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SUMMARY

The linear mixed effects model with normal errors is a popular model for the analysis of repeated measures
and longitudinal data. The generalized linear model is useful for data that have non-normal errors but where
the errors are uncorrelated. A descendant of these two models generates a model for correlated data with
non-normal errors, called the generalized linear mixed model (GLMM). Frequentist attempts to fit these
models generally rely on approximate results and inference relies on asymptotic assumptions. Recent
advances in computing technology have made Bayesian approaches to this class of models computationally
feasible. Markov chain Monte Carlo methods can be used to obtain ‘exact’ inference for these models, as
demonstrated by Zeger and Karim.6 In the linear or generalized linear mixed model, the random effects are
typically taken to have a fully parametric distribution, such as the normal distribution. In this paper, we
extend the GLMM by allowing the random effects to have a non-parametric prior distribution. We do this
using a Dirichlet process prior for the general distribution of the random effects. The approach easily
extends to more general population models. We perform computations for the models using the Gibbs
sampler. ( 1998 John Wiley & Sons, Ltd.

1. INTRODUCTION

Generalized linear models (McCullagh and Nelder,1 Nelder and Wedderburn2) are a unified
approach to regression methods. They apply to a wide array of discrete, continuous, and censored
outcomes, and are most commonly used when the outcomes are independent. However, in many
applications this independence is not a reasonable assumption. This is particularly obvious in
longitudinal studies, where multiple measurements made on the same individual are likely
correlated.

One recent technique for the analysis of such general correlated data is the generalized
estimating equation approach introduced by Liang and Zeger3 and Zeger and Liang.4 This
approach has the desirable quality that it allows for independence between subjects while
introducing a correlation structure within subjects. A drawback to this approach, however, is that
it assumes all subjects have the same covariance structure.



For continuous outcomes with normal errors, Laird and Ware5 present the random effects
model. In this model, a subject-specific covariance structure is generated by assuming that each
individual has a unique set of regression coefficients, the random effects, distributed around the
mean regression coefficients for the population, also known as the fixed effects. There may also be
regression coefficients that are equal for all individuals. Conditional on the random effects, repeated
observations on a subject are considered independent, while marginalizing over the random
effects, a unique covariance structure for the observations within each subject is obtained.

Zeger and Karim6 present a generalization of the normal random effects model to the class of
generalized linear models, generating a generalized linear mixed model (GLMM). They frame the
model from the Bayesian perspective and fit it using a Gibbs sampler. They point out that
attempts to fit this model using classical (frequentist) techniques are limited by the need for
multi-dimensional numerical integrations, except in special cases. As a result of these analytically
intractable integrations, classical analysis of GLMMs has relied on approximations to maximum
likelihood techniques (Breslow and Clayton7).

Bush and MacEachern8 describe a semi-parametric Bayesian version of the normal random
effects model, where the normal assumption on the random effects is relaxed. Kleinman and
Ibrahim9 show a more general covariance structure. In this article, we extend our approach to the
class of GLMMs. We present a semi-parametric Bayesian model for generalized linear models
with correlated data and random effects, where the random effects have a non-parametric prior
distribution. We note that attempts to fit models of this class using classical techniques are
hindered by the need for additional multi-dimensional numerical integrations, except in special
cases (Aitkin10).

The desirability of this approach from a Bayesian perspective is immediately clear, since
restricting the model to normally distributed random effects may be contrary to our prior
beliefs. In any event, the non-parametric prior is robust to misspecification at this stage
of the model. For the normal random effects model, Kleinman and Ibrahim9 present an example
where inference about the regression coefficients is sensitive to the assumption of normality
about the random effects. From the classical perspective, it has been shown that large changes
in parameter estimates can be caused by small changes in the distribution of the random
effects (Heckman and Singer,11 Davies12). Verbeke and Lesaffre13 show that the normal
random effects model can also perform poorly when the random effects have a mixture dis-
tribution. Finally, the examples presented herein demonstrate the advantages of the proposed
technique.

The non-parametric Bayesian approach for the random effects is to specify a prior distribution
on the space of all possible distribution functions. We apply this prior to the general prior
distribution for the random effects. We do this with a Dirichlet process prior distribution. Thus,
for random effects models, this means that we replace the usual Normal prior on the random
effects with a non-parametric prior, followed by a Dirichlet process prior on that general
distribution. This approach applies to any parametric model, and is not limited to GLMMs. The
foundation of this technology is discussed by Ferguson14 which also discusses the Dirichlet
process and its usefulness as a prior distribution. The practical application of such models, using
the Gibbs sampler, has been pioneered by Doss,15 MacEachern,16 Escobar,17 Bush and Mac-
Eachern,8 Liu18 and Müller et al.19 Other important work in this area has been done by West et
al.,20 Escobar and West,21 MacEachern and Müller,22 and Neton et al.23 An application of the
Dirichlet process prior to the generalized linear model can be found in Mukhopadhyay and
Gelfand.24
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Of these, the most similar to the present article is Mukhopadhyay and Gelfand.24 Among the
more important distinctions between their work and ours are the following. First, they do not
discuss prior distributions for the fixed effects. Second, they do not compare their results to the
fully parametric case. Their set-up is slightly more general, in the sense that they allow modelling
from an overdispersed exponential family. They do not extend their model to correlated data.
Finally, they do not focus interest on the random effects themselves.

The rest of this article is organized as follows. In Section 2 we provide a more detailed
description of the generalized linear model with random effects. In Section 3 we describe the
mixture of Dirichlet process (MDP) structure that we propose for our model. In Section 4 we
show how to apply the MDP structure to the generalized linear mixed model. In Section 5 we
illustrate our methodology with real data, and, in addition, compare our approach to the fully
parametric Bayesian model. In Section 6 we discuss our results and propose directions for future
research.

