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Abstract—NAND flash memory is a preferred storage me-
dia for various platforms ranging from embedded systems to
enterprise-scale systems. Flash devices do not have any me-
chanical moving parts and provide low-latency access. They
also require less power compared to rotating media. Unlike
hard disks, flash devices use out-of-update operations and they
require a garbage collection (GC) process to reclaim invalid
pages to create free blocks. This GC process is a major cause
of performance degradation when running concurrently with
other I/O operations as internal bandwidth is consumed to
reclaim these invalid pages. The invocation of the GC process
is generally governed by a low watermark on free blocks and
other internal device metrics that different workloads meet
at different intervals. This results in I/O performance that is
highly dependent on workload characteristics. In this paper,
we examine the GC process and propose a semi-preemptive
GC scheme that can preempt on-going GC processing and
service pending I/O requests in the queue. Moreover, we further
enhance flash performance by pipelining internal GC operations
and merge them with pending I/O requests whenever possible.
Our experimental evaluation of this semi-preemptive GC sheme
with realistic workloads demonstrate both improved performance
and reduced performance variability. Write-dominant workloads
show up to a 66.56% improvement in average response time with
a 83.30% reduced variance in response time compared to the
non-preemptive GC scheme.

I. INTRODUCTION

Hard disk drives (HDD) are the primary storage media

for large-scale storage systems for a few decades. HDD

manufacturers have provided slow but steady improvement

in performance while lowering the price (in terms of dollar

per GB) with breakthrough technology enhancement such

as perpendicular recording [34], [26], [7]. However, HDD

technology has some drawbacks, such as the lack of spa-

tial/temporal locality that limit the performance. HDD is a

mechanical device where the heads must be moved back and

forth across the tracks over the platters for requests with

significant randomness. To decrease access times of these

random requests rotation speeds have increased but at the

cost of higher power consumption, increasing internal air-

temperature beyond 100◦F [23], [12], [21].

With advancements in the semi-conductor technology,

NAND flash memory based solid-state drives (SSD) have

become more prevalent in the storage marketplace. Unlike

HDDs, SSDs do not have mechanically moving parts. SSDs

offer several advantages over HDDs such as lower access

latency, higher resilience to external shock and vibration, lower

power consumption which results in lower operating tempera-

tures. Other benefits include lighter weight and flexible designs

in terms of device packaging. Moreover, recent reductions in

cost (in terms of dollar per GB) have accelerated the adoption

of SSDs in a wide range of application areas from consumer

electronic devices to enterprise-scale storage systems.

One interesting feature of Flash technology is the restriction

of write locations. Target address for a write operation should

be empty [1], [11]. When the target address is not empty

the invalid contents must be erased for the write operation to

succeed. Erase operations in NAND flash are nearly an order

of magnitude slower than write operations. Therefore, flash-

based SSDs use out-of-place writes unlike in-place writes on

HDDs. To reclaim stale pages and to create space for writes,

SSDs use a Garbage Collection (GC) process. The GC process

is a time-consuming task since it copies non-stale pages in

blocks into the free storage pool and then erases the blocks

that do not store valid data. A block erase operation takes

approximately 1-2 milliseconds [1]. Considering that valid

pages in the victim blocks (to be erased) need to be copied

and then erased, GC overhead can be quite significant.

GC can be executed when there is sufficient idle time

(i.e. no incoming I/O requests to SSDs) with no impact to

device performance. Unfortunately, prediction of idle times in

I/O workloads is challenging and some workloads may not

have sufficiently long idle times. In a number of workloads

incoming requests may be bursty and an idle time can not be

effectively predicted. Under this scenario the queue-waiting

time of incoming requests will increase. Server-centric en-

terprise data center and high-performance computing (HPC)

environment workloads often have bursts of requests with low

interarrival time [22], [11]. Examples of enterprise workloads

that exhibit this behavior include online-transaction processing

applications, such as OLTP and OLAP [3], [23]. Furthermore,

it has been found that HPC file systems are stressed with write

requests of frequent and periodic checkpointing and journaling

operations [29]. In our study of HPC I/O workload character-

ization of the Spider storage system at Oak Ridge National

Laboratory, we observed that the bandwidth distributions are

heavily long-tailed [22].

In this paper, we propose a semi-preemptive garbage col-

lection scheme (PGC) that enables the SSDs to provide



sustainable bandwidths in the presence of these heavily bursty

and write-dominant workloads. We will show that the PGC can

achieve higher bandwidth over the non-preemptive GC scheme

by preempting an ongoing GC process and servicing incoming

requests. We carry out a detailed and systematic simulated

performance study using the Microsoft Research (MSR) SSD

simulator [1].

