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A Semi Nonnegative Matrix Factorization Technique

for Pattern Generalization in Single-Pixel Imaging
Florian Rousset, Françoise Peyrin, and Nicolas Ducros

Abstract—A single-pixel camera is a computational imaging
device that only requires a single point detector to capture
the image of a scene. This device measures the inner product
of the scene and the spatial light modulator patterns. The
image of the scene can be recovered through post-processing the
measurements obtained for a set of different patterns. Indepen-
dent of the strategy used for image recovery, real acquisitions
require the spatial light modulator patterns to be positive. In
addition, the dark current measured in the absence of modulation
must be rejected. To date, both experimental issues have been
addressed empirically. In this paper, we solve these from a general
perspective. Indeed, we propose to seek positive patterns that are
linear combinations of the desired patterns (with negative values),
and the linear transformation matrices are chosen to reject the
dark current. We refer to the problem of finding the positive
patterns and the linear combinations as ’pattern generalization’.
To the best of our knowledge, this is the first time that this
problem has been introduced. In addition, we show that pattern
generalization can be solved using a semi nonnegative matrix
factorization algorithm. The data obtained from simulations
demonstrate that our approach performs similarly to or better
than conventional methods, while using fewer measurements.

Index Terms—Computational imaging, single-pixel camera,
semi nonnegative matrix factorization, positivity constraint,
wavelets, adaptive acquisition

I. INTRODUCTION

T
HE SINGLE-PIXEL CAMERA (SPC) design [1], [2] enables

to build small, low-cost, and high-quality imaging devices

suitable for a wide range of applications (e.g., remote imaging,

hyperspectral imaging, video acquisition) [3]–[15]. A SPC is

an optical setup composed of a spatial light modulator (SLM)

and a single point detector, which measures the inner product

of the scene under view with any SLM pattern. Exploiting

a sequence of measurements acquired for different SLM

patterns, the image of the scene can be recovered. Strategies

for image recovery include compressed sensing, basis scan,

and adaptive basis scan. The compressed sensing (CS) [16]

theory provides an excellent theoretical framework for single-

pixel imaging. It is based on the use of random SLM patterns
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and ℓ1-minimization for image recovery [1], [2]. Basis scan

consists in acquiring the image in a predefined basis (e.g.

Hadamard, Fourier, wavelets) and recovering the image using

the inverse transformation [17]–[21]. Adaptive basis scan are

similar to basis scan, but the most significant basis functions

are predicted during the experiment, which allows to consider

fewer SLM patterns [22]–[27]. Hybrid methods combining

some of the previous techniques have also been investigated

[28]–[31].

A. Problem statement

Pattern positivity and dark-current rejection are often ad-

dressed jointly by splitting each SLM pattern into its pos-

itive and absolute negative parts [24], [27]. Subtracting the

two measurements leads to the desired measurement; i.e.,

the measurement that would have been acquired with the

desired SLM pattern having both positive and negative values.

While this approach is straightforward, it requires doubling

of the number of measurements, which also doubles the total

acquisition time. A second approach is pattern shifting. This

consists of the addition of the same background value to

all of the patterns, such that they all become positive [2].

The desired measurements are then obtained by subtracting a

measurement acquired for the background value from all of the

measurements. Only one additional measurement is required

(i.e., for the background value), although pattern shifting is

very sensitive to noise. While these two constraints are of

particular importance for experimental data acquisition and

image restoration, they have not been addressed from a general

perspective yet.

B. Contributions

In this paper, we propose to tackle both of these experi-

mental problems by seeking positive patterns that are linear

combinations of the desired SLM patterns. This new problem

is referred to as pattern generalization. The ad-hoc solutions

based on pattern splitting or pattern shifting can be seen as

two particular solutions of the pattern generalization problem.

Pattern generalization is related to semi nonnegative matrix

factorization (SNMF); i.e., the problem of factorizing a matrix

into a product of two matrices with one having nonnegative

entries [32]. By adapting an SNMF algorithm [33], we show

that the number of measurements –hence, the acquisition

time– can be halved compared to the standard pattern splitting

approach. To summarize, our contribution is two-fold:

1) Formulation of the pattern generalization problem, which

has never been addressed in single-pixel imaging, to the

best of our knowledge;
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2) Introduction of an SNMF-like algorithm to efficiently

solve this problem.

Note that this paper does not address the image acquisition/

reconstruction problem of single-pixel imaging. Any scheme

(e.g., compressive sensing, basis scans, adaptive basis scans)

can be used in conjunction with the proposed approach.

A Matlab implementation of our SNMF pattern generaliza-

tion algorithm is available online [34].

C. Outline

The paper is organized as follows. In Section II, we describe

the acquisition by a SPC and the ad-hoc techniques used

to deal with pattern positivity and dark-current rejection.

Section III introduces the problem of pattern generalization,

and Section IV proposes an algorithm to solve it. Section V

describes our numerical experiments, and the associated data

are reported in Section VI. Finally, we discuss our findings in

Section VII, and report our conclusions in Section VIII.

