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Abstract

This paper develops a semi-nonparametric Poisson regression model to analyze motor

vehicle crash frequency data collected from rural multilane highway segments in California,

US. Motor vehicle crash frequency on rural highway is a topic of interest in the area of trans-

portation safety due to higher driving speeds and the resultant severity level. Unlike the tra-

ditional Negative Binomial (NB) model, the semi-nonparametric Poisson regression model

can accommodate an unobserved heterogeneity following a highly flexible semi-nonpara-

metric (SNP) distribution. Simulation experiments are conducted to demonstrate that the

SNP distribution can well mimic a large family of distributions, including normal distributions,

log-gamma distributions, bimodal and trimodal distributions. Empirical estimation results

show that such flexibility offered by the SNP distribution can greatly improve model precision

and the overall goodness-of-fit. The semi-nonparametric distribution can provide a better

understanding of crash data structure through its ability to capture potential multimodality in

the distribution of unobserved heterogeneity. When estimated coefficients in empirical mod-

els are compared, SNP and NBmodels are found to have a substantially different coefficient

for the dummy variable indicating the lane width. The SNPmodel with better statistical per-

formance suggests that the NBmodel overestimates the effect of lane width on crash fre-

quency reduction by 83.1%.

1. Introduction

Statistical regression models are typically used in analyzing the likelihood and severity of vehi-

cle crashes. Recent review studies [1–4] have summarized the innovative models for examining

the impact of factors (e.g., traffic, roadway and vehicle characteristics, etc.) on the likelihood of

a crash and its resulting injury severity. Regarding observed crash counts, previous studies

often found that some crash data are likely to demonstrate heterogeneity. This heterogeneity

in the crash data can be explained as the unknown variation of the impact of explanatory vari-

ables on crash. As discussed by Mannering, et al.[3], when the crash-related information is col-

lected, some factors affecting the likelihood and severity of the vehicle crash may not be

available to the transportation safety analysts (e.g., driver’s weight, height, roadway lighting
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type, etc.). And different kinds of data have been applied to the safety analysis[5,6]. To date,

various models have been introduced to or developed for crash modeling analysis. For exam-

ple, mixed-Poisson models[7–11], latent class/Markov switching models[12–17], random

parameter models[18–27].

Among these crash modeling methods, the most frequently used statistical method for

modeling crash count data is the Negative Binomial (NB, also known as Poisson-gamma)

model. The NB model has its inadequacy when describing certain types of crash data. The dis-

tribution assumed in the probabilistic error term related to the mean of the Poisson variable

can be restrictive in terms of its ability to account for different types of heterogeneity across

observations. In econometric literature, the semi-nonparametric (SNP) distribution has been

introduced [28]. The SNP distribution is developed based on a squared Kth-order polynomial

expansion which can provide a smooth estimation of the distribution of the error term[29–

33]. Previous studies [34–36] have shown the flexibility of SNP distribution. Thus, the SNP dis-

tribution can be used to model the probabilistic error term regarding the mean of the Poisson

variable by transportation safety analysts to analyze crash data with heterogeneity.

Due to the importance of the error term related to the mean of the Poisson variable in

transportation crash modeling, the objective of this study is to examine whether or not the

Poisson-SNP distribution can capture the heterogeneity characteristics of crash data. To

achieve this objective, crash data sets are simulated using different combinations of fixed

regression parameters describing the mean and dispersion levels. Based on the simulated data-

sets, the parameter and distribution of the error term are estimated and compared to the true

values. The simulation analysis are conducted due to the following reason: when real crash

data are analyzed, the true values of regression parameters and the distribution of the error

term are seldom known in practice. In contrast, in a simulation, it is possible to generate crash

data with known regression parameters and an assumed distribution for error term. The simu-

lation analysis have been adopted in some previous transportation safety studies[7,11] to eval-

uate the performance of different estimators. To complement outputs from simulation studies,

crash data collected in California of USA are also used to compare the estimation results

between the Poisson-SNP model and NB model.