This paper makes the following contributions:

• We empirically observe the performance degradation due

to the GC process on commercially-off-the-shelf (COTS)

SSDs for bursty write-dominant workloads. Based on

our observations, we propose a novel semi-preemptive

garbage collection scheme that can easily be imple-

mentable within SSDs.

• We identify preemption points that can minimize the

preemption overhead. We use a state diagram to define

each state and state transitions that result in preemption

points. For experimentation we enhance the existing well-

known SSD simulator [1] to support our PGC algorithm

and show an improvement of up to 66.56% in average

response time for overall realistic applications.

• We investigate further I/O optimizations to enhance the

performance of SSDs with PGC by merging incoming I/O

requests with internal GC I/O requests and pipelining

these resulting merged requests. The idea behind this

technique is to merge internal GC I/O operations with I/O

operations pending in the queue. The pipelining technique

inserts the incoming requests into GC operations to

reduce the performance impact of the GC process. Using

these techniques we can further improve the performance

of SSDs with PGC enabled by up to 13.69% for the Cello

benchmark.

• We conduct not only a comprehensive study with syn-

thetic traces by varying I/O patterns (such as request size,

inter-arrival times, sequentiality of consecutive requests,

read and write ratio, etc.) but also a realistic study with

server workloads. Our evaluations with PGC enabled SSD

demonstrate up to a 66.56% improvement in average I/O

response time and an 83.30% reduction in response time

variability.

The rest of this paper is organized as follows. Section II

presents a background of SSD technology and the motivation

for developing the PGC scheme. Section III provides an

overview of the PGC scheme including further optimizations

such as live merge and pipelining of GC operations with

arriving I/Os. Section IV describes the workloads and met-

rics used in the evaluation, along with details of simulation

configuration, and the results of our study. Section V presents

related work. Section VI concludes the paper.

II. BACKGROUND AND MOTIVATION

A. Background

1) Physical characteristics of flash memory: Unlike rotat-

ing media (HDD) and volatile memories (DRAM) which only

need read and write operations, flash memory-based storage
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Fig. 1. Flash-based Solid State Disk Drive [27].

devices require an erase operation [28]. Erase operations are

performed at the granularity of a block which is composed of

multiple pages. A page is the granularity at which reads and

writes are performed. Each page on flash can be in one of three

different states: (i) valid, (ii) invalid and (iii) free/erased. When

no data has been written to a page, it is in the erased state. A

write can be done only to an erased page, changing its state to

valid. Erase operations (on average 1-2 ms) are significantly

slower than reads or writes. Therefore, out-of-place writes (as

opposed to in-place writes in HDDs) are performed to existing

free pages along with marking the page storing the previous

version invalid. Additionally, write latency can be higher than

the read latency by up to a factor 10.

The lifetime of flash memory is limited by the number

of erase operations on its cells. Each memory cell typically

has a lifetime of 103-109 erase operations [10]. Wear-leveling

techniques are used to delay the wear-out of the first flash

block by spreading erases evenly across the blocks [17], [5].

2) NAND flash based SSDs: Figure 1 describes the orga-

nization of internal components in a flash-based SSD [27].

It provides a host interface (such as Fiber-Channel, SATA,

PATA, and SCSI) to appear as a block I/O device to the host

computer. The main controller is composed of two units, the

processing unit (such as an ARM7 processor) and fast access

memory (such as SRAM). The virtual-to-physical mappings

are processed by the processor and the data-structures related

to the mapping table are stored in SRAM in the main con-

troller. The software module related to this mapping process

is called the Flash Translation Layer (FTL). A part of SRAM

can be also used for caching data.

A storage pool in an SSD is composed of multiple flash

memory planes. The planes are implemented in multiple dies.

For example, the Samsung 4 GB flash memory has two dies.

A die is composed of four planes, each of size 512 MB [1].

A plane consists of a set of blocks. The block size can vary

(64KB, 128KB, 256KB, etc.) depending on the memory manu-

facturer. The SSD can be implemented using multiple planes.

SSD performance can be enhanced by interleaving requests

across the planes, which is achieved by a multiplexer and de-

multiplexer between SRAM buffer and flash memories [1].