2. GENERALIZED LINEAR MIXED MODELS

First, we define the normal linear random effects model, then introduce random effects into
generalized linear models. For individual i, with n

i
repeated measurements, the Normal linear

random effects model for outcome vector y
i
is given by

y
i
"X

i
b#Z

i
b
i
#e

i
, i ,2 , N

where y
i
is n

i
]1, X

i
is an n

i
]p matrix of fixed covariates, b is a p]1 parameter vector of

regression coefficients, commonly referred to as fixed effects in these models, Z
i
is an n

i
]v matrix

of covariates for the v]1 vector of random effects b
i
, and e

i
is an n

i
]1 vector of errors. It is

standard in implementations of this model to assume e
i
and b

i
are independent and that both are

distributed Normal, with e
i
&N

ni
(0, p2I

ni
) and b

i
&N

v
(0, D), where I

s
is the s]s identity matrix

and N
s
(k, &) denotes the s-dimensional multivariate normal distribution with mean k and

covariance matrix &. Under these assumptions,

[y
i
D b, b

i
]&N

ni
(X

i
b#Z

i
b
i
, p2I

ni
). (1)

Throughout, we denote the conditional distribution of A given B by [A DB]. Notice that
marginally

[y
i
Db,p2, D]&N

ni
(X

i
b, Z

i
DZT

i
#p2I

ni
) (2)

which shows the unique covariance structure for subject i. For the sake of convenience, we call
model (1) the normal random effects model and refer to the regression coefficients b as the
population-mean effects.

Suppose the sampling distribution of y
it
, t"1,2 , n

i
is from the exponential family, so that

p(y
it
D h

it
, q)"expMq[y

it
h
it
!a(h

it
)]#c (y

it
, q)N

where

k
it
"E (y

it
D h

it
, q)"

da(h
it
)

dh
it
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and

v
it
"var(y

it
D h

it
, q)"q~1

d2a(h
it
)

dh2
itwhere q is a scalar dispersion parameter.

In the generalized linear mixed model, the canonical parameter h
it

is related to the covariates
by

h (h
it
)"g

it
"xT

it
b#zT

it
b
i

where x
it

and z
it

are rows of the X
i
and Z

i
matrices, h ( ) ) is a monotonic differentiable function,

often referred to as the h-link, and g
it

is called the linear predictor. Throughout, we write

p(y
it
D h

it
, q),p (y

it
D b, b

i
, q)

where
p (y

it
D b, b

i
, q)"expMq[y

it
h~1(g

it
)!a(h~1 (g

it
))]#c (y

it
, q)N . (3)

When h(h
it
)"h

it
"g

it
, then we say the link is the canonical link.

For example, in GLMM logistic regression, we have

p (y
it
D b, b

i
, q)"expMy

it
(xT

it
b#zT

it
b
i
)!log(1#exT

itb`zTitbi)N

where h
it
"g

it
"xT

it
b#zT

it
b
i
and q,1.

Note that the GLMM imitates the normal random effects model in that we assume that,
conditional on the random effect b

i
, the repeated observations on subject i are independent. Thus

the likelihood for N subjects in the GLMM is

p (y D b, b, q)J
N
<
i/1

ni
<
t/1

p(y
it
D b, b

i
, q) (4)

where b"(b
1
,2 , b

N
)T and y"(y

11
,2 , y

NnN
)T.

There are several attractive properties of (4). First, it takes within-subject correlation into
account while allowing each individual to have a unique correlation structure and maintaining
independence between subjects. Second, the model accommodates unbalanced data, in that
response vectors need not be of the same length. Similarly, we can fit irregularly timed measure-
ments with this model without any adjustment. Finally, posterior distributions or estimates of the
random effects have interpretive value when the trend of the mean function of individuals is of
interest.

Zeger and Karim6 assume

b&N
p
(k

0
, &

0
)

where (k
0
, &

0
) are considered known and fixed and there are p elements in b. Typically, one

assumes that

b
i
&N

v
(0, D)

where there are v random effects. In the Bayesian framework, D~1 is commonly assumed to have
a Wishart prior. In this article, we relax the normal assumption for the b

i
, and allow

b
i
&G

where G is a general distribution. However, before we accomplish that goal, we introduce the
machinery that makes it possible, the Dirichlet process prior.
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3. MIXTURE OF DIRICHLET PROCESS MODELS

The mixture of Dirichlet process model arises in cases of the following general situation.
Suppose an n

i
]1 random vector x

i
has a parametric distribution indexed by the w]1 vector

h
i
, i"1,2, N. Then suppose the h

i
themselves have a prior distribution with known hyper-

parameters (
0
. Thus

Stage 1: [x
i
D h

i
]&D

ni
(h

1
(h

i
))

Stage 2: [h
i
D(

0
]&D

w
(h

2
((

0
)) (5)

where D
s
( ) ) is a generic label for an s-dimensional parametric multivariate distribution and h

1
( ) )

and h
2
( ) ) are functions. The MDP model (Escobar,17 MacEachern16) removes the assumption of

a parametric prior at the second stage, and replaces it with a general distribution G. The
distribution G then in turn has a Dirichlet process prior (Ferguson14), leading to

Stage 1: [x
i
D h

i
]&D

ni
(h

1
(h

i
))

Stage 2: h
i
DG *.*.&$. G

Stage 3: [G DM, (
0
]&DP(MG

0
(h

2
((

0
))) (6)

where G
0
is a w-dimensional parametric distribution and M is a positive scalar. The parameters of

a Dirichlet process are G
0
( ) ), a probability measure, and M, a positive scalar. The parameter

MG
0
( ) ), often called the base measure, contains a distribution, G

0
( ) ), which approximates the

true non-parametric shape of G, and the scalar M, which reflects our prior belief about how
similar the non-parametric distribution G is to the base measure G

0
( ) ).