II. CONVENTIONAL SPC ACQUISITION

A. SPC acquisition

A SPC consists of a spatial light modulator that is coupled

with a single-point detector. A reflective SLM, such as a digital

micromirror device, is commonly used. A lens is added to

focus the light onto the detector. A SPC acquisition consists

in experimentally measuring the inner product of an image

and some SLM patterns, sequentially. Let f ∈ R
P×1 be the

N×N image of the scene with P = N2. The power emitted

by the light source (e.g., laser, ambient light) is denoted as

N0 ∈ R+ where the units are photons per second (ph/s). We

denote α ∈ R+ (in ph/s) as the dark current; i.e., the signal

read by the single detector when N0 = 0 ph/s. The signal mk

(in ph) measured by the single detector during the integration

time ∆t ∈ R+ (in s) can be modeled as [1], [2]

mk =
(

N0p⊤k f+α

)

∆t (1)

where pk ∈R
P×1
+ is a SLM pattern. The values of f and p (no

units) both range as [0,1]; i.e., f ∈ [0,1]P×1 and pk ∈ [0,1]
P×1.

Let P = (p1, . . . ,pK)
⊤ ∈R

K×P
+ be the matrix that contains the

sequence of K SLM patterns pk. The measurement vector

m = (m1, . . . ,mK)
⊤ ∈ R

K×1
+ that regroups the sequence of

measurements mk of (1) is hence given by the matrix equation

m = (N0Pf+αv)∆t (2)

where v = (1, . . . ,1)⊤ ∈ R
K×1.

B. Ad-hoc methods for experimental constraints

Different approaches have been proposed to design a set of

patterns P and to recover the image f from the measurements

m. While discussing these approaches is beyond the scope

of this paper, it is important to note that most of these have

considered patterns with negative values. Patterns can indeed

be chosen in bases such as Fourier [19], [20], discrete cosine

transform [21], wavelets [22]–[27], and Hadamard [29]. In

addition, it is common to assume that there is no dark current,

so that the image formation model classically considered for

image restoration is

m̆ = N0p̆⊤f ∆t (3)

where p̆ ∈ R
P×1 is a SLM pattern with positive and negative

values. From now on, we will refer to p̆ (resp. m̆) as the

desired SLM pattern (resp. measurement). Unfortunately such

patterns cannot be physically implemented on a SLM, and the

absence of dark current is unrealistic. However, two ad-hoc

methods are (implicitly) used to correct for the two problems.

1) Pattern splitting: This natural method consists of sep-

arating each desired pattern p̆ ∈ R
P×1 into its positive p+ ∈

R
P×1
+ and absolute negative p− ∈ R

P×1
+ parts [24], [27], i.e.:

p̆ = p+−p− with

{

p+ = max (0P, p̆)

p− = |min (0P, p̆)|
(4)

where the max (.) and min (.) functions are applied to each

entry of both vectors, with 0P as the null vector of size

P. Then, the measurements m+ and m− acquired using the

patterns p+ and p−, respectively, are subtracted to give m̆.

Indeed, we have

m+−m− =
(

N0p⊤+f+α

)

∆t−
(

N0p⊤−f+α

)

∆t (5)

= N0 (p+−p−)
⊤

f ∆t (6)

= m̆. (7)

It is important to note that the dark current α cancels out. The

drawback of this natural solution is that K = 2I actual SPC

measurements are required to get the I desired measurements,

which leads to an increased (doubled) total acquisition time or

to a lower ∆t. This problem is further discussed in Section V.

2) Pattern shifting: A second approach consists of shifting

the pattern p̆ ∈ R
P×1 toward the positive values [2]. Mathe-

matically,

p̆ = pshift−pback with

{

pshift = p̆+pback ∈ R
P×1
+

pback = (b, . . . ,b)⊤ ∈ R
P×1
+

(8)

where b is a background value chosen so that b≥ |min (p̆)| ∈
R+. As for the positive/negative separation, the subtraction of

the two corresponding SPC measurements gives the desired

measurement, while canceling out the dark current:

m̆ = mshift−mback. (9)

Contrary to pattern splitting, it is not mandatory to double

the number of measurements here. Indeed, choosing b large

enough, the background value b can be the same for all of

the desired measurements. Therefore, if I measurements are

desired, only K = I + 1 measurement need to be acquired.

