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ABSTRACT This paper proposes a semi-supervised autoencoder with an auxiliary task (SAAT) to extract

a health feature space for power transformer fault diagnosis using dissolved gas analysis (DGA). The

health feature space generated by a semi-supervised autoencoder (SSAE) not only identifies normal and

thermal/electrical fault types, but also presents the underlying characteristics of DGA. In the proposed

approach, by adding an auxiliary task that detects normal and fault states in the loss function of SSAE,

the health feature space additionally enables visualization of health degradation properties. The overall

procedure of the new approach includes three key steps: 1) preprocessing DGA data, 2) extracting two

health features via SAAT, and 3) visualizing the two health features in two-dimensional space. In this

paper, we test the proposed approach using massive unlabeled/labeled Korea Electric Power Corporation

(KEPCO) databases and IEC TC 10 databases. To demonstrate the effectiveness of the proposed approach,

four comparative studies are conducted with these datasets; the studies examined: 1) the effectiveness of an

auxiliary detection task, 2) the effectiveness of the visualization method, 3) conventional fault diagnosis

methods, and 4) the state-of-the-art, semi-supervised deep learning algorithms. By examining several

evaluationmetrics, these comparative studies confirm that the proposed approach outperforms SSAEwithout

the auxiliary task, existing methods, and state-of-the-art deep learning algorithms, in terms of defining health

degradation performance. We expect that the proposed SAAT-based health feature space approach will be

widely applicable to intuitively monitor the health state of power transformers in the real world.

INDEX TERMS Semi-supervised autoencoder, health feature space, fault diagnosis, power transformer,

dissolved gas analysis.

I. INTRODUCTION

Power transformers are important components of distribution

and transmission lines of power grid systems. For stable

operation of transformers, insulation materials are used to

prevent heat transfer and electrical discharge [1]. Although

transformers are manufactured to meet reliable design con-

ditions, uncertainties in operation can cause transformers to

operate in an unexpected way. Thus, to prevent catastrophic

social, economic, and energy efficiency losses, prognostics

and health management techniques have attracted attention

in recent decades [2]–[4].

The associate editor coordinating the review of this manuscript and
approving it for publication was Rajesh Kumar.

Dissolved gas analysis (DGA) has been widely used to

diagnose oil-filled transformers [5]. When insulation mate-

rials are continuously exposed to electrical and thermal

stresses, combustible gases (e.g., H2, C2H2, C2H4, and so

on) are decomposed from the insulation materials and then

dissolved in the oil [6]. Via on/offline measurement of these

dissolved gases, DGA can diagnose (e.g., detect and iden-

tify) the health state of the transformers. In this study, fault

detection refers to the binary classification of normal and

fault states, fault identification indicates multi-classification

of normal and electrical/thermal fault types.

Fault diagnosis methods using DGA are divided into

two categories: rule-based methods and artificial intelligence

(AI)-based methods. In rule-based methods, concentrations
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and/or ratios of gases are used for fault identification based

on human-experienced thresholds. Examples of rule-based

methods include the IEC ratios method [7], the Rogers

ratios method [8], and the Doernenburg ratios method [9].

In addition, Duval ratio methods provide two-dimensional

(2D) graphics (e.g., Duval triangle and pentagon) which are

intuitive for classifying fault types [6], [10], [11]. However,

rule-based methods have relatively low accuracy and incon-

sistent diagnosis results due to insufficient mathematical

computation and their empirical handcrafted thresholds [12].

In recent years, AI-techniques have been incorporated

in power transformer fault diagnosis to improve accuracy.

AI techniques include fuzzy logic [13]–[15], support vector

machine [16], [17], artificial neural network, and multilayer

perceptron [18]–[21]. To select optimal features and address

imbalanced problems of DGA data, a genetic algorithm

approach [22]–[25] and an adaptive over-sampling method

[26], [27] have been applied, respectively. Despite some

achievements using such supervised learning approaches,

these studies take only labeled DGA datasets into account.

In other prior work, a semi-supervised learning approach

using a low-dimensional scaling was developed to con-

sider unlabeled DGA data [28]. However, this approach

has difficulty performing health feature selection for unla-

beled datasets.Motivated by this challenge, several additional

methods for extracting health features have been reported.

A principal component analysis with fuzzy C-means method

was presented as an unsupervised feature extraction method

in [29], [30]. Besides, self-organizing maps (SOM) of unsu-

pervised neural network methods extracted feature maps of

several fault types [31], [32]. Further, deep learning tech-

niques, such as by sparse autoencoder [33] and deep belief

network [34], have been used to extract high-level health

features by unsupervised greedy layer wise training with deep

hierarchical hidden layers.

While these advances have been significant, AI-based

approaches have the following three limitations. First, despite

the necessity of a large amount of DGA data to represent

generalized diagnosis results, it is difficult to obtain the large

amount of required DGA data in real-world applications.

Significant financial cost is required to periodically maintain

all transformers and measure DGA data in the field. Second,

most previous studies have focused on fault detection and

identification features; little effort has been made to analyze

the health degradation features. If degradation features are

newly developed, it is worth pointing out that they enable to

exhibit the monotonic health state transition from normal to

fault, thus potentially estimating health states for unlabeled

data or diagnosing fault states in advance. Lastly, visualiza-

tion of the monotonic health state transition in 2D space has

ye be addressed by other research. Since 2D graphics provide

the most obvious and readable space representation for the

human eye, a 2D health feature space (HFS) can intuitively

show diagnosis results [35].

Thus, in this paper, we propose a novel semi-supervised

autoencoder with an auxiliary task (SAAT) to extract an

HSF, considering a large amount of DGA data. The pro-

posed SAAT approach comes from a semi-supervised autoen-

coder (SSAE) that can simultaneously learn unsupervised

and supervised tasks with shared hidden layers. Unsupervised

and supervised tasks play roles in the representative health

feature extraction and the fault identification, respectively.

Here, by putting an auxiliary task (fault detection) in the

loss function of SSAE, the trained shared parameters provide

the health features, which additionally enable representation

of the health degradation properties. By structuring the two

nodes in the end of the shared hidden layers, two health

features can be directly visualized into 2D space without an

additional dimension reduction. In this paper, a large amount

of DGA data, provided by Korea Electric Power Corporation

(KEPCO), is considered. In addition, IEC TC 10 databases

are used for validation tests. To the best of the authors’

knowledge, the contributions of this work can be summarized

as follows:

1. This is the first attempt to diagnose real-world power

transformers using a large amount of DGA data.

