-smooth solutions to equation (2.5). This
may be due to the degeneracy of the diffusion operator (no diffusion in the A direction), and due to possible
non-smoothness in the payoff function. In these cases, we seek the viscosity solution to equation (2.5)
[5]. Detailed discussions concerning existence and uniqueness of viscosity solutions to PIDEs in financial
contexts are given in [31, 2]. Sufficient conditions for convergence of a numerical scheme to the viscosity
solution are given in [5]. A proof that the sufficient conditions in [5] (for PDEs) can be extended to nonlinear
PIDEs is given in [12].
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We note here that the penalty formulation of the American option pricing problem reduces problem
(2.10) to the nonlinear PIDE (3.5), and hence the results in [12] apply. Briefly, if the numerical scheme is
consistent,l∞ stable, and monotone, then convergence to the viscosity solution is guaranteed. In order to
obtain a monotone scheme, we can use at most linear interpolation in equation (5.3).

The choice of interpolation scheme is discussed in [22] and [20]. Specifically, if the interpolation error

does not get damped out, the global interpolation error afterN timesteps isO
(

(∆Smax)q

∆τ

)
, whereq = 2 for

linear interpolation,q = 3 for quadratic interpolation and∆Smax = maxi(Si+1−Si). Assuming second order
in space and time truncation errors, the global discretization error is

global discretization error= O

[
(∆Smax)q

∆τ
+(∆Smax)2 +(∆τ)2

]
, (5.9)

If we assume∆Smax= const.h and∆τ = const.h, then equation (5.9) reduces to

global discretization error= O
[
min((hq−1,h2)

]
(5.10)

5.2 Monotonicity and Stability

The highest order interpolation methodΦ which will result in a monotone scheme is linear interpolation.
Equation (5.10) suggests that if linear interpolation is used (q = 2), we can obtain no more than first order
convergence. With this in mind, in the following analysis, we will consider only a fully implicit timestep-
ping, and a linear interpolantΦ (as in equation (5.3)). We will, however, carry out numerical experiments
with Crank-Nicolson and BDF timestepping, and higher order interpolants. The fully implicit version of
equation (5.6) is

[I −∆τC−λ∆τB+P(Vn+1
j )]Vn+1

j = [Φn+1Vn] j +P(Vn+1
j )V∗j + ∆τFn+1

j (5.11)

for j = 1, ..., imax.
As discussed in [5, 12], consistency, stability, and monotonicity are sufficient conditions for a numerical

scheme to ensure convergence to the viscosity solution. In view of the importance of discretizations which
are stable and monotone, both from a theoretical and practical point of view, it is useful to gather together a
set of results for the implicit discretization schemes.

Lemma 5.1 (Properties of Matrix C). The matrix C in equation (5.11) has the properties

∑
j

Ci j = −(r + λ) ; i = 1, ..., imax−1

Ci j ≥ 0 ; i 6= j; i = 1, ..., imax−1

Ci j = 0 ; j = 1, ..., imax; i = imax (5.12)

Proof. This follows directly from Appendix A, and equation (5.7).

Set
Q = I −∆τC−λ∆τB. (5.13)

Lemma 5.2 (M-matrix property of Q). The matrix Q is an M matrix.

Proof. From equation (3.8) we have that−B has non-positive offdiagonal elements. From Lemma 5.1, we
have that−C−λB has non-positive offdiagonal elements. From Lemma 5.1, and properties (3.8), we have
that

∑
j

[−C−λB]i j ≥ 0 ; i = 1, ..., imax, (5.14)

and henceQ is anM matrix.

12



We can write the discrete equations at each node(Si ,A j) as

gi, j(Vn+1
i, j ,{Vn+1

k, j }i ,{V
n}) = −[QVn+1

j ]i +[Φn+1Vn]i, j +
[
P(Vn+1

j )
]

ii
(V∗i, j −Vn+1

i, j )+ ∆τFn+1
i, j

= 0 (5.15)

where{Vn+1
k, j }i is to be interpreted as the set of valuesVn+1

k, j ,k 6= i. k = 1, ..., imax, and{Vn} is the set
Vn

k,`,k = 1, .., imax;`= 1, ..., imax.

Definition 5.1 (Monotone Discretizations).A discretization of the form(5.15)is monotone if

gi, j(Vn+1
i, j ,{Vn+1

k, j + ρn+1
k, j }i ,{V

n
k,`+ ρn

k,`})≥ gi, j(Vn+1
i, j ,{Vn+1

k, j }i ,{V
n}) ∀i, j; ∀k 6= i

∀ρn
k,` ≥ 0, ∀ρn+1

k, j ≥ 0, (5.16)

gi, j(Vn+1
i, j + ρn+1

i, j ,{V
n+1
k, j }i ,{V

n})< gi, j(Vn+1
i, j ,{Vn+1

k, j }i ,{V
n}) ∀i, j; ∀k 6= i

∀ρn+1
i, j ≥ 0 (5.17)

Remark 5.2. The above definition of monotonicity includes the condition (5.17). In the viscosity solution lit-
erature [5], only condition (5.16) is used to define monotonicity. However, in the conservation law literature
[25, 23] monotonicity is usually defined including condition (5.17). In Appendix B, we outline the rationale
for including condition (5.17). We believe that Definition 5.1 is a more useful definition of monotonicity.

