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A semi-parametric within-subject mixture
approach to the analyses of responses and response
times

Dylan Molenaar1* , Maria Bolsinova1 and Jeroen K. Vermunt2

1University of Amsterdam, The Netherlands
2Tilburg University, The Netherlands

In item response theory, modelling the item response times in addition to the item

responsesmay improve the detection of possible between- andwithin-subject differences

in the process that resulted in the responses. For instance, if respondents rely on rapid

guessing on some items but not on all, the joint distribution of the responses and response

times will be a multivariate within-subject mixture distribution. Suitable parametric

methods to detect these within-subject differences have been proposed. In these

approaches, a distribution needs to be assumed for thewithin-class response times. In this

paper, it is demonstrated that these parametric within-subject approaches may produce

false positives and biased parameter estimates if the assumption concerning the response

time distribution is violated. A semi-parametric approach is proposed which resorts to

categorized response times. This approach is shown to hardly produce false positives and

parameter bias. In addition, the semi-parametric approach results in approximately the

same power as the parametric approach.

1. Introduction

The interest in response times in psychometrics dates back many decades (Thorndike,

Bregman, Cobb, & Woodyard, 1926). Since then, effort has been devoted to the

development of item response theory (IRT) models for responses and response times
(e.g., Roskam, 1987; Thissen, 1983; see Schnipke & Scrams, 2002; Kyllonen & Zu, 2016;

for amore comprehensive overview). Recently, work in this area has been boosted by the

development of a general modelling framework for responses and response times (Van

Der Linden, 2007, 2009a). In this framework, measurement models are specified for the

responses and response times separately, after which these models are connected by

correlating the random effects across themodels. A key characteristic of this framework is

that the responses and response times are independent, conditional on the underlying

latent speed and latent ability variables. Various instances and extensions of the general
approach have been developed since then, including, for instance, multilevel models

(Klein Entink, Fox, & van Der Linden, 2009), models for different distributions of the

response times (Klein Entink, van Der Linden, & Fox, 2009; Loeys, Legrand, Schettino, &

Pourtois, 2014; Ranger & Kuhn, 2012; Ranger & Ortner, 2012a, 2013; Wang, Chang, &

Douglas, 2013; Wang, Fan, Chang, & Douglas, 2013), and models for personality data
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(Ferrando & Lorenzo-Seva, 2007a,b). Also, some of the earlier approaches (e.g., Roskam,

1987; Thissen, 1983) are special cases.

The main purpose of incorporating the response times as an additional source of

information about individual differences in the existing IRTmodels has been twofold (see
Molenaar, 2015). First, it has been shown that the response times may improve

measurement precision of the latent ability in traditional IRT models (Ranger & Ortner,

2011; Van Der Linden, Klein Entink, & Fox, 2010). Second, the response times may shed

light on differences in the psychological process that resulted in the responses. That is, the

response times have been used to detected aberrant responses (Marianti, Fox, Avetisyan,

Veldkamp, &Tijmstra, 2014; VanDer Linden&Guo, 2008), guessing (Schnipke& Scrams,

1997), differences in the adopted solution strategy (Van Der Maas & Jansen, 2003), item

pre-knowledge (McLeod, Lewis, & Thissen, 2003), warming-up and slowing-down effects
(Van Der Linden, 2009b), effects related to testing (Carpenter, Just, & Shell, 1990), and

faking on personality items (Holden & Kroner, 1992).

Although response times have been successfully used for the two purposes above, some

challenges still remain. For instance, with respect to improving measurement precision, it

has been shownwithin thegeneral framework that the benefitsof adding the response times

are limited (Ranger, 2013). Furthermore, with respect to detecting differences in the

response process, inferences have been hampered by the focus on models for between-

subject inferences only (Molenaar, Bolsinova, Rozsa, & De Boeck, 2016).
With respect to the latter, effort has been devoted to developing IRT models that

explicitly take into account the within-subject differences in responses and response

times. The conventional between-subject approaches assume that the item and person

properties are constant within a given respondent. In the within-subject approaches, this

is not necessarily the case. Specifically, item and/or person properties are allowed to be

different for responses that differ in their response time. As a result, conditional

independence between the responses and response times is violated.

To model within-subject differences, research has focused on models with two
item-specific classes underlying the responses and response times (DiTrapani, Jeon,

De Boeck, & Partchev, 2016; Jeon & De Boeck, 2016; Molenaar et al., 2016; Partchev

& De Boeck, 2012; Wang & Xu, 2015; Wang, Xu, & Shang, 2016). In one class the

item properties of the faster responses are modelled, and in the other class the item

properties of the slower responses are modelled. Next, class membership may vary

from item to item for each respondent. In this way, within-subject differences are

captured by the class variables enabling inferences about differences in the underling

response processes. Thus, in these approaches, within-subject differences arise
because of discrete differences in the response process. These differences may reflect

true discrete differences in the response process (e.g., guessing and non-guessing,

two different solution strategies, or item pre-knowledge on some of the items).

However, the classes do not necessarily need to be substantively interpretable. They

can also be seen as a statistical tool to capture the heterogeneity of the responses

with respect to the response times. That is, there may be more classes in the data, or

the measurement properties may differ continuously across the response times (see

Fox & Marianti, 2016), but the two classes in the model are used to statistically
capture the most important patterns in the data.

In the models for discrete within-subject differences, Partchev and De Boeck (2012),

DiTrapani et al. (2016), and Jeon and De Boeck (2016) operationalized the faster and

slower classes by dichotomizing the response times to obtain the item class variables for

each respondent. This approach results in deterministic classes with the class size chosen
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by the researcher (i.e., depending on the cut-off point that is used to dichotomize the

response times). In addition, the amount of information in the continuous response times

is reduced. To this end, Molenaar, Obserski, Vermunt, and De Boeck (2016) proposed an

approach based on mixture modelling (see also Wang & Xu, 2015; Wang et al., 2016). In
this approach, the classes are operationalized by a two-component multivariate mixture

distribution on the responses and response times. As a result, the classes are stochastic

with the class sizes estimated from the data. In addition, the continuous nature of the

response times is retained. However, to enable such a mixture modelling approach, the

distribution of the response times within each class needs to be specified. Molenaar et al.,

Wang and Xu, and Wang et al. presented approaches for log-normal response time

distributions within each class.