There are two special cases in which the MDP model leads to the fully parametric case. As
MPR, GPG

0
( ) ), so that the base measure is the prior distribution for h

i
. Also, if h

i
,h for all

i, the same is true. For a more hierarchical modelling approach, it is possible to place prior
distributions on (M, (

0
). In Section 4 we place a prior on (

0
, but we do not do so for M. The

specification in (6) results in a semi-parametric specification in that a fully parametric distribution
is given in Stage 1 and a non-parametric distribution is given in Stages 2 and 3.

The Polya urn representation of the Dirichlet process was developed by Blackwell and
MacQueen25 and is useful for sampling purposes. We describe it as follows. The draw of h

1
is

always from the base measure. The draw of h
2

is equal to h
1

with probability p
1

and is from the
base measure with probability p

0
"1!p

1
. The draw of h

3
is equal to h

1
with probability p

1
,

equal to h
2

with probability p
2
, and is a draw from the base measure with probability

p
0
"1!(p

1
#p

2
). The values of the ps change with each new draw. This process continues until

h
N

is equal to each of the preceding hs with probability p
i
, i31,2, N!1 and is a draw from the

base measure with probability p
0
"1!+N~1

i/1
p
i
. We determine the values of p

i
, i"0,2 , N!1

from the Dirichlet process parameters. In other words, the hs are actually drawn from a mixture
distribution where the mixing probabilities are determined by the Dirichlet process of Stage 3,
thus giving rise to the MDP label. From this representation, it is clear that if all of the h

i
,h for

all i, then we draw h from the base measure with probability 1 and thus the base measure is the
prior.

The MDP model is simplified in practice by the Polya urn representation, using the fact that
marginally, the h

i
are distributed as the base measure along with the added property that

P (h
i
"h

j
, iOj)'0. The Dirichlet process prior results in what MacEachern16 calls a ‘cluster

structure’ among the h
i
s. This cluster structure partitions the N h

i
s into k sets or clusters,
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0(k)N. All of the observations in a cluster share an identical value of h and subjects in
different clusters have differing values of h.

As described by Escobar,17 conditional on the other hs, h
i
has the following mixture distribu-

tion:

p (h
i
Dx, h

~i
)J +

jOi

q
j
dhj#Mq

0
g
0
(h

i
)p (x

i
D h

i
) (7)

where x"(x
1
,2, x

N
), h

~i
"(h

1
,2, h

i~1
, h

i`1
,2 , h

N
) and p (x

i
D h

i
) is the sampling distribution

of the x
i
s. We normalize the values q

j
and Mq

0
to obtain the selection probabilities p

i
,

i"0,2 , N!1 in the Polya urn scheme described above. In addition d
s

is a degenerate
distribution with point mass at s, and g

0
( ) ) is the density corresponding to the probability

measure G
0
( ) ). Finally, q

j
"p (x

i
D h

j
), j"1,2, i!1, i#1,2, N and q

0
": p (x

i
Dh)g

0
(h) dh.

To demonstrate the MDP model, consider the seminal example of Escobar17 and Escobar and
West.21 Suppose that x

i
has the univariate Normal distribution with unknown mean h

i
and

known variance p2
x
. In this case we have n

i
"1, i"1,2, N. Also assume that each h

i
has the

univariate Normal distribution. Then (5) becomes

Stage 1: [x
i
D h

i
, p

x
]&N(h

i
, p2

x
)

Stage 2: [h
i
D k, ph]&N(k, p2h ).

The MDP model removes the assumption of normality at the second stage, resulting in

Stage 1: [x
i
D h

i
, p

x
]&N(h

i
, p2

x
)

Stage 2: h
i
DG *.*.&$. G

Stage 3: [G DM, (
0
]&DP(MG

0
(h

2
((

0
))). (8)

3.1. Conjugate MDP models

Suppose G
0
"N(k, p2h ) in (8) so that (

0
"(k, p2h ). In this case, the unnormalized selection

probability q
j
is equal to p (x

i
D h

j
)"/ (x

i
D h

j
, p2

x
), where / ( ) D k, p2) denotes the Normal density

with mean k and variance p2. With probability proportional to q
j
, h

i
&dhj , which means that

h
i
"h

j
with probability 1. The unnormalized selection probability q

0
is given by

q
0
"P p (x

i
D h, p2

x
)g

0
(h D(

0
) dh"P /(x

i
D h, p2

x
)/ (h Dk, p2h ) dh.

With probability proportional to M]q
0
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Dx

i
]&g

0
(h)p (x

i
D h)"N(h Dk, p2h )N(x

i
D h, p2

x
)

where N(s Dk, p2) indicates that s has a normal distribution with mean k and variance p2. Then

[h
i
Dx

i
]&NA[(p2h#p2

x
)~1p2h p2

x
] A

k
p2h

#

x
i

p2
x
B , (p2h#p2

x
)~1p2h p2

xB.
In the example above, selecting G

0
to be Normal when the sampling distribution of the data is

Normal emulates the conjugate relationship between sampling distribution and prior in the usual
Bayesian hierarchy. In the MDP case, the sampling distribution is conjugate to the base measure.
MacEachern16 calls MDP models with base measures and sampling distributions that are
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conjugate in this fashion ‘conjugate MDP models’. The computational advantages of the
conjugate MDP model are clear from the example. First, q

0
has a closed form. Secondly, the

distribution of h
i
corresponding to q

0
is from the same exponential family as the base measure. As

a result, Gibbs sampling in the conjugate model described above can proceed in a relatively
straightforward fashion, as described in detail in Kleinman and Ibrahim.9