2. Modeling methodology

This section presents the modeling methodology adopted in this paper. First, the Poisson

regression model is presented using the log-gamma heterogeneity (i.e., the Negative Binomial

regression model). Although the focus of this paper is to develop a Poisson regression model

for crash frequency with unobserved heterogeneity following a semi-nonparametric (SNP) dis-

tribution, it will be insightful to present this state-of-practice model for comparison.

2.1. Negative binomial (NB) regression model: Poisson regression model
with log-gamma heterogeneity

Count data models are most suited to modeling dependent variable yi that constitutes a fre-

quency or “count.” The dependent variable can only take non-negative integer values. In this

paper, yi represents crash frequency for road section i. The expectation of yi is assumed to be λi
and the count data model formulation is as follows:

lnðliÞ ¼ xibþ εi; ð1Þ

where xi is a vector of explanatory variables indicating characteristics for road section i; β is a

vector of coefficients associated with xi. εi is a random variable representing heterogeneity that

accounts for unobserved factors and other random disturbances. Since yi constitutes count
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data, the probability of yi conditional on εi is given as:

PrðyijεiÞ ¼
expð�liÞ liyi

yi!
: ð2Þ

The Negative Binomial (NB) regression model is formulated based on the assumption that exp

(εi) = ti follows a gamma distribution, denoted as Γ(1/α2,α2). The corresponding probability

density function is:

f tið Þ ¼ ti
1=a2�1

ða2Þ1=a2Gð1=a2Þ
exp � ti

a2

� �

; ti > 0; ð3Þ

where GðzÞ ¼
R1
0
tz�1e�tdt: ð4Þ

The expectation and standard deviation of t are equal to 1 and α, respectively. By integrating ti
over its distributional domain, one may obtain the unconditional probability of yi as:

PrðyiÞ ¼
R1
�1PrðyijtiÞ f ðtiÞ dti ¼

Gð1=a2 þ yiÞ
Gð1þ yiÞGð1=a2Þ ri

yið1� riÞ
1=a2

; ð5Þ

where ri ¼
a2expðxibÞ

a2expðxibÞ þ 1
: ð6Þ

Cameron and Trivedi [37] proposed this unconditional probability function with a closed-

form solution. This formulation has allowed the NB model to be widely applied for modeling

count data in many different areas, including transportation.

It is to be noted that the true heterogeneity in the model is not ti, but εi, which accounts for

the presence of unobserved variables or factors excluded from the vector xi. Since εi is equal to
ln(ti), the underlying distributional assumption on εi is the log-gamma distribution and the

probability density function can be derived as:

f εið Þ ¼ 1

Gð1=a2Þ exp
1

a2
εi � lnða2Þ½ � � e½εi�lnða

2Þ�
� �

;�1 < εi < þ1: ð7Þ

It is not a symmetric function with respect to the variable εi, indicating that the distribution of

the random variable εi is asymmetric in nature[38].

2.2. Poisson regression with SNP heterogeneity

To improve the flexibility of the distribution for unobserved heterogeneity, one may choose to

use the SNP distribution for representing heterogeneity εi. The probability density function
for the SNP distribution is usually specified as:

f εð Þ ¼ ðPK

m¼0
amεmÞ2φðεÞ

R þ1
�1 ðPK

m¼0
amεmÞ2φðεÞdε

: ð8Þ

In Eq (8), "K" is the length of the polynomial, "m" is an index increasing from 0 to "K", am is

a constant coefficient, and φ(ε) represents the probability density function (PDF) of the stan-

dard normal distribution. The denominator ensures that
R þ1
�1 fðεÞdε ¼ 1. The denominator

in Eq (8) can be extended and written in the following form, where "n" is another index
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increasing from 0 to "K":

R þ1
�1 ðPK

m¼0
amεmÞ2φðεÞdε ¼ PK

m¼0

PK

n¼0
aman

R þ1
�1 εmþnφðεÞdε ð9Þ

R þ1
�1 εmþnφðεÞdε in Eq (9) is actually the expectation of εm+n, which can be calculated based on

the moment-generating function and derived recursion formulae.

