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A semi-supervised approach to message stance
classification

Georgios Giasemidis, Nikolaos Kaplis, Ioannis Agrafiotis, Jason R. C. Nurse

Abstract—Social media communications are becoming increasingly prevalent; some useful, some false, whether unwittingly or

maliciously. An increasing number of rumours daily flood the social networks. Determining their veracity in an autonomous way is a

very active and challenging field of research, with a variety of methods proposed. However, most of the models rely on determining the

constituent messages’ stance towards the rumour, a feature known as the “wisdom of the crowd”. Although several supervised

machine-learning approaches have been proposed to tackle the message stance classification problem, these have numerous

shortcomings. In this paper we argue that semi-supervised learning is more effective than supervised models and use two

graph-based methods to demonstrate it. This is not only in terms of classification accuracy, but equally important, in terms of speed

and scalability. We use the Label Propagation and Label Spreading algorithms and run experiments on a dataset of 72 rumours and

hundreds of thousands messages collected from Twitter. We compare our results on two available datasets to the state-of-the-art to

demonstrate our algorithms’ performance regarding accuracy, speed and scalability for real-time applications.

Index Terms—message stance, Twitter, rumours, semi-supervised, label propagation, label spreading

✦

1 INTRODUCTION

ONLINE content is at the centre of today’s information
world. A primary source of this content is social media,

with the public acting as a major contributor on everything
from election discussions to reports on ongoing crisis events.
This level of free engagement has several benefits. For
instance, it can encourage healthy discourse on pertinent
topics of public interest, or it can be invaluable at supporting
official responders reacting to an unfolding crisis – such as
Hurricane Harvey in the US [1] or the Manchester bombings
in the UK [2]. On the other hand social media can be used as
a tool to disrupt and harm society. Over the last few years,
we have seen a spate of misinformation and fake news
intended to misguide, confuse and potentially even risk
people’s lives [3]. This emerging reality highlights the power
of social media and the need to reliably discern genuine and
useful from harmful information and noise.

There has been a wide range of research in the so-
cial media domain. Of most relevance to this work is the
technical effort aimed at understanding and mitigating any
disruptive impacts (e.g. malicious rumour propagation).
Such work can be found as early as in Castillo et al. [4]
where a series of automated methods are used to analyse the
credibility of information on Twitter. The major contribution
of that article has been the identification of an area of
research aimed at automatically estimating the validity of
rumours and features of credible content, as information
spreads across social media platforms. Since then, there
have been a number of proposals exploring information
trust, credibility and decision-making, using technical (e.g.
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machine learning) and user-centred (e.g. focused on percep-
tions and behaviours) approaches [5], [6], [7], [8], [9]. These
approaches may consider individual or aggregated content
(posts, messages, etc.) within rumours and use this as a basis
for credibility or trust decisions.

Most of the research on social media rumours focuses on
determining their veracity. Several authors have proposed
different supervised systems using temporal, structural,
linguistic, network and user-oriented features [10], [11],
[12], [13]. However, these approaches assume that message
annotation1 is granted. Being able to annotate messages au-
tomatically is the most important step towards determining
the veracity of rumours [14].

Therefore, one of the most intriguing areas of research
in the domain of social media is the problem of message
(i.e. post, tweet, etc.) stance classification. Here, the aim
is to determine whether a particular message supports,
refutes or is neutral towards a rumour; neutral stances can
be further expanded to differentiate between querying or
commenting messages, as highlighted in Zubiaga et al. [15].
Stance classification is essential for the modelling of veracity
in a dataset.

In this paper, we aim to improve on the current state-
of-the-art by proposing a semi-supervised approach to the
problem of message stance classification. We use two graph-
based semi-supervised algorithms with a variety of exper-
imental settings. We demonstrate the performance of the
models on two publicly available datasets.

The novel aspects of this work are twofold. First, we
propose a new machine-learning approach, based on semi-
supervised learning, to the problem of message stance
classification. We argue that this is a more well-rounded
way to tackle the problem than using supervised learning

1. Message annotation refers to the classification of the message
stance towards the rumour.
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both in terms of accuracy and, perhaps more importantly
when dealing with large and diverse datasets, in terms
of computational speed and scalability. We should clarify
that we do not introduce a new algorithm, but we apply
an existing class of algorithms to the problem for the first
time. Second, we use a larger and more diverse dataset of
rumours in terms of size and topics. Our dataset consists of
15 distinct events in comparison to the publicly available
ones which contain either a single event or nine events,
see next sections for further details. Particularly, the lack of
diversity in rumours in the publicly available datasets intro-
duces bias/over-fitting and does not facilitate transference
of knowledge, forcing the need for constant re-training.

The performance of the semi-supervised models with
different features and parameters are tested on data from
an earlier study [10] consisting of tweets which have been
manually annotated. Our work has concluded in a semi-
supervised model that consists of the Label Spreading al-
gorithm using 1,000 Brown Clusters (i.e. groups of words
that are assumed to be semantically related) as features. The
model’s performance is enhanced by manually annotating
a small portion of the tweets. To validate our model, we
apply it to two datasets; the first consists of seven rumours
from the UK riots in 2011 [16], achieving an 84.9% accuracy
while outperforming all benchmark and random models.
The second set (the PHEME dataset) consists of 23 rumours
from 9 major events [17], has a higher bias and scores 75%
accuracy and outperforming all other models in terms of
weighted accuracy.

The remainder of this paper is structured as follows. In
Section 2 we review the literature for the state-of-art tech-
niques in message stance classification. In Section 3 we intro-
duce the methodology and elaborate on the semi-supervised
algorithms used in this study. Section 4 presents the results
from the experiments we performed using different feature
sets, algorithms and kernels (Section 4.1). Furthermore, we
validate the methods on two independent sets of rumours,
one from the London riots and the PHEME dataset, and
compare the results to the literature (Section 4.2). Finally,
Section 5 concludes the paper and discusses future work.

2 RELATED WORK

The area of rumour stance classification has recently at-
tracted the interest of the academic community. Unlike the
case of rumour veracity classification where a rumour is
classified as true or false, the focus of the rumour stance
classification is on individual messages. More specifically,
the aim is to classify messages which contribute to a rumour
into four categories, namely supporting, denying, querying
and commenting. It is worth mentioning that often querying
and commenting classes are either omitted or merged. Thus
far, most works in this area adopt supervised methods and
differ mainly in the machine learning approaches used for
the classification and in the set of features that are utilised
in the aforementioned algorithms [15].

The first study to delve into classification of tweets was
by Mendoza et al. [11], where a collection of rumours, whose
veracity was identified, was further analysed manually to
establish the number of tweets that were supporting or
denying the rumour. The authors classified the tweets into

those denying, confirming or questioning the rumour and
the end goal was to understand if the distribution of these
classes can be indicative of the veracity of a rumour. Their
results suggested that for rumours whose veracity was true,
95% of tweets confirmed the rumour. On the contrary, when
the veracity of the rumour was deemed as false only 38% of
the tweets supported the rumour. Procter et al. [18] derived
similar conclusions when analysing rumours during the UK
riots in 2011. They focused particularly on the popularity of
the users tweeting rumours, compared patterns of how false
and true rumours start and evolve and identified significant
differences. Extending the afforementioned works, Andrews
et al. [19], narrowed their focus on how “official” accounts
can help contain a false rumour and offer best social media
strategies for large organisations.