2. The proposed SAAT has the ability to represent health

degradation properties as well as to identify normal

and thermal/electrical fault types.

3. By directly visualizing health features without transfor-

mation or dimension reduction, the proposed 2D HFS

can pictorially demonstrate the monotonic health state

transition of transformers.

The rest of paper is organized as follows. Section II

describes the background of SAAT. Sections III and IV

demonstrate the proposed method and experimental results,

respectively. Finally, the conclusions and future works of this

study are outlined in Section V.

II. BACKGROUND OF A SEMI-SUPERVISED

AUTOENCODER WITH AN AUXILIARY TASK

Two basic algorithms (i.e., an autoencoder (AE) and a

softmax classifier (SC)) of the proposed SAAT are described

in Sections II.A and II.B, respectively. In Section II.C, SSAE

is explained in terms of the AE and the SC.

A. AUTOENCODER: UNSUPERVISED FEATURE

EXTRACTION

An AE, a well-known unsupervised neural network, consists

of an encoder part and a decoder part with a hidden layer,

as shown in Fig. 1 (a) [36]–[39]. For given training samples

x = {x(1), x(2), · · · , x(N )} where N is the number of samples

and x(m) ∈ R
d (m = 1, 2, · · · ,N ), an encoder function f en

compresses the dimension of the training samples from R
d

to R
d ′ (d > d ′) with a set of encoder parameters θ

en (i.e., a

weight matrixWen ∈ R
d ′×d and a bias vector ben ∈ R

d ′ ), as:

f en
(
x

(m)
i

)
= h

(m)
j = σAE

(
W en
ji x

(m)
i + b

en
j

)
(1)

where σAE is an activation function, such as a sigmoid,

a rectified linear unit (ReLU), and an exponential linear

unit (ELU) that transforms x(m) into a representative feature

vector h(m) ∈ R
d ′ with θ

en. Then, in the decoder part, h(m)
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FIGURE 1. Architectures of AE, SC, and SSAE: (a) pre-training in the AE; (b) fine-tuning in the SC with initialized
parameters; and (c) simultaneous learning of the supervised and unsupervised learning parts in SSAE.

is reconstructed to x̂(m) ∈ R
d by a decoder function f de,

with a set of decoder parameters θ
de (i.e., a weight matrix

Wde ∈ R
d×d ′ , and a bias vector bde ∈ R

d ) as:

f de
(
h
(m)
j

)
= x̂

(m)
k = σAE

(
W de
kj h

(m)
j + b

de
k

)
(2)

where σAE transforms h(m) into x̂(m).

In general, the loss function LAE is the mean square error

between x(m) and x̂(m) as:

LAE

(
θ
en, θde

)
=

1

2N

N∑

m=1

∥∥∥x̂(m) − x(m)
∥∥∥
2

=
1

2N

N∑

m=1

L
(m)
AE (3)

where L
(m)
AE represents the m-th loss function. To minimize

LAE, the parameters θ
AE = {θen, θ

de} are updated using

a backpropagation method with mini-batch gradient descent

algorithms. Using chain rules, the procedure of the parameter

update is organized as:

θdekj ← θdekj − η
∂L

(m)
AE

∂θdekj

(
∂L

(m)
AE

∂θdekj

= δdek
∂z

(m)
k

∂θdekj

= δdek h
(m)
j

)

(4)

θenji ← θenji − η
∂L

(m)
AE

∂θenji

(
∂L

(m)
AE

∂θenji
= δenj

∂z
(m)
j

∂θenji
= δenj x

(m)
i

)

(5)

where η is a learning rate; z
(m)
k , δdek , z

(m)
j , and δenj are defined,

respectively, as:

z
(m)
k = W de

kj h
(m)
j + b

de
k (6)

δdek ≡
∂L(m)

∂z
(m)
k

= σAE′
(
z
(m)
k

) ∂L(m)

∂x
(m)
k

(7)

z
(m)
j = W en

ji x
(m)
i + b

en
j (8)

δenj ≡
∂L

(m)
AE

∂z
(m)
j

=
∑

k

∂L
(m)
AE

∂z
(m)
k

∂z
(m)
k

∂z
(m)
j

= σAE′
(
z
(m)
j

)∑

k

θdekj δk

(9)

δdek and δenj are errors in the decoder layer and the encoder

layer, respectively. This process is called pre-training.

Using the optimized θ
AE derived through (4) to (9), AE can

extract h(m). Please note that the number of hidden layers in

the encoder and the decoder can be extended.

B. SOFTMAX CLASSIFIER: SUPERVISED CLASSIFICATION

SC has been widely used for the purpose of classifying

multi-classes by utilizing the extracted high-level features

in AI-based algorithms [33], [34], [38]. When incorporat-

ing the SC into the AE, h(m) can be the input data of a

softmax function, as shown in Fig. 1 (b). Training samples

are a set of ordered pairs (x(m), y(m)) as {(x(1), y(1)), (x(2),

y(3)), · · · , (x(N ), y(N ))} where y(m) ∈ {1, 2, · · · ,C} is a

virtual discrete number of a target label that corresponds to

x(m). y(m) is a one-hot encoding vector that has C classes,

expressed as y(m) = (y
(m)
1 , y

(m)
2 , · · · , y

(m)
C ). Using the softmax

function q, the probability of each element in y(m) can be

calculated with respect to θ
en∗ and θ

cl (i.e., a weight matrix

Wcl ∈ R
C×d ′ , and a bias vector bcl ∈ R

C ), as follows:

ŷ(m)n = P
(
y(m) = n|f en

(
x(m)

)
; θen∗, θ

cl
)

= q
(
z(m)n

)
=

exp
(
z
(m)
n

)

C∑
n=1

exp
(
z
(m)
n

) (10)

where z
(m)
n is defined as

z(m)
n = W cl

njh
(m)
j + b

cl
n (11)

Note that n means the n-th element in y(m), as well as the

number n in {1, 2, · · · ,C}. ŷ
(m)
n should satisfy ŷ

(m)
n ∈ [0, 1]

and
C∑
n=1

ŷ
(m)
n = 1.