3) Flash Translation Layer: The Flash Translation Layer

(FTL) is a software layer that translates logical addresses
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Fig. 2. Throughput variability comparison for SSDs with increasing number of the number of outstanding requests. Y-axis represents normalized frequency.
qd denotes queue depth. Higher qd means requests are more bursty and intense in their arrival rate.

from the file system into physical addresses on a flash device.

The FTL helps in emulating flash as a normal block device

by performing out-of-place updates thereby hiding the erase

operations in flash. Due to out-of-place updates, flash devices

must clean stale data for providing free space (similar to log-

structured file system [33]). This cleaning process is known

as garbage collection (GC). During an ongoing GC process

incoming requests are delayed until the completion of the GC

if their target is the same flash chip that is busy with GC.

Current generation SSDs use a variety of different algorithms

and policies for GC that are vendor specific. It has been empir-

ically observed that GC activity is directly correlated with the

frequency of write operations, amount of data written, and/or

the free space on the SSD [6]. GC process can significantly

impede both read and write performance, increasing queueing

delay.

The FTL mapping table is stored in a small, fast SRAM.

FTLs can be implemented at different granularities in terms

of the size of a single entry capturing and address space in the

mapping table. Many FTL schemes [8], [24], [19], [25] and

their improvement by write-buffering [20] have been studied.

A recent page-based FTL scheme called DFTL [11] utilizes

temporal locality in workloads to overcome the shortcomings

of the regular page-based scheme by storing only a subset of

mappings (those likely to be accessed) on the limited SRAM

and storing the remainder on the flash device itself. Also, there

are several works in progress on the optimization of buffer

management in NAND flash based environments [30], [16].

B. Motivation

1) Experimental setup: We use various commercially-off-

the-shelf (COTS) SSDs for experiments. Table I shows their

detail specifications. We selected the Super Talent 128 GB

SSD [38] as a representative of multi-level cell (MLC) SSDs

and the Intel 64 GB SSD [15] as a representative of single-

level cell (SLC) SSDs. We denote the SuperTalent MLC, and

Intel SLC devices as SSD(A), and SSD(B) in the remainder

of this study, respectively. All experiments were performed

on a single server with 24 GB of RAM and an Intel Xeon

Quad Core 2.93GHz CPU [14]. The operating system was

TABLE I
CHARACTERISTICS OF SSDS USED IN OUR EXPERIMENTS.

Label SSD(A) SSD(B)

Company Super-Talent Intel
Model FTM28GX25H SSDSA2SH064G101
Type MLC SLC
Interface SATA-II SATA-II
Capacity (GB) 120 64
Erase (#) 10-100K 100K-1M
Power (W) 1-2 1-2

Linux with a Lustre-patched 2.6.18-128 kernel. The noop I/O

scheduler with FIFO queueing was used [32].

We examine the I/O bandwidth of individual COTS SSDs

for write-dominant workloads. To measure the I/O perfor-

mance we use a benchmark that exploits the libaio asyn-

chronous I/O library on Linux. Libaio provides an interface

that can submit one or more I/O requests in one system call

iosubmit() without waiting for I/O completion. It also can

perform reads and writes on raw block devices. We used the

direct I/O interface to bypass the operating system I/O buffer

cache by setting the O-DIRECT and O-SYNC flags in the file

open() call.

2) Performance degradation of SSDs by GCs: Figure 2

illustrates the impact of GC on I/O bandwidth. In order to

compare the bandwidth variability of individual SSDs for

different arrival rates of requests, we measured I/O bandwidth

for 512KB write requests by varying I/O queue depth (QD).

We normalize the I/O bandwidth of each configuration with

a Z-transform [18] and then curve-fitted and plotted their

density functions. We observe that the performance variability

increases with respect to the arrival rate of requests. The

SSD is not able to guarantee bandwidth in the face of these

workloads that are characterized by bursty arrival of I/O

requests. This performance variability is attributable to the GC

process. While the inter-arrival time would allow for some

garbage collection during I/O idle time, the GC process is

unable to take advantage of this. This insight led to our design

and development of a preemptive garbage collector.

The basic idea of the proposed technique is to service an

incoming request even while GC is running. However, allow-



Fig. 3. Description of operation sequence during garbage collection.

Fig. 4. A semi-preemption. R, W, and E denote read, write, and erase
operations, respectively. The subscripts indicate the page number accessed.

ing preemption of GC at any time may incur an extra context

switching overhead. Thus, we only allow semi-preemption at

certain points.

III. PREEMPTIVE GARBAGE COLLECTION

A. Semi-Preemptive GC

Figure 3 shows a typical garbage collection process when

a page-based logical-to-physical page mapping is used. Al-

though we explain our proposed technique based on the page-

based mapping scheme, it can be easily applied to block-based

or hybrid techniques because GC preemption is orthogonal to

address mapping schemes.