However, as will be shown later, this method suffers dramat-

ically from noise.
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III. FRAMEWORK FOR PATTERN GENERALIZATION

A. Patterns as linear combinations

We denote P̆ = (p̆1, . . . , p̆I)
⊤ ∈ R

I×P as the set of I desired

patterns and m̆ = (m̆1, . . . , m̆I)
⊤ as the vector that contains the

corresponding set of desired measurements. Applying (3) to

the collection of patterns P̆ leads to

m̆ = N0P̆f ∆t. (10)

To acquire m̆, which is not feasible in practice, our idea was

to generalize the approaches described in Section II-B, to look

for a collection of positive patterns P ∈ R
K×P
+ such that

P̆ = TP (11)

where T∈RI×K is a transformation matrix. Applying T to the

measurements m acquired with the patterns P leads to

Tm = T(N0Pf+αv) ∆t (12)

= (N0P̆f+αTv) ∆t (13)

We note that the desired measurements m̆ of (10) can be

obtained by transforming the acquired measurements m as in

(13), provided that

Tv = 0I (14)

where 0I = (0, . . . ,0)⊤ ∈ R
I×1. If (14) is satisfied, then the

desired measurements m̆ of (10) are directly obtained as

m̆ = Tm (15)

In summary, for a given P̆ ∈ R
I×P, the pattern generalization

problem we address is the following:

Find T ∈ R
I×K and P ∈ R

K×P s.t.











P̆ = TP

P≥ 0

Tv = 0I

(16)

where P ≥ 0 is shorthand for (P)k,n ≥ 0, ∀(k,n). The frame-

work of the proposed pattern generalization method is pre-

sented in Fig. 1.

B. Link with ad-hoc methods

The ad-hoc methods described in Section II-B can easily

be expressed in the proposed framework. The pattern splitting

method described in (4) is equivalent to choosing T and P in

(16) as

T =











1 −1 0 . . . 0

0 0 1 −1 . . . 0
...

...
...

...
. . .

...

0 . . . 0 1 −1











∈ R
I×2I

P =















p⊤1
p⊤2
...

p⊤2I−1

p⊤2I















=















max (0P, p̆1)
⊤

|min (0P, p̆1)|
⊤

...

max (0P, p̆I)
⊤

|min (0P, p̆I)|
⊤















∈ R
2I×P
+ .

(17)

The number of SLM patterns is Ksplit = 2I, where I is the

number of desired patterns

For the pattern shifting method described in (8), T and P are

given by the following formulae:

T =







1 . . . 0 − 1
M

. . . − 1
M

...
. . .

...
...

. . .
...

0 . . . 1 − 1
M

. . . − 1
M






∈ R

I×(I+M)

P =





















p⊤1
...

p⊤I
p⊤I+1

...

p⊤I+M





















=





















(p̆1 +pback)
⊤

...

(p̆I +pback)
⊤

p⊤back
...

p⊤back





















∈ R
(I+M)×P
+ .

(18)

The number of SLM patterns is Kshift = I +M in this case.

Setting M to 1 reduces the number of measurements. However,

when there are noisy experimental measurements, it is better

to average several measurements that are acquired with the

same pattern pback; i.e., to choose M > 1.

C. Optimization problem

To find two matrices T and P that satisfy (16), a possibility

is to seek two matrices that minimize the squared Frobenius

norm of P̆ minus TP. With addition of the positivity constraint

on P and the condition (14), this leads to the following

optimization problem:

min
T, P

∥

∥P̆−TP
∥

∥

2

F
such that P≥ 0 and Tv = 0I (19)

IV. PROPOSED SEMI NONNEGATIVE MATRIX

FACTORIZATION ALGORITHM

A. Algorithm overview

The minimization problem (19) can be solved by adapting

algorithms that are designed for SNMF, which usually solve

(19) with the constraint P≥ 0, but without the constraint on T.

Most SNMF methods are iterative, and they alternate between

the minimization of
∥

∥P̆−TP
∥

∥

2

F
for P and for T [35]–[37].

Herein, we also propose an alternating approach where each

of the two minimization steps is solved with its respective

constraint. An overview of our two-step iterative algorithm is

given in Algorithm 1.

Algorithm 1 Solving the pattern generalization problem (16)

Initialization: P = rand(K,P)

while
∥

∥P̆−TP
∥

∥

2

F
> ε do

Step 1: Minimize
∥

∥P̆−TP
∥

∥

2

F
w.r.t. T such that Tv = 0I

Step 2: Minimize
∥

∥P̆−TP
∥

∥

2

F
w.r.t. P such that P≥ 0

end while

For each of the two steps in Algorithm 1, different resolution

methods are available, which include alternating least-squares

algorithms [38], multiplicative update algorithms [39], and

gradient descent algorithm [40], [41]. We propose a new

solution for the equality constrained problem of step 1 in

Section IV-B, and describe a solution for the problem of step
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Fig. 1. Framework of the proposed pattern generalization method.

2 in Section IV-C. The solution for step 2 is taken from the

literature and retained among the existing methods due to its

low factorization error [33].