Qazvinian et al. [20], were the first to automatically
classify the stance of tweets. The authors opted for Bayesian
classifiers and used the same feature set that they extracted
to determine the veracity of rumours. They limited their
approach by considering only two classes for annotating
tweets (denying and confirming). In addition, they consid-
ered only long-term rumours and focused on how users’
beliefs change over this long period. In a similar vein,
Hamidian et al. [21], focused on features related to time,
semantic content and emoticons and their approach outper-
formed Qazvinian et al. They extended their previous work
by introducing the Tweet Latent Vector approach and by
considering what they coined as “belief features”, which are
features that investigate the level of committed belief for
each tweet [21].

In a similar vein, Mohammad et al. [22], propose a
detection system able to determine a stance of a tweet
for a particular target (i.e., person, institution, event etc.)
by exploring correlations between stance and sentiment.
Their system draws features from word and character n-
grams, sentiment lexicons and word-embedded character-
istics from unlabelled data. A linear-kernel SVM classifier
is utilised to produce three clusters (positive, negative and
not-determined stance) with very promising results (70%
F-score on SemEval-2016 data). We note that training for
stance is not generalised across all tweets, but is restricted
per target group.

Based on Werner’s et al. [23] belief tagger, Hamidian et
al. [24] created a vector indicating whether a user strongly
believes in the proposition; provides a non-committed com-
ment; reflects a weak belief in the proposition; does not
expressing a belief in the proposition. Lexical features were
also used based on bag-of-word sets, which consist of word
unigrams. The authors then explored the performance of a
set of classifiers, inter alia J48 Decision Trees, Naive Bayes
networks and reported that Sequential Minimal Optimiza-
tion (SMO) outperforms all approaches. Similarly to previ-
ously presented work, their approach is limited to long-term
rumours only.

Zeng et al. [25] focus more on semantic and linguistic
characteristics and they introduce Linguistic Inquiry and
Word Count (LIWC) features, as well as n-grams and part-
of-speech components. Based on their experimentation and
coded dataset, they are able to achieve an accuracy of over
88% in classifying rumour stances in crisis-related posts;
here, random forest models result in the best performance.
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Lukasik et al., [26], [27] designed a novel approach based on
Gaussian Processes. They explored its effectiveness on two
datasets with varying distributions of stances. The authors
report results on cases where all tweets encompassing a
specific rumour are used for testing and cases where the
first few tweets are added to the training set. The classifier
performs very well in the latter case. The novelty of this
work lies in the classification of unseen rumours since this
approach can annotate tweets for each rumour separately,
enabling the classification of tweets for emerging rumours
in the context of fast-paced, breaking news situations.

Jin et al. [28], suggest an unsupervised topic model
method to detect conflicting tweets which discuss the same
topic, as a first step for determining the veracity of fake
news. They determine the stance of a tweet by focusing on
a pair of values (topic and view point) represented by a
probability distribution over a number of tweets. The topic-
viewpoint pairs are then clustered into conflicting view-
points when the distance between topics-viewpoints of the
same topic exceeds a predefined threshold. Once conflicting
tweets are determined, a graph of the network containing
tweets which refer to the same topic is created and an
effective loss function is used to solve the optimisation
problem.

Zubiaga et al. [29], introduce a novel approach that
considers the sequence of replies in conversation threads
in Twitter. Users’ replies to one another were converted to
nested tree forms and tweets were analysed not only based
on their individual characteristics (content, semantics etc.)
but also on their position in the conversation. Two sequen-
tial classifiers namely Linear Conditional Random Fields
(CRFs) and Tree-CRFs were adopted and eight datasets were
used for validation with Tree-CRF performing slightly better
than the Linear-CRF.

Kochkina et al. [30], proposed a deep-learning approach
adopting Long Short-Term Memory networks (LSTMs) for
sequential classification. They perform a pre-processing step
by removing non-alphabetic characters and they tokenise
the words. They further extract word vectors based on
Google’s word2vec model [31], count negation words and
punctuation, identify the presence of attachments, follow
the relation of content to other tweets in the discussion and
count the content length. The model is trained using the
categorical cross entropy loss function, however, they report
that their approach is unable to distinguish any tweets
denying a rumour, which are the most under-represented
in their dataset. They note that these tweets are mostly
misclassified as commenting and theorise that an increased
amount of labelled data would improve the performance of
their approach.

It is also worth mentioning some approaches that have
critically reflected on the literature of stance categorisation.
Shu et al. [32], present an overview of emerging research
regarding fake news and stance classification. They elicit
features from psychology and social theories, linguistic ex-
amination, as well as network and user characteristics and
identify a number of models that can potentially utilise
such features. One of these is stance-based approaches
which centre around a single post and propagation-based
approaches which focus on how tweets about a theme are
interconnected. They conclude their survey by proposing a

number of different datasets for testing of novel systems and
suggest evaluation methods (i.e., Accuracy score, F-score).
Finally, Ferreira and Vlachos [33] examine rumour detection
in environments that are not related to social media. They
present a dataset that comprises online articles and propose
tailored features to the structure of the articles. They utilise
logistic regression to categorise articles into those which are
verified and those that are false with relative success (73%
accuracy).

3 METHODOLOGY

In this work, we propose that the problem of message
stance classification is more efficiently approached by semi-
supervised learning algorithms. We argue that other su-
pervised machine learning approaches, even though they
may achieve marginal higher accuracy in limited datasets,
they do not perform satisfactorily at large scale, which is
more relevant to real-life applications. To this end, we use
a class of graph-based semi-supervised algorithms, namely
Label Propagation and Label Spreading, to illustrate our
arguments. It is worth noting that other semi-supervised
methods could be used as well, but a full comparison of
such semi-supervised algorithms is beyond the scope of
this study. To further motivate our proposed methodology,
below we briefly discuss the pros and cons of supervised,
unsupervised and semi-supervised learning approaches.

First, supervised approaches have limitations as it per-
tains to capturing the diversity of the messages and the
stance of the same message towards two opposite rumours.
A supervised approach uses a large dataset of messages for
training a model. When applying this model to a new mes-
sage, the supervised approach usually ignores the original
claim, towards which the message takes a positive, neutral
or negative position. For example, consider two rumours,
the first claiming “X is true” and the second claiming “Y is
true”. In a supervised approach, a message saying “X is true
and Y is not true” trained on the first rumour will always be
classified in the “supporting” class, irrespective of whether
it refers to the first or the second rumour.

There have been hybrid supervised approaches, e.g. [16],
that take into account annotated messages from the rumour
under consideration in order to enhance performance. How-
ever, these approaches have a serious drawback. In a live
environment, where speed is as essential as accuracy, they
require the retraining of a large set of annotated messages
for every new rumour. The training of accurate supervised
models can be computationally very expensive and time-
consuming, which makes such hybrid approaches inappro-
priate for real-life applications.

Unsupervised machine learning splits the messages into
distinct clusters, but it provides no details about the content
of these clusters. it is therefore necessary to manually inspect
a sample of messages from each cluster to decide whether
the cluster consists of supporting, denying or neutral mes-
sages.