The aim of the present study is twofold. First, it will be demonstrated that the within-
subject mixture modelling framework is sensitive to violations of the assumed response

time distribution. That is, if the response time distribution departs from the assumed

distribution, then spurious classes may be detected if there are no classes underlying the

data, and parameter estimates are biased if there are truly different classes in the data. The

key to the problem is the misspecification of the response time distribution which can

obviously be solved by specifying a more appropriate response time distribution for the

data.However, doing so is challenging as it is hard to infer the true distributionwithin each

class from the data. That is, the observed response time distribution will depart from the
within-class distribution by definition because of the mixture of the two within-class

distributions. For instance, if the within-class distribution is log-normal, the observed

marginal response time distribution will depart from a log-normal distribution. Thus, it is

unclearwhether departures from log-normality reflect amixture of twoclasses orwhether

the departures reflect a misspecified response time distribution. Therefore, it is hard to

infer a plausible distribution for the within-class response time distributions from the

marginal response time data.

A second aim of the present study is to show that the problem outlined above can be
remediedby adopting a semi-parametricwithin-subjectmixturemodelling approach. This

is a practical and effective approach in which the distributional assumption on the

response times is relaxed by categorizing the response times into an arbitrary number of

classes. Next, a suitable within-subject mixture model is applied to the responses and

categorized response times. We refer to this approach as ‘semi-parametric’ as the

assumption on the response time distribution is less stringent than in the parametric (log-

normal modelling) approach. In a simulation study we show that the semi-parametric

approach rarely results in false positives or parameter bias even if the response time
distribution is truncated or highly skewed. In addition, it is shown that the power to detect

the different classes in the data is scarcely affected in the semi-parametric approach as

compared to the parametric approach.

The paper is organized as follows. In Section 2 we present the parametric within-

subjects mixture model with log-normal response times within the classes. In

Section 3 we show in a simulation study that this model is associated with false

positives and parameter bias if the assumption of log-normal response times is

violated. In Sections 4 and 5 we present the semi-parametric alternative and show on
the same simulated data sets as above that this approach rarely suffers from false

positives and parameter bias. In Section 6 we apply the parametric and semi-

parametric approaches to a real data set pertaining to logical reasoning. Section 7

concludes with a general discussion.
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2. The parametric within-subject mixture model

In theparametricwithin-subjectmixture approach, a latent class variableCpi is assumed to
underlie the response of respondent p on item I (Molenaar et al., 2016;Wang & Xu, 2015;

Wang et al., 2016). In principle, Cpi can have multiple levels, referred to as states. Here,

we focus on two states, a slower state Cpi = 0, and a faster state Cpi = 1, which are all

collected in the state vector cp = [Cp1,Cp2, . . . ,Cpn]wherendenotes the number of items.

The probability of observing response vector xp = [Xp1, Xp2, . . . , Xpn] is then given by

Pðxpjhp; cpÞ ¼
Y

n

i¼1

xðXpiÞ
Xpixð�XpiÞ

1�Xpi ; ð1Þ

with

Xpi ¼ ½a0ið1� CpiÞ þ a1iCpi�hp þ b0ið1� CpiÞ þ b1iCpi;

where hp is the latent ability, x(.) is the logistic function, asi is the discrimination of item i

in state s = 0, 1, and bsi is the easiness of item i in state s. Next, within each state, the
response times are assumed to have a log-normal distribution such that the vector of log-

transformed response times, ln(tp) = [ln(Tp1), ln(Tp2), . . . , ln(Tpn)], can bemodelled using

a conditional multivariate normal distribution with uncorrelated dimensions, that is,

f ðlnðtpÞjsp; cpÞ ¼
Y

n

i¼1

1
ffiffiffiffiffiffiffiffiffiffiffiffi

2pr2
ei

p exp

�

�
1

2

½lnðTpiÞ � EðlnðTpiÞjsp;CpiÞ�
2

r2
ei

�

; ð2Þ

with

EðlnðTpiÞjsp;CpiÞ ¼ mi � dCpi � sp; d[ 0; ð3Þ

where sp is the latent speed,r
2
ei is the residual variance, mi is the time intensity, and d is the

difference in log-response time between the states Cpi = 0 and Cpi = 1. The constraint

d > 0 is imposed to ensure that state Cpi = 1 corresponds to the faster state (i.e., response

times in this state are smaller).
In the model given by equations (1)–(3), it is assumed that the item effects are fixed

and the subject effects are random (see Molenaar, Tuerlinckx, & van Der Maas, 2015;

Ranger & Ortner, 2012b; Van Der Linden & Guo, 2008; Wang, Chang, et al., 2013; Wang,

Fan, et al., 2013). For the random subject effects, hp and sp, a bivariate normal distribution

is assumed with means lh and ls, with variances r2
h and r2

s , and covariance rhs. For

identification reasons, lh ¼ ls ¼ 0 and r2
h ¼ 1. No further constraints are needed to

identify themodel. The latent class variable Cpi is assumed to be distributed according to a

Bernoulli distribution with success probability p, such that

PðcpÞ ¼
Y

n

i¼1

pCpið1� pÞ1�Cpi : ð4Þ

Thus, it is assumed that the item states are independent and time homogeneous (i.e.,

the item states have equal state probabilities across items)withP(Cpi = 1) = p for all i. It is

possible to relax the independence assumption by introducing a time-homogeneous first-
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order Markov structure on the item states (e.g., MacDonald & Zucchini, 1997; Vermunt,

Langeheine, & Bockenholt, 1999). We will refer to the model above as the parametric

item states model (ISM). Note that in data for which the model above holds, the

assumption of conditional independence that is commonly imposed in the framework of
Van Der Linden (2007) is violated.

The free parameters in theparametric ISM includea0i,a1i,b0i,b1i, d,mi,r
2
ei,r

2
s ,rhs, and

p. If the parameters are collected in model parameter vector g, then the log marginal

likelihood of response vectorxp and the log-response time vector ln(tp) for the parametric

ISM is given by

‘ðxp; lnðtpÞ;gÞ ¼ ln

ZZ

1

�1

X

1

Cp1¼0

X

1

Cp2¼0

. . .