B. Solution for T

Assuming P is fixed, the following subproblem must be

solved:

min
T

∥

∥P̆−TP
∥

∥

2

F
such that Tv = 0I (20)

In standard SNMF problems where no constraints act on

T, the subproblem (20) has a straightforward solution T =

P̆P⊤
(

PP⊤
)−1

when PP⊤ is invertible. In our case, the con-

straint (14) makes it an equality constrained optimization

problem. Nevertheless, we show in Appendix A that this can

still be solved analytically using the duality property. We have

T = P̆P⊤
(

PP⊤
)−1

(

I−
1

v⊤
(

PP⊤
)−1

v
V
(

PP⊤
)−1

)

(21)

where I is the identity matrix of size K×K, and V = vv⊤ is

the matrix of size K×K, with all entries equal to one. In all of

our experiments, P is observed to be full rank, and therefore

PP⊤ is invertible. If PP⊤ is not invertible, it is possible to

use the Moore-Penrose pseudoinverse instead, as suggested in

[33], [37].

C. Solution for P

Assuming T is fixed, the following subproblem must be

solved:

min
P

∥

∥P̆−TP
∥

∥

2

F
such that P≥ 0 (22)

The smaller K, the faster the acquisition. There are many

existing algorithms for solving this problem with K < I,

but they lead to large factorization errors (∼ 1− 10). This

is unacceptable in our problem, as the approximation error

propagates from the acquired measurements to the desired

measurements from which image reconstruction is performed.

As this leads to low factorization error (i.e., error in the

range [10−10−10−3]) for K = I+1, we selected the technique

proposed by Gillis in [33]. This is a block coordinate descent

that has a closed-form solution that can be computed rapidly

[33]. To derive it, the cost function F(P) =
∥

∥P̆−TP
∥

∥

2

F
is

rewritten as

F(P) = F(P−k,pk) =
∥

∥

∥P̆−T|kP−k− tkp⊤k

∥

∥

∥

2

F
(23)

where T|k (resp. P−k) is the matrix T (resp. P) deprived of

its column (resp. row) k, and tk ∈ R
I×1 (resp. p⊤k ∈ R

1×P)

is the k-th column (resp. row) of T (resp. P). The problem

(22) is solved by minimizing F(P) with respect to pk, and

iterating over the K rows of P [33]. Hence, at each iteration,

the following problem is solved

min
pk

F(P−k,pk) such that pk ≥ 0, (24)

Interestingly, this allows an analytical solution:

pk = max

(

0P,

(

P̆−T|kP−k

)⊤
tk

‖tk‖
2
2

)

(25)

where the max (.) function is applied entrywise, and 0P is the

null vector of size P. For consistency, a demonstration of (23)

is provided in Appendix B. In the rest of this paper, we choose

to set the number of actual patterns for our SNMF algorithm

to Ksnmf = I + 1 as done in [33], which guarantees that the

factorization error is low.

D. Proposed algorithm

Using the closed-formula (21) and (25) allows Algorithm 1

to be completely written as in Algorithm 2, to solve for P̆≈TP

with only K = I +1.

V. NUMERICAL EXPERIMENTS

Our numerical simulations are based on the computation of

the forward model (2). The Jaszczak target is chosen as the
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Algorithm 2 Solve P̆≈ TP as in (19)

Initialization: Set K = I +1 and P = rand(K,P)

while
∥

∥P̆−TP
∥

∥

2

F
> ε do

1: Update T using (21)

2: Update P

for k = 1 : K do

2.1: pk←max

(

0P,
(P̆−T|kP−k)

⊤
tk

‖tk‖
2
2

)

2.2: Update the k-th row of P with p⊤k
end for

end while

imaged object f, which is classically considered to determine

the resolution of an imaging device. The desired SLM patterns

P̆ are chosen adaptively on the wavelet basis. The strategy

for choosing the patterns, as well as that for recovering the

image of the scene from the acquired measurements m̆, is

described in [27]. The image reconstruction algorithm imple-

mentation is based on the open-source SPIRIT toolbox [34]. In

particular, 64×64 (P = 4096) SPC images are obtained from

I = 1024 wavelet patterns. Note that the wavelet patterns P̆

typically have both positive and negative entries. In practice,

SLM patterns are coded on b bits, and typically b = 8 bits.

Therefore, the maximum of each of the obtained positive

patterns of P is set to 2b − 1 using a rescaling factor. The

matrix T is adequately compensated by dividing the elements

of each column with the same corresponding rescaling factor,

so that the equality P̆ = TP still holds. This operation is done

during Algorithm 2, at each iteration after the update of P.

Once the algorithm is completed, P is rounded to the nearest

integer so as to get integer values in the range [0,2b − 1],
and the patterns are therefore implementable on the SLM.

Details concerning the influence of pattern quantization with

respect to the image restoration quality are given in [27]. The

measurements m are the numbers of photons collected at the

single detector, and these are necessarily corrupted by Poisson

noise1. Mathematically, the following noise model is used:

m = P ((N0Pf+αv)∆t) (26)

where P(.) is the Poisson distribution applied to each entry

of the vector. Changing N0 and/or ∆t in (26) allows several

levels of noise to be simulated. The larger N0 and ∆t, the

larger the number of photons collected, and hence, the better

the signal-to-noise ratio of the measurements.

