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ABSTRACT The proper operation of running gears of a high-speed train is one of the key factors to ensure its

safety and reliability. The diagnosis of the state of running gears of a high-speed train is one of the effective

ways to improve its reliability. It is difficult to diagnose the running gears of a high-speed train accurately

because of the characteristics of its complex-analytic structure, multiple types of monitoring feature data,

and lack of effective failure mode data. Therefore, this paper proposes a fault diagnosis method for the

running gears of a high-speed train based on a semi-quantitative information model. The relation between

the effective data and expert knowledge is studied, and the state of the running gears of a high-speed train is

rigorously analyzed. To reduce the data dimension and the diagnostic calculation time of the running gears

of a high-speed train, the principal component analysis (PCA) is used to screen its key monitoring features.

Then, based on the change of the feature quantity in the working process of the running gears of a high-

speed train, the semi-quantitative information model of belief-rule-base (BRB) fault diagnosis is established.

In the diagnosis process, the initial model parameters of BRB are determined by expert knowledge and they

have certain subjectivity. To improve the accuracy of the model, the constrained covariance matrix adaptive

evolutionary strategy (CMA-ES) algorithm is used to optimize the parameters of the initial BRB model to

improve the validity and accuracy of the diagnosis. Finally, to verify the effectiveness of the proposed semi-

quantitative information model, a set of real data of the running gears of a high-speed train is used as case

studies.

INDEX TERMS Semi-quantitative information, fault diagnosis, principle component analysis, belief-rule-

base, constraint covariance matrix adaptive evolution strategy.

I. INTRODUCTION

Running gears are key parts of high-speed trains, and its oper-

ating condition directly affects the driving safety of a high-

speed train [1]. The structure of a running gear of a high-speed

train has a high degree of complexity, which includes traction

drive, axle, axle box, a spring device, and a detection sensor.

Any components of the high-speed train that appears to have

pitting, indentation, exfoliation, or any other local defects can

The associate editor coordinating the review of this manuscript and
approving it for publication was Francesco Tedesco.

obviously cause it to sway on the carriage during its running

process, and even cause rushing out of the track, which can

result in unpredictable consequences. Therefore, it is crucial

to improve the safety of the running gears of a high-speed

train [2]–[4]. This paper studies the fault diagnosis of running

gears to ensure that its operation is safe and reliable.

The running gears of a high-speed train are classified

as a complex electromechanical system. The methods of

fault diagnosis of complex electromechanical systems can be

divided as follows: 1) qualitative analysis methods [5]–[7]:

fault tree and expert system, 2) Data-drivenmethods [8]–[16]:
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least squares method, support vector machine (SVM),

neural network, and hidden Markov Method (HMM),

3) analytical model-based methods [17]–[20]: fuzzy reason-

ing. Swetapadma et al. [21] discussed a fault detection with

a classification scheme based on the decision tree, and exam-

ined the faults in the faultless and the faulty state. Due to the

subjective correlation coefficient of the method, the objective

basis for the lack of data in the discriminant is considered.

Miao et al. [22] studied a technique for fault diagnosis based

on SVM and condition monitoring to detect the degree of

degradation of the system. However, the method needs more

accurate features, which affects the generalization ability of

the system. Jiang et al. [23] analyzed the effect of vari-

able selection on the monitoring performance of principal

component analysis (PCA). They proposed a fault-relevant

variable selection and Bayesian inference-based distributed

method for efficient fault detection and isolation, which can

provide an accurate description of faults. Huang et al. [24]

proposed an improved HMM algorithm for urban rail transit

motor equipment fault diagnosis. Its shortcoming was that the

current state was only related to the previous state during the

state transition, which could make the evaluation inaccurate.

Zhao et al. [25] a new fault feature extraction method, called

the EDOMFE method based on integrating ensemble empiri-

cal mode decomposition (EEMD), mode selection, andmulti-

scale fuzzy entropy is proposed to accurately diagnose fault.

In the above references, It is hard to establish an accurate

analytical model for the running gears of a high-speed train

due to the complexity of its structure. Additionally, it is

difficult to accurately diagnose the fault because of multiple

types of monitoring feature data and the lack of effective

failure mode data.