For the best classification performance, it is worth noting

that finding optimized parameters θ
en∗ and θ

cl is an essential

procedure to match ŷ(m) with y(m). To minimize the discrep-

ancy between y(m) and ŷ(m), the cross-entropy loss function

Lcl has been widely used as [2]:

Lcl

(
θ
en∗ , θclass

)
= −

1

N

N∑

m=1

y(m) log
(
ŷ(m)

)
(12)
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Likewise, θ
en∗ and θ

cl are updated by mini-batch gradient

descent algorithms as:

θclnj ← θclnj − η
∂L

(m)
cl

∂θclnj

(
∂L

(m)
cl

∂θclnj

= δcln
∂z

(m)
n

∂θclnj

= δcln h
(m)
j

)

(13)

θen
∗

ji ← θen
∗

ji − η
∂L

(m)
cl

∂θen
∗

ji

(
∂L

(m)
cl

∂θen
∗

ji

= δen
∗

j

∂z
(m)
j

∂θen
∗

ji

= δen
∗

j x
(m)
i

)

(14)

where z
(m)
n , δcln , and δen

∗

j are defined, respectively, as:

z(m)
n = W cl

njh
(m)
j + b

cl
n (15)

δcln ≡
∂L

(m)
cl

∂z
(m)
n

= σ cl′
(
z(m)
n

) ∂L
(m)
cl

∂̂y
(m)
k

(16)

δen
∗

j ≡
∂L

(m)
cl

∂z
(m)
j

=
∑

n

∂L
(m)
cl

∂z
(m)
n

∂z
(m)
n

∂z
(m)
j

= σ cl′
(
z
(m)
j

)∑

n

θclnjδ
cl
n

(17)

This process is called fine-tuning. Using the feature

extraction developed through the pre-training in the AE,

the classification accuracy can be dramatically enhanced,

as compared with SC in the absence of AE.

C. SEMI-SUPERVISED AUTOENCODER

Disjoint learning between the pre-training and the fine-tuning

– by sequentially performing AE and SC – can lead to

the extraction of features that are uncorrelated with the tar-

get information of the labeled data or to distortion of the

underlying characteristics of the input training samples [40].

With this motivation, SSAE has been proposed, as shown in

Fig. 1 (c). Compared with the previous sequentially executed

training process, SSAE achieves extraction of high-level fea-

tures that are highly correlated with both the input data x and

the labeled information y, by simultaneously optimizing θ
AE

and θ
cl [35], [40]–[43].

A loss function LSSAE of SSAE is a summation of the two

loss functions presented in (3) and (12) with a weight α as:

LSSAE

(
θ
shd, θde, θcl

)
= αLAE

(
θ
shd, θde

)

+ (1− α)Lcl

(
θ
shd, θcl

)
(18)

where the shared parameters θ
shd, which play the same role

as θ
en in AE, are simultaneously optimized when training the

representative feature extraction task of AE and the classifi-

cation task of SC. For example, the procedure to update the

parameters to minimize LSSAE is demonstrated as:

θ shdji ← θ shdji − η
∂L

(m)
SSAE

θ shdji

×

(
∂L

(m)
SSAE

θ shdji

= αδAEj x
(m)
i + (1− α) δclj x

(m)
i

)
(19)

where δAEj and δclj are equal to (9) and (16), respectively.

Finally, the shared hidden layers with θ
shd are able to

concurrently extract representative features of x in the unsu-

pervised learning and the labeled information of y in the

supervised learning. For power transformer fault diagnosis,

it can be inferred that SSAE enables identification of the

thermal/electrical fault types and normal state, as well as

extraction of high-level features with a large amount of

real-world DGA data.

III. PROPOSED METHOD

This section demonstrates the proposed SAAT method.

Section III.A presents the input DGA data preprocessing

approach. Section III.B describes SAAT-based fault diagnosis

method, including the role of the auxiliary detection task,

the architecture of SAAT, and HFS visualization. The overall

procedure is demonstrated in Fig. 2.

A. INPUT DGA DATA PREPROCESSING

In the field of AI, normalizing raw input data and balancing

imbalanced data are essential steps to avoid overfitting prob-

lems and to enable better classification performance [28].

Furthermore, from the viewpoint of power transformer fault

diagnosis, handcrafted features of dissolved gas ratios, which

were previously studied in rule-based methods, have been

incorporated into AI-based methods to enhance the diagnosis

performance [28]. Details of each preprocessing step are

described as follows.

1) SCALING OF INDUSTRIAL DGA DATA

Dissolved gas concentrations have significantly skewed dis-

tributions because their concentrations tend to dramatically

increase in a fault state, as compared with those in a normal

state. For example, the gas concentrations changed from a

few ppm (parts per million) to thousands of ppm in previous

studies [28]. Thus, the input DGA data is transformed into

a logarithmic scale. Further, to keep numerical operations

(e.g., stochastic gradient descent) stable, the logarithmic-scaled

DGA data is normalized from zero (min) to one (max).

2) BALANCING OF IMBALANCED INDUSTRIAL DGA DATA

Since real-world industrial transformers have highly imbal-

anced data between normal and fault states, this imbalance

could disturb AI-based methods [28]. For example, if fault

datasets occupy only 1 % among the training datasets, most

AI-based algorithms will be more focused on the classi-

fication of major normal datasets. Thus, an accuracy of

99 % would be obtained by ignoring the minor – but crit-

ical – fault datasets and classifying all datasets as nor-

mal. To address these imbalance problems, oversampling

techniques are applied into the fault datasets [28].

3) COMBINING ADDITIONAL FEATURES RELATED TO GAS

RATIOS

We consider six combustible gases (i.e., H2, C2H2, C2H4,

C2H6, CH4, and CO). Each of the combustible gases

is denoted as DGAi where i ranges from one to six.

Normalized DGAi in the logarithmic scale is expressed as

minimax(log([DGAi])). In rule-based methods, it is well
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FIGURE 2. Overall procedures of the proposed SAAT-based fault diagnosis method.

known that the absolute values of gas concentrations can

be useful for the fault detection; however, it is desir-

able to investigate the ratio-like relationships between the

gas concentrations for fault identification [28]. Therefore,

we consider six ratios of gas concentration DGAi to

total gas concentration
∑

iDGAi in the logarithmic scale,

as log([DGAi]/[
∑

iDGAi]). Further, three ratios, developed

by Duval triangle methods, are considered; these features are

widely used in diagnosing transformer fault types [44], [45].

The total preprocessed input data lies in 15 dimensions.