The proposed SNMF method is compared to the pat-

tern splitting and pattern shifting methods presented in Sec-

tion II-B. The same matrix P̆ was considered both for the

factorizations of Section III-B and the SNMF Algorithm 2. The

stopping criterion for the SNMF method is set to ε = 10−6.

For pattern shifting, we choose M = 10 in (18) to reduce the

influence of noise and to better estimate the background value.

Different sets of acquisitions are considered for the numer-

ical experiments, which correspond to different values for the

parameters of (2). In particular, varying light power N0 is

considered. A low N0 indicates a low-light scenario, while a

1There are other sources of noise, but the predominant one is Poisson noise.

0.2

0.4

0.6

0.8

1

Fig. 2. Charge-coupled device image of the Jaszczak target used for the
numerical experiments.

large N0 simulates a very bright object. Varying dark current

α is also considered, as each specific optical set-up has its

own value that depends on the single-point detector, and the

illumination conditions used, and also on other factors.

The integration time ∆t is set to 1 in all of our experiments.

As the total acquisition time is ∆T = K∆t , where K is

the number of measurements, different pattern generalization

strategies lead to different acquisition times. In particular, with

Ksplit = 2I and Ksnmf = I+1, the total acquisition time for the

splitting approach is almost twice the total acquisition time for

our SNMF approach; i.e., ∆Tsplit ≈ 2∆Tsnmf, for large values

of I.

The charge-coupled device (CCD) image of the Jaszczak

target shown in Fig. 2 serves as the reference image. Image

acquisition is simulated for N0 ranging from 100 ph/s to 3600

ph/s, and α ranging from 500 ph/s to 80,000 ph/s. Different

values for N0 account for different laser power or object

brightness. The dark current α is related to the number of

undesirable photons that reach the detector. This depends on

both the imaging environment and the selectivity of the spatial

light modulator.

VI. RESULTS

a) Convergence of the proposed algorithm: Figure 3

illustrates the typical positive patterns that are obtained using

the proposed SNMF method and using the ad-hoc methods.

The Le Gall wavelet (CDF 5/3 biorthogonal) patterns of size

P = N×N = 64×64 = 4096 are considered. The top row of

Fig. 3 shows the pattern generalization P̆=TP that is obtained

using our SNMF approach. In this example, the matrix P̆

contains a sequence of I = 4 desired patterns, while the matrix

P contains K = I + 1 = 5 (positive) patterns, which are also

shown in the middle row of Fig. 3. The positive patterns

obtained using the pattern-splitting and the pattern-shifting

methods for one of the desired patterns of P̆ are given in the

bottom row of Fig. 3. As can be seen, the proposed SNMF

method generates SLM patterns where their main structures

and shapes are those of the desired patterns. The desired

pattern Fig. 3-(i) indeed has a star shape in its center, which

is also visible in the SLM patterns created in Fig. 3-(d)–(h).

The decrease in the pattern generalization error
∥

∥P̆−PT
∥

∥

2

F
during the SNMF iterations is presented in Fig. 4. The SNMF

method is also evaluated for several matrices P̆ that contain
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Fig. 3. Examples of the patterns created with the proposed matrix factorization algorithm using Le Gall wavelet patterns. (a) Sequence matrix P̆ of I = 4
desired SLM patterns of size P = 64× 64 = 4096. (b) Transformation matrix T. (c) Sequence matrix P of K = I + 1 = 5 positive SLM patterns. (d-h) Five
SNMF patterns of P (rows of image (c)). (i) Example of a desired pattern p̆ (4th row of image (a)). (j) Positive part p+ = max (0P, p̆). (k) Negative part
p− = |min (0P, p̆)|. (l) Shifted pattern pshift = p̆+pback. (m) Background pattern pback.

Number of iterations
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Fig. 4. Logarithm (base 10) of the error
∥

∥P̆−TP
∥

∥

2

F
during the iterations of

Algorithm 2 for different values of desired patterns I and pattern sizes P. The
convergence criterion ε was set to 10−6.

different numbers of patterns I and pattern sizes P. The

resulting computation times and number of iterations are

reported in Table I.

b) Influence of the conditions for acquisition: The SPC-

recovered images of size 64× 64 for four different paired

(N0,α) are shown in Fig. 5. The peak signal-to-noise ratio

(PSNR) of the restored images is shown as a function of N0

for two values of α (i.e., 20000 ph/s, 80,000 ph/s) in Fig. 6-

(a), and as a function of α for two values of N0 (i.e., 600

ph/s, 1600 ph/s) in Fig. 6-(b). The larger the PSNR, the better

the image quality. The PSNR of the restored images for all

(N0,α) pairs and pattern generalization methods are given in

Table II.