Define IðnÞ ¼
R þ1
�1 εnφðεÞdε; then; Ið0Þ ¼ 1; Ið1Þ ¼ 0 and IðnÞ ¼ ðn� 1Þ Iðn� 2Þ; when n

� 2: ð10Þ

Thus; the denominator
R þ1
�1 ðPK

m¼0
amεmÞ2φðεÞdε ¼ PK

m¼0

PK

n¼0
amanIðmþ nÞ: ð11Þ

Under the assumption of the SNP distribution, one can integrate εi over its distributional
domain and obtain the unconditional probability of yi as:

PrðyiÞ ¼
R þ1
�1 PrðyjεiÞfðεiÞdεi

¼
R þ1
�1

exp½�expðxibþ εiÞ�½expðxibþ εiÞ�
yi

yi!
� ð

PK

m¼0
amεi

mÞ2φðεiÞ
PK

m¼0

PK

n¼0
amanIðmþ nÞ

( )

dεið12Þ

The key difference in comparison to the NB regression model is that the unconditional

probability function presented in Eq (12) does not have a closed-form solution. The numerical

method of Gauss–Hermite quadrature is applied to approximate the unconditional probability

as follows:

Pr yið Þ � PJ

j¼1
wj

exp½�expðxibþ sjÞ�½expðxibþ sjÞ�
yi

yi!

� �

�
ðPK

m¼0
amsj

mÞ2φðsjÞ
PK

m¼0

PK

n¼0
amanIðmþ nÞ

" #( )

ð13Þ

Gaussian quadrature[39] is a sophisticated procedure that can accurately evaluate the inte-

grals in the likelihood function with a small number (usually 10–20) of supporting points. In

this study, 30 supporting points are applied to ensure a high level of accuracy for integral eval-

uations. The values of nodes and weights of Gaussian-Hermit quadrature are listed in Table 1

for interested readers.

The log-likelihood function over the sample consisting of “N” observations can be formu-

lated as:

LL b; að Þ ¼
PN

i¼1
ln

PJ

j¼ wj

exp½�expðxibþ sjÞ�½expðxibþ sjÞ�
yi

yi!

� �

�
ðPK

m¼0
amsj

mÞ2φðsjÞ
PK

m¼0

PK

n¼0
amanIðmþ nÞ

" #( )( )

:ð14Þ

The standard Maximum Likelihood Estimation (MLE) method can be applied to estimate

unknown parameters in the vectors “β” and “a” by maximizing the log-likelihood function in

Eq (14). The model estimation is an exploratory procedure, in which the polynomial length

“K” needs to start from “1” and then gradually increases to involve more coefficients into the

vector “a”. The likelihood ratio test can be applied to examine whether adding more coeffi-

cients can significantly improve the goodness-of-fit of model. The model estimation results

will be finalized when adding more coefficients fails to significantly improve the goodness-of-

fit (GOF) measure.

3. Simulation experiments

In this section, a number of simulation experiments are conducted to demonstrate the capabil-

ity of the SNP distribution to approximate different types of distributions for unobserved
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heterogeneities in Poisson regression models. Those distributions include log-gamma distribu-

tions, normal distributions, a bimodal distribution and a trimodal distribution.

3.1 SNPmodel approximating NBmodel (Poisson model with log-gamma
heterogeneity)

The NB model is the most practical modeling approach for crash frequency. It will be insight-

ful to examine whether an SNP distribution can well approximate the log-gamma heterogene-

ity in NB models. The simulation experiments are designed as below:

l ¼ expð1:0� 0:3 � x1þ 0:4 � x2þ εÞ;

where “x1” and “x2” independently follow a uniform distribution between 0 and 5; “ε” repre-
sents the unobserved heterogeneity following the log-gamma distribution, whose PDF is given

in Eq (7) and the parameter α2 = 0.8. Then, the count variable “y” is drawn from a Poisson dis-

tribution associated with the parameter λ.
The sample size is setup at 1000. Based on the random sample consisting of the dependent

variable “y” and explanatory variables “x1” and “x2”, an NB model can be estimated and shown

in the left part of Table 2. As expected, the model coefficients are highly consistent with their

true values. With the same sample, an SNP model can be estimated as well and the estimation

results are presented in the right part of Table 2 for comparison. It should be noted that the

coefficient a0 needs to be fixed at 1 for identification. The high flexibility of the SNP distribu-

tion causes that the intercept in a regression model and the expectation of “ε” may not be

simultaneously identifiable. To solve this issue and facilitate comparisons, the intercept of the

SNP model is fixed at the value of intercept in the NB model.