3.2. Non-conjugate MDP models

When we do not assume conjugacy, the integral needed for q
0

typically has no closed-form
solution. Since we must evaluate this integral N times within each Gibbs cycle, the cost in time of
numerical integration is compounded, as is the cost in accuracy of approximations. Several
attempts to avoid this integration have been made. For example, West et al.20 approximate q

0
with p(y

it
Db@) where b@&G

0
( ) ). This is certainly simple, but unfortunately the stationary distribu-

tion underlying the Gibbs sampler is no longer the posterior distribution we desire. In fact, the
stationary distribution may be quite different from the posterior. We employ a technique
described by MacEachern and Müller22 whereby one can fit non-conjugate MDP models
without numerical integration or approximation. Another technique has been suggested by
Walker and Damien.26

Some additional notation is necessary for the exposition of this method. Recall that when the
h
i
s are known, the observations are grouped into clusters which have equal h

i
s. There will be some

number k, 0(k)N of unique values among the h
i
s. Denote these unique values by c

l
,

l"1,2 , k and recall from the Polya urn scheme that the c
l
are independent observations from

G( ) ). Let n
l
be the number of observations that share the value c

l
. Additionally, let l represent the

set of subjects with common random effect c
l
. Note that knowing the h

i
s is equivalent to knowing

k, c
l
, n

l
and the cluster memberships l, l"1,2, k.

The routine of MacEachern and Müller22 is closely intertwined with the Gibbs sampler it
generates. Thus the following discussions is in terms of the Gibbs sampler, rather than general
model terms. The method relies on the augmentation of the k independent c

l
s with an additional

N!k independent samples from G
0
( ) ) at the start of each loop of the Gibbs sampler. Label these

additional draws c
k`1

,2 , c
N
.

Then the routine proceeds in the following fashion. If n
l
'1, i3l, meaning that at least one

other subject has the same value of h as subject i, then h
i
has the distribution

p (h
i
Dx, h

~i
)J

k
+
l/1

g~
l

q
l
dcl#

M

k*#1
q
k`1

dck`1
(9)

where k*"k and g~
l

is the number of observations sharing c
l
when we exclude observation i.

Note that this means n~
l
"n

l
, except when i3 l, in which case n~

l
"n

l
!1. Also, q

l
"p (x

i
D c

l
),

l"1,2 , k#1. In other words, with probability proportional to n~
l

p(x
i
D c

l
), h

i
is equal to c

l
with

probability 1, l"1,2 , k. With probability proportional to [M/(k*#1)] p (x
i
D c

k`1
), h

i
is distrib-

uted dck`1
, meaning that h

i
"c

k`1
with probability 1. If n

l
"1, i3l, then only subject i has the

value h
i
. In this case, we do the following. With probability k*/(k*#1), leave h

i
unchanged.

Otherwise, with probability 1/(k*#1), h
i

is distributed according to equation (9), with the
modification that k*"k!1.

If it should occur that this routine causes a cluster to disappear, meaning that n
l{
"0 for some

l@)k, switch the cluster labels of l@ and k. Notice that k decreases as a result of this process.
Another important point in the above is that the value c

l{
is not removed, but becomes c

k`1
in the
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distribution of h
i`1

. Once we have completed iteration of the Gibbs sampler, we discard the
augmentary values c

k`1
,2 , c

N
.

4. DP PRIORS IN THE GENERALIZED LINEAR MIXED MODEL

In this section we describe how one can apply the MDP model to the generalized linear mixed
model. Assume that the base measure for the b

i
s is Normal. Then any exponential family sampling

distribution completes an MDP GLMM. This is a non-conjugate MDP model except when the
data have a normal sampling distribution. Denote the distribution of the outcome y

it
for subject

i at time t as p (y
it
Db, b

i
, q) as given in (3). The prior specifications for the parameters of the MDP

GLMM are

q&Gamma(a
0
, j

0
)

b&N
p
(k

0
, &

0
)

b
i

*.*.&$. G

G&DP(MN
v
(0, D)). (10)

The model (10) implies that there are p population-mean effects and v random effects.
When G is a fully parametric prior, we can write down the joint posterior. Suppose G is

a v-dimensional normal distribution with mean 0 and covariance matrix D, as in the standard
(fully parametric) GLMM. Given D, the joint posterior for the parameters is

p(b, q, b Dy)Jp(y D b, b, q)n(b, b, q)J

expG
N
+
i/1

ni
+
t/1

log p(y
it
D b, b

i
, q)!

1

2
(b!k

0
)T&~1

0
(b!k

0
)!qj

0
!

1

2

N
+
i/1

bT
i
D~1b

iH qa0~1 (11)

where n ( ) ) denotes the joint prior density and b"(b
1
,2, b

n
). However, if G has the form of (10),

it is impossible to write down the joint posterior density of the parameters, because there is not
a common dominating measure. We include here the special case where G"N

v
(0, D) because we

can find the conditional distributions of b and q through it in the usual way.
From equation (11) and the discussion in Section 2, we can obtain the full conditional

distributions needed for Gibbs sampling.
Following usual algebraic routes, we get

p (b Db, q, y)JexpA
N
+
i/1

ni
+
t/1

log p(y
it
D b, b

i
, q)!

1

2
(b!k

0
)T&~1

0
(b!k

0
)B .

Unless y
it

has the normal distribution, sampling from this full conditional is not straightforward,
but it can still be accomplished, using for example a Metropolis step (see Metropolis et al.27 and
Hastings28). The full conditional distribution of q is

p (q Db, b, y)Jqa0~1 expG
N
+
i/1

ni
+
t/1

c(y
it
, q)H expG

N
+
i/1

ni
+
t/1

[y
it
h
it
!a(h

it
)]!qj

0H .
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Sampling from the full conditional distribution of q can also be accomplished through a Metro-
polis step, unless log (c(y

it
, q)) takes a form proportional to qf(yit). In such a case

[q Db, b, y]&GammaAa0
#

N
+
i/1

ni
+
t/1

f (y
it
), j

0
!