Value of (I,P) Number of iterations Computation time (s)

(4,1024) 18 0.01
(16,1024) 72 0.10
(64,1024) 100 0.68
(4,4096) 13 0.02
(16,4096) 54 0.25
(64,4096) 173 3.58

TABLE I
NUMBER OF ITERATIONS AND COMPUTATION TIME FOR THE PROPOSED

SEMI NONNEGATIVE MATRIX FACTORIZATION ALGORITHM 2 TO

CONVERGE FOR SEVERAL VALUES OF (I,P). THE CONVERGENCE

CRITERION ε WAS SET TO 10−6 .

All of these three pattern generalization methods perform

better for increasing N0 (see Fig. 6-(a)) and decreasing α (see

Fig. 6-(b)). In all cases, pattern shifting provides the lowest

PSNR. For low values of α , pattern splitting gives the best

image quality. However, the pattern splitting image quality

degrades dramatically in low-light scenarios for increasing

α (see Fig. 6-(b)). Overall, the proposed SNMF algorithm

performs better in most of the scenarios assessed.

c) Influence of the constraint on T: To motivate the intro-

duction of the transformation matrix constraint (14), the SNMF

pattern generalization is performed for all of the previously

described scenarios without the constraint Tv = 0I . Table II

gives the PSNR of the images recovered with no constraint

on T. If α is large enough, the image quality dramatically

improves when the equality constraint is added. For the case

of Table II when α is small (i.e., 500, 5,000 ph/s), the results

are close or even better without the constraint. This is because
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Fig. 5. Single-pixel camera restored images using adaptive basis scan by wavelet prediction for the three matrix factorization techniques for different values
of N0 and α on the test image of Fig. 6. The corresponding peak signal-to-noise ratio compared to the ground-truth image (shown in Fig. 6) can be read from
Fig. 6 and Table II.

even if T is obtained as T = P̆P⊤
(

PP⊤
)−1

(no constraint), the

sum of the rows of T is around 10−4, which is sufficient to

cancel out the small dark-current values. With the constraint,

this sum is lowered to about 10−18, which cancels out any

value of dark current.

VII. DISCUSSION

In this study, we have introduced the so-called pattern gen-

eralization problem (16) to allow for experimental limitations.

This problem has analytical solutions for any kind of pattern

(e.g., binary random pattern, wavelet, Fourier, discrete cosine

transform) for the cases K = 2I and K = I+M. These solutions

are provided by the pattern splitting method (for K = 2I) and

by the pattern shifting method (for K = I +M). For the case

K = 2I, the solution of the pattern generalization problem is

not unique, as both the pattern splitting and pattern shifting

methods can be used (setting M = I). Our numerical SNMF

approach provides a solution for the case K = I + 1. The

solution obtained is seen to be different from that obtained

using the analytical pattern shifting method, which suggests

that the solution is not unique in this case too. From a general

point of view, determining the existence and uniqueness of

the solution of the pattern generalization problem remains an

open question.

The main advantage of our SNMF approach is that it

guarantees low factorization error for a low number of positive

patterns Ksnmf = I + 1. While a low number of patterns is

necessary to limit the number of measurements, and hence

the acquisition time, low factorization error is crucial to limit

any model deviation. Most SNMF methods propose the choice

of K << I, but the factorization error is often important. Here,

only I+1 measurements with positive patterns are required to

obtain the I desired measurements, which gives an effective

measurement ratio K
I

of almost 1 for large values of I.

The conventional pattern splitting approach requires Ksplit =
2I actual measurements. Compared to this, the proposed

SNMF method requires only Ksnmf = I+1 patterns, which is a

reduction by almost a factor 2. As for the SNMF method, the

pattern shifting method allows to choose Kshift = I+1 (setting

M = 1). However, the pattern shifting method led to degraded

image quality in all of the experiments conducted here, and

even for larger M (e.g., M = 10).

We chose to compare the three approaches for the same

capture time ∆t. Alternatively, the total capture time K∆t

can be kept constant by reducing either the capture time

∆t or the number of patterns K. Compared to the SNMF

approach, the pattern splitting approach will either suffer from

noisier measurements (having set ∆tsplit = ∆snmf/2) or from

higher compression rate (having set Ksplit = Ksnmf/2), which

will result in a degraded image quality. The patterns shifting

method will be affected the same way.

The computational complexity of Algorithm 2 is O(IPK2)≈
O(PK3) flops per iteration of the while loop. This is dominated

by the update of pk in the for loop in step 2. The number of

iterations and the computation time of the SNMF algorithm

depends on the size of the problem. As the SNMF algorithm
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(a) (b)

Fig. 6. Jaszczak target and peak signal-to-noise ratio curves of single-pixel camera restored images for (a) (resp. (b)) two fixed values of N0 (resp. α) and
increasing values of N0 (resp. α) for ∆t = 1 s. The dotted black bars correspond to the results shown in Fig. 5.