Theorem 5.1 (Monotonicity of the Discretization). The fully implicit discretization (5.15) is uncondition-
ally monotone.

Proof. We rewrite equation (5.15) as

gi, j = −[QVn+1
j ]i +[Φn+1Vn]i, j +

[
P(Vn+1

j )
]

ii
(V∗i, j −Vn+1

i, j )+ ∆τFn+1
i, j (5.18)

and examine each term in equation (5.18). From Lemma 5.2, matrixQ is anM matrix, hence−[QVn+1
j ]i

is a strictly decreasing function ofVn+1
i, j , and a non-decreasing function of{Vn+1

k, j }i . SinceΦn+1 is a lin-

ear interpolant operator,[Φn+1Vn]i, j is a non-decreasing function of{Vn}. Finally we see that the term[
P(Vn+1

j )
]

ii
(V∗i, j −Vn+1

i, j ) is a non-increasing function ofVn+1
i, j . Hence the discretization is monotone from

Definition 5.1.

Theorem 5.2 (Stability of the Fully Implicit Scheme). The fully implicit method satisfies

‖Vn+1‖∞ ≤ max(‖Vn‖∞,‖V∗‖∞)+ ∆τχmax (5.19)

whereχ(Smax,τ) is defined in subsection 2.2, and

χmax = max
0≤τ≤T

|χ(Smax,τ)| . (5.20)

In particular,

‖Vn+1‖∞ ≤ ‖V∗‖∞ +Tχmax , (5.21)

where(n+1)∆τ≤ T.
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Proof. Writing out equation (5.11) in component form gives (see Appendix A)

Vn+1
i, j (1+(αi + βi + r + λ)∆τ)−αi∆τVn+1

i−1, j −βi∆τVn+1
i+1, j −λ∆τ∑

k

bikV
n+1
k, j +Pii (Vn+1

j )Vn+1
i, j

= ∑
k,l

wi, j
k,lV

n
k,l +Pii (Vn+1

j )V∗i, j + ∆τFn+1
i, j , (5.22)

wherewi, j
k,l are linear interpolation weights satisfying

0≤ wi, j
k,l ≤ 1 and∑

k,l

wi, j
k,l = 1 . (5.23)

In addition, we recall thatB has properties (3.8)

0≤ bik ≤ 1 ; ∑
k

bik ≤ 1 , (5.24)

while from Appendix A we have that
αi ≥ 0 and βi ≥ 0 . (5.25)

Let m be an index such that

|Vn+1
m, j | = ‖Vn+1

j ‖∞. (5.26)

Then equations (5.22-5.25) imply that

‖Vn+1
j ‖∞

(
1+ r∆τ +P(Vn+1

j )mm

)
≤ ‖Vn‖∞ +P(Vn+1

j )mm‖V∗‖∞ + ∆τχmax (5.27)

and so

‖Vn+1
j ‖∞ ≤ max(‖Vn‖∞,‖V∗‖∞)

1+P(Vn+1
j )mm

1+ r∆τ +P(Vn+1
j )mm

+
∆τχmax

1+ r∆τ +P(Vn+1
j )mm

≤ max(‖Vn‖∞,‖V∗‖∞)+ ∆τχmax . (5.28)

Hence

‖Vn+1‖∞ ≤ max(‖Vn‖∞,‖V∗‖∞)+ ∆τχmax. (5.29)

Therefore, by induction we have

‖Vn+1‖∞ ≤ max(‖Vn−i‖∞,‖V∗‖∞)+(i +1)∆τχmax (5.30)

for all i. Equation (5.21) follows from settingi = n in equation (5.30).

Remark 5.3 (Extension to nonlinear models).It is completely straightforward to include a transaction
cost or uncertain volatility model in the basic option pricing PIDE [33], which makes the PIDE nonlinear
(even in the European case). For example, using the methods in [33], it is a simple exercise to extend the
above stability and monotonicity results to the case of an American Asian option, with jumps and transaction
costs.
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5.3 Properties of a Semi-implicit Discretization

Suppose we alter the discretization (5.11) so that the jump integral term is evaluated explicitly. Then

[I −∆τC+P(Vn+1
j )]Vn+1

j = λ∆τBVn
j +[Φn+1Vn] j +P(Vn+1

j )V∗j + ∆τFn+1
j (5.31)

for j = 1, ..., imax. The previous methods can also be applied to determine stability and monotonicity
properties of this second discretization.

Theorem 5.3 (Stability and Monotonicity of Explicit Evaluation of the Jump Term). The discretization
(5.31) is unconditionally stable and monotone.