B. SAAT-BASED FAULT DIAGNOSIS METHOD

The main concern of rule-based approaches is to monitor

fault types. Since they do not take the normal state into

account, it is difficult to visualize the overall health degrada-

tion properties. Further, in AI-based approaches, only a few

prior studies have been devoted to investigating health degra-

dation features. Since trends of measured dissolved gases

present nonlinear properties over timewhile the health state is

monotonically degraded, it is desirable to extract new health

features that could also represent the monotonic health state

transition from normal to fault.

Moreover, as it requires a tremendous cost to perform

thorough visual inspection to recognize incipient faults every

time, most DGA data in industrial fields is unlabeled. Since

sparse, fault-labeled data results in limitations in the ability

to confirm reliable quantitative results, additional qualita-

tive methods have been developed, such as high-level fea-

ture visualization in 2D space using unsupervised dimension

reduction algorithms (e.g., t-stochastic neighbor embedding

(t-SNE) and self-organizing map (SOM)) [2], [31]. However,

it is worth noting that some key information associated with

fault diagnosis can be lost during the dimension reduction

procedure. Moreover, since both t-SNE and SOM have the

FIGURE 3. Conceptual diagrams of the health feature space: (a) fault
identification task case in SSAE and (b) fault detection task case in SSAE.

ability to cluster the neighboring data, the correlation between

high-level features cannot be guaranteed [31], [32], [46].

Thus, we propose a SAAT that an auxiliary detection

task, which is inserted into the loss function of SSAE, that

can achieve health degradation feature extraction. Further,

SAAT-based fault diagnosis model can directly visualize the

two high-level features in 2D, called the HFS, without addi-

tional dimension reduction, while representing not only the

fault identification but also the health degradation properties.

Details are described as follows.

1) ROLES OF THE AUXILIARY DETECTION TASK

Since the fault identification task in the supervised learning

part of SSAE recognizes the three classes as independent

classes, it is not aware of whether both classes of electri-

cal/thermal fault types are involved in fault states. Thus,

the only identification task can lose the underlying char-

acteristics of the fault detection. For example, when envis-

aging a 2D feature space, there could be two independent

directions that represent the health state transition, as shown

in Fig. 3 (a); this is against the physical phenomenon of

monotonic health degradation. Here, it is important to note

that the fault detection task has the potential to present the

VOLUME 8, 2020 178299
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monotonic state transition in a single direction, as shown in

Fig. 3 (b). An auxiliary detection task, which can tie the two

classes of electrical/thermal fault states into one fault state,

is thus newly added. The proposed SAAT method has three

tasks: 1) unsupervised learning to represent the input data

characteristics, 2) supervised learning for fault identification,

and 3) supervised learning for auxiliary detection.

The parameters θ
SAAT of the proposed SAAT are as:

θ
SAAT =

{
θ
shd,p, θ iden, θ

de,q, θaux
}

(20)

where θ
shd,p, θ iden, θ

de,q, and θ
aux are shared parameters,

identification parameters, decoder parameters, and auxiliary

detection parameters, respectively. Superscripts p and q stand

for the p-th and q-th hidden layers in the shared network and

the decoder, respectively. When training the tasks, the back-

propagationmethod is used to optimize the parameters. In this

study, this method transmits errors between key information

(e.g., labeled information of electrical/thermal fault types and

normal state for the identification task) and the output layer

in each task, backward to each layer in the shared network.

Training each task is simultaneously executed with by opti-

mizing θ shd,p. Hence, θ shd,p would possess all information of

output layers, θ iden, θde,q, and θaux.

A loss function LSAAT of the proposed SAAT is defined

as:

LSAAT

(
θ
SAAT

)
= βLSSAE

(
θ
shd,p, θ iden, θde,q

)

+ (1− β)Laux

(
θ
shd,p, θaux

)

+ 0.5λ

∥∥∥θSAAT
∥∥∥
2

(21)

where LSSAE is similar to (18); the differences are that the

number of layers are much more in (21) and θ
cl in (18)

is changed to θ
iden. The loss function Laux of the auxiliary

detection task is newly proposed in (21). A hyperparameter

β is the weight between LSSAE and Laux. In addition, to avoid

overfitting problems, a L2 regularization term 0.5λ||θSAAT||2

is put in (21) with a hyperparameter λ [47]–[49].

SAAT can be trained by updating θ
SAAT to minimize

LSAAT. For example, in the case of θ shd,end that are parameters

in the end of the shared hidden layers and directly related

to health feature extraction, the procedure of updating the

parameters is demonstrated as:

θ
shd,end
ji ← θ

shd,end
ji − η

∂L
(m)
SAAT

∂θ
shd,end
ji

(22)

Similar to (19), the second term in the right-hand side of (22)

can be decomposed as:

∂L
(m)
SAAT

∂θ
shd,end
ji

= βδ
SSAE,end
j h

shd,end
i + (1− β) δauxj h

shd,end
i

+ λθ
shd,end
ji (23)

where h
shd,end
i are high-level features obtained at the end

of the shared hidden layers. Here, δ
SSAE,end
j and δauxj are

expressed, respectively, as:

δ
SSAE,end
j = α × σ de′

(
zj
)∑

k

θ
de,1
kj δ

de,1
k

+ (1− α)× σ iden′
(
zj
)∑

k ′

θ idenk ′j δidenk ′ (24)

δauxj = σ aux′
(
zj
)∑

k ′′

θauxk ′′j δ
aux
k ′′ (25)

where k , k’, and k’’ are dimensions of output nodes in the

first layer of the decoder, fault identification, and auxiliary

detection tasks, respectively. By inserting (24) and (25) into

(23), θ shd,end are updated as (22). Finally, high-level features

obtained by the proposed SAAT could play roles in exhibiting

both fault identification and health degradation.

2) ARCHITECTURE OF THE PROPOSED SAAT

As shown in Fig. 4, the proposed SAAT consists of three

shared hidden layers, three decoder hidden layers, and one

hidden layer for each supervised task. Activation functions of

all hidden layers, except for the supervised tasks, are ELUs;

this function has the advantages of not only increasing com-

putational learning speeds in deep neural networks [50]–[52]

but also achieving robust optimization in backpropagation

methods. Activation functions of the output hidden layers in

cases of fault identification and auxiliary detection tasks are

the SC and the logistic regression for binary classification,

respectively. Detailed parameters in SAAT architecture are

summarized in Table I. Both the number of epochs and batch

size are set as 200. α, β, λ, and η are set as 0.25, 0.4, 0.0001,

and 0.001, respectively.