Value of α Technique
PSNR (dB)

N0 = 100 N0 = 600 N0 = 1100 N0 = 1600 N0 = 2100 N0 = 2600 N0 = 3100 N0 = 3600

500

Pattern splitting 17.56 25.74 26.95 27.33 27.63 27.77 27.83 27.94

Pattern shifting -2.41 5.06 7.85 9.36 10.49 11.17 12.94 13.22
SNMF with Tv 6= 0I 16.00 22.63 24.70 25.32 25.90 26.29 26.42 26.81
SNMF with Tv = 0I 15.22 22.50 24.16 25.07 25.68 26.10 26.63 26.68

5000

Pattern splitting 9.34 22.43 25.34 26.45 26.98 27.40 27.55 27.73
Pattern shifting -2.63 5.49 7.92 10.03 10.18 11.33 12.34 13.36

SNMF with Tv 6= 0I 6.91 19.73 22.93 24.53 25.17 25.87 26.32 26.76
SNMF with Tv = 0I 14.93 22.10 24.29 25.32 25.52 26.14 26.40 26.73

20000

Pattern splitting 3.47 18.37 22.31 22.41 25.70 26.30 26.75 27.04

Pattern shifting -3.01 4.63 7.68 9.35 10.28 11.45 12.10 12.69
SNMF with Tv 6= 0I -4.58 10.72 15.75 18.74 20.39 21.98 22.83 23.68
SNMF with Tv = 0I 12.90 21.99 24.15 24.86 25.59 25.89 26.47 26.47

40000

Pattern splitting 0.91 15.73 19.97 22.92 24.58 25.15 26.03 26.44
Pattern shifting -4.91 5.20 7.72 9.36 10.42 11.50 12.30 13.01

SNMF with Tv 6= 0I -10.51 4.88 10.17 13.26 15.46 17.27 18.68 19.68
SNMF with Tv = 0I 10.61 21.32 23.68 24.68 25.82 25.81 26.43 26.48

80000

Pattern splitting -2.57 12.84 17.53 20.69 22.32 23.74 24.23 25.38
Pattern shifting -6.08 4.62 7.69 9.23 10.59 11.17 12.61 12.47

SNMF with Tv 6= 0I -16.62 -1.07 4.18 7.42 9.79 11.54 13.17 14.36
SNMF with Tv = 0I 8.78 20.86 23.48 24.74 25.07 26.00 26.36 26.57

TABLE II
PEAK SIGNAL-TO-NOISE RATIOS OF THE SINGLE-PIXEL CAMERA RESTORED IMAGES FOR DIFFERENT VALUES OF N0 AND α FOR ∆t = 1. SOME CASES

CORRESPOND TO THE IMAGES SHOWN IN FIG. 5 AND THE CURVES OF FIG. 6.

updates the rows of P, the increasing of I ≈ K (the number

of rows of P) has a bigger impact than the increasing of

P (the number of columns of P). This can be seen by

comparing the computation times of Table I for the cases

of (I,P) = (16,4096) and (I,P) = (64,1024), for which the

matrix P̆ has the same number of entries (I×P = 65536). The

SNMF algorithm converges more rapidly for the smaller value

of I.

For high resolution images (i.e., large P and I), the SNMF

computation can take up to several minutes. For nonadaptive

SPC acquisition (e.g., based on compressed sensing), SNMF

can be performed prior to the acquisition. However, long

computation times can be a limitation for adaptive acquisition

strategies where the set of patterns P̆ is determined during

acquisition from the knowledge of the previous measurements.

Therefore, it is necessary to wait for the SNMF algorithm

outputs P and T before proceeding with the acquisition. In

this study, a computation time of about 4 minutes was required

for I = 1024 and P = 4096, when running Matlab code on a

single-core 2.10 GHz CPU. A C++ implementation running on

a GPU would significantly lower these computation times and

make them compatible with adaptive acquisition strategies.

The better results of the SNMF method compared to most

cases of pattern splitting can be understood by looking at the

patterns in Fig. 3. The patterns (j) and (k) were obtained from

pattern splitting, and they have many zeros. When α is large

with respect to N0, the useful part of the pattern (i.e., nonzeros)

has only a small contribution to the SPC measurement. The

SNMF patterns have fewer zeros, and therefore this effect

is reduced (see Fig. 3, patterns (d)–(h)). This effect is also

reduced for pattern shifting but this method leads to the

lowest image quality; only the shape of the target can be
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recovered (see Fig. 5). An explanation here is that this method

is very sensitive to noise, as the useful information of the

shifted pattern is overwhelmed by the useless information

from the background (see Fig. 3-(m)). Looking at the shifted

pattern (see Fig. 3-(l)), it can be seen that all of the pixels

contribute to the measurement, which leads to the collection

of many undesired photons in the presence of noise. Overall,

the SNMF technique works well when N0≪ α; i.e., when the

dark current cannot be neglected, which is always the case in

real experiments.