As shown, when the length of polynomial (i.e. the “K” value) reaches 4, the SNP model

almost perfectly replicates the NB model results, including the log-likelihood value at conver-

gence, model coefficients, and the plot of heterogeneity distribution (as in Fig 1).

Table 3 provides similar comparisons between NB and SNP models when α2 takes the

value of 1.2. In this case, the approximation is not as good as before. However, the relative

Table 1. Node and weight values in Gauss–Hermite quadrature (30 supporting points).

j 1 2 3 4 5

s -6.86335 -6.13828 -5.53315 -4.98892 -4.48306

w 0.834247 0.649098 0.569403 0.522526 0.491058

j 6 7 8 9 10

s -4.00391 -3.54444 -3.09997 -2.66713 -2.24339

w 0.468375 0.451321 0.438177 0.427918 0.419895

j 11 12 13 14 15

s -1.82674 -1.41553 -1.00834 -0.60392 -0.20113

w 0.413679 0.408982 0.405605 0.40342 0.402346

j 16 17 18 19 20

s 0.201129 0.603921 1.00834 1.41553 1.82674

w 0.402346 0.40342 0.405605 0.408982 0.413679

j 21 22 23 24 25

s 2.24339 2.66713 3.09997 3.54444 4.00391

w 0.419895 0.427918 0.438177 0.451321 0.468375

j 26 27 28 29 30

s 4.48306 4.98892 5.53315 6.13828 6.86335

w 0.491058 0.522526 0.569403 0.649098 0.834247

https://doi.org/10.1371/journal.pone.0197338.t001
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difference between model coefficients is still less than 3% while the log-likelihood values at

convergence and the plots of heterogeneity distributions are close to each other (as in Fig 2).

3.2 SNPmodel approximating Poisson model with normal heterogeneities

In this subsection, the SNP distribution is applied to approximate normal heterogeneities in

Poisson regression models. The simulation experiments are designed as below:

l ¼ expð�0:3 � x1þ 0:4 � x2þ εÞ;

where “x1” and “x2” still follow independently uniform distribution between 0 and 5; “ε” fol-

lows a normal distribution and PDF εð Þ ¼ 1

s
ffiffiffiffi

2p
p exp � ðε�mÞ2

2s2

h i

, where μ = 0 and σ = 0.8 or 1.2; the

count variable “y” is drawn from a Poisson distribution associated with the parameter λ.

Table 2. Comparison between NB and SNPModels (α2 = 0.8, Sample Size = 1000).

NB Model SNP Model

Variable
(True Value)

Value SE Value SE

b0 (1.0) 1.0031 0.0908 1.0031 —

b1 (-0.3) -0.2969 0.0239 -0.2969 0.0232

b2 (0.4) 0.3829 0.0243 0.3864 0.0244

α2(0.8) 0.8113 0.0541 — —

a0 — — 1.0000 —

a1 — — -0.0581 0.0692

a2 — — -0.1393 0.0388

a3 — — -0.0521 0.0135

a4 — — 0.0207 0.0065

LL(β) -2372.46 -2372.61

https://doi.org/10.1371/journal.pone.0197338.t002

Fig 1. Comparison of SNP and Log-Gamma distributions (α2 = 0.8).

https://doi.org/10.1371/journal.pone.0197338.g001
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The sample size is also setup at 1000. Based on the random sample consisting of the depen-

dent variable “y” and explanatory variables “x1” and “x2”, SNP models can be estimated to

approximate the normal heterogeneities in the Poisson regression model. The model estima-

tion results are presented in Table 4. With the polynomial length of 2, SNP models can almost

perfectly approximate the normal distributions when “σ” takes the value of 0.8 or 1.2. The

model coefficients are highly consistent with their true values and differences between the

exact and simulated heterogeneity distributions are almost invisible (as in Fig 3).