X

1

Cpn¼0

Pðxpjhp;cpÞf ðlnðtpÞjsp;cpÞPðcpÞgðhp; spÞdhpdsp;

ð5Þ

wherePðxpjhp; cpÞ is given by equation (1), f ðlnðtpÞjsp; cpÞ is given by equation (2), P(cp)
is given by equation (4), and g(.) is the bivariate normal density function.

2.1. Related models

The ISM as presented above is related to existing models. First, the approach by Partchev

and De Boeck (2012) to separate within-subjects effects from between-subject effects in

responses and response times can be seen as a special case of the ISM. Specifically, in

Partchev andDeBoeck, the class variables,Cpi, are treated as observed variableswhich are

obtained from dichotomizing the observed response times. In thisway, b0i, b1i, a0i and a1i
from equation (1) can be estimated using standard IRT packages (see De Boeck &

Partchev, 2012; Jeon &De Boeck, 2016). As discussed above, this approach does not take
into account the measurement error in the assessment of Cpi. In addition, the state size p

depends on the cut-off point used to dichotomize the response times.

Second, the models by Wang and Xu (2015) and Wang et al. (2016) to separate

solution behaviour, fast guessing, and cheating are related to the ISM. Specifically, fast

guessing can be incorporated into the ISM by specifying a1i = 0 for the faster state

(Cpi = 1). As a result, the distributionofxpdoes not dependon hp, andb1i reflects the logit-

guessing probability. In Wang et al., an additional procedure is proposed to detect

cheating behaviour. Specifically, after separating fast guessing from regular solution
behaviour using the model above (the first stage), cheating can be detected from the

model residuals in the regular solution state 0 (the second stage). Such an approach is in

principle equally amenable to the ISM.

2.2. Baseline model

To enable inferences about the relative goodness of fit of the ISM, a baseline model is

needed. To derive a baseline model, the slower state is assumed to be empty (i.e., p = 1)
with equal discrimination and easiness parameters in both states (i.e., ai = a0i = a1i and

bi ¼ b0i ¼ b1i). In addition, d = 0. The resulting model is a latent variable model with a

two-parameter model for the responses and a linear model for the response times and

correlated random subject effects. This model is identical to the hierarchical model for

responses and response times of Van Der Linden (2007) with fixed item effects (see
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Molenaar et al., 2015; Ranger & Ortner, 2012b). We will simply refer to this model as the

baseline model (BM).

3. Simulation study A

In simulation study A we show that the parametric ISM model is viable if the response

times are truly log-normal, and that if the response time distribution departs from a log-

normal distribution, the parametric ISM is associated with false positives and biased

parameter estimates.

3.1. Method

3.1.1. Scenarios

We simulated data according to six scenarios. The first three scenarios (S1b, S2b, and S3b)

concern baseline scenarios in which the data do not include item states. The scenarios

differ in the exact distribution used for the log-transformed responses times. These are

either normal, truncated, or skewed. Specifically, we consider the following scenarios:

S1b: a normal BM. In this scenario, the data are generated using a baseline model with

normally distributed log-response times. In this normal baselinemodel, we used ai = 1

for all i. For the easiness parameters, bi, we used increasing, equally spaced values

between �2 and 2. The time intensity parameters are chosen as mi = 2 for all i and the

residual response time variances are chosen asr2
ei = 0.13 for all i. In addition,r2

s = 0.13

andrhs = 0.144. These parameter values result in a correlation between hp and sp equal
to qhs = .4, an R2 of 0.50 in the log-response times, and untransformed response times

between1 and50 s. See the top row inFigure 1 for a normal quantile–quantileplot and a

histogram of the log-response times to an example item within this scenario.

S2b: a truncatedBM. In this scenario, the data are generated using the same set-up as in

S1b. However, instead of the normal distribution for the log-response times, a right-

truncated normal distribution is used with truncation at ln(12) such that the

untransformed response time distribution is right-truncated at 12 s. See the middle

row in Figure 1 for a normal quantile–quantile plot and a histogram of the response
times to an example item within this scenario.

S3b: a skewed BM. In this scenario, the data are generated using the same set-up as in

S1b. However, the normal log-response times are transformed using a Box–Cox

transformation (Box & Cox, 1964). Commonly the Box–Cox transformation,

X0 = (Xk � 1)/k, is used to transform skewed variables (X in this case), such that

the transformed variable, X0, is closer to a normal distribution. Here, we use the

transformation the other way around. That is, we transform the normally distributed

log-response times using ln(Tpi)
0 = (kln(Tpi) + 1)k, such that the transformed log-

response times, ln(Tpi)
0, are skewed. For the transformation parameter k we use 0.3.

See the bottom row in Figure 1 for a normal quantile–quantile plot and a histogram of

the response times to an example item within this scenario.

In the remaining three scenarios (S1s, S2s, and S3s) the data do include different item

states. The scenarios differ in the exact distribution that is used for the log-transformed

response times. That is, each scenario corresponds to a baseline scenario above (S1b, S2b,

or S3b):
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Figure 1. Normal quantile–quantile plots and histograms of the log-response time distribution for

an example item within the baseline scenarios (S1b, S2b, and S3b).
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S1s: anormal ISM. In this scenario, the data are generated using the ISMmodel givenby

equations (1)–(4). The true parameter values are chosen as follows. First, we chose

d = 0.5 and p = .5. For the discrimination parameters, we used a0i = 1.5 and

a1i = 1.0. For the easiness parameters, we used increasing, equally spaced values
between �2 and 0 for b0i and between 0 and 2 for b1i. These differences may seem

large, but, together with the other parameter choices above, these values resulted in

residual correlations between the responses and the log-response times of around .11,

which are reasonable. For instance, Molenaar et al. (2016) found residual correlations

between .07 and .16 in the standardization data of the HungarianWISC-IV block design

test. The response time parameters mi, r
2
ei, r

2
s , and rhs are given the same values as in

the normal baseline scenario S1b.

S2s: a truncated ISM. In this scenario, the data are generated using the same set-up as in
S1s. However, similarly to baseline scenario S2b, we use a truncated normal

distribution for the log-response times with right-truncation at ln(12).