Proof. SetR= [I −∆τC]. Then we can rewrite equation (5.31) as

gi, j =−[RVn+1
j ]i +[Φn+1Vn]i, j +

[
P(Vn+1

j )
]

ii
(V∗i, j −Vn+1

i, j )+ ∆τFn+1
i, j +[∆τλBVn]i, j (5.32)

From Lemma 5.1 and the properties of matrixB (equation (3.8)), and following along the lines used to prove
Theorem 5.1, it is straightforward to see that Definition 5.1 holds unconditionally for equation (5.32). Using
a similar maximum analysis as in the proof of Theorem 5.2, we obtain unconditional stability.

Remark 5.4. Scheme (5.31) is very simple to implement, and retains unconditional monotonicity and sta-
bility. This method appears to have been completely overlooked. However, this scheme is only first order
correct in time.

6 Additional Properties of the Discrete Equations

In this section we investigate how well our discrete approximation (3.5) preserves important properties of
our original problem (2.10). We focus on two important properties : how well does the discrete penalty
method satisfy the inequality constraints in problem (2.10) and does the discretization preserve arbitrage
inequalities [13].

6.1 Error in the Penalty Formulation

In our original problem (2.10) we need to solve min(H V;V−V∗) = 0. In particular, we require that

(V−V∗) ≥ 0. (6.1)

In discrete terms this becomes

(Vn+1
i, j −V∗i, j) ≥ 0 . (6.2)

However, the penalty formulation (5.6) will result inVn+1
i, j < V∗i, j at nodes in the exercise region. In this

subsection we show that at these nodes we haveVn+1
i, j = V∗i, j − ε, where 0< ε� 1. In particular, we have

the following bound on the error in the penalty term.

Lemma 6.1 (Error generated by the penalty formulation). Assume that V∗ satisfies a Lipschitz condition
and suppose that

∆τ
∆Smin

< const. as ∆τ,∆Smin→ 0 (6.3)

where∆Smin = mini(Si+1−Si). Then

Vn+1
i, j −V∗i, j ≥ − C1

Large
(6.4)

where C1 is a positive constant independent of∆S,∆τ.
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Proof. Let k be an index such that

(V∗k, j −Vn+1
k, j ) = max

i
(V∗i, j −Vi, j) . (6.5)

Since the matrixQ defined by (5.13) is anM matrix from Lemma 5.2, it follows from equation (6.5) that[
Q(V∗j −Vn+1

j )
]

k
≥ 0 , (6.6)

and hence [
QV∗j

]
k
≥

[
QVn+1

j

]
k
. (6.7)

From equation (5.18) we have that for allj

QVn+1
j = [ΦVn] j +P(Vn+1

j )(V∗j −Vn+1
j )+ ∆τFn+1

j . (6.8)

In particular, rowk of equation (6.8) is[
QVn+1

j

]
k

=
[
[ΦVn] j

]
k
+
[
P(Vn+1

j )(V∗j −Vn+1
j )

]
k

+ ∆τFn+1
k, j . (6.9)

Since [
P(Vn+1

j )(V∗j −Vn+1
j )

]
k

= ‖P(Vn+1
j )(V∗j −Vn+1

j )‖∞ (6.10)

then equation (6.9) gives (using equation (6.7))

‖P(Vn+1
j )(V∗j −Vn+1

j )‖∞ ≤ ‖Vn‖∞ +‖QV∗‖∞ + ∆τχmax . (6.11)

From Theorem 5.2, and equation (6.11) we have

‖P(Vn+1
j )(V∗j −Vn+1

j )‖∞ ≤C2 +‖QV∗‖∞, (6.12)

whereC2 = ‖V∗‖∞ +Tχmax, with (n+1)∆τ≤ T. Assuming thatV∗ satisfies a Lipschitz condition, then

‖QV∗‖∞ ≤ C3
∆τ

∆Smin
(6.13)

which follows from Lemma 5.2 and Appendix A. Assuming∆τ/∆Smin is bounded, we have

(Vn+1
i, j −V∗i, j)≥−

C1

Large
(6.14)

with C1 = C2 + C3∆τ
∆Smin

> 0.

Remark 6.1 (Significance of Lemma 6.1).Lemma 6.1 shows that the error induced by approximating
problem (2.10) by the penalized system (3.6) can be made arbitrarily small by making Large (equation
(5.4)) sufficiently large, provided the grid size is reduced such that∆τ/∆Smin is bounded. In practice, this
condition is not restrictive, since it does not make any sense to drive the spatial grid error to zero, leaving
a finite timestepping error. Of course, when using finite precision arithmetic, we are limited to in practice
due to the unit roundoff, which limits our ability to distinguish (numerically)(Vn+1

i, j −V∗i, j) from zero. As
discussed in [21], this is not a problem of practical concern, since roundoff causes difficulty only when
seeking to enforce condition (6.2) to unrealistic levels of accuracy.
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Theorem 6.1 (Discrete Comparison Principle).The fully implicit discretization (5.11) satisfies a discrete
comparison principle, that is, if Vn >Wn and Vn+1,Wn+1 satisfy equation (5.11), then Vn+1 >Wn+1.