This brings us to the semi-supervised learning, where
only a few observations are labelled and are used as seeds
for the algorithm to cluster the remaining input data cor-
rectly. This approach has several advantages. First, it re-
quires only a few labelled observations, therefore the end-
user only has to manually tag a small number of messages.
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Second, it is faster than supervised approaches, such as [16],
which require recalibration while new messages from the
rumour under consideration are being collected. Finally, it
is rumour-specific, i.e. it allows the same text to be classified
in different classes for different rumours, depending on the
content of the rumour claim.

3.1 Data Description

Our dataset consists of the 72 rumours used in [10] 2. The ru-
mours were manually identified from messages (tweets) col-
lected from Twitter, using the Twitter public API and search-
ing for keywords related to specific events. All messages
were manually annotated as supporting, neutral/questioning
or against towards the corresponding rumour.

The size of the rumours varies from 23 to 46,807 tweets,
see Figure 1a. For tweet stance classification, only the orig-
inal tweets (i.e. those that are not re-tweets) must be classi-
fied as supporting, neutral or against towards the rumour, as
re-tweets are assigned to the same class as their original
tweet. Additionally, we skip non-English tweets, because
the features we consider are language (here, English) spe-
cific. Figure 1b shows the distribution of the number of
original English tweets for the 72 rumours.

All messages are pre-processed before feature extraction.
We follow the pre-processing steps in [16]; (i) URLs, e-mails
and Twitter mentions3 are removed, (ii) text is lower-cased,
(iii) all punctuations other than “,”, “.”, “!”, “?” are removed,
(iv) multiple occurrences of characters are replaced with
double occurrence, and (v) extra white space is removed.
Stemming, i.e. the process of reducing inflected (or some-
times derived) words to their word stem, is not performed
as the Brown clusters (see Section 3.2) include whole words.
Stop-words are included, because they capture important
features, such as negation.

3.2 Feature Space

The messages are vectorised using three different strategies
(feature sets), that are proposed in the literature (and com-
binations thereof).

1) 1,000 Brown clusters, denoted as “BrownC”, ex-
tracted in [34] from a Twitter corpus. Every word in
a tweet is placed in one of the 1,000 clusters, which
represent the features.

2) Linguistic features, denoted as “Ling”, such as com-
plexity of the message, number of tentative words
(e.g. “confuse”, “suppose”, “wonder”), that indicate
uncertainty, number of swearing words, sentiment,
negation, etc. These features aim to capture statis-
tical patterns, such as tentative words being more
common in messages that question a claim.

3) 2-grams to 6-grams features (abbreviated as
“NGrams”) of the messages in a rumour. It is worth
noting that the total number of N-grams (i.e. fea-
tures) varies from rumour to rumour, in contrast to
the aforementioned feature sets where the features

2. This dataset is not currently publicly available due to Intellectual
Property (IP) reasons. However, the method is validated on two pub-
licly available datasets in Section 4.2, where the results are reproducible.

3. Twitter mentions are username tags starting with the @ symbol.

are fixed for all rumours. Another drawback is that,
as new messages arrive in a live system, the feature-
set is expanding. To apply this feature set, a suffi-
cient number of messages must have been collected
to capture the diversity in the N-grams.

4) A combination of Brown clusters with the sentiment
and negation features from the Linguistic features
(“Brown & Ling”). We choose these two linguistic
features, as we would like to study the effect of the
sentiment and negation in message stance classifica-
tion performance. 4

Feature selection is performed to choose the best feature
set that represents the data; however we do not attempt
to further reduce the size of each feature set as these are
standard feature sets to represent the language in Natural
Language Processing (NLP) problems [35].

3.3 Label Propagation and Label Spreading

Label propagation (LP) is a semi-supervised machine-
learning method, in which observations (here messages) are
represented as nodes on a graph (see [36] for a review).
Consider a graph g = (V,E), where V = {v1, . . . , vn} is the
set of vertices (here messages), corresponding to the data
(feature vectors) X = {xi ∈ R

m|i = 1, . . . , n}, and E is the
set of edges, representing the similarities between the nodes,
through a similarity matrix W . A typical choice of similarity
matrix is the Gaussian kernel with width σ, i.e.

Wij = e−
||xi−xj ||

2

2σ2 . (1)

The width σ is a free parameter that requires selection. The
graph could be fully connected or a k-nearest neighbours
graph.

Given the graph g and a subset of labelled observations,
the LP algorithm aims to propagate the labels on the graph,
each node propagating its label to its neighbours until
convergence.

Let yi = (yi,1, yi,2, yi,3) ∈ R
3, where yi,j is the prob-

ability of observation i being in class Cj ∈ {−1, 0, 1}
representing the three classes corresponding to against,
neutral and supporting messages, respectively. We denote
Yl = {y1, . . . ,yl} the set of l labelled observations, with
typically l << n, where yi,j = 1 and yi,k = 0 for k 6= j.
Also, let Yu = {0, . . . ,0} be the set of the n − l unlabelled
observations, where 0 ∈ R

3 is the null vector. The algorithm
proceeds as follows:

1) Compute similarity matrix W .
2) Compute the diagonal degree matrix D, Dii =∑

j Wij .

3) Initialise the labels Ŷ (0) ← (Yl, Yu).
4) Iterate and impose hard-clustering: Ŷ (t+1) ←

D−1WŶ (t) and Ŷ
(t+1)
l ← Yl, where t is the iteration

step, until convergence.

4. Sentiment was extracted using the “Vader Sentiment Analyser”
and negation was estimated using the “Stanford Dependency Parser”,
with the NLTK library in Python.



IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ??, NO. ?, ?? 5

(a) Total (b) Original English only

Fig. 1: Distribution of the number of tweets in rumours: total (left) and original English only (right).

In step 4, the algorithm assigns the average label (or
probability of class membership) of the neighbours of a
vertex vi to vertex vi, i.e.

ŷ
(t+1)
i =

∑n
j=1 Wijŷ

(t)
j

Dii
, (2)

The vertex is assigned to the class with the highest prob-
ability, i.e. Ci = argmaxyi. The proof for convergence is
beyond the scope of this study, but the interested reader
should refer to [37] and [36, Chapter 11].

Variations of this algorithm allow for soft clustering,
i.e. permitting the labelled data to change their cluster, by
removing the hard-clustering assignment in step 4. This
is achieved by introducing a parameter α ∈ [0, 1] in the
numerator and denominator of Eq. (2) for the labelled data.

A similar algorithm, called Label Spreading (LS), uses
the normalised Laplacian in the iteration step 4 above and
allows the tagged observations to change classes. The algo-
rithm becomes:

1) Compute similarity matrix W , with Wii = 0.
2) Compute the diagonal degree matrix D, Dii =∑

j Wij .
3) Compute the normalised graph Laplacian Ls =

D−1/2WD−1/2.
4) Initialise the labels Ŷ (0) ← (Yl, Yu).
5) Choose a parameter α ∈ [0, 1].
6) Iterate Ŷ (t+1) ← αLsŶ

(t) + (1 − α)Ŷ (0) until con-
vergence.

The algorithm has been proved to converge, see [38] and
[36, Chapter 11] for further details.

The computational time of these algorithms is of order
O(n3) for dense graphs and O(n2) for sparse ones [36,
Section 11.2].

The cost function must consider both the initial labelling
and the geometry of the data induced by the graph structure
(i.e. edges and weights W ) [36], [38],

l∑

i=1

||ŷi − yi||
2 +

1

2

n∑

i,j=1

Wij ||ŷi − ŷj ||
2, (3)

where the first term is a fitting constraint for the labelled
data and the second term heavily penalises points that are
close in the feature space but have different labels (smooth-
ness constraint).