To solve this problem, a fault diagnosis method for the run-

ning gears of a high-speed train based on semi-quantitative

information model is proposed, which combines expert

knowledge and monitoring data to establish the PCA−BRB

model for the running gears of a high-speed train. The

proposed BRB model is based on D-S evidence reason-

ing, IF-THEN rule expert system, and evidence reasoning

method [7], [26]–[29]. It has a good ability tomodel nonlinear

data with fuzzy uncertainty or probability uncertainty. The

failure mode data of the running gears of a high-speed train

provides a better solution to the fuzzy uncertainty or probabil-

ity uncertainty. The PCA is themost representative dimension

reduction model that screens the key premise attributes in

the BRB model. It is necessary to simplify and improve the

efficiency of the BRB model, which can effectively avoid

the explosion of the BRB model combination. The exis-

tence of expert knowledge in the establishment of the initial

BRB model is limited, and the model given by the experts

is incomplete. To ensure the accuracy of the model and to

establish an effective fault diagnosis model for the running

gears of a high-speed train, the parameters are updated by

applying the CMA-ES algorithm in the initial BRB model.

The rest of this paper is organized as follows.

Section 2 introduces background studies of the problem and

FIGURE 1. Structure of the running gears of a high-speed train.

the motivation for applying semi-quantitative information

model. The BRB algorithm and the optimization algorithm

are discussed in section 3. In section 4, the running gears of

the high-speed trains are discussed as an example and analysis

of the proposed method. Section 5 presents the conclusion of

this paper.

II. PRELIMINARIES AND PROBLEM FORMULATION

The running gears of a high-speed train are a multi-level com-

plex structure composed of multiple mechanical components.

Figure 1 comprises 3 sub-figures: (a) running gear, (b) gear

box, (c) traction motor, and other components. Therefore,

it is very difficult to establish a complete fault diagnosis

model based on the analytical model. In addition, there are

a large number of sensor arrangements for the running gears

of a high-speed train. For example, consider the tempera-

ture sensor measuring point in figure 1, A1–A4: axle box

bearing temperature measuring point, B1–B3: motor tem-

perature measuring point, and C1–C4: gear box temperature

measuring point. It is easier to get a lot of monitoring data

at run-time. However, the running gears of a high-speed train

are highly reliable, and they are regularly maintained. It is

difficult to acquire a large amount of failure data since the

data-driven method has limitations on the training of the

model. This paper proposes a semi-quantitative information

model in the diagnosis of the fault status of the running gears

of a high-speed train, which mainly solves the following three

problems.

Problem I. Many features of the running gears of a high-

speed train can describe the fault diagnosis of the system

such as wheel pair wear, axle box vibration, and gear box

temperature being too high. A fault diagnosis model built

with multiple features yields more accurate results. How-

ever, the complexity of building a model and its calculation
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FIGURE 2. The structure of semi-quantitative information algorithm.

exponentially increases using numerous characteristic fea-

tures. According to the mechanism analysis, the key feature

that can reflect the state of running gears of a high-speed train

is denoted by

{x1, x2, · · · , xi, · · · , xn} → {x1, x2, · · · , xi} (1)

where xi denotes a key feature that reflects the state of the

running gears of a high-speed train.

Therefore, Problem I deals with how to screen all the

key features and ensures the physical meaning of embedding

qualitative expert knowledge.

Problem II: Based on the screening of key features, a non-

linear model with the fusion of expert knowledge and sample

data for running gears of a high-speed train is designed,

where H (t) = {(Sm, φm),m = 1, 2, · · · ,M} denotes the

status at time t , S denotes the status of the running gears

of high-speed train, and φ denotes the belief level for the

estimation of Sm,X = {x1, x2, · · · , xi} denotes themonitoring

data for the key features, f = (X ,Q) denotes the established

nonlinear system function, Q denotes the parameter for the

nonlinear model.

Thus, Problem II is how to make use of prior knowledge

and effective monitoring data to build a nonlinear fault diag-

nosis model.

Problem III: The starting parameter Q needs to be set

in advance based on historical information and the expert

knowledge in the initial BRB model. The initial parameter,Q

is an incomplete range because of the limited expert knowl-

edge, and thus, the initial value of Q is inaccurate.

Therefore, Problem III deals with how to obtain an accurate

fault diagnosis model of the running gears of a high-speed

train by optimizing the parameter Q.