Proof. SupposeVn >Wn. Write equation (5.11) forV,W

QVn+1
j = [Φn+1Vn] j +

[
P(Vn+1

j )
]

(V∗j −Vn+1
j )+ ∆τFn+1

j

QWn+1
j = [Φn+1Wn] j +

[
P(Wn+1

j )
]

(V∗j −Wn+1
j )+ ∆τFn+1

j (6.15)

Some manipulation of equation (6.15) results in

Q(Vj −Wj)n+1 = −P(Wn+1
j )(Vj −Wj)n+1 +(P(Vn+1

j )−P(Wn+1
j )(V∗j −Vn+1

j )

+[Φn+1(Vn−Wn)] j (6.16)

or [
Q+P(Wn+1

j )
]

(Vj −Wj)n+1 = (P(Vn+1
j )−P(Wn+1

j )(V∗j −Vn+1
j )+ [Φn+1(Vn−Wn)] j (6.17)

SinceQ is anM matrix we have that[Q+P(Wn+1
j )] is also anM matrix. From equation (5.4), we have that

(P(Vn+1
j )−P(Wn+1

j )(V∗j −Vn+1
j )≥ 0 (6.18)

If linear interpolation is used, then(Vn−Wn) > 0 implies that[Φn+1(Vn−Wn)] j > 0. Finally, since
[Q + P(Wn+1

j )] is anM matrix, its inverse satisfies[Q+P(Wn+1
j )]−1≥ 0, anddiag([Q + P(Wn+1

j )]−1)> 0,
and hence(Vj −Wj)n+1 > 0.

Remark 6.2. As discussed in [13], Lemma 6.1 has the financial interpretation that the discrete option prices
satisfy arbitrage inequalities, that is, the inequality of payoffs is preserved in the inequalities of option prices.

7 Iterative Solution of the Discretized Equations

In order to solve equation (5.6), we use the following iteration scheme
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Iteration

For j = 1,2, . . .

Let (Vn+1
j )0 = (Vn

j )

Let V̂j
k = (Vn+1

j )k

Let P̂k = P((Vn+1
j )k)

For k = 0,1,2, . . . until convergence

Solve[
I − (1−θ)C+ P̂k

]
V̂j

k+1

=
[
Φn+1 [I + θC]Vn]

j + P̂kV∗j + ∆τFn+1
j

+(1−θ)λ∆τBV̂j
k + θλ∆τ

[
Φn+1BVn]

j

If max
i

|V̂k+1
i, j −V̂k

i, j |
max(1, |V̂k+1

i, j |)
< tol then break

EndFor

EndFor

(7.1)

For clarity, we have given algorithm 7.1 only for Crank-Nicolson and fully implicit timestepping. How-
ever, it is trivial to generalize this method to BDF timestepping. Note that each iteration of algorithm (7.1)

requires a tridiagonal factor and solve, and a forward and back FFT (to evaluateB·V̂j
k
).

The following Theorem indicates that iteration scheme (7.1) is globally convergent.

Theorem 7.1 (Convergence of Iteration).Let matrices C,B and P̂ be given by (5.2), (5.1) and (5.4),
respectively. Assume that matrix I− (1−θ)C is an M-matrix (which follows from Lemma 5.1), and that B
has properties (3.8). Then iteration (7.1) is globally convergent to the unique solution of equation (5.6) for
any initial iterateV̂0.

Proof. Note that the algebraic equations (5.6) are decoupled for each line of constantA j . Hence the issue
of convergence of scheme (7.1) reduces to the convergence of each set of equations for constantj. But for
constantj, this iteration is equivalent to solution of the discrete penalized equations for one dimensional
American options with jump diffusion as described in [16]. Hence the result follows directly from Theorem
4.2 in [16].

8 Computational Details and Numerical Results

This section presents numerical results for various options and payoffs, including vanilla European call/put
and American options. We will use an unequally spaced grid in theA,Sdirections, on the domain[0,Smax]×
[0,Amax], with Amax= Smax. Probabilistic arguments can be used to determine an appropriate value forSmax

[37]. We useSmax = 50K, whereK is the strike. We describe below some tests which were carried out
to verify that the effect of imposing boundary conditions atS= 50K results in insignificant error. The
convergence tolerance in iteration (7.1) wastol = 10−6. As suggested in [21], we chooseLarge= 1/tol. If
Crank-Nicolson or BDF timestepping is used, then quadratic interpolation is used in equation (5.3). If fully
implicit timestepping is employed, then linear interpolation is used in equation (5.3).
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Given anA grid discretization, the discrete PIDEs (3.14-3.15) become decoupled. At each timestep, we
have a set of independent one dimensional discrete PIDEs to solve. This property makes solution of the
continuously observed Asian option straightforward to implement, given an existing library which supports
pricing of path dependent options.