In this study, we use the algorithms as implemented in
the scikit-learn library in Python [39] with a bug fix5 that
allows hard-clamping for α = 1.

4 EXPERIMENTATION AND RESULTS

In this section, we experiment with different settings of
the algorithms (such as feature sets, kernels, selection of
hyper-parameters), before we validate it with two publicly
available datasets. The experimentation will lead to the final
model and involves the following steps:

• Selection of feature set, see Section 3.2.
• Selection between Label Propagation and Label

Spreading, see Section 3.3.
• Selection between Gaussian and k-nearest neigh-

bours kernels.
• Selection of the kernel’s hyper-parameter σ.

4.1 Label Propagation and Label Spreading

The Label Propagation and Label Spreading methods re-
quire the selection of a hyper-parameter, depending on the
kernel used to generate the graph.

For Gaussian (or “rbf”) kernel, defined in eq. (1), and
fully connected graph, this is the parameter σ. We use a
grid-search for finding the optimal parameter, searching in
a set of values that span different orders of magnitude of
σ from O(10−1) to O(103). As we see below, this range
of values is sufficiently large in the search for the optimal
parameter.

For k-nearest neighbours, we experiment with different
numbers, k, of nearest neighbours when constructing the
similarity matrix, from 5 to 50 in increments of 5.

The semi-supervised algorithm requires a sample of an-
notated (manually classified) messages. For our experiments

5. https://github.com/scikit-learn/scikit-learn/pull/3751/files

https://github.com/scikit-learn/scikit-learn/pull/3751/files
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we annotate the first N messages (chronologically) that ap-
pear in a rumour, where the number of manually annotated
messages is gradually increased N = {10, 20, 30, 40, 50} for
each rumour. Therefore, we skip rumours with less than
50 original tweets, resulting in a total of 64 rumours. We
validate the performance of the model on each rumour
using the messages that are not initially annotated.

We compute several performance scores, such as the
accuracy, the weighted accuracy, F1-score and log-loss (en-
tropy) scores. The accuracy is not a good performance
score for biased datasets, which is the case in tweet stance
classification, as most messages are in favour of the rumour.
For this reason, we focus on weighted accuracy, F1-score and
entropy for choosing the best-performing feature set, kernel
and hyper-parameter.

We also experiment with different features sets, pre-
processing steps, kernel (e.g. k-nearest neighbours (“knn”))
and algorithms (e.g. Label Spreading (LS)). We summarise
these results in Table 1, where we show the maximum
accuracy, weighted accuracy, F1-score for N = 50 annotated
messages. We also present the values of accuracy and F1-
score at the optimal parameter (“opt param”), which is
the value of the parameter (σ or k) where the weighted
accuracy is maximised. The BrownC∗ feature set was created
by altering two pre-processing steps, i.e. (i) stemming is
performed, and (ii) stop-words are removed.

First, we observe that using whole words and neglecting
stemming together with the use of stop-words yields better
results. We investigated the effect of stemming and stop-
words separately (not shown in the table however). We
found that either stemming or stop-word removal results
in lower performance scores. In addition, we notice that lin-
guistic and N-gram features are poor indicators for message
stance classification. Combining the Brown clusters with
sentiment and negation linguistic features (BrownC & Ling)
does not increase performance. This is because sentiment is
also not a good indicator of message stance.

Between the available kernels, the k-nearest neighbours
(“knn”) appears to perform worse. We understand this to
be due to the fact that the k-nearest neighbours kernel
assigns either a hard-link (of unit weight) or no link between
nodes with no weighting to capture the degree of similarity
between messages.

Finally, the Label Spreading (LS) algorithm delivers very
similar results to LP, performing marginally better. The per-
formance plots for LP appear very similar to those in Figures
2–4, with the optimal scores being at the same regions of the
σ-parameter. The two algorithms only differ, when α = 1, at
the normalisation of the weight matrix, W . Therefore, their
results are expected to be very similar.

We now focus on the best-performing method (“LS”
algorithm with “rbf” kernel and “BrownC” feature set) and
explore its parameter space in more detail. In Figures 2–4,
we plot the average performance scores for the 64 rumours
as a function of the σ-parameter for different numbers of
annotated messages. For comparison we also plot three
benchmark models: a random classifier, which randomly
assigns a message to a class with probability 1/3, a weighted
random classifier, which classifies a message in proportion
to the class-frequency in a rumour, and the majority model,
which assigns all messages to the majority class of a rumour.

Fig. 2: Accuracy of the LS algorithm with rbf kernel and
Brown cluster features against σ-parameter for several num-
bers of annotated messages N .

Fig. 3: Weighted accuracy of the LS algorithm with rbf kernel
and Brown cluster features against σ-parameter for several
numbers of annotated messages N .

We observe that the accuracy and weighted accuracy in-
crease and the entropy decreases as the number of annotated
messages increases, as expected. The more initial informa-
tion the algorithm has, the better it performs. In addition, in
most cases the models outperform the benchmark models 6.

In more detail, we observe that all metrics have a
constant plateaux for σ & 5. These values suppress the

6. The majority model outperforms the semi-supervised models on
the accuracy score for some values of the parameters, but this is an
artefact of the biased dataset, which becomes evident when looking at
the weighted accuracy, Figure 3, and entropy, Figure 4.

Fig. 4: Entropy of the LS algorithm with rbf kernel and
Brown cluster features against σ-parameter for several num-
bers of annotated messages N . The y-axis is in log-scale to
highlight the local minimum of σ.
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Method Max Accu-
racy

Max Weighted
Accuracy

Max F1-
Score

Accuracy at
opt param

F1-Score at
opt param

LP-BrownC-rbf 0.7822 0.4995 0.4606 0.7434 0.4500
LP-BrownC∗-rbf 0.7604 0.4891 0.4341 0.7068 0.4151
LP-Ling-rbf 0.7529 0.4458 0.3997 0.6725 0.3829
LP-BrownC & Ling-rbf 0.7678 0.4736 0.4318 0.7083 0.4228
LP-Ngrams-rbf 0.7593 0.4389 0.3722 0.7001 0.3577
LP-BrownC-knn 0.7435 0.4112 0.3713 0.7141 0.3713
LS-BrownC-rbf 0.793 0.5037 0.4763 0.7489 0.4666

TABLE 1: Summary of performance scores for different methods. The first column contains the method (algorithm-feature
set-kernel). The next four columns contain the maximum scores (occurring at different parameters) for N = 50 annotated
messages. The last two columns contain the accuracy and F1-score at the optimal parameter, i.e. the parameter where the
weighted accuracy is maximised.

exponent of the kernel (1), resulting in a similarity matrix
(cf. eq. (1)) whose elements are all very close to 1. Therefore,
all messages appear to be very similar to each other, hence
giving the same prediction. For smaller values of σ, the
messages become distinguishable in the graph represen-
tation, resulting in an increase of accuracy and weighted
accuracy, where the entropy has a local minimum. For very
small values of σ, the exponent in (1) becomes too large,
hence, the elements of the similarity matrix become too
small and the messages are very weakly connected in the
graph representation, resulting in poor performance. It is
the region at σ ∼ O(1), where the accuracy scores have a
local maximum and the entropy has a local minimum.