S3s: a skewed ISM. In this scenario, the data are generated using the same set-up as in

S1s. However, similarly to baseline scenario S3b, the normal log-response times are

transformed using a Box–Cox transformation, with the transformation parameter

k = 0.3.

3.1.2. Procedure

We conducted 100 replications of each scenario with 20 items and 500 subjects. For the

data within each replication, the parametric ISM is fitted (P-ISM) together with its

corresponding parametric baselinemodel (P-BM). Next, themodel fit of the P-ISM and the

P-BM are compared using the Akaike information criterion (AIC; Akaike, 1974), the

Bayesian information criterion (BIC; Schwarz, 1978), the AIC3 (Bozdogan, 1993), the

consistent AIC (CAIC; Bozdogan, 1987), and the sample size adjusted BIC (saBIC; Sclove,

1987). Models are estimated using marginal maximum likelihood estimation in the
LatentGOLD software package (Vermunt & Magidson, 2013). We used 100 nodes to

approximate the two integrals in the likelihood function (10 nodes for each dimension).

Syntax to fit the different models is available from the website of the first author.

3.2. Results

3.2.1. False positive and true positive rates

Table 1 contains the false positive and true positive rates of the P-ISM in the different

scenarios. First, the false positive rate is obtained by considering the acceptance rates of

the P-ISM over the P-BM in the scenarios inwhich the data do not contain item states (S1b,

S2b, and S3b). As can be seen from Table 1, for the P-ISM, there are hardly any false
positives in the case of a baseline model with normally distributed log-response times.

However, if the log-response time distribution is either truncated (S2b) or skewed (S3b)

the P-ISM is accepted in themajority of the replications (false positives rates between 0.90

and 1.00), despite the fact that the data do not include item states. Similarly, the true

positive rate is obtained by considering the acceptance rates of the P-ISM over the P-BM in

the scenarios in which the data do indeed contain different item states (S1s, S2s, and S3s).

As can be seen from Table 3, the true positive rate is 1.00 in all cases.
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3.2.2. Parameter recovery

Table 2 gives the means and standard deviations of the estimates for the state size

parameter, p, the response time difference between the states, d, the variance of sp, r
2
s ,

and the correlation between speed and ability, qhs, in the scenarios where the data truly

contain different item states (S1s, S2s, S3s).1 As can be seen from the table, if the within-

state distribution of the log-response times is normal (S1s), parameters are adequately

recovered, although the correlation between hp and sp is slightly overestimated. In the

case of truncation (S2s) or skewness (S3s) in the distribution of the log-response times, all
parameters are biased except for qhs, the correlation between hp and sp.

Box plots of the parameter estimates in the P-ISM for the scenarios that include item

states (S1s, S2s, and S3s) are shown in Figure 2 for the item easiness parameters, b0i and

b1i, and in Figure 3 for the discrimination parameters, a0i and a1i. As expected, the

parameters are acceptably recovered in the P-ISM if the data are generated according to

the normal item states scenario (S1s; left plot in Figures 2 and 3). However, if the data are

generated according to the truncated item states scenario (S2s; middle plot in Figures 2

and 3) or skewed item states scenario (S3s; right plot in Figures 2 and 3), the parameters
are systematically biased in the P-ISM. Specifically, the difference between the faster and

slower states is underestimated: In the case of truncation, b1i and a1i are recovered

acceptably (i.e., bias seems small), but b0i and a0i are underestimated. In the case of

skewness, b1i is underestimated and b0i is recovered acceptably. The parameters a0i and

a1i seem to be hardly biased in the case of skewness but the estimates of a0i have very

large standard errors.

4. A semi-parametric item states model

As we showed in the simulation study above, the parametric model is sensitive to

violations of the normality assumption in equation (2). That is, if the distribution of the

response times departs from the log-normal (e.g., the response time distribution is

truncated due to an item time limit), spurious item states may be detected and parameters

are biased.
As a solution, we propose a semi-parametric ISM. The semi-parametric model differs

from the model above in that the response times are categorized, that is, the

Table 1. False positive rates and true positive rates of the P-ISM as compared to its baseline model,

P-BM, for the different data scenarios without item states (S1b, S2b, and S3b)

Data BIC AIC AIC3 CAIC saBIC

False positive rate S1b: Normal baseline .00 .03 .00 .00 .00

S2b: Truncated baseline .99 1.00 1.00 .90 1.00

S3b: Skewed baseline 1.00 1.00 1.00 1.00 1.00

True positive rate S1s: Normal item states 1.00 1.00 1.00 1.00 1.00

S2s: Truncated item states 1.00 1.00 1.00 1.00 1.00

S3s: Skewed item states 1.00 1.00 1.00 1.00 1.00

Note. AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = consis-

tent AIC; saBIC = size adjusted BIC.

1We estimate the Cholesky decomposed covariance matrix of hp and sp. However, for ease of presentation we
transformed these parameters intor2

s and qhs. In addition, we estimated logit(p) butwe present the results for p.

Semi-parametric RT models 213



Table 2. Means and standard deviations (SD) of the parameter estimates in the P-ISM in the cases

where the data truly contain item states (S1s, S2s, S3s). The true parameter values are in parentheses

Scenario

p (0.50) d (0.50) r2
s (0.13) qhs (0.40)

Mean SD Mean SD Mean SD Mean SD

S1s: Normal 0.50 0.02 0.50 0.03 0.12 0.01 0.45 0.05

S2s: Truncated 0.32 0.01 0.56 0.01 0.07 0.01 0.41 0.05

S3s: Skewed 0.80 0.02 2.00 0.07 0.82 0.08 0.42 0.04

Figure 2. Box plots of the b0i (white) and b1i (grey) parameter estimates for the items in the

parametric normal model (P-ISM) in the different scenarios that include item states (S1s, S2s, and

S3s). The solid grey lines denote the true values of b0i (lower grey line) and b1i (upper grey line).