As pointed out in equation (5.10), it is necessary to use at least a quadratic Lagrange interpolation scheme
to find the solution at the foot of the characteristic curve, if we hope to obtain quadratic convergence. This
will, however, result in a scheme which is not monotone.

The convergence ratioR is defined in the following way. For each test, as we double the number of grid
points in bothS andA directions, we cut the timesteps (∆τ) in half. Let ∆τ = maxn(τn+1− τn), ∆Amax =
maxj(A j+1−A j). Note that we are allowing here for the possibility of using variable timestep sizes (to be
explained later), although most of our tests will simply use a constant timestep size. If we then carry out a
convergence study, lettingh→ 0, where∆Smax = Const.h, ∆Amax = Const.h, and∆τ = Const.h. then we
can assume that the error in the solution (at a given node) is

Vapprox(h) = Vexact+Const.hξ.

The convergence ratio is then defined as

R=
Vapprox(h/2)−Vapprox(h)

Vapprox(h/4)−Vapprox(h/2)
. (8.1)

In the case of quadratic convergence (ξ = 2), thenR= 4, while for linear convergence (ξ = 1), R= 2.

Table 1 Value of a continuously observed fixed strike European Asian call option (no jumps) with constant
timesteps. The input parameters areσ = .1, r = .1, T = .25, λ = 0 andK = 100. We compare the results
given using the Věcěr [38] one dimensional model, and the semi-Lagrangian method presented here. Crank-
Nicolson timestepping was used.

semi-Lagrangian Věcěr 1-D PDE [38]

Size of No. of S= 100 Size of No. of S= 100
SandA grids timesteps Value R Sgrids timesteps Value R

51 25 1.857193 n.a. 51 25 1.839863 n.a.
101 50 1.853254 n.a. 101 50 1.848642 n.a
201 100 1.852120 3.475 201 100 1.850851 3.974
401 200 1.851781 3.338 401 200 1.851407 3.979
801 400 1.851660 2.815 801 400 1.851546 3.987

Table 1 shows results for a low volatility case, European Asian option (no jumps), using the semi-
Lagrangian approach. In this special case, the two dimensional PDE can be reduced to one dimension [38],
which we will refer to as the Věcěr PDE [38] in the following. Results obtained by solving the Večěr PDE
numerically are also given in Table 1.

In Table 1, we can see that the convergence ratioR for the semi-Lagrangian method is not quadratic
(R 6= 4), while for the Věcěr PDE [38] quadratic convergence is found. As discussed in [38], the Večěr PDE
is not convection dominated, hence it is straightforward to obtain accurate numerical solutions. We remind
the reader that this clever reduction to one dimension cannot be used for American options. The discontinuity
present in the payoff greatly affects the convergence of the semi-Lagrangian method, since there is very little
diffusion in theA direction, and the non-smoothness in the payoff is not smoothed out during the solution
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Table 2 Value of a continuously observed fixed strike Asian call option (no jumps) atS= K = 100, con-
stant Crank-Nicolson timestepping. The input parameters areσ = .1, λ = 0, r = .1, T = .25, K = 100.
Convergence ratios (8.1) are presented for different timestepping schemes. The right boundary of the space
discretization[0,Smax] domain is truncated at different values.

Smax = 5×K Smax = 50×K
Timesteps S,A grid nodes Value S,A grid nodes Value

25 51 1.857193 54 1.857193
50 101 1.853254 109 1.853254
100 201 1.852120 217 1.852120
200 401 1.851781 433 1.851781
400 801 1.851660 865 1.851660

phase. Since we need to use quadratic interpolation in theA direction in order to determine the values of the
solution at the feet of the characteristic curves, the interpolation may be affected by the non-smooth payoff,
and may lower the observed rate of convergence.

In order to test the effect of the boundary condition (2.17) atS= Smax, we show results using two
different values ofSmax in Table 2. This table would seem to indicate that there is a negligible error for
options of this maturity incurred settingSmax = 50K, and all subsequent results will be reported imposing
condition (2.17) atSmax= 50K.

Figures 1 and 2 graphically present the solutionV and the first derivative of the solution with respect to
the stock priceVS when Crank-Nicolson is used. The plots are all smooth and do not exhibit any oscillations.
While not shown here,VSSalso did not show any oscillations.
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FIGURE 1: Value of a European fixed strike
Asian put using Crank-Nicolson with constant
timestepping (∆τ = .01). 51grid points are used
both in the A and S direction. The input param-
eters areσ = .1, r = .1, T = .25, K = 100, and
λ = 0.
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FIGURE 2: First derivative (VS) value of a
European fixed strike Asian put using Crank-
Nicolson with constant timestepping (∆τ = .01).
51 grid points are used both in the A and S di-
rection. The input parameters areσ = .1, r = .1,
T = .25, K = 100andλ = 0.

We now explore numerical convergence for pricing Asian options for large values of volatilityσ. Table
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3 presents our results. As expected quadratic convergence is recovered. In this case, a sufficient amount of
diffusion in theSdirection appears to compensate for zero diffusion in theA direction.