Focusing on the accuracy and entropy, the local optimal
occurs at value σ ∼ 0.85, whereas the weighted accuracy
shows a fluctuating plateaux for 0.2 < σ . 1. Combining
the conclusions from the three metrics, we choose σ = 0.85
as the optimal value.

The remaining methods considered in Table 1 behave
similarly, showing the same qualitative patterns, although
the location of the optimal parameter may differ.

In Figure 5, we plot the distribution of the accuracies of
the 64 rumours for the LS algorithm with rbf kernel and
σ = 0.85. We notice that as more messages get annotated,
the distribution is shifted to higher values. For N = 50,
more than half of the rumours have accuracy greater than
80%. Only two rumours show an accuracy less than ran-
dom, which will be investigated in future work, see Section
5. Some rumours have low accuracy because one or two
classes are not present in the first 50 annotated messages.
We aim to resolve such cases in future work, see also the
discussion in Section 5.

Here, we selected σ so that it optimises the average
performance scores. However, the messages in different
rumours might have distinct spread in the feature space,
hence, requiring a varying σ that depends on the particular
rumour.

In [37], the authors proposed a heuristic method for
determining the σ of individual datasets (here rumours).
Particularly, they find the minimum spanning tree of la-
belled data, from which they estimate the minimum dis-
tance between two nodes that belong on different classes.
Then σ is set to one third of that distance, following the rule
of 3σ of the normal distribution.

In Figure 6, we plot the performance scores of the LS
with tuned σ = 0.85 and the LS with σ dynamically
determined using the heuristic of [37]. We observe that

Fig. 5: Distribution of rumour accuracies for increasing
number of annotated messages. The vertical lines indicate
the accuracy of the benchmark models, random (black),
weighted random (magenta) and majority (cyan).

the accuracy of the “tuned” method is higher than that
of the “heuristic” method; however, the latter outperforms
the former in the weighted accuracy, indicating that the
“heuristic” σ method is better for biased datasets.

Although the “heuristic” method underperforms in
terms of accuracy, it is sometimes useful in a real-world
system, which operates on corpus other than Twitter.

4.2 Validation and Comparison

We validate the proposed algorithm on two datasets in [16]
and [17] and compare the performance of our approach
with the Gaussian Processes of [16]. We choose to compare
against this study for the following two reasons. First, its
dataset and algorithms are publicly available. This allows us
to make a direct comparison on the same dataset. Second,
the authors of this work use a hybrid approach, which, to
the best of our knowledge, is among the state-of-the-art in
the academic literature.

The authors of [16] considered Gaussian Processes in
three different training methods. The first method (here
denoted as “GP”) involves training only on the first N

annotated messages from the rumour under consideration
(the target rumour). In the second method (“GPPooled”), a
GP model is trained on messages from other rumours in the
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(a) Accuracy

(b) Weighted accuracy

Fig. 6: Average performance of the LS method with tuned
and heuristic method for finding σ

dataset (the reference rumours) combined with the first N
messages from the target rumour. The final configuration
(“GPICM”) is similar to the second one, but instead weighs
the influence from the reference rumours.

We focus on the Brown clusters excluding the bag-of-
words features. Our methods consist of the LS algorithm
with rbf kernel and σ either tuned to σ = 0.85 or deter-
mined by the heuristic approach, described in the previous
section, for each rumour.

4.2.1 London Riots Dataset

The dataset in [16] consists of seven rumours from the
London riots in 2011. Due to anonymisation of the dataset,
messages are replaced with their features, i.e. the 1,000
Brown clusters and bag of words. Therefore, we perform
no pre-processing of the messages and work directly with
their feature representation.

In [16], the authors trained a Gaussian Process (GP) 7

using only original tweets and validated it on a set that

7. For an introductory review on GP see [40].

included both original tweets and retweets. Similarly, we
annotate the first N = {10, 20, 30, 40, 50} original tweets
and compute the performance scores using all the remain-
ing tweets. Here, we are not able to simply assign every
retweet to the same class as its original tweet because the
dataset has no retweet id information, from which one can
associate retweets to original tweets. Instead, the dataset
includes a tag identifying whether the message is a retweet
or not. Therefore, the retweets participate in the algorithm
as “original tweets”.

The accuracy and weighted accuracy of the two pro-
posed semi-supervised methods as a function of N are
plotted in Figure 7. For comparison, we also plot the per-
formance scores of the three GP methods and benchmark
models. Regarding the LS algorithm, we observe that the
performance scores increase as more tweets get annotated.
Particularly, the tuned σ method achieves an accuracy of
83.2% and 84.9%, whereas the “heuristic” σ method scores
81.9% and 82.9%, at N = 40 and N = 50 respectively. All
performance scores show that the LS method outperforms
all other methods for N ≥ 40. Particularly, it outperforms
the “GP” method, which is actually a semi-supervised
approach for Gaussian Processes, for all N . Although the
remaining two GP methods achieve higher performance at
early stages, they suffer from scalability and speed issues,
hence, they are inefficient for quick message stance classifi-
cation in a rapid-response live system.

For example, when applied on this dataset, consisting of
7 rumours and 7297 tweets (which is a moderate number,
for real-life situations), the GP methods required about
a week of training, on a 12-core machine 8. Given that
frequent retraining would be required for any live system,
this demonstrates that supervised methods, though accu-
rate, cannot scale up, therefore limiting their usefulness for
realistic systems.

4.2.2 PHEME Dataset

We also compare the two methods on another publicly
available dataset [17]. This set consists of tweet conversa-
tions, collected in association with 9 breaking news sto-
ries. The conversations are organised in threads the root
of which is the initiating rumour tweet, accompanied by
the corresponding replies. The tweets are annotated for
support, certainty and evidentiality. In order to align this
dataset with the purpose of this study, we group threads
by rumour. In our nomenclature there are two levels of
support in this set; whether the initial tweet supports or not
the rumour and whether the subsequent tweets support the
initial tweet’s claim. We straighten this two-step relation, by
resolving the support of each tweet against the rumour, and
update the annotation accordingly. For example if the initial
tweet supports the rumour claim it is annotated as such.
If a subsequent tweet (reply) negates the initial tweet with
certainty, then it is annotated as not supporting the rumour
claim.

The dataset contains 297 threads containing 4561 tweets
(including retweets), spanning 138 rumours organised in
9 stories. For the purpose of this study, as explained in
previous sections, we select only the rumours containing

8. Dual Intel(R) Xeon(R) CPU E5-2630 v2 @ 2.60GHz, 256GB RAM.
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(a) Accuracy

(b) Weighted accuracy

Fig. 7: Average performance scores of the LS (solid line
with round markers), the three GP methods (non-solid lines)
and benchmark models (solid lines) of the 7 London riots
rumours.

at least 50 English original tweets. The final number of
rumours we are using from this dataset is therefore 23
containing 2233 (original English) tweets.

The accuracy and weighted accuracy of the models are
presented in Figure 8. Looking at the accuracy of the ma-
jority model in Figure 8a, we conclude that the dataset is
strongly biased, with most messages belonging in a single
class. Therefore, we focus on the weighted accuracy, which
suppress the majority model as well as the “GPPooled”
model. Both versions of the semi-supervised LS methods,
score at least as well as the GPs from the very early stages of
the rumours’ development and outperform the GP methods
for N ≥ 40 labelled messages.

4.2.3 Remarks

Following the conclusions in [16], we make the following
observations.