Figure 3. Box plots of the a0i (white) and a1i (grey) parameter estimates for the items in the

parametric normal model (P-ISM) in the different scenarios that include item states (S1s, S2s, and

S3s). The solid grey lines denote the true values of a0i (upper grey line) and a1i (lower grey line).
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categorized response times, T 0
pi, are obtained from the possibly transformed response

times as follows:

T 0
pi ¼ z if kðTpiÞ 2 ðbzi; bðzþ1ÞiÞ; z ¼ 0; 1; . . .;Z � 1; ð6Þ

where bzi are the thresholds atwhich the (transformed) response times are categorized,Z
denotes the number of response time categories used, and k(.) is the transformation

function. Both bzi and Z are chosen by the researcher. But as we illustrate in the real data

application, multiple options can be considered to study the robustness of the results.We

leave open the option to transform the response times by function k(.) prior to

categorization to include, among others, the possibility of categorizing the log-response

times (i.e., k(Tpi) = ln(Tpi)), the reciprocal response times (i.e., k(Tpi) = 1/Tpi), or the raw

response times (k(Tpi) = Tpi). We need this possibility later, to facilitate the demonstra-

tion that the model above is a generalization of the hierarchical model of Van Der Linden
(2007). However, in practice, it does not matter whether the raw or the transformed

response times are categorized (as long as k(.) is a monotome function).

Next, within the semi-parametric ISM, the probability of the vector of categorized

response times, t0p ¼ T 0
p1; T

0
p2; . . .; T 0

pn

h i

, is subjected to a generalized linear IRT model

with a suitable link function (see, e.g., Mellenbergh, 1994). Specifically, if dummy variable

dpiz codes whether T 0
pi is in category z (i.e., dpiz = 1) or not (dpiz = 0), the generalized

linear IRT model for the categorized response times is given by

h½Eðdpizjsp; cpÞ� ¼ czi � dCpi � uisp; d[ 0; ð7Þ

where the czi are response time category parameters for category z of the response times

of item i. In this generalized linear model for the categorized response times, a slope

parameter, φi, is added. This is necessary as differences in the residual variances, r2
ei,

across items will be absorbed in this parameter and in the response time category

parameters, czi. Omitting the item-specific slope parameter results in misfit if r2
ei differs

across items. Ifr2
ei is equal across items, the effect ofr2

ei will be absorbed inr2
s . However,

this is unlikely in practice. Due to the extra slope parameters φi, the scale of sp needs to be
identified. This can be done either by fixing r2

s or by fixing φi for some i. All other

identification constraints are similar to the parametric case.

In the model for categorized response times in equation (7), h(.) is the link function.

Although initial simulations (not presented) showed that the choice for h(.) hardly affects

results, there are conceptual differences between themodels that arise for different forms

of h(.).

Cumulative categories model. If h(.) is chosen to be the cumulative probit of category z,

that is, h Eðdpizjsp; cpÞ
� �

¼ U�1
P

z�1

a¼z

Eðdpiajsp; cpÞ

� �

, a cumulative categories model arises

for the categorized response times, from which it follows that

Pðt0pjsp; cpÞ ¼
Y

n

i¼1

UðcðT 0
piþ1Þi � dCpi � uispÞ � UðcðT 0

piÞi
� dCpi � uispÞ

h i

; ð8Þ

where cðT 0
piþ1Þi is the response time category parameter, czi, for category z = T 0

pi + 1, and

similarly, cðT 0
piÞi

is the response time categoryparameter for z = T 0
pi. For numerical reasons,
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an approximation using the cumulative logit function can also be considered. The model

in equation (8) is equivalent to a graded responsemodel (Samejima, 1969). If this model is

adopted for t0p, the full model given by equations (1) and (8) is a generalization of the

hierarchical model of Van Der Linden (2007) for categorized response times with k

(Tpi) = ln(Tpi). That is, if the continuous response times Tpi are log-normally distributed,

the probability that a log-response time, ln(Tpi), falls into the interval (bzi, b(z+1)i) is given

by the graded response model in equation (8). That is, for normal ln(Tpi), the response

time category parameters czi are a function of the categorization thresholds bzi, the

residual variances r2
ei, and the variance of the speed factor r2

s . Thus, the approach above

assumes that a normal distribution underlies the categorized response times. Departures

from normality in ln(Tpi) will be captured by the response time category parameters czi
and not result in spurious item states, as we will show in the simulation study below.

Adjacent categoriesmodel. Ifh(.) is chosen to be the adjacent categories logit, that is,h

[E(dpiz| sp, cp)] = ln [E(dpiz|sp, cp)/E(dpi(z�1)|sp, cp)], an adjacent categories model

arises for the categorized response times, from which it follows that

Pðt0pjsp; cpÞ ¼
Y

n

i¼1

exp
PT 0

pi

z¼0 czi � dCpi � uisp

	 


PZ�1
j¼0 exp

Pj
z¼0 czi � dCpi � uisp

� � ; ð9Þ

where the category parameter c0i may be chosen in such a way that

X

Z�1

z¼0

�d� uisp þ czi ¼ 0: ð10Þ

This model is equivalent to the partial credit model (Masters, 1982). Contrary to the

cumulative probit model above, there is not an obvious response time model that will

generate equation (9). In that sense, choosing the partial credit model for the categorized
response times is a pragmatic choice.

Equation (7) with an appropriate choice for h(.), together with the model for the

responses in equation (1) and the bivariate normal distribution for hp and sp, constitutes

the full model. The free parameters in the semi-parametric ISM include a0i, a1i, b0i, b1i, czi,

φi, d, r
2
s , rhs, and p for all i and all z > 0. If these parameters are collected in model

parameter vector f, then the log marginal likelihood of response vector xp and the

categorized response time vector t0p for the semi-parametric ISM is given by

‘ðxp; t
0
p; fÞ ¼ ln

ZZ

1

�1

X

1

Cp1¼0

X

1

Cp2¼0

. . .

X

1

Cpn¼0

Pðxpjhp; cpÞPðt
0
pjsp; cpÞPðcpÞgðhp; spÞdhds; ð11Þ

where Pðxpjhp; cpÞ is given by equation (1), P(cp) by equation (4), and Pðt0pjsp; cpÞ
depends on the choice for h(.) in equation (7) (e.g., equation (8) in the case of a

cumulative probit function and equation (9) in the case of an adjacent categories

logit).
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4.1. Baseline model

For the semi-parametric ISM, the baseline model can be derived in a similar way to the

parametric normalmodel above. The resultingmodel is a latent variablemodelwith a two-

parameter model for the responses and a model for the categorized response times and
correlated random subject effects.