Table 3 Value of a continuously observed fixed strike Asian call (no jumps) option with constant timesteps
at S= k. The input parameters areσ = .5, r = .05, T = .25, λ = 0 andK = 100. We compare the results
given using the Věcěr 1-D PDE [38], and the semi-Lagrangian method presented here. Crank-Nicolson
timestepping was used.

semi-Lagrangian Věcěr 1-D PDE [38]

Size of No. of S= 100 Size of No. of S= 100
SandA grids timesteps Value R Sgrids timesteps Value R

51 25 6.010203 n.a. 51 25 6.009821 n.a.
101 50 6.015092 n.a. 101 50 6.014848 n.a
201 100 6.016344 3.905 201 100 6.016251 3.582
401 200 6.016651 4.085 401 200 6.016619 3.816
801 400 6.016723 4.219 801 400 6.016713 3.915

8.1 An In Depth Study of the Convergence Ratio

The results of the previous section indicated that the semi-Lagrangian approach, coupled with Crank-
Nicolson timestepping, results in quadratic convergence, for large volatilities. However, for small volatility
values, quadratic convergence was not recovered. The goal of this subsection is to explore in detail different
numerical techniques that could improve the convergence rate.

Table 4 Value of a continuously observed fixed strike Asian call option (no jumps) at the strike, constant
timesteps. The input parameters areσ = .1, r = .1, T = .25, λ = 0, K = 100. Convergence ratios (8.1) are
presented for different timestepping schemes: implicit, Crank-Nicolson and second order BDF.

Implicit timestepping CN timestepping BDF timestepping
Size of No. of S= 100 S= 100 S= 100

SandA grids timesteps Value R Value R Value R
51 25 1.911865 n.a. 1.857193 n.a 1.86096 n.a.
101 50 1.880801 n.a. 1.853254 n.a 1.854310 n.a.
201 100 1.865907 2.086 1.852120 3.475 1.852416 3.513
401 200 1.858681 2.061 1.851781 3.338 1.851868 3.453
801 400 1.855112 2.025 1.851660 2.815 1.851686 3.014

Table 4 contains the convergence rate results for different timestepping schemes for small volatility
(σ = .1 andr = .1). For implicit timestepping linear convergence is recovered (R= 2), as expected. However
for higher order timestepping schemes such as Crank-Nicolson and second order backward differencing,
quadratic convergence is not found (see Table 4). These results are not surprising since the combination
of small volatility with the non-smooth payoff, means that quadratic interpolation in theA direction is not
O((∆Amax)3), for smallτ.

To try to remedy this problem, the initial payoff function is smoothed out. A classic method for handling
discontinuities involves averaging the initial data. Specifically, values at each point are replaced with an
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average value over nearby space. Mathematically, we set

PAYOFFsmoothed(Si ,A j) =
∫ K+ ∆A

2

K− ∆A
2

PAYOFF(Si ,A)dA. (8.2)

For a complete description of various smoothing methods the readers are referred to [33].

Table 5 Value of a continuously observed fixed strike call Asian call option (no jumps) at the strike with
constant timesteps. The initial payoff is smoothed using the average scheme described by equation (8.2) The
input parameters areσ = .1, r = .1, T = .25, λ = 0, andK = 100. Convergence ratios (8.1) are presented
for different timestepping schemes: Crank-Nicolson and second order BDF.

CN timestepping BDF timestepping
Size of No. of S= 100 S= 100

SandA grids timesteps Value R Value R
51 25 1.870322 n.a. 1.874276 n.a.
101 50 1.856377 n.a. 1.857462 n.a.
201 100 1.852873 3.981 1.853179 3.925
401 200 1.851963 3.849 1.852053 3.803
801 400 1.851704 3.513 1.851731 3.497

Table 5 contains the convergence rate results. From a convergence point of view, the ratios have im-
proved in comparison with the convergence ratio without smoothing (see Table 4). However, quadratic
convergence is still not obtained. From a theoretical point of view, all the convergence analysis for semi-
Lagrangian scheme is based on the smooth properties of the solution [9, 20]. If the solution is smooth
then quadratic convergence is recovered. However, if the solution is non-smooth, then we can expect some
reduction in the convergence rate.

Table 6Value of a continuously observed Asian call option (no jumps) at the strike with constant timesteps.
The input parameters are∆τ = .01,σ = .1, r = .1, T = .25,λ = 0 andK = 1. Convergence ratios (8.1) are
presented for the Crank-Nicolson timestepping scheme.