Note that we consider a compressed-type structure in the

shared hidden layers. For the purpose of extracting only two

high-level health features hHF ∈ R
2 that could be directly

visualized in the 2D space, the end of the shared hidden layer

is set as having two nodes. These two nodes are connected

with the three tasks.

3) HEALTH FEATURE SPACE VISUALIZATION

Fig. 5 depicts interpretation schemes for HFS. HFS is directly

visualized into 2D space (x-y plane); the features are denoted

as ‘Health Feature 1 (HF1)’ and ‘Health Feature 2 (HF2)’,

respectively. x- and y-axes correspond to HF1 and HF2,

respectively. Here, to show the degree of health degradation,

the extracted health features are arranged to increase over

time.

It is expected that hHF for the training/test datasets can

be visualized with a set of four dots, as shown in Fig. 5.

Further, from the fault identification task, the identification

decision boundaries can be obtained and visualized. It is

important to emphasize that the decision boundaries in 2D

HFS have the following merits: 1) health states or fault types

can be determined for the labeled data and 2) the classes

for the unlabeled data can be predicted (pseudo-labeled) by

investigating to which health state region the unlabeled data

belongs.
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FIGURE 4. Architecture of the proposed SAAT: colors with orange, gray, and green in the shared hidden layers stand for the
features related to the fault identification, representative characteristics of DGA data, and health degradation (or health
state transition).

TABLE 1. Parameters in the architecture of the proposed SAAT.

Moreover, thanks to the auxiliary detection task, the mono-

tonic health state transition from normal to fault will be

observed in 2D HFS. In real-world applications, normal

transformers gradually degrade as time passes. Then, one

of the thermal/electrical fault types will occur at a certain

point. From this physical interpretation, the monotonic trend

of the two health features in 2D HFS can be shown up to

a certain point; it tends to be slightly separated into one

of two ways toward the thermal or electrical fault regions,

which are divided by the decision boundaries. Therefore, it is

worth noting that the proposed 2D HFS also enables intuitive

visualization of the historical health degradation information

in terms of 1) the monotonicity between the health features

and 2) the monotonic health state transition.

4) OVERALL PROCEDURES OF THE PROPOSED SAAT-BASED

FAULT DIAGNOSIS METHOD

Fig. 2 illustrates the flowchart of the proposed SAAT-based

fault diagnosis method. The first step is to organize the col-

lected DGA data into four groups: an unlabeled DGA dataset

{Xun}, a labeled DGA dataset {Xla}, and labeled information

datasets {Yiden} and {Yaux} for the supervised tasks. After pre-

processing, the input DGA datasets are denoted as {Xun∗} and

{Xla∗}. To train SAAT model and evaluate its performance,

datasets, {Xun∗}, {Xla∗}, {Yiden} and {Yaux} are randomly

separated into training datasets and test datasets.

The next step is to construct and stabilize SAAT-based

fault diagnosis model using the training datasets. Parameters

in SAAT are randomly initialized. For given parameters,
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FIGURE 5. Visualization scheme of HFS with labeled and unlabeled data.

Liden, LAE, and Laux are calculated. With the given batch

size, the backpropagation method in the mini-batch gradi-

ent descent method can train SAAT model by repetitively

updating parameters. In addition, loss function calculation

and parameter updates are iteratively implemented until

satisfying the given maximum epoch.

After completing the training process, the health states

of the unlabeled test datasets are pseudo-labeled by the

decision boundaries obtained in the fault identification task.

Furthermore, several evaluation metrics are calculated as

diagnosis results for the labeled and pseudo-labeled test

datasets. Finally, by directly visualizing hHF in 2D space,

the diagnosis results can be pictorially monitored.

IV. PERFORMANCE EVALUATION OF THE PROPOSED

METHOD

This section is devoted to performance evaluation of the

proposed SAAT method. Section IV.A presents a description

of datasets provided by KEPCO and implementation of the

proposed method. In Section IV.B, the experimental setup is

demonstrated. Lastly, the experimental results and discussion

are covered in Section IV.C.

A. DATA DESCRIPTION AND IMPLEMENTATION

DGA data provided by KEPCO was obtained for three

decades, from 1980 to 2018. KEPCO measured nine gases

(i.e., H2, C2H2, C2H4, C2H6, CH4, C3H8, CO, CO2 and N2).

Among them, six combustible gases (H2, C2H2, C2H4, C2H6,

CH4 and CO) were studied in this work. Note that these

gases are also included in the IEC TC 10 database, which

is one representative open data set of dissolved gases [53].

KEPCO’s DGA data can be divided into unlabeled data and

labeled data. Health states of the transformers are defined

from Table II, which summarizes the human-experienced

thresholds of gases used in KEPCO. The company labeled

the transformers as normal when the concentrations of all

gases were less than corresponding thresholds. On the other

TABLE 2. KEPCO maintenance standards for power transformers.

hand, electrical/thermal fault types were labeled after visual

inspection when actual failures occurred.

We obtain 110,000 normal data, categorized into 73

thermal fault data, and 48 electrical fault data as similar

to IEC TC 10 fault types. As an example, historical DGA

data for four samples of KEPCO is listed in Table III. Next,

unlabeled data was obtained from cases where some gas

concentrations were over the threshold values but visual

inspection was not executed. The number of unlabeled data

is 24,405. Note that the amount of DGA data used in this

study is much larger than that used in previous studies

(e.g., 4,642 DGA dataset in [34] and 3,000 DGA dataset in

[54]). To validate the effectiveness of the proposed SAAT,

two test datasets are examined: 1) 20% of KEPCO datasets

and 2) IEC TC 10 datasets. It should be noted that 100 electri-

cal/thermal faults were selected in the IEC TC 10 databases.

Even though the transformer specifications of the IEC TC

10 and KEPCO datasets are different, the scale of DGA data

in the KEPCO databases is comparable to that in the IEC

TC 10 databases. The difference between the two datasets is

that only DGA data for fault states is provided in the IEC TC

10 databases.

The implementation of the proposed approach was

executed on a desktop computer equipped with an Intel Core

i7-6700K processor (4.00 GHz), 32 gigabytes of RAM, and

an NVIDIA GeForce GTX 1080 graphics card (3072 CUDA
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TABLE 3. Historical DGA data of four samples provided by KEPCO.

cores, 24 gigabytes of GDDR5 memory). The training of the

proposed SAAT was conducted with the NVIDIA graphics

card, while the other tasks (e.g., DGA data loading, fault

classification and identification, and HFS extraction) were

conducted with the Intel processor. The computer was con-

trolled by Windows 10 and Python version 3.7. Computa-

tional times for each step were as follows: 1) loading the

110,000 DGA and preprocessing the dataset took 20 sec with

the Intel processor, 2) training the proposed method SAAT

consumed 61 sec, and 3) extracting the HFS took 15 sec.