Once a victim block is selected during GC, all the valid

pages in that block are moved into an empty block and the

victim block is erased. A moving operation of a valid page

can be broken down to page read, data transfer, page write,

and meta data update operations. If both the victim and the

empty block are in the same plane, the data transfer operation

can be omitted by copy-back operation [1] if the flash device

support the operation.

We identify two possible preemption points in the GC

sequence marked as (1) and (2) in Figure 3. Preemption point

(1) is within a page movement and (2) is in-between page

movement. Preemption point (1) is just before a page is written

and (2) is just before a new page movement begins. We may

also allow preemption at the point marked with a (*), but the

resulting operations are the same as those of (1) as long as the

preemption during data transfer stage is not allowed. Although

preemption point (2) can service any kind of incoming request,

(1) cannot because the registers are already occupied by the

previous read page operation. At preemption point (1) an

incoming request of reading a page cannot be serviced.

Figure 4 illustrates the semi-preemption scheme. The sub-

scripts of R and W indicate the page number accessed. Suppose

that a write request on page z arrives while writing page

x during GC. With a conventional non-preemptive GC, the

request should be serviced after GC is finished. If GC is fully

preemptive, the incoming request may be serviced immedi-

ately. To do so, the on-going writing process on x should be

canceled first. This will incur an additional write operation on

x after servicing the incoming request on page z. In PGC, the

preemption occurs only at preemption points. As shown in the

bottom of Figure 4, the incoming request on page z is inserted

at preemption point (2).

If more preemption points were allowed, the response time

of incoming requests would be shortened further but may incur

excessive overhead. Page read, write, and erase operations

marked as R, W, and E, respectively, are not ”preemptive-

friendly” as preemption of these types of operations are not

supported by the flash device. To preempt them, they would be

canceled first and then re-executed again after the preemption.

Moreover, preempting GC at any time requires an interrupt

upon receipt of the incoming request. Each such interrupt

incurs context switching overhead.

Our proposed semi-preemption does not require an interrupt.

Due to the small number of preemption points it can be

implemented by a polling mechanism. At every preemption

point, the GC process looks up the request queue. This may

involve a function call, a small number of memory accesses to

look up the queue, and a small number of conditional branches.

Assuming 20 instructions and 5 memory access per looking

up, 10ns per instruction (100MHz), 80ns per memory access,

it takes 600ns. One page move involves at least one page read

which takes 25µs and one page write which takes 200µs [1].

Since there are two preemption points per one page move, the

overhead of looking up the queue per one page move can be

estimated as 1.2µs/225µs = 0.53%.

To resume GC after servicing the incoming request, the

context of GC needs to be stored. The context to be stored

at the preemption points (1) and (2) is very small. In case

of (1), the victim block and page information needs to be

stored in the registers. In case of (2), only the victim block

needs to be stored. Because the meta data is already updated,

the incoming request can be serviced based on the mapping

information. Thus, the memory overhead for preempting GC

is very small and negligible.

B. Merging Incoming Requests into GC

While servicing incoming requests during GC, we can

optimize the performance even further. If the incoming request

happens to access the same page in which the GC process is

attending, it can be merged. Figure 5 illustrates a situation

where the incoming request of read or write on page x arrives

while page x is being read by the read stage of GC. The read

request can be directly serviced from the registers and the

write request can be merged by updating data in the registers.

In case of copy-back operations, the data transfer is omitted,

but to exploit merging, it cannot be omitted. As for the read

request, data in the register should be transferred to service the



Fig. 5. Merging an incoming request to GC.

Fig. 6. Pipelining an incoming request with GC.

read request. For the write request, the requested data should

be written to the register.

We can increase the chance of merging by re-ordering the

sequence of pages to be moved from the victim block. For

example, pages x, y, and z are supposed to be moved in that

order. For GC, the order of pages to be moved does not matter.

Thus, when a request on page z arrives, it can be reordered as

z, x, and y.

C. Pipelining Incoming Requests with GC

The response time can be further reduced even if the

incoming request is on a different page. To achieve this we

take advantage of the internal parallelism of the flash device.

Depending on the type of the flash device, internal parallelism

and its associated operations can be different. In this paper,

we consider pipelining [31] as an example. If two consecutive

requests are of the same type, i.e. read after read, or write

after write, these two requests can be pipelined.