3.3 SNPmodel approximating bimodal and trimodal distributions

This subsection further exhibits the great flexibility of the SNP distribution to approximate a

bimodal distribution and a trimodal distribution. The simulation experiments are designed as

Table 3. Comparison between NB and SNPModels (α2 = 1.2, Sample Size = 1000).

NB Model SNP Model

Variable
(True Value)

Value SE Value SE

b0 (1.0) 1.0157 0.1047 1.0157 —

b1 (-0.3) -0.3450 0.0279 -0.3537 0.0264

b2 (0.4) 0.4007 0.0276 0.3915 0.0169

α2(1.2) 1.2215 0.0760 — —

a0 — — 1.0000 —

a1 — — 0.0496 0.0572

a2 — — -0.0459 0.0450

a3 — — -0.0895 0.0131

a4 — — 0.0213 0.0070

LL(β) -2358.37 -2359.19

https://doi.org/10.1371/journal.pone.0197338.t003

Fig 2. Comparison of SNP and Log-Gamma distributions (α2 = 1.2).

https://doi.org/10.1371/journal.pone.0197338.g002
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below:

l ¼ expð�0:3 � x1þ 0:4 � x2þ εÞ;

where “x1” and “x2” still follow independently uniform distribution between 0 and 5. The

unobserved heterogeneity ε = 3 � D(u1 > 0.4) + 1.5 � u2 + 0.5 � η − 2.5, where D ( ) is an indica-

tor function, “η” follows the standard normal distribution while “u1” and “u2” independently

follow the standard uniform distribution. The sample size is setup at 500. Since it is challenging

to derive the analytical PDF of the mixture distribution for the random variable “ε”, Kernel
Density Estimation (KDE) approach is employed to estimate density for each ei in the arithme-

tic sequence (ei = -6.0, -5.9, . . . 5.9, 6.0) based on the random sample and following equation:

fKDEðeiÞ ¼
P

500

j¼1
Khðei � εjÞ=500: ð15Þ

Table 4. SNPmodels to approximate normal heterogeneities.

SNP Model 1 (σ = 0.08) SNPModel 2 (σ = 1.2)

Variable (True Value) Value SE Value SE

b1 (-0.3) -0.2993 0.0113 -0.3042 0.0151

b2 (0.4) 0.4090 0.0039 0.3946 0.0045

a0 1.0000 — 1.0000 —

a1 0.0059 0.0332 0.0067 0.0305

a2 -0.1194 0.0185 0.0980 0.0218

LL(β) -2112.09 -2462.97

(Sample Size = 1000)

https://doi.org/10.1371/journal.pone.0197338.t004

Fig 3. Comparison of SNP and normal distributions (σ = 0.8 or 1.2).

https://doi.org/10.1371/journal.pone.0197338.g003
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In the formula, Kh(u) = ϕ(u/h)/h. Namely, the PDF of standard normal distribution is cho-

sen as the smooth function Kh(u) and the bandwidth “h” is setup at 0.3. The estimated proba-

bility density is plotted as a solid curve in Fig 4. As shown, it is a typical bimodal distribution

with two explicit modal points.

After the vector “λ” is generated, the count variable “y” is drawn from a Poisson distribution

based on this vector. Then, an SNP model is estimated to approximate the bimodal distribu-

tion and the estimation results are provided in the left part of Table 5. When “K” reaches 5, the

model coefficients are close to their true values and the SNP distribution can mimic the

bimodal distribution reasonably well, which is plotted as a dashed curve in Fig 4.