III. A SEMI-QUANTITATIVE INFORMATION BASED FAULT

DIAGNOSIS METHOD FOR THE RUNNING GEARS SYSTEM

OF HIGH-SPEED TRAINS

To solve these three problems, figure 2 shows a semi-

quantitative information model to estimate the running gears

system. Theof high-speed trains. This method comprises

three parts. First part deals with the selection of the key

features as input and the rotation factors are used to give

the key features physical meaning. The second part consid-

ers a nonlinear BRB model based on the fusion of expert

knowledge and sample data. In the third part, the model is

compared to the real status and CMA-ES is used to adjust the

parameters.

A. PRINCIPAL COMPONENT ANALYSIS FEATURES

SELECTION

The number of features of the running gears of high-speed

trains reflecting its status is large. When these features are

selected as input, the BRB model will be delayed and the

diagnosis system may even crash. Therefore, this selection

is necessary to assist the BRB model for key features. The

PCA is one of the most effective features of extraction dimen-

sion reduction methods. To achieve a good processing effect,

the problem is analyzed in a clear way, and the data of the

running gears of a high-speed train is divided into four steps:

Step 1: This step establishes a running gear of a high-speed

train data feature quantity sample matrix, and arranges all the

samples in the center, here N features are assumed, i.e.,

x̂i = xi −
1

N

N
∑

j=1

xj (2)

X = {x̂1, x̂2, · · · , ˆxN } (3)

where x̂i is the column vector and each column denotes a

feature of the running gear of a high-speed train.

Step 2: In this step, we calculate the covariance matrix

of the running gear of a high-speed train data, where each

element is the covariance between the different components

and X . This forms a covariance matrix, which is a real sym-

metric matrix, i.e.,

Cn×n =











c11 c12 · · · c1n
c21 c22 · · · c2n
...

...
. . .

...

cn1 cn2 · · · cnn











(4)

where, ci,j = cov(Dimi,Dimj).

Step 3: The eigenvalues and eigenvectors of the covari-

ance matrix are obtained. According to the nature of real
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symmetric matrices, we obtain the following

Cn×n

= P3P−1

= (χ1χ2 · · ·χn)











λ1
λ2

. . .

λn











(χ1χ2 · · ·χn)
−1

(5)

where λi(i = 1, 2, · · · , n) is the eigenvalue of the covariance

matrix and χi(i = 1, 2, · · · , n) is the eigenvector correspond-

ing to λi.

Step 4: The running gear of a high-speed train feature

values are sorted in descending order, and the number of prin-

cipal elements and corresponding feature vectors are obtained

according to the principal element contribution rate.

We aim at a large amount of data monitored using the

running gears of a high-speed train. Based on the above four

steps, this study uses the ‘‘maximum balance value’’ factor

to ensure the physical meaning of its data. According to

the principles of ‘‘cumulative principal component greater

than 0.70’’ and ‘‘eigenvalue greater than 1,’’ the key features

of the principal component contribution are selected.

B. A SEMI-QUANTITATIVE INFORMATION BRB METHOD

OF FAULT DIAGNOSIS

The system for the running gears of a high-speed train

comprises many belief rules of BRB model, which can be

described as follows

Rk : If x1is A
k
1

∧

x2 is A
k
2 · · ·

∧

xM is AkM

Then{(P1, φ1,k ), · · · , (PN , φN ,k )}

With a rule weight αk

and attribute weight η1,k , η2,k , · · · , ηM ,k (6)

where xi(i = 1, 2, · · · ,M ) is the i-th antecedent attribute;

Aki (i = 1, 2, · · · ,M; k = 1, 2, · · · ,L) is the value of the

xi-th antecedent attribute in the k-th rule; L is the total number

of rules in the BRB; φj,k is the belief degree of conclusion

part in the k-th rule for the j-th estimated result Pj; αk is

the rule weight of k-th rule; and ηi,k is the weight of the

i-th antecedent attribute.

The results of belief degree can be calculated by the evi-

dence reasoning (ER) algorithm. The final expected utility

of the running gears of high-speed train is obtained by the

following three steps.

Step 1: We calculate the antecedent attribute matching

degree ϕki,j, which is the degree of matching between the

antecedent attribute and the rule, i.e.,

ϕki,j =



















1 − ϕki,j, k = l + 1;

Al+1
i − xi

Al+1
i − Ali

, k = l(Ali ≤ xi ≤ Al+1
i );

0, k = 1, 2, · · · ,N (k 6= l, l + 1).