Figure 6 illustrates a case where an incoming request is

pipelined with GC. As an example, lets assume that there is

a pending read operation on page z at the preemption point

(2) where a page read on page y is about to begin. Since

both operations are read, they can be pipelined. However, if

the incoming request is write, they can not be pipelined at

preemption point (2) as two operations need to be issued at

(2) and they are not of the same type. In this case, the incoming

request should be inserted serially as shown in Figure 4.

It should be noted that pipelining is only an example of

exploiting the parallelism of an SSD. An SSD has multiple

packages, where each package has multiple dies, and each die

has multiple planes. Thus, there are various opportunities to

insert an incoming requests into GC as means of exploiting

parallelism at different levels. We may interleave servicing

requests and moving pages of GC in multiple packages or issue

a multi-plane command on multiple planes [31]. According to

the GC scheme and the type of operations the flash device

supports, there are many instances of exploiting parallelism.

Fig. 7. State diagram of semi-preemptive GC.

D. Level of Allowed Preemption

The drawback of preempting GC is that the completion time

can be delayed which may incur a lack of free blocks. If

the incoming request does not consume free blocks, it can

be serviced without depleting the free block pool. However,

there may be a case where the incoming request is write whose

priority is high but there are not enough free blocks. In such

a case, GC should be finished as soon as possible.

Based on these observations, we identify four states of GC:

• State 0 GC execution is not allowed.

• State 1 GC can be executed but all incoming requests

are allowed.

• State 2 GC can be executed but all free block consuming

incoming requests are prohibited.

• State 3 GC can be executed but all incoming requests

are prohibited.

Conventional non-preemptive GC has only two states: 0 and

3. Generally, switching from State 0 to State 3 is triggered

by threshold or idle time detection. Once the number of

free blocks falls below a pre-defined threshold or an idle

time is detected, GC is triggered. We use this threshold for

switching from State 0 to 1 and from State 1 to 2. We

call the conventional non-preemptive threshold as soft but

in our proposed design the system allows for the number

of free blocks to fall below the soft threshold. We define a

new threshold called hard which prevents a system crash by

running out of free blocks. Switching from State 2 to 3 is

triggered by the type of incoming requests. If the incoming

request is write whose priority is high, it switches to State 3.

How high the priority should be depends on requirements of

the system.

Figure 7 illustrates the state diagram. If the number of free

blocks (Nfree) becomes less than the soft threshold (Tsoft),

the state is changed from 0 to 1. If Nfree recovers to be larger

than Tsoft, then the system switches back to state 0. If Nfree

becomes even less than the hard threshold (Thard), the system

switches to State 2 or remains in State 1 otherwise. In state

2, the system will move to State 1 if Nfree becomes larger

than Thard. If there is an incoming request whose priority is

high, the system switches to State 3. While in State 3, after

completing current GC and servicing the high priority request,

the system will switch to State 1 or 2 according to Nfree.



IV. EXPERIMENTAL RESULTS

A. Experimental Setup

We evaluate the performance of the PGC scheme using

Microsoft Research’s SSD simulator [1]. MSR SSD simulator

is event-driven and based on the Disksim 4.0 [2] simulator.

MSR SSD simulator has been used in several SSD related

researches [31], [36]. In this paper, we simulated a NAND

flash based SSD. SSD specific parameter values used in the

simulator are given in Table II.

TABLE II
PARAMETERS OF SSD MODEL.

Parameter Value

Total capacity 32 GB
Reserved free blocks 15 %
Minimum free blocks 5 %
Cleaning policy Greedy
Flash chip elements 8
Planes per element 8
Blocks per plane 2048
Pages per block 64
Page size 4 KB

Page read latency 0.025 ms
Page write latency 0.200 ms
Block erase latency 1.5 ms

To conduct a fair performance evaluation of our proposed

PGC algorithm we fill the entire SSD with valid data prior

to collecting performance information. Filling the entire SSD

ensures that GC is triggered as new write requests arrive

during our experiments. Specifically, for GC, we use a greedy

algorithm that is designed to minimize the overhead of GC.

The greedy algorithm selects a victim block to be erased whose

number of valid pages is minimal. The more valid pages there

are in the victim block, the longer it takes for GC to complete

as the GC process needs to move more pages.