Call option (PAYOFF(A,K) = A2−K))
Size of No. of S= 1

SandA grids timesteps Value R
51 25 0.025749 n.a.
101 50 0.025622 n.a.
201 100 0.025591 4.131
401 200 0.025584 4.093
801 400 0.025582 4.054

To confirm our intuition that the non-smooth payoff is in fact the reason why quadratic convergence is
not recovered, we create an artificial payoff that has the property of being quadratically smooth over the
entire domain, e.g. PAYOFF(A,K) = max(0,A2−K) . In this case quadratic convergence is recovered for
both Crank-Nicolson and second order backward differencing. Table 6 shows detailed convergence results
for Crank-Nicolson timestepping.
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Several other approaches were considered in an effort to improve convergence. We tried to use Ran-
nacher timestepping [35]; two or more implicit timesteps are taken before reverting to a higher order
timestepping scheme such as Crank-Nicolson for example. Numerical experiments indicated that this did
not improve the convergence rate. A convergence rate of approximately 3.5 is found in this case. Adaptive
timestepping was also considered [21] but this technique did not improve the convergence rate.

8.2 Exotic Asian Options

It is not generally possible to achieve second order convergence for American options using constant
timesteps. In [21] it was demonstrated that in order to achieve second order convergence, it is necessary
to use variable timestepping for American options. However, some initial tests showed that due to the large
convective term in theA direction, nearτ = T, the timestep selector suggested in [21] required very small
timesteps nearτ = T. Consequently, we will show results in the following using constant timesteps.

Table 7 presents the input parameters. The mean of the jump distribution is denoted byµ and the jump
distribution standard deviation is denoted byγ. These parameters are roughly the same as those estimated
by [3] using European call options on the S&P 500 stock index in April of 1999.

Table 7 Input data used to value American fixed strike Asian options under the lognormal jump diffusion
process. These parameters are approximately the same as those reported in [3] using European call options
on the S&P 500 stock index in April of 1999.

Parameter values
σ 0.15 λ 0.10
r 0.05 T 0.25
γ 0.45 K 100.00
µ -0.90 σimplied 0.1886

To ensure consistent comparison between American Asian options with jumps and American Asian
options without jumps, we proceed as follows:

1. Given the parameters in Table 7, we compute the analytical solutionVjump at the strikeK of a vanilla
put option, under jump diffusion.

2. Use a constant volatility Black-Scholes model with no jump to determine the implied volatilityσimplied
which matches the jump diffusion valueVjump at the strikeK.

3. Price the American Asian option with jumps using the parameters in Table 7.

4. Price the American Asian option with no jumps but with the implied volatilityσimplied estimated in
Step 2.

Table 8 compares the value of an American Asian fixed strike put option with the value of an American
Asian fixed strike put option when the underlying stock follows the jump diffusion process described by [28].
Second order backward timestepping is used and the initial payoff is smoothed out using equation (8.2). We
observe that quadratic convergence is not recovered, the convergence ratios are≈ 3.5. It is interesting to
note that, at the strike, the price of an American Asian fixed strike put option with jumps is 9% cheaper than
the price of the same option without jumps, while atS= 1.05K, the jump diffusion price is considerably
higher than the no-jump price, as can be seen in Figure 3.
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Table 8 Value of a continuously observed fixed strike put American Asian option (under jump diffusion)
with constant timestepping. Crank-Nicolson timestepping is used. The input parameters are defined in
Table 7. This table presents convergence rates with and without jumps. Iterations refers to the total (over
all timesteps) of the maximum number of iterations required for any value ofj (see algorithm 7.1) at each
timestep.

No jump Jumps
Size of No. of No. of (S= 100) No. of (S= 100)

SandA grids timesteps iterations Value R iterations Value R
51 25 77 2.220443 n.a. 99 2.044636 n.a.
101 50 160 2.195726 n.a. 167 2.018530 n.a
201 100 319 2.188555 3.447 340 2.012220 4.138
401 200 692 2.186717 3.903 716 2.010691 4.126
801 400 1397 2.186243 3.874 1609 2.010281 3.728

Remark 8.1 (Alternative Boundary Condition). A simpler method of imposing boundary condition (2.17),
is to simply set VSS= 0, and then discretize the VS term using one sided finite differences. As discussed
in [40], this destroys the M matrix property of the discretized equations I− ∆τC− λ∆τB. Most of the
theoretical results in this paper require that this M matrix property hold, hence if we impose the boundary
condition in this manner, these results cannot be proven to hold in this case. Nevertheless, we repeated all
the computations reported above using this method of enforcing the boundary condition as S→ ∞. There
was no change in the computed solution (at the strike) to eight digits.

9 Conclusion

In this paper we have put forward four primary contributions. First we have demonstrated that a semi-
Lagrangian method can be used to price continuously observed American Asian options under jump diffu-
sion processes. The implementation suggested here reduces this problem to solving a decoupled set of one
dimensional discrete partial integral differential equations (PIDEs) at each timestep.

A second contribution is that since the discretized problem at each timestep reduces to a set of decoupled
one dimensional PIDEs, we can make use of previous techniques developed by the authors to prove certain
important properties of the discrete scheme, including convergence of the iterative method used to solve the
implicit discrete equations.

In addition, we have included experimental computations which indicate that, even if second order
timestepping methods are used, observed convergence as the mesh and timestep is refined occurs at a sub-
second order rate. The problem can be traced to the non-smoothness of the payoff function.