N
+
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ni
+
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[y
it
h
it
!a (h

ij
)]B .

From the discussion of MDP models in Section 2, we find
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where b
~i

denotes the random effects for the subjects excluding subject i. Also, as in Section 2, d
s
is

a degenerate distribution with point mass at s. An important subtlety in equation (12) is that the
terms p(y

it
D b, b

j
, q) in the first summation use the data for the subject i and the random effects for

each of the other subjects. That is, we evaluate the likelihood for subject i using the other subjects’
random effects. The better the fit of subject j’s random effect, that is, the greater the likelihood,
then the more likely it is that d

j
is the distribution from which b

i
is drawn.

When the sampling distribution is not normal, q
0

generally will not have a closed form. To
avoid numerical integrations or approximation, we use the algorithm of MacEachern and
Müller,22 described in Section 3.2. Recall that there are k)N unique random effects among the
N subjects. These random effects, which we label c

l
, l"1,2, k are independent draws from

G
0
( ) ) which in this case is N

v
(0, D). The algorithm requires that we sample an additional N!k

values from N
v
(0, D); we label these values c

k`1
,2, c

N
. Then, if n

i
'1, i3 l we sample from the

following full conditional:
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where k*"k and n~
l

is the number of subjects who share the random effect c
l
excluding subject i.

The value of <ni
t/1

p(y
it
D b, q, c

l
) is the likelihood of subject i’s data using the random effect that

belongs to some group of subjects. Thus the effect of the distribution (13) has a sensible
interpretation. The greater subject i’s likelihood with random effect c

l
and the greater the number

of other subjects who share that random effect, the more likely it is that we will select c
l
as subject

i’s random effect. On the other hand, the scalar parameter M regulates the probability that
subject i gets a new random effect, meaning that they start a new cluster. If n

l
"1, i3l, then with

probability k*/(k*#1) we leave b
i
unchanged. Otherwise, we let b

i
be distributed according to

equation (13) except with k*"k!1.
We may end up with one fewer cluster after drawing b

i
from (13), though this can only happen

when n
l
"1, i3l. In other words, we may have the case that n

l
"0 after drawing from the

conditional distribution of b
i
. If this occurs we switch the values c

l
for the empty group and c

k
for

the last group. We also switch the set memberships l and k. Before drawing from the full
conditional in such a case, the number of clusters is k, and afterwards there are k!1 clusters.
Before the draw, there were n

k
subjects in set k who shared the random effect c

k
. After the draw

and the switching, the set in which these subjects are simply has a different label l, l(k, and we
label the random effect formerly held by subject i as c

k
. In the full conditional of b

i`1
, there are
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only k!1 clusters, thus we use the value c
k
from the full conditional of b

i
as c

k`1
in drawing b

i`1
from (13).

Typically, the covariance matrix D in the base measure of the Dirichlet process in model (10) is
unknown, and therefore we must specify a suitable for it. Note that once we have done this, the
base measure is no longer marginally Normal. For convenience, suppose
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Bush and MacEachern8 recommend one additional step for the model as an aid to convergence
for the Gibbs sampler. To speed mixing over the entire parameter space, they suggest moving
around the cs after determining how the b

i
s are grouped. The conditional density of c

l
is

p (c
l
D b, q, b, D, y)J/ (c

l
D0, D) G<

i3l

ni
<
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it
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l
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One must apply a Metropolis sampler or some other technique to draw a sample from this
distribution as well.

5. APPLICATIONS

Here we present examples of analyses of the two most common types of GLMMs, the logistic and
Poisson models. These particular models are simpler than the general framework described
above, in that q,1. The purpose of the analyses is to make comparisons between the MDP and
fully parametric analyses of the same data. We also demonstrate the computations and inference
for these models.

5.1. Correlated Binary Data

This section presents an analysis of longitudinal repeated binary measurements. Zeger and
Karim6 analyze a subset of data from a study of respiratory infections in Indonesian children. An
analysis of the full data set appears in Sommer et al.29 The children, all pre-schoolers, were seen
quarterly for up to six quarters. At each examination, the presence or absence of respiratory
infection was noted and is the outcome in this analysis. The covariates modelled by Zeger and
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Karim are an intercept, age in months, presence/absence of xeropthalmia, cosine and sine terms
for the annual cycle, height for age as a percentage of the National Center for Health Statistics
standard, and presence/absence of stunting, defined as being below the 85th percentile in height
for age. Age in months was centred at 36 and height for age was centred at 90 per cent.
Xeropthalmia is a symptom of chronic vitamin A deficiency and height for age is an indicator of
long-term nutritional status. In addition, Zeger and Karim model a random intercept for
each child. To facilitate comparison with the results of Zeger and Karim, we use the same model
that they use. The original study followed 3000 children. Zeger and Karim use a subset of 250 of
these children. To speed computations we take a random subset of 50 from the set of Zeger and
Karim.

Since no prior information regarding respiratory infections in this population was available, we
chose parameters for the Wishart prior on D~1 in the following fashion. First, we chose d

0
to be

10. Though the prior is proper if d
0

is smaller, Gibbs samplers for random effects models
frequently fail to converge when d

0
is too small (see Cowles et al.30 for an example). Based on

experience with fully parametric logistic GLMM, we wanted d~1
0

R
0
, the prior expected value of

D~1 to be 0)5. Thus we chose c
0
"1 and R

0
"5. Note that since D is scalar, this is equivalent to

a Gamma prior on D~1.
We chose relatively flat priors for the other parameters. We let k

0
"(0 0 0 0 0 0 0 0)T and

&
0
"10,000I

8
. This is equivalent to saying that the a priori probability of respiratory infection

is 0)5 for all subjects across all seasons, but that great uncertainty exists as to the accuracy of
this assumption. Without previous experience in this population, this vague prior seems appro-
priate.