Our preemptive GC algorithm can be applied to any existing

GC schemes, such as idle-time or reactive. In the idle-time

GC scheme the GC process is triggered when there are no

new incoming requests and all queued requests are already

serviced. In the reactive scheme GC is invoked based on the

number of available free blocks without regard the incoming

request status. If the number of available free blocks is less

than the set threshold then the GC process is triggered,

otherwise, it continues servicing request. The reactive GC

scheme is the default in the MSR SSD simulator and we use

it as our baseline (non PGC) GC scheme. The lower bound of

the threshold in our simulations is set as the 5% of available

free blocks. On-going GC is never preempted in the baseline

GC scheme in our simulations.

1) Workloads: We use a mixture of real-world and syn-

thetic traces to study the efficiency of our semi-preemptive

garbage collection scheme. We use synthetic workloads with

varying parameters such as request size, inter-arrival time of

requests, read access probability, and sequentiality probability

in access.1 The default values of the parameters that we

use in our experiments are shown in Table III. We use an

exponential distribution for varying request sizes and a Poisson

distribution for varying inter-arrival time of requests. We vary

one parameter while other parameters are fixed.

TABLE III
DEFAULT PARAMETERS OF SYNTHETIC WORKLOADS.

Parameter Value

Request size 32 KB
Inter-arrival time 3 ms
Probability of sequential access 0.4
Probability of read access 0.4

TABLE IV
CHARACTERISTICS OF REALISTIC WORKLOADS.

Workload
Average Request Read Arrival Rate

Size (KB) (%) (IOP/s)

Financial [37] 7.09 18.92 47.19
Cello [35] 7.06 19.63 74.24
TPC-H [39] 31.62 91.80 172.73
OpenMail [13] 9.49 63.30 846.62

We use four commercial I/O traces, whose characteristics

are given in Table IV. We use write dominant I/O traces from

an OLTP application running at a financial institution made

available by the Storage Performance Council (SPC), referred

to as the Financial trace, and from Cello99, which is a disk

access trace collected from a time-sharing server exhibiting

significant writes which was running the HP-UX operating

system at Hewlett-Packard Laboratories. We also examine two

read-dominant workloads. Of these two, TPC-H is a disk I/O

trace collected from an OLAP application examining large

volumes of data to execute complex database queries. Finally,

a mail server I/O trace referred as OpenMail is evaluated.

2) Metrics: While the device service time captures the

overhead of GC, it does not include queueing delays for

pending requests. Additionally, using an average service time

does not capture response time variances. In this study we

utilize (i) the system service response time measured at the

block device queue and (ii) the variance in response times.

Our measurement captures the sum of the device service time

and the additional time spent waiting for the device (queueing

delay) to begin to service the request.

3) GC schemes: The following garbage collection schemes

are evaluated:

• NPGC A non-preemptive garbage collection scheme.

• PGC A semi-preemptive garbage collection scheme.

• PGC+Pipeline A pipelining technique enabled PGC.

Although we implemented the I/O merging technique on

PGC and evaluated it against PGC and PGC+Pipeline we

found the improvement to be minimal therefore we do not

include the I/O merging technique results in the paper.

1If a request starts at the logical address immediately following the last
address accessed by the previously generated request, we consider it a
sequential request; Otherwise, we classify it as a random request.
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Fig. 8. Performance improvements of preemptive GC for synthetic work-
loads. Average response times and standard deviations are shown with
different parameters of synthetic workloads.

B. Results

1) Performance analysis for synthetic workloads: GC may

have to be performed while requests are arriving. Recall

that GC is not preemptable in the baseline GC scheme and

incoming requests during GC are delayed until the on-going

GC process is complete. Figure 8 shows the performance

improvements when enabling GC preemption.

a) Request size: Figure 8(a) shows the improvements of

performance and variance by PGC for different request sizes

In this experiment, we vary the request size as 8, 16, 32, and

64 KB. These values are chosen because the average request

size of realistic workloads is between 7 and 31 KB, as given

in Table IV. For a small request size (8 KB) we see the

improvement in response time by 29.44%. Furthermore, the

variance of average response times decreases by 87.31%. As

the request size increases, we see further improvements. For

a large request (64 KB), the response time decreases by up to

69.21% while its variance decreases by 83.03%.

b) I/O arrival rate: Similar to the improvement with

respect to varying request sizes, we also see an improvement

with respect to varying the arrival rate of I/O requests. Typical

response time of a request on a page is less than 1 ms without

GC while it can be as high as 3-4ms when the page request is

queued up due to GC. Based on this observation, we vary the

inter-arrival time between 1 and 10 ms in our experiments. In

Figure 8(b), it can be seen that PGC is minimally impacted by

intense arrival rate. In contrast, the system response times and

their variances for the baseline (NPGC) increase with respect

to the request arrival rate.