(7)

Step 2: The belief rules activation weight ψk is calculated

in this step, and the antecedent attribute can activate some

belief rules in the BRB model. Thus, we have that

ψk =
αk

∏M
i=1(ϕ

k
i )
ηi

∑L
i=1 αl

∏M
i=1(ϕ

l
i )
ηi

(8)

ηi =
ηi

max
i=1,2,··· ,M

{ηi}
(9)

where ψk ∈ [0, 1], k = 1, 2, · · · , l, ηi denote attribute

weights.

Step 3: Using the ER algorithm, the final output S(x) of the

BRB model obtained by

S(x) = (Pj, φ̂j), j = 1, 2, · · · ,N (10)

where φ̂j is relative to the belief degree of estimated

results Pj. Thus, we have that

φ̂j =
µ× [

∏L
k=l(ψkφj,k + ρ) −

∏L
k=l ρ]

1 − µ× [
∏L

k=1(1 − ψk )]

µ = [

N
∑

j=1

L
∏

k=l

(ψkφj,k + ρ) − (N − 1)

L
∏

k=1

ρ]−1

ρ = 1 − ψk

N
∑

i=1

φi,k (11)

whereψk can be calculated using equation (8); φ̂i is a function

of the rule weight αk (k = 1, 2, · · · ,L), the belief degree

φj.k (j = 1, 2, · · · ,N ; k = 1, 2, · · · ,L) and ηi (i =

1, 2, · · · ,L) is the attribute weight.

The expected utility of the final running gear of a high-

speed train S(x), from the above three steps, can be obtained

by

p = µ(S(x)) =

N
∑

j=1

µ(Pj)φ(j) (12)

The expectant utility p of the running gears of a high-speed

train can reflect its status.

C. IMPROVED PARAMETERS OPTIMIZATION ALGORITHM

FOR CMA-ES

The expected utility p of the running gear of high-speed

train system can be calculated using equation (12) to reflect

its status. Then, the following objective function β(Q) is

established, i.e.,

β(Q) =
1

U

U
∑

n=1

(p̃n − pn)
2 (13)

where Q = [αk , ηi, φj,k , µ(Pj)]
T is the column vector of the

BRB parameters, U is the number of data of key feature,

ηi, φi,jµ(Pj) is given by equations (8), (9) and (12). The p̃n and

pn values are similar, and the constructed objective function

takes the minimum value min
Q

{β(Q)}.
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The objective function constraints are as follows:

M
∑

j=1

φj,k ≤ 1, k = 1, 2, · · · ,L

0 ≤ αk ≤ 1, k = 1, 2, · · · ,L

0 ≤ η̄i ≤ 1, i = 1, 2, · · · ,N

0 ≤ φj,k ≤ 1, j = 1, 2, · · · ,M (14)

where αk and φj,k can be obtained using the BRB model (6)

and denote the estimated attribute weights.

The objective function problem under the constraint of

formula (14) is solved using the CMA-ES algorithm in this

paper. The CMA-ES algorithm controls the optimization

direction of the whole parameters by controlling the covari-

ance matrix and finds a fast convergence of small popula-

tion to get the optimal solution. It also effectively solves

the unconstrained optimization problems and boundary con-

straints. Therefore, we introduce the CMA-ES algorithm in

the BRB model using the following four steps.

Step 1: We use the number of samples as expectations and

generate a population with a normal distribution as shown in

equation (15), whereQ is the population of initial expectation.

We have that

Qg+1
q ∼ meang + νgN (0,Cg)(q = 1, 2, · · · , ρ) (15)

where C denotes the covariance matrix, ν denotes the step

size, and g denotes the expected mean of the g-th generation.

Step 2: The constraint condition is transformed into the

constraint objective function in this step. The vector parame-

ters of BRB imports the belief degree of the k-th rule, where

φj,k ∈ Qq and
∑N

j=1 φj,k = 1. The constraint equation is

transformed into the constraint object function by

Hk (φj,k ) = |

N
∑

j=1

φj,k − 1| (16)

where Hk (φj,k ) denotes the equation constraint object func-

tion of k-th rule in BRB.

Step 3: Recombination and selection: The expected mean

will be offset to optimize the sample population distribution.