A last experiment is conducted to mimic a trimodal distribution. The unobserved heteroge-

neity ε = 3 D(u1 > 0.8)– 3 D(u2 > 0.7) + 2 u3 + 0.5 η – 1.0, where “η” follows the standard

Fig 4. Comparison of SNP and bimodal distributions.

https://doi.org/10.1371/journal.pone.0197338.g004

Table 5. SNPmodels to approximate bimodal and trimodal heterogeneities.

SNP Model 1
(Bimodal Distribution)

SNPModel 2
(Trimodal Distribution)

Variable (True Value) Value SE Value SE

b1 (-0.3) -0.2801 0.0119 -0.2804 0.0061

b2 (0.4) 0.4139 0.0051 0.4107 0.0021

a0 1.0000 — 1.0000 —

a1 0.8984 0.2587 -0.0496 0.0942

a2 0.9218 0.3554 -0.2594 0.0712

a3 -0.3543 0.1535 -0.0160 0.0514

a4 -0.0637 0.0485 0.0804 0.0088

a5 0.0174 0.0170 -0.0007 0.0047

LL(β) -1289.46 -1327.89

Sample Size = 500

https://doi.org/10.1371/journal.pone.0197338.t005
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normal distribution while “u1”, “u2” and “u3” independently follow the standard uniform dis-

tribution. The KDE approach is applied to estimate kernel densities using a bandwidth of 0.4

for better smoothness. The estimated distribution is then plotted as a solid curve in Fig 5. The

model coefficients, which are close to their true values, are presented in the right part of

Table 5. The dashed line in Fig 5 represents the SNP distribution mimicking the trimodal dis-

tribution. As shown, the SNP distribution correctly exhibits the feature of the trimodal distri-

bution with three modal points and mimics the overall distribution reasonably well.

In summary, the simulation experiments demonstrate the strong capability of the SNP dis-

tribution to approximate different types of distributions (e.g. unimodal, bimodal and trimodal

distributions) for unobserved heterogeneity in Poisson regression models. In terms of the per-

formance, the SNP distribution can almost perfectly approximate a symmetric unimodal dis-

tribution like normal distribution, well approximate a skewed unimodal distribution like log-

gamma distribution and reasonably approximate bimodal and trimodal distributions. With

consideration of heterogeneity following the SNP distribution, all the model coefficients are

highly consistent or fairly close to their true values. Consequently, it should be appropriate to

apply the flexible SNP distribution to explore potential problems, such as non-symmetricity,

skewness or multimodality, etc., in the distribution of the unobserved heterogeneities within a

Poisson regression model.

4. Data description

An empirical crash dataset is used to demonstrate the capability of SNP distribution in model-

ing unobserved heterogeneities. The crash observations were collected on 1443 rural highway

sections in California State of USA from 1993 to 2002. This dataset contains sufficient explana-

tory variables, which can be used to develop a well-defined mean functional form for NB and

SNP models. Table 6 provides the summary statistics of variables for the California data. The

Fig 5. Comparison of SNP and trimodal distributions.

https://doi.org/10.1371/journal.pone.0197338.g005
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mean and variance of observed crash frequencies are 15.6 and 1973.9 (the maximum number

of crashes is 1192), respectively. Thus, the variance to mean ratio is 126.5. During the 10-year

period, 22522 crashes occurred on 1334 out of the 1443 road sections (92.4%).

5. Empirical estimation results

This section presents the comparison results between the NB and SNP models. Table 7 pres-

ents all the estimate results and overall performance measurements of both NB model and

SNP model of crash frequency for comparisons. In the SNP model, the log-likelihood value at

convergence can be gradually improved until the polynomial length “K” reaches 3. The perfor-

mance measurements are listed at the bottom of the table, including the log-likelihood value at

convergence [i.e. LL(β)], Deviance, Akaike information criterion (AIC) and Bayesian informa-

tion criterion (BIC). The following formulae are used to compute those performance

Table 6. Summary statistics of variables for the California data.

Variable Minimum Maximum Mean Std. Dev.