c) Sequential access: Random workloads (where con-

secutive requests are not next to each other in terms of

their access address) are known to be likely to increase the

fragmentation of SSD, causing a GC overhead increase [20],

[11]. We experiment with PGC and NPGC by varying the

sequentiality of requests. Figure 8(c) illustrates the results. As

can be seen, NPGC exhibits a substantial increase in system

response time and its variance for a 60% sequential workload

while PGC performance levels remain constant for all levels

of sequentiality.

d) Write percentage: Writes are slower than reads in

SSDs because flash page writes are slower than reads (recall

unit access latency for reads and writes, 25us and 200us, re-

spectively) and GC can incur further delays. In Figure 8(d), we

see the improvement of PGC as the percentage of writes within

the workload increases. Overall, we observe that PGC exhibits

a marginal increase in response time and variance compared

to the NPGC scheme. For example, PGC performance slows

down by only 1.77 times for an increase of writes in workloads

(from 80% to 20% of reads) while NPGC slows down by 3.46

times.

2) Performance analysis for realistic server workloads:

Figure 9 presents the improvement of system response time

and variance over time for realistic workloads. For write-

dominant workloads, we see an improvement in average

response time by 6.05% and 66.56% for Financial and Cello,

respectively (refer to Figure 9(a)). Figure 9(b) shows a sub-

stantial improvement in the variance of response times. PGC

reduces the performance variability by 49.82% and 83.30%

for each of the workloads. In addition to the improvement in

performance variance, we observe that PGC can further reduce

the maximum response time of NPGC by 77.59% and 84.09%

for Financial and Cello traces as illustrated in Figure 9(c).

For the OpenMail trace PGC does not show a significant

improvement for performance and variance, as we expected for

read-dominant traces. However, PGC reduces the maximum

response time by 60.26%. Interestingly for TPC-H, although it

is a read dominant trace, we observe a substantial improvement

for performance and variance. TPC-H is a database applica-

tion. The disk trace includes a phase of application run that

inserts tables into a database, which is shown as a series

of large write requests (around 128 KB) for database insert

operations.

Moreover, we observe further improvement by the pipelin-

ing technique on PGC in the Figure 9. For Cello, an im-

provement is observed in the average response time of PGC

by 13.69% and its performance variance by 33.53%. For

OpenMail, our proposed algorithm can obtain a significant

reduction of maximum response time, as much as 68.30%.

3) Exploring a wider range of workload characteristics:

We have seen the improvement of performance and variance

from our experiments with realistic workloads. Next we deter-

mine if PGC is robust enough to sustain periods of increased

I/O intensity. For this experiment, we increased the I/O arrival

rates of the original traces. Without modifying sizes and offset

addresses of requests, we shortened the inter-arrival times of

subsequent requests by factors of 2, 4, 8, and 16.

As shown in figures 10(a) and (b), with respect to increasing

arrival rate, average response time and variance also improve.

In particular, improvements in response times can be seen

for write-dominant workloads (Financial and Cello) compared
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Fig. 9. Performance improvements of PGC and PGC+Pipelining for realistic server workloads.
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Fig. 10. Scalability tests by increasing the arrival rate of I/O requests.

to read-dominant workloads in Figure 10(a). For TPC-H, we

see a gradual improvement for the performance variability.

Overall, we observe that PGC can increase the performance

and improve the variance up to 90% for a 16 times more bursty

workload (i.e. the I/O arrival rate is increased by 16 times)

Figure 10(c) shows further improvements of the GC pipelin-

ing technique. In this figure, improvements in average response

time and its variance for Cello can be clearly observed.

In particular, we observe that the gaps of performance and

variance are widened as the arrival rate of I/O requests

increases. In other words, the GC pipelining technique makes

PGC enabled SSDs robust enough to provide a sustained level

of performance.

4) Handling starvation of free blocks: Continuous GC pre-

emption can cause starvation of free blocks. Thus, we develop

a mechanism that can avoid a situation where an entire system

becomes completely unserviceable because no free blocks are

available. For this, we implement our PGC algorithm with a

hard limit of available free blocks. Our algorithm now has two

thresholds, one is for triggering the GC process and the other

is for stopping preemption. Once the number of free blocks

reaches Thard, SSD stops GC preemption. A hard limit (Thard)

is set for a lower bound of the number of free blocks available

in SSD.