• The performance of LS increases as more tweets
get annotated. This behaviour is expected because
a semi-supervised algorithm relies on limited infor-
mation, the more the better.

• “GP” resembles the semi-supervised learning, as
only a limited number of tweets from the target ru-
mour are used for training. Comparing to the results
presented here, we achieve at least a similar accuracy
from early on, N = 10, on both datasets, however,
the performance of the LS methods increases with

(a) Accuracy

(b) Weighted accuracy

Fig. 8: Average performance scores of the LS (solid line with
round markers), the three GP methods (non-solid lines) and
benchmark models (solid lines) of the 23 PHEME rumours.

N , exceeding 80% at N = 40 on the “London Riots”
dataset.

• The weighted accuracy of the proposed models at
N ≥ 40 exceeds the accuracy of all three methods in
[16] on both data-sets.

• “GPICM” in [16] outperforms the LS method for
N < 30 on the “London Riots” dataset (but not
on the “Pheme” dataset). However, this might be
an artefact due to the lack of messages’ diversity
in the “London Riots” dataset. GP was trained only
on messages about a particular topic, the London
riots, hence, all messages in the pooled rumours
are relevant to the messages in the target rumour,
achieving a better score due to over-fitting. This
might be the reason why the GP methods do not
perform significantly better at low N on the second
dataset, where messages from diverse topics exist.

• “GPICM” and “GPPooled” are particularly ineffi-
cient in a live system where both speed and accuracy
are essential. Training a new model as new messages
arrive slows down the process, particularly, when
supervised training is performed on a large dataset,
as in “GPPooled” and “GPICM”.

• Finally, it should be noted that the “GP” method
with no tweets from the rumour under consideration
(“Leave-one-out”), simulates the situation when a
completely unknown rumour is examined. Such a
design could address our concerns about scalability
if it performed well enough, since one would only
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need to train a model once. This set-up was examined
but consistently underperformed every other result
reported here, which is why it is not included in the
plots.

Overall, the proposed algorithm achieves a better per-
formance and is much faster than a GP (as considered in
[16]). The LS scales asO(n2). Specifically, the times required
to process the rumours in our dataset fit the polynomial
time(n) = 2.06 ·10−7n2+4.47 ·10−5n−9.32 ·10−3 seconds,
i.e. a rumour with 1,000 messages is processed in 0.24
seconds 9.

In the previous comparison we have focused on the
accuracy (measured with three different metrics) of each al-
gorithm. Here, we would like to emphasize another point of
comparison, namely scaling. The top-performing Gaussian
Process algorithms, i.e. “GPPooled” and “GPICM” rely on a
sizeable reference library of messages, over which training
is performed. In a real-life system, dealing with millions
of messages and hundreds of wildly diverse rumours, this
reliance cripples performance. One would first have to train
on this reference library, and then apply the resulting model
on arriving messages. Moreover, as the messages that do not
belong to the reference library grow in number, periodically
retraining will become necessary, now on an even larger
library. In other words, when one considers the complexity
of Gaussian Process algorithms, which is O(n3) or at best
O(n2) [40], one needs to remember that, in these cases,
n refers to the number of reference messages. Contrary
to that, “LS”, which scales as O(n2), only involves the
messages of the rumour under investigation and is com-
pletely agnostic to other rumours, thus n is a significantly
smaller number. Furthermore, since each incoming rumour
is treated independently there is no training stage and no
need for retraining. It therefore becomes clear, that “LS” is
significantly better at performing in realistic environments.
Practically, as already mentioned, the GP methods when
applied on the PHEME data set, consisting of 2233 mes-
sages (which is a moderate number, for real-life situations)
required almost 14 days of training, on a 12-core machine.
Given that frequent retraining would be required for any
live system, this demonstrates that supervised methods,
though accurate, cannot scale up, therefore limiting their
usefulness for realistic systems. In contrast, the LS method
would take 1.1 seconds for a rumour of size 2233.

5 CONCLUSION AND OUTLOOK

In the modern world dominated by social media interac-
tions, unverified stories can spread quickly, having a huge
impact on people’s life, particularly on situations of crisis,
such as terrorist attacks, natural disaster, accidents, or even
a financial impact. Determining the trustworthiness of infor-
mation is a challenging and open problem. Particularly, on
situations of crisis, the veracity of rumours must be resolved
as quickly as possible. Therefore, speed and classification
performance are equally important. Several methods have
been proposed to automate the identification of rumour
veracity. Towards this goal, the classification of messages,

9. On a laptop with 16GB RAM and Intel(R) Core i7-3610QM CPU @
2.30GHz

i.e. whether they support, deny or question a rumour, is
a crucial feature [10], as people tend to correctly judge a
situation collectively (“wisdom of the crowd”). However,
this task often requires manual effort. The aim is to automate
this process as much as possible and reduce the burden
on end-users, i.e. a fast process that requires minimum
input information from an end-user, classifies whether the
messages support, deny or are neutral to the rumour and
feeds the classification to the rumour veracity assessor.

Having reviewed the literature, we found that most
methods for message stance classification rely on supervised
machine learning [15]. We argued why such algorithms
do not address the problem satisfactorily, in terms of ac-
curacy, computational speed and scalability, and instead
we propose that existing semi-supervised algorithms tackle
the problem more efficiently, especially when dealing with
large and diverse datasets. We focus on a family of graph-
based semi-supervised algorithms, the Label Propagation
and Label Spreading. The algorithms’ accuracy increases as
more messages get annotated. In a real scenario, a software
tool, with a user-tailored interface, can display the first tens
of messages, which are able to be annotated by the end-user
in a very short time. Our study shows that the proposed
algorithms are fast and accurate, exceeding 80% average
accuracy.

We compared to Gaussian processes used in a super-
vised and semi-supervised setting. The results show that the
graph-based algorithms are faster and at least as accurate,
particularly as more annotated messages become available,
therefore they are more effective for implementation in a
rapid-response software system.

Despite their success, these algorithms face a few chal-
lenges, some of which have been addressed, while others
require further improvements, which will be explored in
future work. We briefly mention these issues below.

First, from a usability point of view, the semi-supervised
method proposed in this work requires a set of annotated
messages. In a live-system, an analyst or end-user might ur-
gently need an estimate of the message stance and hence of
the rumour veracity. For such scenarios, we have developed
a supervised logistic regression model, trained on a subset
of our dataset, which can be applied to the new messages.
This model captures average message characteristics, which
are unrelated to the specific rumour, such as, messages
that have the word “believe” without negation are more
likely to support a statement. This is a simple solution
that address the “cold-start” problem when no annotated
messages are available. Other supervised models available
in the literature could be equally applied, hence integrating
multiple approaches into one tool. We intend to address this
issue systematically in future work.

Another solution to this problem could be online learn-
ing algorithms [41], [42], which aim to update a model as
sequences of data become available and are faster and more
efficient than batch-learning supervised algorithms. How-
ever, such an approach has not been developed within the
context of message stance classification, hence a complete
study, end-to-end implementation and its comparison to
semi-supervised methods are left for future work.

A second issue regarding the the LP and LS is that the
number of classes is implied by the annotated messages.
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For example, if the first N messages belong only to two
classes, then all other messages will be classified into one
of these two classes. In future work, we aim to improve
the algorithm, so that if a message is too distinct from the
annotated ones, then it gets classified into a new cluster.