Number of crashes (10 years) 0.00 1192.00 15.61 44.43

Segment length (in miles) (L) 0.10 4.37 0.50 0.52

Average daily traffic over 10 years
(AADT)

1372.00 78300.00 16001.57 13088.46

Ln(L�10) 0.00 3.78 1.26 0.79

Ln(AADT) 7.22 11.27 9.39 0.77

Median width (in feet) 0.00 99.00 34.56 32.34

Lane width (in feet) 6.00 15.00 12.01 0.39

Right shoulder width (in feet) 0.00 23.00 7.85 2.80

https://doi.org/10.1371/journal.pone.0197338.t006

Table 7. Crash frequency model estimation results.

NB Model SNP Model

Variable Value SE Value SE

Intercept -7.0561 0.6873 -7.0561 —.

Ln[10×length] 1.0000 — 1.0000 —.

Ln(AADT) 1.0711 0.0267 1.0046 0.0187

Median
width (ft) / 10

-0.0348 0.0083 -0.0369 0.0056

Lane
width (ft)

-0.1266 0.0542 -0.0677 0.0171

Right shoulder width (ft) -0.0733 0.0093 -0.0699 0.0043

α2 0.5035 0.0239 — —

a0 — — 1.0000 —

a1 — — -0.3242 0.0336

a2 — — -0.1714 0.0164

a3 — — 0.0408 0.0093

Overall Performance Measurements

Sample size 1443 1443

LL(β) -4480.06 -4441.44

Deviance 8960.13 8882.87

AIC 8972.13 8896.87

BIC 9003.78 8933.79

https://doi.org/10.1371/journal.pone.0197338.t007
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measurements:

Deviance ¼ �2 � LLðbÞ;

AIC ¼ 2½k � LLðbÞ�;BIC ¼ lnðnÞ � k � 2 � LLðbÞ;

where “n” represents the sample size and “k” represents the number of parameters estimated

in the model. A greater value in LL(β) or a less value in Deviance indicates a better goodness-

of-fit (GOF) for the data.

As shown in Table 7, the SNP model greatly improves the GOF for the data relative to the

NB model after 3 additional parameters for the SNP distribution are specified into the model.

AIC and BIC are two alternative criteria for model selection by penalizing the number of

parameters in models and avoiding overfitting issues. A smaller value of AIC or BIC indicates

a better performance of the SNP model than that of the NB model. It implies that it is worth

specifying additional coefficients to better describe the distribution of the unobserved hetero-

geneity and further improve the model performance. In addition, the Chi-squared test is

applied to examine whether adding more coefficients can significantly improve the goodness-

of-fit of the SNP model. When the polynomial length “K” reaches 3, the Chi-squared test value

is 164.36 relative to the log-likelihood value with “K” at 1 and the critical value is 5.99 for 2

degrees of freedom. Since the increase of the polynomial length fails to further significantly

improve the goodness-of-fit, the model is finalized at the polynomial length of 3.

Fig 6 visualizes the SNP distribution and compares it with the estimated log-gamma distri-

bution in the NB model. It is interesting to see that the estimated SNP distribution exhibits

three visible modal points, although the left and right ones are fairly minor. They are presumed

to correspond to three groups of observations in the sample. The major one occurs near -0.3

Fig 6. Comparison of SNP and Log-Gamma distributions in crash frequency models.

https://doi.org/10.1371/journal.pone.0197338.g006
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on the coordinate of “ε” and takes a density value of 0.56, corresponding to the largest group
in the middle of the distributional domain. This group consists of almost all the (about 99.5%)

observations in the sample. The left mode occurs near -3.3 on the coordinate and the relevant

small group consists of about 0.4% of all the observations. The right modal point occurs near

+2.6 on the coordinate and the relevant group only consists of 0.1% of observations. Since the

heterogeneity “ε” represents unobserved or unspecified factors affecting crash frequency,

those results indicate the existence of three groups of highway segments exposed to different

levels of crash risk, which may be denoted as “low risk”, “medium risk” and “high risk” groups.