To evaluate the effect of our extra threshold, we use an

amplified Cello trace where the arrival rate of I/O requests

are 16 times higher and the average request size is set to be

300 KB on average. In Figure 11(a), we see the situation

where there are no free blocks left due to continuous GC

preemption and the SSD is not available to service the I/O

requests. It captures a zoomed-in region for 7 seconds of

entire simulation run. The remaining free blocks indicate the

ratio of the number of available free blocks over the minimum

number of free blocks. The minimum number of free blocks

corresponds to the soft threshold (Tsoft) which is 5% of the

total number of blocks as shown in Table II. On the contrary,

in Figure 11(b)(c), we see that the SSD handles the starvation

of free blocks in the SSD by adjusting Thard. We see that

the lower Thard shows better response time while it exhausts

more free blocks.

Since there exists a trade-off between the number of free

blocks and response times, we evaluate the impact of perfor-

mance in terms of response time according to Thard. Figure 12

shows the cumulative distribution function of response time for

different Thard. As we lower Thard, we see overall response

time improve. For example, we observe 18% improvement

when we lower Thard from 80% to 20% of Tsoft.

V. RELATED WORK

Preemptive GC is discussed in [4] as a possible method

to meet the constraints of a real-time system equipped with

NAND flash. They proposed creation of a GC task for each

real-time task so that the corresponding GC task can prepare

enough free blocks in advance. In a real-time environment both

GC tasks and real-time tasks need to be preemptive. However,

since NAND flash operations can not be interrupted, these are
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Fig. 11. Impact of hard threshold.

defined as atomic operations. In contrast, our work provides

a comprehensive study on the impact of the preemptive GC

in an SSD environment (compared to real-time environment)

and we emphasize on optimizing performance by exploiting

the internal parallelism of the NAND flash device (e.g. the

multi-plane command and pipelining [31]).

Multiple planes on the same die can execute the same

type of command concurrently, which is called a multi-

plane command. Pipelining can be exploited if consecutive

commands are of the same type. While transferring data

from/to registers, a NAND flash operation can be executed.

Exploiting the internal parallelism of the NAND flash gives

us the ability to further optimize the performance of PGC. For

a non-PGC SSD, pipelining implies reordering the sequence

for consecutive incoming requests so that there are as many

consecutive requests of the same type as possible. In contrast,

we pipeline an incoming request with an operation of GC. If

pipelining is not possible, we insert the request into GC in a

serial manner. We reorder neither the sequence of incoming

requests nor the sequence of GC operations.

In the HDD domain, semi-preemptive I/O has been eval-

uated [9] and its extension to RAID arrays also has been

studied [9] by allowing preemption of on-going I/O operations

to service a higher-priority request. To enable preemption, each

HDD access operation (seek, rotation, and data transfer) is split

into distinct operations. In-between these operations, a higher-

priority I/O operation can be inserted. In the case of PGC,

we allow preemption of GC to service any incoming request.

We split GC operations into distinct operations and insert

incoming requests in between them. In addition, we provide

further optimization techniques while inserting requests.

Similar to GC scheme in flash based SSDs, Java GC

reclaims obsolete memory space to produce available free

memory space; it splits the heap regions of memory space into

two memory regions (young and old generations) and develops
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the GC algorithms that can efficiently use the memory space

and effectively perform GC. Our preemptive GC scheme is

different from Java GC schemes in that our basic idea is to

split incoming I/O requests in a series of page-level operations

and insert operations appropriately in-between page-level op-

erations of GC. Our preemption idea not only can work with

any GC algorithm, but also requires only minimal modification

to these general GC algorithms.

VI. CONCLUSIONS

In this paper, we argue that existing SSD technology has

a performance variability problem due to GC overheads and

the problem can become severe for bursty write-dominant

workloads. As a solution to this problem we have developed

a preemptive garbage collector (PGC) that allows on-going

GC preemption to prioritize serving incoming requests over

regular GC activity. Our experimental evaluations demonstrate

the efficiency of PGC as it offers (i) improved performance,

(ii) reduced performance variability, and (iii) increased system

robustness. Moreover, we further improved the PGC scheme

by merging or pipelining incoming requests with internal

I/O operations for GC. We have shown that the average

response time and the variability of response times of realistic

workloads can be reduced by up to 66.56% and 83.30%,

respectively.

As future work, we plan to evaluate PGC with idle-time

based GC schemes. Also we will analyze the performance of

PGC for RAID arrays of SSDs. We expect that minimizing

GC overheads in individual SSDs will not only provide

improved aggregate RAID level bandwidth but also decrease

the variability of observed aggregate throughput of the RAID

array.
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