Thus, the overall computational time took 96 sec.

B. A BRIEF OUTLINE OF FOUR COMPARATIVE STUDIES

AND QUANTATITIVE EVALUATION METRICS

The first comparative study aims to validate the effectiveness

of the auxiliary detection task in SSAE-based fault diagnosis

model. We consider the following two models: 1) SSAE-DU

and 2) SSAE-IU. Notations ‘D’, ‘I’, and ‘U’ stand for ‘fault

detection task’, ‘fault identification task’, and ‘representative

feature extraction task’, respectively. Here, SSAE-DI is not

considered, since a large portion of DGA data is unlabeled.

Next, the validity of the proposed visualization method is

elucidated in the second study. The following comparative

methods are considered: 1) t-SNE and 2) SOM. Depending

on how the high-level features hHF in SAAT are visualized,

we investigate whether the monotonic health state transition

can be represented in each method. In the third comparative

study, we compared SAAT with existing methods to demon-

strate the superior diagnosis performance of the proposed

SAAT approach. Here, existing methods that can perform

the unsupervised task were considered, such as principal

component analysis (PCA) [29], sparse autoencoder (SAE)

[33], and deep belief network (DBN) [34]. Finally, the diag-

nosis performance of state-of-the-art, semi-supervised deep

learning algorithms – such as a semi-supervised variational

autoencoder (SVAE) and semi-supervised generative adver-

sarial network (SGAN) – are described in the last comparative

study. To perform a one-to-one comparison, SGAN and the

SVAE have the same three tasks as the proposed SAAT.

We set parameters in SAE, DBN, SVAE, and SGAN, such as

hyperparameters, layer and node sizes, activation functions

in each layer, and the regularization terms, to be the same as

those in the proposed SAAT.

When the given data suffers from imbalanced problems

(e.g. the amount of data from the normal state is more than

1000 times that of the fault state, as in this study), several

metrics are required to investigate the fault detection and

identification performance. For the detection task, the fol-

lowing three metrics are under consideration [55]: positive

predictive value (PPV), fault detection rate (FDR), and bal-

anced accuracy rate (BAR). For the fault identification task

[28], standard accuracy (I-Acc) is considered. With the con-

fusion matrix presented in Table IV, these four metrics can be

mathematically expressed as:

PPV =

2∑

i=1

2∑

j=1

Cij

/
2∑

i=1

3∑

j=1

Cij (26)

FDR =

2∑

i=1

2∑

j=1

Cij

/
3∑

i=1

2∑

j=1

Cij (27)

BAR = 0.5




2∑

i=1

2∑

j=1

Cij

/
3∑

i=1

2∑

j=1

Cij + C33

/
3∑

i=1

Ci3




(28)

I-Acc =

2∑

i=1

Cii

/
2∑

i=1

2∑

j=1

Cij (29)

In addition, as the quantitative evaluation metrics of health

degradation performance in HFS, the following three metrics
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TABLE 4. A confusion matrix for fault detection and identification
evaluation metrics.

are under consideration [56]: 1) the trendability (Tre) of each

health feature in terms of time, 2) the consistency (Con)

between health features in HFS, and 3) the monotonic cor-

relation coefficient (MCC) between health features in HFS.

These metrics can be mathematically expressed as:

Tre =

K
K∑
k=1

HFk tk −
K∑
k=1

HFk
K∑
k=1

tk

√
K

K∑
k=1

HF2k−

(
K∑
k=1

HFk

)2
√
K

K∑
k=1

t2k−

(
K∑
k=1

tk

)2

(30)

Con =

K∑
k=1

(
HF1k − HF1Con

) (
HF2k − HF2Con

)

√
K∑
k=1

(
HF1k − HF1Con

)2 (
HF2k − HF2Con

)2

(31)

MCC =

N∑
n=1

(
HF1n − HF1MCC

) (
HF2n − HF2MCC

)

√
N∑
k=1

(
HF1n − HF1MCC

)2 (
HF2n − HF2MCC

)2

(32)

where K and N are the number of measured time points

and that of points in HFS, respectively; HF1k (or HF2k ) and

HF1n (HF2n) are health features at the time tk and those at a

certain point n in HFS, respectively; HF1Con (or HF2Con) and

HF1MCC (or HF2MCC) are mean values of the health features

at all times and those at all points in HFS, respectively.

For one given sample, Tre aims at investigating the health

degradation properties (or monotonic health state transition)

in the time domain and Con shows the correlation between

health features. On the other hand,MCC represents the degree

of the linearity between two health features for all samples,

which are scattered in HFS. These metrics are bounded from

-1 to 1; these bounds in Tre and Conmean that the features are

the strongest negative or positive linear correlation with time,

respectively; those in MCC mean the highest monotonicity

in the space. Please note that our IEC TC 10 datasets are

only used for the I-Acc, since they do not have any historical

information or normal state data.

C. EXPERIMENTAL RESULTS AND DISCUSSION

1) COMPARATIVE STUDY 1: EFFECTIVENESS OF THE

AUXILIARY DETECTION TASK

The first comparative study is to investigate the effective-

ness of the auxiliary detection task in SSAE-based fault

diagnosis model. Table V summarizes the quantitative results

of the fault detection and identification for SAAT, SSAE-DU,

and SSAE-IU. For PPVs, SAAT shows the best fault detec-

tion performance, which reaches up to 92.8%, as compared

with the others. FDRs of both SAAT and SSAE-IU are

100%, while that of SSAE-DU is 97.9%. For BARs, three

diagnosis models exhibit more than 99%. It can be found

that SAAT and SSAE-IU show better fault detection perfor-

mance than SSAE-DU, although SAAT and SSAE-IU use the

fault identification task that does not recognize whether

the classes of the electrical/thermal fault types belong to

the fault state. This can be interpreted from the number

of classes; since SAAT and SSAE-IU have more classes

to identify the fault types, they have more opportunities to

impose more weights into the two classes (electrical/thermal

fault types) in the fault identification task than one class

(fault state) in the fault detection task. In the case of the fault

identification performance, both SAAT and SSAE-IU show

I-Acc of 100% for KEPCO datasets. It is worth pointing

out that SSAE-DU cannot calculate I-Acc due to the lack of

fault type information. For the IEC TC 10 datasets, SAAT

presents a slightly better performance of 95.7% than that

of SSAE-IU.