We assume that the population evolved to obtain the updated

mean, and choose τ as the optimal solution to update the

average. Thus, we have that

meang+1 =

τ
∑

i=1

γiQ
g+1
i,k (17)

where λ denotes the number of offsprings, Q
g+1
i,k denotes

the i-th solution selected from the λ offsprings in the g + 1

generation, and γ denotes the offspring weight. The sum of

the weights is equal to 1.

Step 4: The covariance matrix is obtained using

equations (18) to(21). Thus, we have that

Cg+1 = (1 − a1 − aτ )C
g + a1b

g+1(bg+1)T

+ aτ

τ
∑

i=1

γi(
Q
g+1
i,k − meang

νg
)(
Q
g+1
i,k − meang

νg
)T (18)

FIGURE 3. Fault diagnosis process of the running gears of a high-speed
train.

where a1 and aτ denote learning factors and b denotes the

evolutionary path. b can be obtained using equation (19), i.e.,

bg+1 =

√

√

√

√ab(2 − ab)(

τ
∑

i=1

γ 2
i )

−1
meang+1 − meang

νg

+ (1 − ap)b
g (19)

where ab ≤ 1 denotes a parameter of the evolution path,

τ denotes the step size, and ν denotes the update. It can be

obtained using equation (20), i.e.,

νg+1 = νgexp(
aν

dν
(

‖b
g+1
ν ‖

E‖N (0, I )‖
)) (20)

where I denotes the identity matrix, E‖N (0, I )‖ denotes the

expectation of ‖N (0, I )‖, dν denotes the damping coefficient,

aν denotes the parameter of evolution path bν , and bν is

updated using equation (21), i.e.,

bg+1
ν =

√

√

√

√av(2 − av)(

τ
∑

i=1

γ 2
i )

−1C (g)− 1
2
meang+1 − meang

νg

+ (1 − aν)b
g
ν (21)

Using the above iteration process, the optimal parame-

ter Q can be obtained under the premise of satisfying the

accuracy.

D. THE STEPS OF FAULT DIAGNOSIS MODEL

Using the above algorithm, the four steps below generalize

the fault diagnosis algorithm of the running gears of a high-

speed train as shown in figure 3.
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FIGURE 4. Trends of (a) impact, (b) temperature, and (c) vibration of monitoring data.

Step 1: In this step, we select features using PCA in the

followingways: a samplematrix is created using equation (3).

Then, the covariance matrix (4) is calculated. Furthermore,

the eigenvalue is calculated using equation (5), and the key

features are screened.

Step 2: We establish a nonlinear parameter BRB model:

the BRBmodel is based on the attribute weight, the reference

value, and the belief degree.

Step 3: The CMA-ES algorithm optimizes the param-

eters in the following ways: we complete the sampling

operation (15), performmulti-objective constraints (16), reor-

ganization and selection (17), and update the covariance

matrix (18) to (21).

Step 4: The diagnosis of the running gears of a high-speed

train can obtain a state of health with the belief degree using

the ER algorithm.

The shaft temperature and the gear box vibration are

selected to estimate the status of running gears of a high-

speed train. If the shaft temperature for the health estimation

of the running gears of a high-speed train is same as that of

gear box vibration, the attribute weight can be determined to

be 1, in which the attribute weight represents the significance

of the health status. To measure the change in the evaluation

input and to estimate the health status, we assume that the

reference values are ‘‘normal,’’ ‘‘general,’’ and ‘‘fault.’’ For

example, when the running gears of a high-speed train are

in a normal state, the shaft temperature is assumed to be

from 25◦C to 33◦C. The shaft temperature is assumed to be

above 40◦C when the running gear of a high-speed train is

in a fault state. Based on the expert knowledge, the values

between 33◦C and 40◦C can be used as a reference for general

health conditions. The more the reference values, the more

detailed is the process of describing changes in health status.

Section 4 describes the setting process of expert knowledge

involving this case.

IV. CASE ANALYSIS

This section discusses running gears of a high-speed train

as an example of how to improve its diagnostic esti-

mated capability. Also, it verifies the validity and reliability

of the proposed semi-quantitative information model. When

the running gear of a high-speed train data is collected,

the train is selected as the number 2 car running gear

in the month for data sampling. To ensure that the train is

in operation, the monitoring data with the rotational speed

of 1000r/min or more is verified as the method of the

model. The monitoring indicators of the running gear include

temperature, vibration, and impact. Due to the weight, cen-

ter of gravity, and suspension parameters of the compo-

nents complexity of the running gears of a high-speed

train, its status can be set to ‘‘normal,’’ ‘‘general,’’ and

‘‘fault.’’