We chose three values of the parameter M to reflect large, moderate, and small departures from
normality for the distribution of the random effects. A value of M"0)75 reflects a large departure
from normality with the average number of clusters kM +5. A value of M"200 reflects a moderate
departure from normality with kM +20. A value of M"108 suggests that the distribution of the
random effects is very nearly normal with kM +45. Finally, we also modelled the fully parametric
case by choosing M large enough that kM "50.

In Table I, we present results from the MDP GLMM analysis along with the fully parametric
GLMM results. We ran Gibbs samplers for 25,000 iterations with the first 3000 discarded as
a burn-in. In addition, due to high autocorrelation, we used only every tenth iterate, with the
remainder discarded. This makes for a total sample size of 2200. We assessed convergence by the
methods of Geweke31 and Raftery and Lewis32 using the CODA (Best et al.33) suite of diagnostics
in S-plus. Most of the parameters in each of the four samplers had Geweke statistics within
$1)96, indicating that convergence is plausible. The more appropriate convergence diagnostic in
this case may be that of Raftery and Lewis, which evaluates the accuracy of estimates of
percentiles of posterior distributions. Under the conditions of burn-in and thinning described
above, the 2)5 percentile of the posterior is within 0)01 of the observed 2)5 percentile with
probability 0)8.

We interpret the results in Table I as follows. In general, many of the medians and 95 per cent
highest posterior density (HPD) regions for the population-mean effects are strikingly similar.
The exceptions to this rule are the effects for gender, xeropthalmia, stunting, and the intercept.
The posterior median of the intercept is similar in all four models, but the 2)5 percentile is
progressively more negative as the distribution of the random effects becomes less normal. The
same may be said for the effects of xeropthalmia. There is no discernible pattern for the effects of
gender or stunting. In no case does the 95 per cent HPD region change from excluding 0 to
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Table I. Posterior 2)5, 50 and 97)5 percentiles for various parameters from MDP logistic GLMM and the
fully parametric Poisson GLMM. b

0
is the intercept, b

1
is the effect of age, b

2
is the effect of xeropthalmia, b

3
is the gender effect, b

4
is the effect of the seasonal cosine, b

5
is the effect of the seasonal sine, b

6
is the effect of

height for age, and b
7

is the effect of stunting. b
i
is the intercept for subject i. For the MDP models, D(0, 0) is

the variance of the random effects in the base measure. For the fully parametric model, D is the variance of
the random effects. kM is the average number of clusters observed in the course of sampling

Parameter MDP GLMM model FP GLMM
M"0)75 M"200 M"108 M+R

b
0

(!7)03,!3)76,!1)97) (!5)06,!3)47,!2)26) (!4)56,!3)27,!2)25) (!4)56,!3)29,!2)24)
b
1

(!0)088,!0)047,!0)014) (!0)094,!0)048,!0)011) (!0)092,!0)048,!0)013) (!0)091,!0)047,!0)01)
b
2

(!1)08, 1)15, 3)12) (!0)84, 1)44, 3)43) (!0)65, 1)50, 3)48) (!0)54, 1)32, 3)30)
b
3

(!1)58,!0)26, 0)86) (!1)94,!0)52, 0)77) (!1)69,!0)31, 0)93) (!1)65,!0)34, 0)91)
b
4

(!2)18,!1)08,!0)11) (!2)23,!1)14,!0)191) (!2)14,!1)08,!0)14) (!2)17,!1)09,!0)13)
b
5

(!2)01,!0)97,!0)05) (!2)16,!0)99,!0)001) (!2)07,!0)94, 0)01) (!2)08,!0)97,!0)08)
b
6

(!0)36,!0)15, 0)03) (!0)35,!0)14, 0)04) (!0)36,!0)16, 0)01) (!0)36,!0)16, 0)02)
b
7

(!2)43,!0)19, 2)1) (!2)20, 0)05, 2)20) (!2)49,!0)12, 1)92) (!2)24,!0)04, 1)86)
D (0)36, 0)79, 2)22) (0)50, 1)26, 3)41) (0)45, 0)98, 2)34) (0)48, 0)99, 2)32)
b
1

(!1)02, 1)22, 4)58) (!0)87, 1)09, 3)45) (!2)16, 0)31, 3)34) (!2)06, 0)26, 2)46)
b
2

(!2)32, 0)46, 4)24) (!3)16,!0)01, 2)66) (!3)06, 0)02, 2)31) (!2)36,!0)05, 2)28)
b
3

(!0)78, 1)38, 4)56) (!0)73, 1)26, 3)53) (!1)78, 0)52, 2)91) (!1)73, 0)57, 3)05)
kM 4)47 19)0 43)2 50

including it across the models, with the exception of the seasonal cosine, where the 95 per cent
HPD region hovers around 0 in all the models. The posterior distributions are most affected by
the changing model if the covariates are binary. These parameters are the ones with the highest
correlation with the intercept, the continuous covariates being roughly centred at 0. Since it is the
distribution of the random intercepts that is directly affected by the changing models, it is not
surprising that the posterior distributions of parameters highly correlated with the population-
mean intercept are the most affected.