In terms of qualitative results, Figs. 6 (a) and (b) present

HFSs that correspond to SSAE-IU and SSAE-DU, respec-

tively. With the obtained decision boundaries, the results of

the fault detection and/or identification can be visualized.

However, it should be emphasized that Fig. 6 (a) cannot illus-

trate themonotonicity between health features andmonotonic

health state transition, as we expected in Fig. 3 (a). To support

this interpretation, Figs. 6 (a) and (d) show the trends of health

features for four samples, which are presented in Table III,

in HFS, and in the time domain, respectively. As shown in

Fig. 6 (a), two independent ways for the health state transition

are observed. Moreover, Fig. 6 (d) presents that HF1s of

the thermal faults (No. 3 and 4) tend to decrease, while

HF2s gradually increases. Since these opposite trends are

contradictory to the physical phenomenon, it is difficult for

the two health features of SSAE-IU to represent the health

degradation. For SSAE-DU, Fig. 6 (b) depicts the monotonic

health state transition, as well as the high linearity between

health features, as we expected in Fig. 3 (b). Further, from

Fig. 6 (e), it can be found that both health features steadily

increase. This implies that the fault detection task has the

ability to present the health degradation features; however,

as presented in Table V, the fault identification performance

cannot be evaluated.

In summary, HFSs of SSAE-IU and SSAE-DU indi-

cate that SSAE-IU can extract adequate health identifica-

tion features, while SSAE-DU can extract adequate health

degradation features. Therefore, by adding the auxiliary

detection task into the loss function of SSAE-IU, HFS of

SAAT, shown in Fig. 6 (c), enables pictorial visualization

not only of the health identification results but also of the

slightly separated monotonic health state transition from nor-

mal to each fault type. Furthermore, from four samples in
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TABLE 5. Fault diagnosis performance of SAAE-IU, SSAE-DU, and the proposed SAAT.

FIGURE 6. Results of comparative study 1: HFSs in (a) SSAE-IU, (b) SSAE-DU, and (c) the proposed SAAT; the trends of two health features with time for
four samples in (d) SSAE-IU, (e) SSAE-DU, and (f) the proposed SAAT.

Figs. 6 (c) and (f), it can be seen that SAAT can successfully

realize the representation of the health degradation properties

in HFS. We devise a strict meaning of HFS as 2D space

that can provide important information about both the health

identification and health degradation.

Table VI summarizes the quantitative results of the health

degradation. In the case of SSAE-IU, it can be confirmed

that Tres of HF1 for the thermal fault have a negative sign,

despite the health degradation properties. Therefore, unlike

the results of SSAE-DU and SAAT, Cons for the electrical

fault in SSAE-IU become the negative sign. These results

are consistent with the intuitive interpretation from Fig. 6.

In addition, MCCs of 0.96 and 0.88 for SSAE-DU and SAAT

are much closer to 1 than that of the 0.69 result for SSAE-

IU. Thus, MCC, which stands for the monotonicity between

health features, can indirectly represent the health degrada-

tion performance of the health state transition in the time

domain. Thus, it can be concluded that the auxiliary detection

task significantly improves the health degradation perfor-

mance that would otherwise be a challenge for SSAE-IU to

represent.

2) COMPARATIVE STUDY 2: EFFECTIVENESS OF THE

VISUALIZATION METHOD
The second comparative study is to investigate the effec-

tiveness of the visualization method in the proposed SAAT

approach. Here, there are two important points of emphasis.

First, the feature spaces of t-SNE and SOM are obtained

from the same values of HF1 and HF2 that were used when

obtaining HFS in Fig. 6 (c). Second, since two high-level

features obtained from two nodes are visualized in 2D,

issues of the dimension reduction do not exist in t-SNE

or SOM.

Figs. 7 (a) and (b) illustrate the obtained feature spaces that

correspond to t-SNE and SOM, respectively. In Fig. 7 (a),

both electrical and thermal faults are well clustered. However,

it can be confirmed that the monotonic health state transition

from normal to fault is not observed. The results of the

samples (No. 1 to 4) do not show any specific trend. These

observations are attributed to the characteristics of t-SNE.

t-SNE converts similarities between the given high-level

features into joint probabilities and tries to minimize the

Kullback-Leibler divergence between the joint probabilities
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TABLE 6. Health degradation performance of SSAE-IU, SSAE-DU and the proposed SAAT.

FIGURE 7. Results of comparative study 2: HFSs in (a) t-sNE and (b) SOM.

of the original features and converted features. During this

process, the historical health degradation information in fea-

tures can be significantly lost or distorted; thus, t-SNE is not

suitable for representing the health degradation properties.

In Fig. 7 (b), the color map presents the results of the clus-

tering. Since SOM has the ability to map an ordered pair of

the given high-level features HF1 and HF2 into a grid space,

a certain point in the grid space can represent a grouping of

similar features. The color close to one (white), indicates that

the grid region consists of distinguishable features. On the

other hand, the color close to zero (black), means that the grid

region is clustered with similar features. It can be seen that in

the feature space for SOM it is difficult to distinguish the fault

states from the normal state. SOM is not suitable even for fault

detection and identification before investigating the health

degradation characteristics of the transformers. Therefore,

it can be concluded that the proposed direct visualization

method enables depiction of both fault diagnosis results and

monotonic health state transition; it is otherwise a challenge

for t-SNE and SOM to represent these results.

3) COMPARATIVE STUDY 3: CONVENTIONAL FAULT

DIAGNOSIS METHODS

Next, we compare the fault diagnosis performance of con-

ventional methods with those of the proposed SAAT. PCA,

SAE, and DBN consider SC in the fault identification task.

For PCA, extracted features from the unsupervised PCA

algorithms are used to obtain diagnosis results. For SAE and

DBN, sequential learning approaches are used; the meth-

ods of Restricted Boltzmann Machines and AE are under

consideration in the pre-training part of SAE and DBN,

respectively.