ACKNOWLEDGEMENTS

This work was partly supported by the UK Defence Science
and Technology Laboratory under Centre for Defence Enter-
prise grant DSTLX-1000107083. We thank Colin Singleton,
Chris Willis and Nicholas Walton for their helpful comments
during the project. We would also like to thank Dr. Matthew
Edgington and Alan Pilgrim for their assistance in annotat-
ing part of the dataset.

REFERENCES

[1] The Wall Street Journal, “Hurricane Harvey Vic-
tims Turn to Social Media for Assistance,” 2017,
https://www.wsj.com/articles/hurricane-harvey-victims-
turn-to-social-media-for-assistance-1503999001 (Accessed on
15-Dec-2017).

[2] MTV, “The People Of Manchester Are Using Social Media To Help
Each Other Following Explosion At Ariana Grande Concert,”
2017, http://www.mtv.co.uk/ariana-grande/news/people-
manchester-using-social-media-to-help-each-other-following-
terrorist-attack (Accessed on 15-Dec-2017).

[3] B. Future, “Lies, propaganda and fake news: A challenge for
our age,” 2017, http://www.bbc.com/future/story/20170301-
lies-propaganda-and-fake-news-a-grand-challenge-of-our-age
(Accessed on 15-Dec-2017).

[4] C. Castillo, M. Mendoza, and B. Poblete, “Information credibility
on twitter,” in Proceedings of the 20th international conference on
World wide web. ACM, 2011, pp. 675–684.

[5] M. R. Morris, S. Counts, A. Roseway, A. Hoff, and J. Schwarz,
“Tweeting is believing?: understanding microblog credibility per-
ceptions,” in Proceedings of the ACM 2012 conference on Computer
Supported Cooperative Work. ACM, 2012, pp. 441–450.

[6] C. Castillo, M. Mendoza, and B. Poblete, “Predicting information
credibility in time-sensitive social media,” Internet Research, vol. 23,
no. 5, pp. 560–588, 2013.

[7] A. Gupta, H. Lamba, P. Kumaraguru, and A. Joshi, “Faking sandy:
characterizing and identifying fake images on twitter during hur-
ricane sandy,” in Proceedings of the 22nd international conference on
World Wide Web. ACM, 2013, pp. 729–736.

[8] J. R. C. Nurse, I. Agrafiotis, M. Goldsmith, S. Creese, and K. Lam-
berts, “Two sides of the coin: measuring and communicating the
trustworthiness of online information,” Journal of Trust Manage-
ment, vol. 1, no. 1, p. 5, 2014.

[9] M. Alrubaian, M. Al-Qurishi, M. Hassan, and A. Alamri, “A
credibility analysis system for assessing information on twitter,”
IEEE Transactions on Dependable and Secure Computing, 2016.

[10] G. Giasemidis, C. Singleton, I. Agrafiotis, J. R. C. Nurse,
A. Pilgrim, C. Willis, and D. V. Greetham, “Determining
the veracity of rumours on twitter,” in Social Informatics: 8th
International Conference, SocInfo 2016, Bellevue, WA, USA, November
11-14, 2016, Proceedings, Part I, E. Spiro and Y.-Y. Ahn, Eds. Cham:
Springer International Publishing, 2016, pp. 185–205. [Online].
Available: https://doi.org/10.1007/978-3-319-47880-7 12

[11] M. Mendoza, B. Poblete, and C. Castillo, “Twitter under crisis: Can
we trust what we rt?” in Proceedings of the first workshop on social
media analytics. ACM, 2010, pp. 71–79.

[12] S. Vosoughi, “Automatic detection and verification of rumors on
twitter,” Ph.D. dissertation, Massachusetts Institute of Technology,
2015.

[13] K. Wu, S. Yang, and K. Q. Zhu, “False rumors detection on sina
weibo by propagation structures,” in Data Engineering (ICDE), 2015
IEEE 31st International Conference on. IEEE, 2015, pp. 651–662.

[14] Z. Zhao, P. Resnick, and Q. Mei, “Enquiring minds: Early detection
of rumors in social media from enquiry posts,” in Proceedings of
the 24th International Conference on World Wide Web. International
World Wide Web Conferences Steering Committee, 2015, pp. 1395–
1405.

[15] A. Zubiaga, A. Aker, K. Bontcheva, M. Liakata, and R. Procter,
“Detection and resolution of rumours in social media: A survey,”
ACM Comput. Surv., vol. 51, no. 2, pp. 32:1–32:36, Feb. 2018.
[Online]. Available: http://doi.acm.org/10.1145/3161603

[16] M. Lukasik, T. Cohn, and K. Bontcheva, “Classifying tweet
level judgements of rumours in social media,” in Proceedings
of the 2015 Conference on Empirical Methods in Natural Language
Processing. Association for Computational Linguistics, 2015,
pp. 2590–2595. [Online]. Available: http://www.aclweb.org/
anthology/D15-1311

[17] A. Zubiaga, M. Liakata, R. Procter, G. Wong
Sak Hoi, and P. Tolmie, “Pheme rumour scheme
dataset: journalism use case,” Apr 2016. [Online]. Avail-
able: https://figshare.com/articles/PHEME rumour scheme
dataset journalism use case/2068650/2

[18] R. Procter, F. Vis, and A. Voss, “Reading the riots on twitter:
methodological innovation for the analysis of big data,” Interna-
tional journal of social research methodology, vol. 16, no. 3, pp. 197–
214, 2013.

[19] C. Andrews, E. Fichet, Y. Ding, E. S. Spiro, and K. Starbird, “Keep-
ing up with the tweet-dashians: The impact of’official’accounts
on online rumoring,” in Proceedings of the 19th ACM Conference on
Computer-Supported Cooperative Work & Social Computing. ACM,
2016, pp. 452–465.

[20] V. Qazvinian, E. Rosengren, D. R. Radev, and Q. Mei, “Rumor
has it: Identifying misinformation in microblogs,” in Proceedings of
the Conference on Empirical Methods in Natural Language Processing.
Association for Computational Linguistics, 2011, pp. 1589–1599.

[21] S. Hamidian and M. T. Diab, “Rumor identification and belief
investigation on twitter.” in WASSA@ NAACL-HLT, 2016, pp. 3–
8.

[22] S. M. Mohammad, P. Sobhani, and S. Kiritchenko, “Stance and
sentiment in tweets,” ACM Transactions on Internet Technology
(TOIT), vol. 17, no. 3, p. 26, 2017.

[23] G. J. Werner, V. Prabhakaran, M. Diab, and O. Rambow, “Commit-
ted belief tagging on the factbank and lu corpora: A comparative
study,” in Proceedings of the Second Workshop on Extra-Propositional
Aspects of Meaning in Computational Semantics (ExProM 2015), 2015,
pp. 32–40.

[24] S. Hamidian and M. T. Diab, “Rumor detection and classification
for twitter data,” in Proceedings of the Fifth International Confer-
ence on Social Media Technologies, Communication, and Informatics
(SOTICS), 2015, pp. 71–77.

[25] L. Zeng, K. Starbird, and E. S. Spiro, “# Unconfirmed: Classifying
Rumor Stance in Crisis-Related Social Media Messages,” in Tenth
International AAAI Conference on Web and Social Media, 2016.