The pattern splitting and SNMF methods give similar

results, with a slight improvement for pattern splitting for

small values of α . A possible explanation here concerns the

construction of the measurement vector. For the proposed

SNMF technique, the measurements m̆ that are used for image

restoration are obtained from the measurement transformation

Tm (see (15)). In the presence of noise, the variance of m̆

depends on the sum of the variances of m. While many

measurements are combined when the SNMF method is used,

only two measurements are combined when pattern splitting

is used. Hence pattern splitting is less affected by noise than

SNMF. However, compared to pattern splitting, the proposed

SNMF method an excellent compromise that gives an image

quality that is similar to that obtained using pattern splitting,

while halving the number of measurements.

VIII. CONCLUSION

In this paper, we introduce a new problem in single-

pixel imaging that we refer to as pattern generalization. This

consists of determining a set of positive patterns that can be

actually loaded onto a SLM. We also show that a second issue

that has to be addressed in pattern generalization is dark-

current removal. Our basis idea is to see the set of desired

patterns (with negative entries) as a linear transform of positive

patterns.

We report a SNMF technique that is shown to solve the

problem. To our knowledge, this is the first time that a SNMF

algorithm is used in the context of single-pixel imaging. This

provides an elegant way to dispose of both the positivity

constraint induced by the use of a SLM, and the dark-

current rejection. At the same time, it allows the number of

measurements to be reduced compared to the conventional

pattern splitting method.

In the future, we will investigate algorithms for which the

number of measurements is further reduced; i.e., K ≤ I. The

main challenge is to limit the factorization error that results

in model deviations.

APPENDIX

For the matrix and vector derivation presented below, we

refer the reader to the Matrix Cookbook [42].

A. Dual problem to solve for T

To solve the dual problem, we first write the Lagrange

function L:

L(T,λλλ ) =
∥

∥P̆−TP
∥

∥

2

F
+λλλ

⊤
Tv

L(T,λλλ ) = tr
(

(

P̆−TP
)(

P̆−TP
)⊤
)

+λλλ
⊤

Tv

= tr
(

TPP⊤T⊤−TPP̆⊤− P̆P⊤T⊤+ P̆P̆⊤
)

+λλλ
⊤

Tv (27)

where λλλ = (λ1, ...,λI)
⊤ ∈ R

I×1 are the Lagrange multipliers.

We now write the dual function D:

D(λλλ ) = min
T

(T,λλλ ) = L(T(λλλ ),λλλ )

with T(λλλ ) = argmin L(T,λλλ ) for λλλ fixed. If the dual function

D is differentiable, and if λλλ
∗= argmax D(λλλ ), then T(λλλ ∗) =T

is the solution of the primal problem (20).

First, we search T(λλλ ) = argmin L(T,λλλ ) by expressing the

derivative of L, using (27):

∂L(T,λλλ )

∂T
= 2TPP⊤−2P̆P⊤+λλλv⊤ (28)

T(λλλ ) is found when (28) is null. This gives

T(λλλ ) =

(

P̆P⊤−
1

2
λλλv⊤

)

(

PP⊤
)−1

(29)

We now use (29) in the equality constraint (14), to get the

optimal Lagrange multipliers λλλ
∗
:

T(λλλ ∗)v = 0⇒

(

P̆P⊤−
1

2
λλλ
∗
v⊤
)

(

PP⊤
)−1

v = 0

which leads to

λλλ
∗ =

2

v⊤
(

PP⊤
)−1

v
P̆P⊤

(

PP⊤
)−1

v (30)

Finally, the final expression of T can be obtained by solving

the problem (20), by replacing (30) in (29):

T = P̆P⊤
(

PP⊤
)−1

(

I−
1

v⊤
(

PP⊤
)−1

v
V
(

PP⊤
)−1

)

(31)

where I is the identity matrix of size K×K, and V = vv⊤ is

the matrix of size K×K, with all entries equal to one.

B. Block coordinate descent for P

This time, T is considered fixed and the problem to solve is

min
pk

F(P−k,pk) such that pk ≥ 0 (32)

with

F(P−k,pk) =
∥

∥

∥
P̆−T|kP−k− tkp⊤k

∥

∥

∥

2

F
=
∥

∥

∥
S− tkp⊤k

∥

∥

∥

2

F
(33)

where S = P̆−T|kP−k, T|k (resp. P−k) is the matrix T (resp.

P) deprived of its column (resp. row) k, and tk ∈ R
I×1 (resp.

p⊤k ∈ R
1×P) is the k-th column (resp. row) of T (resp. P).

Let us rewrite F(P−k,pk) as

∥

∥

∥S− tkp⊤k

∥

∥

∥

2

F
= tr

(

(

S− tkp⊤k

)(

S− tkp⊤k

)⊤
)

for which we now take its derivative with respect to pk:

∂F(P−k,pk)

∂pk

= 2pktk
⊤tk−2S⊤tk = 2

(

pk‖tk‖
2
2−S⊤tk

)

.

(34)
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The minimum of (32) is found when (34) is null and adding

the projection operation onto the feasible set R
P×1
+ leads to

the solution

pk = max

(

0P,
S⊤tk

‖tk‖
2
2

)

(35)

with the maximum function applied to each entry of both

vectors.
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