5. Simulation study B

In this simulation studywe analyse the same data sets as in simulation study A.We show in

these data that the semi-parametric approach as discussed above scarcely suffers from the

increased false positive rate or the parameter bias as was found for the parametric

approach, while the semi-parametric approach is still capable of detecting truly different

item states in the data with acceptable true positive rates.

5.1. Method

We used the same 100 replications of the six scenarios as in simulation study A. To these

data, we fitted the three semi-parametric ISMs with respectively Z = 7, Z = 5, and Z = 3

response time categories (referred to as S-ISM7, S-ISM5, and S-ISM3, respectively). In
addition,wefitted the corresponding baselinemodels (S-BM7, S-BM5, and S-BM3). In these

models for responses and categorized response times, we identified the scale of sp by

fixing φi to 1 for item 1.

As regards categorization, we chose to categorize the raw response times (i.e., k

(Tpi) = Tpi), therefore in equation (6),b0i andbZi are 0 and∞bydefinition. The remaining

thresholds,b1i, b2i, . . . , b(Z�1)i are chosen at theZ quantiles of the observed response time

distribution of item i, whereZ is the number of thresholds used to categorize the response

times as defined above. We consider this quantile approach to categorizing the response
times as desirable because it results in thresholds that depend on the shape of the response

time distribution. In addition, by using this approach, it does not matter whether the raw

response times or the log-response times are categorized because the resulting

categorization will be equivalent (but the thresholds will be different, i.e., the thresholds

obtained with the percentile method for the log-response times are the log-transformed

thresholds that will be obtained on the raw response times).

For each data set, the fit of the three item state models (S-ISM7, S-ISM5, S-ISM3) is

compared to its corresponding baseline model (S-BM7, S-BM5, S-BM3). We used the
cumulative categories model in equation (8) for the categorized response times. All other

details concerning model estimation and model fit (i.e., the fit indices used, the software,

the estimation algorithm, and the number of nodes) are the same as in the simulation

studies. Syntax to fit the semi-parametric model is available in the Appendix.

5.2. Results

5.2.1. False positives

In Table 3, the false positive rates are depicted for the ISMs (S-ISM7, S-ISM5, S-ISM3) in the

scenarios inwhich the data do not contain item states (S1b, S2b, S3b). As can be seen from

the table, the semi-parametricmodels hardly suffer from false positives, with false positive

rates close to 0 for all fit indices except the AIC. The AIC fit index is associated with

unacceptable false positive rates for the semi-parametric model with Z = 7 and Z = 5

(rates between .22 and .70). ForZ = 3, the false positive rates for theAIC seemacceptable,

with rates between .02 and .05.
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5.2.2. True positives

All true positives rates are equal to 1.00 for all scenarios. This indicates that in all

replications, the item states in the data have been successfully detected by the semi-

parametric ISM irrespective of the distribution of the raw response times.

5.2.3. Parameter recovery

Table 4 gives the means and standard deviations of the estimates for the state size
parameter, p, the response time difference between the states, d, the variance of sp, r

2
s ,

and the correlation between speed and ability, qhs, in the scenarios where the data truly

contain different item states (S1s, S2s, S3s). As can be seen from the table, p is recovered

adequately in all scenarios. The correlation parameter seems slightly overestimated.

However, the overestimation is also evident in the normal scenario (S1s) and is thus not

related to the truncation or skewness in the log-response times. Themean estimates ofr2
s

are not close to the true parameter value. However, this is not surprising as r2
s is

Table 4. Means and standard deviations (SD) of the parameter estimates in the P-ISM in the cases

where the data truly contain item states (S1s, S2s, S3s). The true parameter values are in parentheses

Model Scenario

p (0.50) d (0.50) r2
s (0.13) qhs (0.40)

Mean SD Mean SD Mean SD Mean SD

S-ISM7 S1s: Normal 0.50 0.03 1.09 0.06 2.95 0.51 0.44 0.05

S2s: Truncated 0.53 0.04 1.01 0.05 2.20 0.41 0.43 0.04

S3s: Skewed 0.50 0.02 1.08 0.05 3.13 0.54 0.46 0.05

S-ISM5 S1s: Normal 0.50 0.03 3.62 0.26 2.92 0.56 0.43 0.05

S2s: Truncated 0.53 0.04 3.44 0.31 2.27 0.46 0.42 0.04

S3s: Skewed 0.50 0.03 3.59 0.26 3.06 0.59 0.45 0.05

S-ISM3 S1s: Normal 0.49 0.04 2.39 0.31 2.89 0.68 0.42 0.05

S2s: Truncated 0.52 0.04 2.38 0.38 2.40 0.55 0.42 0.05

S3s: Skewed 0.50 0.03 2.40 0.32 3.11 0.72 0.43 0.05

Table 3. False positive rates of the different item states models (S-ISM7, S-ISM5, and S-ISM3) as

compared to their baseline models without item states (S-BM7, S-BM-5, and S-BM3) for the different

data scenarios without item states (S1b, S2b, and S3b)

Model Data BIC AIC AIC3 CAIC saBIC

S-ISM7: Semi-par. item

states with Z = 7

S1b: Normal baseline .00 .70 .02 .00 .01

S2b: Truncated baseline .00 .38 .00 .00 .00

S3b: Skewed baseline .00 .63 .00 .00 .00

S-ISM5: Semi-par. item

states with Z = 5

S1b: Normal baseline .00 .33 .00 .00 .00

S2b: Truncated baseline .00 .29 .01 .00 .01

S3b: Skewed baseline .00 .22 .00 .00 .00

S-ISM3: Semi-par. item

states with Z = 3

S1b: Normal baseline .00 .05 .00 .00 .00

S2b: Truncated baseline .00 .03 .00 .00 .00

S3b: Skewed baseline .00 .02 .00 .00 .00

Notes. Non-zero rates are in bold.

AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = consistent AIC;

saBIC = size adjusted BIC.
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dependent upon our identification constraint φi = 1 for item 1 (see above). The

correlationqhs,which is calculated fromr2
s , is not affected by the scaling. In addition, from

the table it appears that d depends on the number of response time categories that are

used. This is due to the scale of d being not the same as the scale of sp (see equation (7)),
that is, the scale of ddepends on the scale of czi,which is in turn dependent on the number

of response time categories.