Finally, we have also shown that in the fully implicit case, the semi-Lagrangian method for continu-
ously observed Asian options is algebraically identical to a standard numerical method for pricing discretely
observed Asian options, when the observation interval is equal to the discrete timestep.
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FIGURE 3: Comparison between the value of an American Asian fixed strike put option and the value of
an American Asian fixed strike put option when the underlying stock follows the jump diffusion process
described by [28]. The input parameters are defined in Table 7.

Appendices

A Discretization of PDE

In this appendix, we give the details of the discretization of the term(CV)i, j in equation (3.14).
Using finite differences, the matrix (5.2) is

(C ·V)i = −Vn+1
i (αi + βi + r + λ)+ βiV

n+1
i+1 + αiV

n+1
i−1 ; i = 2, ..., imax−1 (A.1)

whereαi ,βi depend on the type of approximations used for the derivatives and second derivatives. Fori = 1,
the matrix (A.1) reduces a diagonal entry withα1,β1 = 0, and for the rowi = imax, we setαi = βi = 0, and
setλ = 0.

There are a number of different discretizations of the derivative terms leading to various choices forαi

andβi .
Discretizing the first derivative term of equation (3.2) with central differences leads to

αi,central =
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)
− (r−λκ)Si

Si+1−Si−1

βi,central =
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
+

(r−λκ)Si

Si+1−Si−1
. (A.2)

However ifαi,central or βi,central is negative, oscillations may appear in the solution. The oscillations can
be avoided by using forward or backward differences at the problem nodes, leading to (forward difference)

αi,forward =
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)

βi,forward =
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
+

(r−λκ)Si

Si+1−Si
, (A.3)
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or, (backward difference)

αi,backward=
σ2

i S2
i

(Si−Si−1)(Si+1−Si−1)
− (r−λκ)Si

Si+1−Si

βi,backward=
σ2

i S2
i

(Si+1−Si)(Si+1−Si−1)
. (A.4)

Algorithmically, we decide between a central or forward discretization at each node for equation (A.1)
as follows:

If [αi,central≥ 0 andβi,central≥ 0] then

αi = αi,central

βi = βi,central

ElseIf[βi,forward≥ 0] then

αi = αi,forward

βi = βi,forward

Else

αi = αi,backward

βi = βi,backward

EndIf

(A.5)

Note that the test condition (A.5) guarantees thatαi andβi are non-negative. For typical values ofσ, r
and grid spacing, forward differencing is rarely required for single factor options. In practice, since this
occurs at only a small number of nodes remote from the region of interest, the limited use of a low order
scheme does not result in poor convergence as the mesh is refined. For situations where the low order
method causes excessive numerical diffusion, a flux limiter can be used [44]. As we shall see, requiring that
all αi andβi are non-negative has important theoretical ramifications. AsS→ 0, equation (3.2) reduces to

Vτ = −rV, (A.6)

which is simply incorporated into the discrete equations (A.1) by settingαi ,βi ,λ = 0 atSi = 0.

B Practical Monotonicity

If gi j in equation (5.15) is differentiable then we can restate Definition 5.1 as

∂gi, j

∂Vn+1
i, j

< 0

∂gi, j

∂y
≥ 0 ; y∈ {Vn+1

k, j }i

∂gi, j

∂z
≥ 0 ; z∈ {Vn} (B.1)
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If gi j satisfies conditions (B.1), then we have immediately that

∂Vn+1
i, j

∂y
≥ 0 ; y∈ {Vn+1

k, j }

∂Vn+1
i, j

∂z
≥ 0 ; z∈ z∈ {Vn} (B.2)

In computational fluid dynamics (CFD), condition (B.2) corresponds to requiring that discrete fluid flows
mimic real flows (that is, increasing the pressure at neighbour nodes causes an increase in pressure in the
central node). Hence Definition (5.1) is commonly used [25, 23].

Let

Vn
max = max

i j
Vn

i, j

Vn
min = min

i j
Vn

i, j . (B.3)

Then, ifgi j satisfies conditions (B.1) (or conditions (5.16-5.17)), we immediately have that

gp,q(Vn+1
max ,V

n+1
max ,V

n
max) = 0

gr,s(Vn+1
min ,V

n+1
min ,V

n
min) = 0 (B.4)

where

Vn+1
max = Vn+1

p,q

Vn+1
min = Vn+1

r,s . (B.5)

Usually, it is easy to solve equation (B.4) forVn+1
max ,V

n+1
min , in terms ofVn

max,V
n
min, and hence determine if the

discretization isl∞ stable.
In the finance literature, sufficient conditions for convergence to the viscosity solution are typically

stated as monotonicity (condition (5.16)) andl∞ stability. Practically speaking, in order to determine if a
scheme isl∞ stable, we will need condition (5.17) to hold as well as condition (5.16), hence we have defined
monotonicity as requiring both conditions (5.16-5.17) consistent with the usage in the CFD literature.
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