[26] M. Lukasik, K. Bontcheva, T. Cohn, A. Zubiaga, M. Liakata, and
R. Procter, “Using gaussian processes for rumour stance classifica-
tion in social media,” arXiv preprint arXiv:1609.01962, 2016.

[27] M. Lukasik, T. Cohn, and K. Bontcheva, “Classifying tweet
level judgements of rumours in social media,” arXiv preprint
arXiv:1506.00468, 2015.

[28] Z. Jin, J. Cao, Y. Zhang, and J. Luo, “News verification by exploit-
ing conflicting social viewpoints in microblogs.” in AAAI, 2016,
pp. 2972–2978.

[29] A. Zubiaga, E. Kochkina, M. Liakata, R. Procter, and M. Lukasik,
“Stance classification in rumours as a sequential task exploiting
the tree structure of social media conversations,” arXiv preprint
arXiv:1609.09028, 2016.

[30] E. Kochkina, M. Liakata, and I. Augenstein, “Turing at semeval-
2017 task 8: Sequential approach to rumour stance classification
with branch-lstm,” arXiv preprint arXiv:1704.07221, 2017.

[31] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient esti-
mation of word representations in vector space,” arXiv preprint
arXiv:1301.3781, 2013.

[32] K. Shu, A. Sliva, S. Wang, J. Tang, and H. Liu, “Fake news detection
on social media: A data mining perspective,” ACM SIGKDD
Explorations Newsletter, vol. 19, no. 1, pp. 22–36, 2017.

[33] W. Ferreira and A. Vlachos, “Emergent: a novel data-set for
stance classification,” in Proceedings of the 2016 conference of the
North American chapter of the association for computational linguistics:
Human language technologies, 2016, pp. 1163–1168.

[34] O. Owoputi, B. O’Connor, C. Dyer, K. Gimpel, N. Schneider,
and N. A. Smith, “Improved part-of-speech tagging for online
conversational text with word clusters,” in Human Language
Technologies: Conference of the North American Chapter of the
Association of Computational Linguistics, Proceedings, June 9-14,

https://doi.org/10.1007/978-3-319-47880-7_12
http://doi.acm.org/10.1145/3161603
http://www.aclweb.org/anthology/D15-1311
http://www.aclweb.org/anthology/D15-1311
https://figshare.com/articles/PHEME_rumour_scheme_dataset_journalism_use_case/2068650/2
https://figshare.com/articles/PHEME_rumour_scheme_dataset_journalism_use_case/2068650/2


IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, VOL. ??, NO. ?, ?? 12

2013, Westin Peachtree Plaza Hotel, Atlanta, Georgia, USA, 2013,
pp. 380–390. [Online]. Available: http://aclweb.org/anthology/
N/N13/N13-1039.pdf

[35] J. Yi, T. Nasukawa, R. Bunescu, and W. Niblack, “Sentiment
analyzer: Extracting sentiments about a given topic using natural
language processing techniques,” in null. IEEE, 2003, p. 427.

[36] O. Chapelle, B. Schlkopf, and A. Zien, Semi-Supervised Learning,
1st ed. The MIT Press, 2010.

[37] X. Zhu and Z. Ghahramani, “Learning from labeled and unlabeled
data with label propagation,” Carnegie Mellon University, Tech.
Rep., 2002.

[38] D. Zhou, O. Bousquet, T. N. Lal, J. Weston, and B. Schölkopf,
“Learning with local and global consistency,” in Advances
in Neural Information Processing Systems 16, S. Thrun,
L. K. Saul, and B. Schölkopf, Eds. MIT Press, 2004,
pp. 321–328. [Online]. Available: http://papers.nips.cc/paper/
2506-learning-with-local-and-global-consistency.pdf

[39] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion,
O. Grisel, M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg,
J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot,
and E. Duchesnay, “Scikit-learn: Machine learning in Python,”
Journal of Machine Learning Research, vol. 12, pp. 2825–2830, 2011.

[40] S. Roberts, M. Osborne, M. Ebden, S. Reece, N. Gibson, and
S. Aigrain, “Gaussian processes for time-series modelling,”
Philosophical Transactions of the Royal Society of London A:
Mathematical, Physical and Engineering Sciences, vol. 371, no. 1984,
2013. [Online]. Available: http://rsta.royalsocietypublishing.org/
content/371/1984/20110550

[41] S. Shalev-Shwartz and S. Ben-David, Understanding Machine Learn-
ing: From Theory to Algorithms, 1st ed. Cambridge University
Press, 2014.

[42] A. Rakhlin and K. Sridharan, “A tutorial on online supervised
learning with applications to node classification in social
networks,” 2016. [Online]. Available: http://arxiv.org/abs/1608.
09014

Georgios Giasemidis received his DPhil (PhD)
in theoretical physics from University of Oxford
in 2013. Since then, he is a senior analyst and
data scientist at CountingLab LTD, a spin-out
from the Center for the Mathematics of Human
Behaviour, University of Reading. His research
interests and experience include big data analyt-
ics, complex and social networks, electricity de-
mand forecasting, low-voltage networks, image-
processing and machine learning algorithms for
classification and clustering of big data. In 2014,

he won the third award at the Global Energy Forecasting Competition.

Nikolaos Kaplis is a Data Scientist at Count-
ingLab, a spin-out from the Center for the Mathe-
matics of Human Behaviour, University of Read-
ing. He obtained his DPhil from the University
of Oxford (Magdalen) in 2013. He studied The-
oretical Physics and Applied Mathematics. He
works on big-data analytics, machine learning,
networks and AI.

Ioannis Agrafiotis is a research fellow (senior
researcher) in the Department of Computer Sci-
ence at the University of Oxford, where he cur-
rently explores novel ways to capture organisa-
tional cyber harm and risk. He is also working
on a project aiming at detecting insider threats.
His research interests include automated net-
work defence and business process modelling,
information trustworthiness, online privacy and
dynamic consent, insider threat and anomaly
detection.

Jason R.C. Nurse is a Lecturer in Cyber Se-
curity in the School of Computing at the Uni-
versity of Kent. Prior to this he was a Senior
Research Fellow in the Department of Computer
Science at the University of Oxford and a fel-
low at Wolfson College, Oxford. His research
interests include the information provenance and
trust, social media studies, human factors of se-
curity, and services security. Nurse received his
PhD from the University of Warwick in 2010 in
the topic of Internet security for corporations. In

2014, he was selected as a Rising Star for his research into cyber
security and privacy, as a part of the EPSRCs Recognising Inspirational
Scientists and Engineers (RISE) awards campaign.

http://aclweb.org/anthology/N/N13/N13-1039.pdf
http://aclweb.org/anthology/N/N13/N13-1039.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://papers.nips.cc/paper/2506-learning-with-local-and-global-consistency.pdf
http://rsta.royalsocietypublishing.org/content/371/1984/20110550
http://rsta.royalsocietypublishing.org/content/371/1984/20110550
http://arxiv.org/abs/1608.09014
http://arxiv.org/abs/1608.09014

	Introduction
	Related Work
	Methodology
	Data Description
	Feature Space
	Label Propagation and Label Spreading

	Experimentation and Results
	Label Propagation and Label Spreading
	Validation and Comparison
	London Riots Dataset
	PHEME Dataset
	Remarks


	Conclusion and Outlook
	References
	Biographies
	Georgios Giasemidis
	Nikolaos Kaplis
	Ioannis Agrafiotis
	Jason R.C. Nurse