About 6 (= 1443�0.4%) highway segments from the sample fall into the “low risk” group. If the

expected crash frequencies are compared between the “low risk” and “medium risk” groups,

the expectation of “low risk” can be only 5% of that of “medium risk” [i.e. exp(−3.3 + 0.3)]

even if all the observed and specified factors are the same. Similarly, there are only about 1 ~ 2

(�1443�0.1%) highway segments falling into the “high risk” group, where the expected crash

frequency can be more than 18 times [i.e. exp(2.6 + 0.3)] as much as that of “medium risk”

group when all the observed and specified factors are the same.

However, the details revealed by the SNP distribution are ignored by the log-gamma distri-

bution assumed in the NB model. If comparing two distributions, one may envision that the

log-gamma distribution has already been extended to represent both left and middle groups.

Unfortunately, the log-gamma distribution is a unimodal distribution and therefore cannot

exhibit more than one mode to well represent a multimodal distribution. On the other hand,

the log-gamma distribution is a skewed distribution in nature, which cannot well reflect a

more symmetric error distribution of observations in the middle group. As a result, the GOF

of the SNP model is much better than that of the NB model thanks to its advantages to have

multiple modes and represent a more symmetric distribution.

In addition to the overall model performance, the SNP model brings great benefit to

improve the precision of model estimators. If comparing the standard errors of coefficient esti-

mators between SNP and NB models, one may see that some of them are reduced by a few

times. As we know, MLE estimators are consistent and efficient only if the distributional

assumption is valid. When the heterogeneity is well mimicked by the SNP distribution, the

model coefficient estimators have much less standard errors and are more precise than those

in the NB model based on the inappropriate unimodal and skewed distribution for unobserved

heterogeneity. When comparing magnitude of estimated coefficients, one may find that SNP

and NB models have similar coefficient estimators except that of the dummy variable indicat-

ing the lane width. The SNP model with better statistical performance suggests that the NB

model substantially overestimates the effect of lane width on crash frequency reduction by

83.1% ({1 − exp(−0.1266)} v.s.{1 − exp(−0.0677)}). The striking difference is probably caused

by a better representation of the error distribution in the SNP model.

6. Conclusions and discussions

In this paper, the authors specify a semi-nonparametric (SNP) distribution to represent the

unobserved heterogeneity in a Poisson regression model for crash frequency analysis. Relative

to the unimodal log-gamma distribution in the conventional negative binomial model, the

SNP distribution is highly flexible to mimic different types of distributions. When the length

of polynomial increases, the SNP distribution can approximate a large family of distributions,

including symmetric or asymmetric unimodal distribution and different types of multimodal

distributions. Traffic crash analysts can take advantage of its flexibility to release distributional

restrictions imposed by the conventional modeling method and explore the most appropriate

distributional form for the unobserved heterogeneity.
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In the empirical study based on the crash dataset collected from the California State of

USA, the SNP distribution classifies the observations from the sample into three groups, which

are exposed to different levels of risk. The SNP model fits data substantially better than the

conventional NB model and provides more precise model coefficient estimators. The NB

model is found to substantially overestimate the effect of lane width on crash frequency reduc-

tion relative to the SNP model based on more robust estimation of unobserved heterogeneity.

Future research may be carried out in the following three directions. At first, an approach

may be required to classify observations into the groups identified by the SNP model. With this

approach, there may be great potential to identify “high-risk” and “low-risk” locations associ-

ated with unobserved risk factors for further considerations. In addition, the crash model may

be re-estimated based on the observations belonging to the “medium-risk” group, where the

unobserved heterogeneity is more narrowly distributed. If it can be realized, the goodness-of-fit

of the model may be further improved, while all the model coefficients will reflect the situation

with the most “medium-risk” locations since “outliers” in “high-risk” and “low-risk” locations

are omitted from the sample. Second, the SNP model needs to be applied to some other crash

frequency datasets to further examine its applicability in different occasions. Third, there are

different methods to capture the heterogeneity. Instead of modifying the distribution of the ran-

dom component εi, a random parameter model can also be explored to capture the heterogene-

ity and improve the goodness-of-fit of model. In future research, a random parameter model

may be developed and compared with the SNP model and the traditional NBmodel.
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