Box plots of the parameter estimates of the items in the semi-parametric item state

models (S-ISM7, top row; S-ISM5, middle row; and S-ISM3, bottom row) for the scenarios

that include item states (S1s, S2s, and S3s) are shown in Figure 4 for the item easiness

parameters, b0i and b1i, and in Figure 5 for the discrimination parameters, a0i and a1i.

Note again that these models have been fitted to the same simulated data sets as used for

the parametricmodel in Figures 2 and3. Toprovide a reference for the results in Figures 4
and 5, see Figure 6 for box plots of the easiness and discrimination parameter estimates

based on the response data only for scenario S1s. Note that for the other scenarios these

plotswill look the samebecause the scenarios differ only in the response time data but not

in the response data. As can be seen from Figure 4 for the easiness parameters and

Figure 5 for the discrimination parameters, the ISM estimates tend to be unbiased for all

semi-parametric models and all scenarios. The standard errors are slightly smaller for the

Z = 5 and Z = 7 models than for the Z = 3 model, which is due to the larger variance in

the categorized response times for more response time categories.

5.2.4. Overall conclusion

As appears from the results of simulation study A and B, if the log-response time

distribution departs from normality but a normal ISM is applied nevertheless, spurious

item states may be detected by the AIC, BIC, AIC3, CAIC, and saBIC if the data do not

contain different item states. If the data do contain different item states, the normal ISM is

still able to detect these, but parameter estimates are biased. The proposed class of semi-
parametric models with Z = 7, Z = 5, and Z = 3 was shown to not suffer from the

problem of spurious states (except for the AIC) or bias in the parameter estimates, while

the power to detect different item states in the data is hardly affected. As the standard

errors were found to be smaller for Z = 5 andZ = 7, it is generally advisable to consider at

least five response time categories if the shape of the response time distribution and the

sample size allow this.

5.3. Discussion

In the simulation study, we did notmanipulate the effect size of the item states in the data.

We chose a relatively optimal setting (equal state sizes and differences between the states

in terms of b0i, b1i, a0i, a1i, and d that were not too small) to be able to demonstrate what

the potential problem is (spurious latent states in the case of departures from normality in

the transformed response times) and to facilitate demonstration of the feasibility of our

solution (categorizing the response times). It should, however, be noted that in practice,

similarly as inmore traditionalmixturemodels, the power to detect different item states in
the data will depend on the state size p (with smaller power for unequal state sizes due to

larger standard errors in the smaller state), the size of the differences between the states

(i.e., b0i, b1i, a0i, a1i, and d), and the number of subjects and items.
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6. Illustration

6.1. Data

The data comprise the responses and response times of 664Dutch high school students to
the 23 items of the so-called ‘puzzles’ test. This test is based on the Raven progressive

matrices test (Raven, 1962). Each item consists of a matrix that constitutes a pattern but

with one element missing. The respondents have to indicate which of five optional

elements would complete the pattern. The items are administered using a 40 s deadline.

Figure 4. Boxplots of theb0i (white) andb1i (grey) parameter estimates of the items in thedifferent

semi-parametric models (S-ISM7, S-ISM5, and S-ISM3) in the different scenarios that include item

states (S1s, S2s, and S3s). The solid grey lines denote the true values of b0i (lower grey line) and b1i
(upper grey line).
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As a result, the observed response times show truncation effects, with the severity of the

effect increasing for the later items because the items are of increasing difficulty. Thirty-six

respondents are omitted from the analysis because they showed suspiciously short

response times (1 s or faster), resulting in a sample size of 628 respondents.
To the data we fitted the same parametric and semi-parametric baseline and ISMs as

considered in the simulation studies. We were interested to see whether the results

(parameter estimates andmodel fit) are similar across the different approaches. Parameter

estimation and assessment of model fit are conducted using the same procedure as

Figure 5. Box plots of the a0i (white) and a1i (grey) parameter estimates for the items in the

different semi-parametric models (S-ISM7, S-ISM5, and S-ISM3) in the different scenarios that include

item states (S1s, S2s, and S3s). The solid grey lines denote the true values of a0i (upper grey line) and

a1i (lower grey line).
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outlined in the simulation studies. For the categorized response times,weuse the adjacent

categories model from equation (9).

6.2. Results

Table 5 gives the model fit indices of the different models. As can be seen, for all semi-

parametric andparametric approaches, the ISM is the better-fittingmodel according to the

indices considered. We therefore accept the ISM model and look into the parameter
estimates within this model for the semi-parametric and parametric approach.

Table 6 contains the parameters estimates of the state size parameter, p, the response

time difference between the states, d, the variance of sp, r
2
s , and the correlation between

speed and ability, qhs, in the ISMmodels. As can be seen, in the parametric model (P-ISM),

the estimate of the faster state size, p, is substantially smaller than in the semi-parametric

models (S-ISM), 0.16 versus 0.38–0.43. In addition, the estimate of p is relatively stable

across the semi-parametricmodels. Similarly towhatwas shown in the simulation studies,

Figure 6. Box plots of the easiness and discrimination parameter estimates of the response data

only for the S1s scenario.

Table 5. Model fit indices for the different parametric and semi-parametric models in the

illustration

Z Model BIC AIC AIC3 CAIC saBIC

Parametric – P-ISM 34,752 34,122 34,264 34,894 34,302

P-BM 35,493 35,075 35,169 35,587 35,194

Semi-parametric 7 S-ISM7 67,983 66,845 67,101 68,239 67,170

S-BM7 68,493 67,667 67,853 68,679 67,903

5 S-ISM5 58,518 57,585 57,795 58,728 57,852

S-BM5 58,932 58,310 58,450 59,072 58,487

3 S-ISM3 44,744 44,016 44,180 44,908 44,224

S-BM3 44,959 44,541 44,635 45,053 44,660

Note. For each pair of ISM and BM models, the smaller fit index is in bold.