A. DATA PREPROCESSING

There are some characteristics such as a large amount of

data among the actual monitoring data, and many abnormal

points and strong environmental noise, which ensure that the

data is pre-processed. The impact, temperature, and vibration

monitoring data contain numerous duplicate data and outlier

data, as shown in figure 4.

The impact, temperature, and vibration of monitoring data

are pre-processed, and the average value is used to reduce

the amount of monitoring data on these three points and

the average outlier point is filtered using the mean filtering

method, simultaneously. Finally, the compressed data volume

is 470. The trend graph is shown in figure 5.

B. FEATURES EXTRACTION

The data of three characteristics of temperature, vibration,

and impact are dimensionless, and the monitoring data is

centralized.

Then, the SPSS software is used to select the key fea-

tures for PCA. The obtained principal components are shown

in Table 1. The relation between the principal components

and the key indicators is shown in Table 2.

Based on the principles of ‘‘characteristic value greater

than 1’’ and ‘‘cumulative principal component greater

than 0.70’’, it is worthy to note that the temperature and

vibration are the key feature quantities.
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FIGURE 5. Mean filter trend of (a) impact, (b) temperature, and (c) vibration of monitoring data.

TABLE 1. Initial calculation results calculated using PCA.

TABLE 2. Relationship between principal components and key indicators.

C. THE BRB MODEL TRAINING

Considering the analysis of the working principle of the

running gears of high-speed train, the status can be divided

into the following three states.

Normal state: The status of the running gears of a high-

speed train is fine in this case. Under the present circum-

stances, the temperature and vibration are normal, while the

amplitude is low.

General state: Here, the status of running gears of a high-

speed train is in between normal state and fault state. In this

case, the amplitude value is in the range of 22–26 Hz, while

the temperature is in the range of 33◦C–36◦C.

Fault status: In fault state of the running gears of a high-

speed train system, the vibration is severe. The amplitude is

up to 35 Hz, and the temperature is up to 46◦C.

In the BRB model, not only the vibration and temperature

indicators are important for the fault diagnosis of the running

gears of a high-speed train, but also the setting of the rules is

important; thus, αk , ηi can be assigned a value of 1. When

setting the reference values for vibration and temperature,

the number of reference values constitute the number of rules.

Therefore, increase in the number of rules will lead to the

complexity of calculation of the model.

Based on the expert knowledge, the temperature and

vibration reference levels include Normal, Medium, and

TABLE 3. Temperature reference values.

TABLE 4. Vibration reference values.

TABLE 5. Health status reference values.

TABLE 6. Initial BRB parameters setting.

High expressed as H, U, and F, respectively. Table 3 and

Table 4 give the quantified results of temperature and vibra-

tion reference levels. The status reference levels include Nor-

mal, General, and Fault expressed asH, G, and F, respectively.

Table 5 gives the quantified results of status reference levels.

The temperature and vibration reference values can be

classified into three levels with a total of nine belief rules.

Based on expert knowledge, the fault diagnosis method of

running gears of a high-speed train can be established. The

BRB model can be given by

Rk : If Temperatureis Ak1

∧

Vibration is Ak2

Then Status is{(1, φ1,k ), (2, φ2,k ), (3, φ3,k )}

(

N
∑

i=1

φi,k ≤ 1) k ∈ 1, 2, · · · , 9 (22)
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FIGURE 6. Fault state estimates from initial BRB and updated BRB.
(a) The results of initial BRB. (b) The results of updated BRB.
(c) Distribution of temperature and vibration data.

Based on expert knowledge, Table 6 gives the parameters

of the initial BRBmodel. For example, if the vibration ampli-

tude is large and the temperature is high, the health condition

of the running gears of a high-speed train will be very poor.

In the first rule H AND H, it means that the temperature and

FIGURE 7. The tested BRB model. (a) The BRB test results. (b) Distribution
of temperature and vibration data.

vibration is in a normal state, and the health condition of the

running gears of a high-speed train should also be kept in

a normal state and is assigned {(S1, 0.9), (S2, 0.1), (S3, 0)}.