The largest effect of introducing the non-parametric piece of the model is on the intercept,
where it indicates that an even more extreme value may be the population mean. In this model,
this means that the probability of respiratory infection when all the other covariates are 0 may
plausibly be smaller under the MDP model than under the fully parametric GLMM. This is also
demonstrated in the kernel estimates of the posterior distributions presented in Figure 1. In
comparing the distributions in Figure 1, we see that the marginal posterior distribution of b

0
based on the semi-parametric model (Figure 1(b)) has much heavier tails than the one based on
the fully parametric model (Figure 1(a)). Also, we see that the distribution in Figure 1(a) appears
symmetric, while the distribution in Figure 1(b) is quite asymmetric. However, the medians and
modes of the two distributions are similar.

The introduction of the MDP stage in the model introduces larger changes to the posterior
distributions of the random effects. For the three sample random effects tabulated, the medians
differ markedly under each of the models. If one were predicting the probability that a particular
child would have a respiratory infection, the MDP models would give results very unlike those
from the fully parametric model. Finally, the posterior distribution of D seems different under the
MDP models, but the role of this parameter is not the same under the MDP and fully parametric
models and therefore no straightforward comparison can be made.
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Figure 1. Posterior distribution of the intercept: (a) fully parametric model; (b) MDP model with M"0)75

5.2. Correlated Count Data

This section presents an analysis of longitudinal repeated count measurements. Thall and Vail34
(their Table 2) present data from a study of seizures in epileptic patients. They use a classical
analysis to fit a random intercept to each individual’s data and a random effect for each visit
across patients. These data were also analysed by Breslow and Clayton7 using an approximate
classical method called penalized quasi-likelihood (PQL). We will fit a model described by
Breslow and Clayton.

The study included 59 epileptic patients randomized to either a treatment or a placebo as an
adjuvant treatment to standard chemotherapy. Subjects were evaluated every two weeks to
determine the number of seizures that occurred during the previous two-week period. This
process was repeated for 4 measurements, or 8 weeks after randomization. Baseline data available
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Table II. Posterior 2)5, 50 and 97)5 percentiles for various parameters from MDP Poisson GLMM, fully
parametric Poisson GLM, and the 2)5 per cent confidence limit, the estimated value, and the 97)5 per cent
confidence limit for Breslow and Clayton’s PQL analysis. b

0
is the intercept, b

1
is the Base effect, b

2
is the Trt

effect, b
3

is the Base]Trt effect, b
4

is the Age effect, and b
5

is the slope over Visit. For the MDP models,
D(0, 0) is the variance of the intercepts in the base measure, D(1, 1) is the variance of the
slopes, and D(0, 1) is their covariance. For the fully parametric model and the PQL model, D( ), ) ) are
the elements of the covariance matrix of the random effects. kM is the average number of clusters observed in

the course of sampling

Parameter MDP GLMM model FP GLMM PQL
M"1)5 M"100

b
0

(!7)0,!3)13,0)51) (!6)84,!2)87, 0)48) (!4)57,!0)72, 2)86) (!3)6,!1)27, 1)08)
b
1

(0)54, 0)97, 1)4) (0)62, 0)98, 1)36) (0)59, 0)90, 1)14) (0)60, 0)87, 1)14)
b
2

(!2)9,!1)32, 0)39) (!2)85,!1)35,!0)01) (!1)78,!0)81,!0)09) (!1)71,!0)91,!0)11)
b
3

(!0)15, 0)55, 1)18) (0)00, 0)55, 1)15) (!0)09, 0)26, 0)74) (!0)08, 0)33, 0)74)
b
4

(!0)16, 0)88, 1)74) (!0)09, 0)92, 2)04) (!0)76, 0)32, 1)34) (!0)25, 0)46, 1)17)
b
5

(!2)54,!0)44, 1)74) (!1)49,!0)37, 0)78) (!0)58,!0)27, 0)05) (!0)57,!0)26, 0)05)
D(0, 0) (0)28, 0)48, 0)94) (0)18, 0)35, 0)82) (0)23, 0)35, 0)52) (0)40, 0)52, 0)64)
D(0, 12) (!0)37, 0)02, 0)51) (!0)34, 0)02, 0)41) (!0)17,!0)00, 0)17) (!0)07,!0)01, 0)05)
D(1, 1) (0)41, 0)84, 2)79) (0)42, 0)98, 2)38) (0)31, 0)55, 1)02) (0)43, 0)74, 1)05)
kM 10)6 17)7 — —

as covariates include the number of seizures in the 8 weeks prior to enrolment in the study and
age in years. For consistency with the previous analysis, we use the log of one-fourth of the
number of seizures (Base) and the log of age in years (Age) as population-mean covariates. The full
set of population-mean effects includes an intercept (Int), Base, a treatment effect (Trt), an
interaction effect between Base and Trt (Base]Trt), and Age. Finally, we centre the visit time in
weeks and divide by 10 (Visit) to give the final population-mean covariate. The random effects
include Int and a Visit effect. Our model thus corresponds to model IV of Breslow and Clayton.

In the absence of similar analyses of this treatment, we obtained parameters for the Wishart
prior on D~1 in the following manner. First, we chose d

0
to be 10. Based on previous experience

with fully parametric Poisson GLMM, we wanted d~1
0

R
0
, the prior expected value of D~1, to be

diagonal with values of 0)5 on the diagonal. Thus we chose c
0
"1 and

R
0
"A

5

0

0

5B .

We chose relatively flat priors for the population-mean parameters. In particular,
k
0
"(0 0 0 0 0 0)T and &

0
"10,000I

6
. We chose two values of the parameter M to reflect

moderate and large departures from normality for the distribution of the random effects. A value
of M"100 reflects a moderate departure from normality, with the average number of clusters
kM +20. A value of M"1)5 reflects a large departure from normality, with kM +10.