AIC = Akaike information criterion; BIC = Bayesian information criterion; CAIC = consistent AIC;

P-BM = parametric baseline model; P-ISM = parametric ISM; saBIC = size adjusted BIC.
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the estimate of the response time difference, d, fluctuates between the semi-parametric

models due to scale differences in czi. In addition, the correlation between hp and sp (i.e.,

qhs, which we calculated from the estimates of rhs and r2
s ) is stable across the semi-

parametric models and does not differ significantly between the parametric and semi-

parametric approaches.

In Figure 7 parameter estimates of b0i, b1i, a0i, and a1i are depicted for the different

models. In the figure, the items are ordered according to the estimates in S-ISM3 for clarity.

As can be seen, the estimates of the semi-parametric models are close to each other. The

Table 6. Parameter estimates (est.) and standard errors (SE) of the class size parameter, p, the

response time difference between the states, d, the variance of the latent speed variable,r2
s , and the

correlation between speed and ability, qhs

Model

p d r2
s qhs

Est. SE est. SE est. SE est. SE

P-ISM 0.16 0.01 �0.74 0.01 0.13 0.01 �.52 0.02

S-ISM7 0.43 0.02 �1.20 0.07 0.60 0.09 �.53 0.05

S-ISM5 0.43 0.03 �1.48 0.11 0.91 0.15 �.60 0.07

S-ISM3 0.38 0.03 �2.30 0.18 2.15 0.39 �.54 0.07

Figure 7. Plots of the b0i, b1i, a0i, and a1i parameter estimates for the normal item states model (P-

ISM, solid black line) and the semi-parametric item states model (S-ISM7, S-ISM5, and S-ISM3; dotted

dashed, dotted, and dashed lines respectively). In each plot, the items are ordered on basis of the

estimates in S-ISM3 for clarity.
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estimates of the parametric approach deviate most notably from the semi-parametric

approach for b0i and a0i. This is congruent with what we found in the truncation scenario

of the simulation studies.

To conclude, results seem to be stable between the semi-parametric approaches. That
is, the exact number of response time categories does not significantly affect the results.

There are, however, notable differences between the semi-parametric approach and the

parametric approach in the state size parameter,p, and the itemparameters.Nevertheless,

as we know from the simulation studies that the semi-parametric models are less sensitive

to violations of normality in the log-response times, and because the results of the semi-

parametric models are largely insensitive to the number of response time categories, we

trust the results from the semi-parametric better than those of the parametric model.

7. Discussion

In the simulation studies we established that the parametric ISM is associated with a

substantial false positive rate and parameter bias if the log-response times are not normally

distributed. The proposed solution to this problem, a semi-parametric model for the

responses and categorized response times, was shown to not suffer from this problem,
while the true positive rates are still comparable to those of the parametric model.

Categorization of continuous variables generally is discouraged due to the loss of

information about individual differences, smaller power, and the arbitrary nature of the

thresholds (Cohen, 1983; MacCallum, Zhang, Preacher, & Rucker, 2002; Maxwell &

Delaney, 1993). In the present mixture framework, however, it can be desirable to

categorize the response times such that violations of the assumed distribution do not

affect the results. In addition, we showed that the power is hardly affected. However, a

disadvantage of the categorization adopted in thepresent approach is that the number and
location of the categorization thresholds are arbitrary. In the simulation studies, it was

shown that for the configurations of theparametersweused, the number of response time

categories hardly influenced the results in terms of power or parameter recovery.

However, in practice, it is still advisable to fit the semi-parametric approachusing different

numbers of response time categories to investigate the stability of the results. If the results

are stable, one can choose a definite number of categories by considering some criterion

(e.g., the standard errors).

Themodel as presented in this paper canbe seen as a semi-parametric alternative to the
ISM presented by Molenaar et al. (2016). Because in Molenaar et al. the variance of the

response times is assumed to be equal across states, we retained this assumption in the

present semi-parametric model. It could, however, be argued that for some response

processes there are important differences in the variance of the response times. For

instance, fast guessing is commonly associated with less variance than the regular

response process. In the present model, it is straightforward to allow for such differences

by estimating the response time category parameters separately in each group. Other

extensions of the present approach include the use of the mid-points within each
response time category. By doing so, the categorized distribution resembles the observed

response time distribution better than in the case of percentiles (for which the

distribution is uniform).

We adopted a categorized response time model as it is a relatively easy and

effective method. However, we note that other semi-parametric possibilities exist,

including the proportional hazards model (Kang, 2017; Loeys et al., 2014; Ranger &
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Ortner, 2012b, 2013; Wang, Fan, et al., 2013) and the linear transformation model

(Wang, Chang, et al., 2013). An advantage of adopting these models over our model is

that they do not rely on arbitrary decision about the number of thresholds Z and the

position of the thresholds bzi. However, although feasible, these models are relatively
challenging to estimate even for a baseline model (without mixtures). For a discussion

on these challenges, see, for example, Kang (2017) for the proportional hazards

model and Wang, Chang, et al. (2013) for the linear transformation model. Thus, we

do not rely here on the proportional hazards model or the linear transformation model

as it is less straightforward to extend these approaches to include item-specific latent

class variables. The main advantage is that the present approach of categorized

response times remains in the framework of generalized linear modelling which is

relatively well understood and the models are relatively well estimable. However, we
acknowledge that the semi-parametric approaches discussed above are also amenable

to the present undertaking in principle.
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Appendix: Syntax to fit the semi-parametric ISM using LatentGOLD

model

options

maxthreads=all;

algorithm

tolerance=1e-008 emtolerance=0.01 emiterations=250 nriterations=50 ;

startvalues

seed=0 sets=16 tolerance=1e-005 iterations=50;

bayes

categorical=1 variances=1 latent=1 poisson=1;

montecarlo

seed=0 sets=0 replicates=500 tolerance=1e-008;

quadrature nodes=10;

missing excludeall;

output

parameters=first standarderrors estimatedvalues=model;

variables

caseid ID;

dependent X, kT cumlogit;

independent item nominal;

latent

Ability continuous,

Speed continuous,

Cluster nominal 2 dynamic;

equations

(1) Ability;

Speed;

Ability <-> Speed;

Cluster <- 1;

X <- 1 | Item Cluster + (+) Ability | Item Cluster;

kT <- 1 | item + (-) Cluster + (aa) Speed;

aa[1,1]=-1;

end model
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