The fifth rule explains a gradual process of the running gears

of a high-speed train from the normal state to the under-

fault state. The rule U AND U indicates that the tempera-

ture and vibration are reduced to the general state, and the

health condition of running gears of a high-speed train is

in a general state. The health condition of running gears

of a high-speed train is given by {(S1, 0), (S2, 1), (S3, 0)}.

Figure 6 (a) shows the initial BRB results. The estimated

value is not well adapted to the monitoring data, as shown

in figure 6 (a), so it is necessary to optimize the initial

set parameter values using CMA-ES optimization method

in Table 7.
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TABLE 7. CMA-ES optimized BRB parameters.

FIGURE 8. The comparative BP neural network.

D. THE BRB TEST MODEL

To further validate the model, the fault state of running gears

of a high-speed train is estimated using the back propagation

(BP) neural network and SVM model, which are the most

classic models in data-driven methods. Differences between

describingmethods are illustrated by the histogram in Fig. 11,

and Table 8 gives the sum of squared residuals for the four

different models.

E. COMPARATIVE ANALYSIS

To further verify the model, the fault condition of running

gears system is estimate by using the BP neural network and

SVMmodel. BP neural network and SVMmodel are themost

classic models in data-drivenmethods. Describe the degree of

fit of the curve, and Table 8 gives the sum of squared residuals

for the five different models.

As shown in figure 8, the output of BP neural network is

highly fitted in a healthy normal state, whereas the degree

of fit in the general state and the fault state is very low. The

fitting SSR value of the BP neural network is 12.09.

The output of the SVM model can fit the monitoring data,

although the classification effect is very bad, as depicted

in figure 9. The SSR value of the SVM model is 36.00.

As can be seen in figure 10. Though the output of the

particle filtering model can fit the monitoring data, the degree

TABLE 8. The sum of squared residuals.

FIGURE 9. The comparative SVM.

FIGURE 10. The comparative particle filtering.

of fit in the general state and the fault state is very low. The

SSR value of the PF model is 23.11.

As can be seen in figure 11. The classification effect of fault

state and health state is more accurate, but it is easy to produce

the result of misjudgement under the general condition. The

SSR value of the deep learning model is 62.00.

Figure 12 is a histogram showing the sum of the squared

residuals of the four methods, which can more directly show

the advantages of the reliability and effectiveness of the semi-

quantitative method compared with other methods.

Therefore, the fault state of the running gears of a

high-speed train can be accurately estimated using the
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FIGURE 11. The comparative deep learning.

FIGURE 12. The sum of squared residuals for the four different models.

updated BRB. The comparative analysis shows the advan-

tages of semi-quantitative information method on small sam-

ple problems.

V. CONCLUSION

To solve the problem of fault diagnosis in the operation

of the running gears of a high-speed train, this paper pro-

posed a fault diagnosis method based on semi-quantitative

information model. The PCA model was used to extract the

monitoring features of the moving parts. The rotation factor

was reversed to give physical meaning to the data. The initial

model parameters of BRB was used to construct a fault

diagnosis method designed to establish the relation between

‘‘poor’’ data and expert knowledge. The CMA-ES algorithm

was used to optimize the initial BRB model parameters,

and the estimation values of the state belief of the running

gears of a high-speed train were generated. According to the

experimental analysis, using the optimization model pro-

posed in this paper, the BRB model after training can reflect

the real-time status of the traveling system well, and has high

applicability to practical engineering problems. Therefore,

it is impossible to obtain a large amount of effective moni-

toring data. The project provides a new solution.

The BP neural network, support vector machine, par-

ticle filtering, deep learning and semi-quantitative infor-

mation model were compared with each other. When the

failure modal data are limited, the result showed that the

semi-quantitative information method combined with expert

knowledge effectively solved the problem of running gears of

a high-speed train fault diagnosis with high accuracy.

The proposed model input features were varied without

implicit information. In practical engineering, the charac-

teristic indicators describing complex systems have implicit

information, such as residual life and robustness. Although

this paper used the PCA method to select features, it does not

add the association analysis among the implicit information

characteristics. Moreover, the structure of the algorithm has

high latency in calculating multi-dimensional feature quanti-

ties, and there are shortcomings in real-time online diagnosis.

Our future study is to establish a relevant feature BRB anal-

ysis model with implicit information.
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