In Table II, we present results from the MDP GLMM analysis of the model along with the
fully parametric Bayesian GLMM analysis and the PQL results of Breslow and Clayton. Recall
that the fully parametric model is equivalent to the MDP model when MPR. We generated the
fully parametric Bayesian results using the BUGS program (Gilks et al.35). We ran Gibbs
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samplers for 25,000 iterations, with the first 3000 discarded as a burn-in. In addition, due to high
autocorrelation among the samples, we used every tenth iterate to make posterior inference, with
the rest discarded. This makes for a total sample size of 2200. We assessed convergence of the
Gibbs sampler by the methods of Geweke31 and Raftery and Lewis32 using the CODA (Best et
al.33) suite of diagnostics in S-plus. Most of the parameters in each model had Geweke statistics
within $1)96, indicating that convergence is plausible. Due to the lower autocorrelation in the
iterates from this analysis than from the binary outcome example, the Raftery and Lewis
diagnostic shows that the burn-in and the use of every tenth iterate suggest that the 2)5 percentile
of the posterior is within 0)01 of the observed 2)5 percentile with probability 0)9.

The Bayesian results differ from the PQL results, though in all cases the 95 per cent highest
posterior density (HPD) regions overlap with the 95 per cent confidence intervals. In general, the
posterior medians of the fully parametric GLMM results are very close to the estimates from the
PQL analysis. The main differences are that the 95 per cent HPD regions for Int and Age are
much wider than the 95 per cent confidence intervals (CI). In addition, the PQL estimates of the
elements of the covariance matrix of the random effects differ from the posterior means; both the
variance of the intercept and the variance of the slopes are smaller under the fully parametric
Bayesian model. These results are evidence that PQL can be a fairly accurate technique.

Comparing the MDP GLMM models to the fully parametric model, we notice that among the
population-mean effects, the 95 per cent HPD region for the Base effect excludes 0, just as the 95
per cent CI does. However, an apparent Trt effect, seen in the PQL and fully parametric Bayesian
GLMM is much more tenuous under the MDP model. When M"1)5, that is, when the
distribution of the random effects is least similar to a normal distribution, 0 is well within the 95
per cent HPD region for the Trt effect. Conversely, the effect of Age seems less likely to be 0 in the
MDP models, while 0 is well within the CI for the PQL model and the HPD region for the fully
parametric Bayesian model. Other parameters seem more or less equivalent across models,
although the 95 per cent HPD regions are generally wider under the MDP models than under the
fully parametric or PQL fits. Finally, the elements of the D matrix seem different under the MDP
models, but we must note that the role of this matrix is not the same under the MDP models and
the others and therefore no straightforward comparison can be made. Based on the MDP
GLMM analysis, we conclude that there is a slightly larger effect of Base, that the treatment may
not be effective, and that Age may be a useful predictor.

One focus of earlier analyses was outlier detection. This is an area where our semi-parametric
method can differ substantially from fully parametric techniques. In Figure 2, we present
a graphical display of the posterior means of the random effects. This display shows markedly
different results than those of Breslow and Clayton7 (their Figure 2), which are reproduced as
Figure 3. They identified five patients with unusual random effects, who are labelled here with
their ID numbers from Thall and Vail.35 In contrast to the PQL results, we notice that four of the
five (subjects 112, 225, 227 and 234) no longer seem so unusual. This calls to greater attention the
unusual improvement over time of subject 135 in both analyses, given the high initial seizure rate.
However, even this subject is drawn toward the central group, and is no longer the subject with
the greatest improvement.

6. DISCUSSION

In this article we applied a general technique for Bayesian non-parametrics to an important class
of models, the generalized linear mixed model (GLMM). We showed that the GLMM can be
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Figure 2. Posterior means of random slopes and intercepts from the epilepsy example: MDP GLMM with M"1)5

Figure 3. PQL estimates of random slopes and intercepts from the epilepsy example. Reproduced from Breslow and
Clayton7

freed from the parametric assumption for the random effects. Our technique involved specifying
a non-parametric prior for the distribution of the random effects, and a Dirichlet process prior on
the space of prior distributions for that non-parametric prior. We then fit the resulting model with
the Gibbs sampler. The approach extends quite easily to population models more generally. The
proposed procedure represents a new application of the MDP model to correlated data.

We also demonstrated how one can effectively and usefully apply the model to longitudinal
data that come from the Bernoulli and Poisson families, which correspond to popular study
designs in the medical literature. In each case we show that results based on MDP models can be
substantially and meaningfully different from the fully parametric and/or classical approaches to
the same data. This effect is more pronounced when interest centres on the random effects,
but is also observed in the fixed effects. We conclude that application of the technique can
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result in different conclusions or at least valuable additional insight in cases where GLMMs are
appropriate.

The important contributions of this article revolve around the semi-parametric model for the
random effects. The implementation of the MDP model for the GLMM has not been laid out in
the detail presented here. In addition, the interpretation of the model may be of some use to
applied biostatisticians, who often use random effects models. There has been little direct focus on
this model, and little data analysis of semi-parametric random effects models. The computational
implementation of this model is new. Also, the application to and discussion of the data sets is
helpful for understanding the importance and utility of this model. Finally, we demonstrate how
to make Bayesian inference for all of the parameters in our model.

For our examples, the Gibbs sampler takes about 1 hour to run for 8000 iterations on
a Sparcstation 4. The time needed increases dramatically with the number of subjects and the
number of observations. A potential drawback of the Gibbs sampler for this problem is that one
needs more iterations for small values of M. However, reparameterization techniques, such as
those suggested in Gilks and Roberts36 and Gelfand et al.37 may speed up convergence.

Future work suggested by this article includes possible use of other base measures; in particular
a Uniform base measure. In our experience with both the MDP linear random effects model and
the MDP GLMM, autocorrelation among the iterates has been a cause for concern. Another area
of future interest is to determine to what degree this problem stems from the MDP model, and if
there is any way to address it.
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