Table VII presents the quantitative results of fault detection

and identification for PCA, SAE and DBN. It can be seen

that PCA exhibits the worst diagnosis performance among

the four models. Unlike other conventional and proposed

methods, PCA is based on a fully unsupervised learning

approach. The lack of labeled information makes it difficult

to guarantee that the extracted features have correlation and

consistencywith the target labeling, thusworsening the detec-

tion and identification performance. Except for PPV, it can be

seen that SAAT, SAE, and DBN show quite similar diagnosis

performance; however, PPV of 92.8% in SAAT is much

higher than those of 86.6% and 55.7% for SAE and DBN,

respectively. These results indicate two important findings.

First, from the viewpoint of fault identification results, it can

be regarded that SAE and DBN were trained correctly in this

study, because the results show reasonably high performance,

as presented in previous studies [33], [34]. Second, although

the first result satisfies the existing performance, since SAE
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TABLE 7. Fault diagnosis and health degradation performance for conventional methods and state-of-the-art methods.

FIGURE 8. Results of comparative study 3: HFSs in (a) PCA, (b) SAE, and (c) DBN.

FIGURE 9. Results of comparative study 4: HFSs in (a) SVAE and (b) SGAN.

and DBN are prone to Type I error (i.e., estimating truly

normal data as a fault), they could frequently raise a false

alarm, which would be a vulnerability in terms of fault detec-

tion performance.

For qualitative results, Figs. 8 (a) to (c) present HFSs

that correspond to PCA, SAE, and DBN, respectively.

Fig. 8 (a) depicts that several normal points are misdiag-

nosed into fault regions; thus, the poor diagnosis perfor-

mance of PCA can be confirmed. This is consistent with

the quantitative results of fault detection and identification.

In Figs. 8 (b) and (c), it can be seen that SAE and DBN can

well classify the three classes; however, it is worth noting

that they have difficulty representing the overall monotonicity

between health features. The directions from the normal to

the two fault regions are independent. This interpretation

can be strengthened through the quantitative results of the

health degradation, as shown in Table VII. MCC of 0.88 in

SAAT is much closer to 1 than those of 0.00, 0.41 and

0.42 in PCA, SAE and DBN, respectively. Therefore, it can

be concluded that the proposed SAAT approach outperforms

conventional methods, with respect to the representation of

health degradation in HFS.
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4) COMPARATIVE STUDY 4: STATE-OF-THE-ART

SEMI-SUPERVISED DEEP LEARNING

Lastly, we investigate whether the auxiliary detection task

can be useful not only for SSAE method but also with other

state-of-the-art, semi-supervised deep learning methods. The

auxiliary detection task is added to the classifier part in

SVAE and to the discriminator part in SGAN, respectively.

Table VII presents the quantitative results of fault detection

and identification for SVAE and SGAN. Except for PPV, it

can be seen that SVAE, SGAN, and SAAT show quite similar

diagnosis performance; however, PPVs of 92.8% in SAAT

and 92.6% in SVAE are much higher than that of 6.10% in

SGAN. This indicates the following two messages: 1) SGAN

is prone to Type I error, since it could be unstable when

optimizing parameters under an adversarial learning process,

and 2) SVAE with the auxiliary detection task exhibits the

best performance for fault detection and identification.

As qualitative results, Figs. 9 (a) and (b) present HFSs that

correspond to SVAE and SGAN, respectively. In Fig. 9 (a),

it can be seen that SVAE can well classify the three classes; it

is worth pointing out that it is difficult to represent the overall

monotonicity between health features, since the distribution

of the latent space of SVAE follows the Gaussian distribution.

The directions from normal to the two fault regions are inde-

pendent. In Fig. 9 (b), it can be seen that SGANmisdiagnoses

the normal points in the fault regions; thus, the poor diagnosis

performance of SGAN can be confirmed and monotonicity

between health features is not observed due to the unstable

parameter optimization procedure. The quantitative results of

the health degradation are summarized in Table VII. MCC

of 0.88 in SAAT is much closer to 1 than those of 0.44 and

0.05 in SVAE and SGAN, respectively. Therefore, it can

be concluded that the auxiliary detection task can be well

executed only for SSAE-based fault diagnosis model.

V. CONCLUSION

In this study, a semi-supervised autoencoder with an auxiliary

task (SAAT) was newly proposed to diagnose industrial

power transformers using dissolved gas analysis (DGA). The

method was tested using a large amount of DGA datasets

provided by Korea Electric Power Corporation (KEPCO).

The proposed idea consists of three main steps: 1) pre-

processing DGA data, 2) extracting two health features by

SAAT method, and 3) visualizing the two health features

into two-dimensional space, a so-called health feature space

(HFS). We evaluated the fault diagnosis and health degrada-

tion performance of the proposed approach in four compara-

tive studies. The first study investigated the effectiveness of

the auxiliary detection task in a semi-supervised autoencoder

(SSAE)-based fault diagnosis model. The quantitative results

of the fault detection and identification show that SAAT

achieves over 90% performance in all metrics. Qualitative

results of HFS show that SAAT represented the integrated

characteristics of fault identification features in SSAE-IU and

health degradation features in SSAE-DU. In the second com-

parative study, the proposed method of directly visualizing

heath features without transformation or dimension reduc-

tion intuitively illustrates the health degradation proper-

ties as compared with conventional visualization methods

(t-stochastic neighbor embedding (t-SNE) and self-organizing

map (SOM)). In the third study, SAAT outperformed all

conventional fault diagnosis methods (principal component

analysis (PCA), sparse autoencoder (SAE), and deep belief

network (DBN)) in terms of both quantitative and qualitative

results of the health degradation performance. The last study

investigatedwhether the auxiliary detection task can be useful

not only for SSAE method but also for other state-of-the-art,

semi-supervised deep learning methods (semi-supervised

variational autoencoder (SVAE) and semi-supervised gen-

erative adversarial network (SGAN)). It was found that the

auxiliary detection task can be well executed only for SSAE-

based fault diagnosis model. Therefore, these experimental

results examining real-world DGA datasets confirm that the

auxiliary detection task in SSAE provides the opportunity

to investigate not only fault identification but also health

degradation; further, HFS helps to intuitively monitor the

health state of power transformers.

Future research is suggested, as follows. First, the

prediction of health state and/or remaining useful life of

industrial power transformers should be performed using the

proposed SAAT and its performance should be evaluated.

Second, the proposed SAAT method should be verified with

other systems where the health degradation is an important

issue, (e.g., batteries and rotary machinery). Finally, more

detailed fault types should be investigated, such as partial

discharge faults, electrical faults of low and high discharge,

and thermal faults of low, medium and high level.
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