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Abstract: At present, machine sense of smell has shown its important role and advantages in
many scenarios. The development of machine sense of smell is inseparable from the support of
corresponding data and algorithms. However, the process of olfactory data collection is relatively
cumbersome, and it is more difficult to collect labeled data. However, in many scenarios, to use a
small amount of labeled data to train a good-performing classifier, it is not feasible to rely only on
supervised learning algorithms, but semi-supervised learning algorithms can better cope with only a
small amount of labeled data and a large amount of unlabeled data. This study combines the new
weighted kernel with SKELM and proposes a semi-supervised extreme learning machine algorithm
based on the weighted kernel, SELMWK. The experimental results show that the proposed SELMWK
algorithm has good classification performance and can solve the semi-supervised gas classification
task of the same domain data well on the used dataset.

Keywords: machine sense of smell; supervised learning; semi-supervised learning; SELMWK

1. Introduction

At present, machine smell has been applied in many fields. Many people try to use
machine smell to solve related problems. For example, Xu et al. used an electronic nose
system to evaluate the quality of tea leaves based on the volatile components of tea leaves
and tea infusions, demonstrating the feasibility of the electronic nose system in qualitative
and quantitative analysis of tea quality [1]. With the development of sensor technology,
signal processing technology and machine learning technology [2–4], various solutions have
emerged in the field of machine smell technology. Liu et al. used four machine learning
methods to classify wine, concluding that BP neural network has a better recognition
effect [5]. In environmental detection, Zhang et al. [6]. proposed a new neural network
method based on a chaos optimization algorithm and combined it with a portable electronic
nose to estimate the indoor pollutant concentration. It has been verified that this method is
superior and efficient. In the medical field [7–10], the development of sensor technology
and the neural network has also promoted the development of machine sense of smell. VA
B et al. used a robotic olfactory system based on a MOS sensor array to analyze breath
for non-invasive detection of COPD and lung cancer [11]. Hendrick H et al. proposed a
method for non-invasive detection of pulmonary tuberculosis, which analyzed the exhaled
breath of tuberculosis patients and ordinary people through an olfactory machine system.
They used multiple machine learning methods to classify them [12].

Semi-supervised learning (SSL) is a key problem in the field of pattern recognition
and machine learning. It is a learning method combining supervised learning with un-
supervised learning. Semi-supervised learning uses a large number of unlabeled data
and uses labeled data at the same time to carry out pattern recognition. The basic idea
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of semi-supervised learning is to use model assumptions in data distribution to build a
learner to label unlabeled samples.

Semi-supervised learning aims to discover more data feature information from a small
amount of labeled data and a large amount of unlabeled data [13]. The idea of semi-
supervised learning has been used in various applications, such as a semi-supervised learn-
ing workflow based on a generative adversarial network (GAN) for acoustic impedance
inversion [14], deep transfer learning for few-shot SAR image classification [15], a SAR
target detection network based on a semi-supervised learning and attention mechanism [16]
and Semi-supervised few-shot learning [17]. Commonly used methods for semi-supervised
learning include self-training, co-training, transductive support vector machines and graph-
based methods.

In this study, the semi-supervised classification problem of the same domain data in
the field of machine smell is studied at the algorithm level. The so-called same-domain
data refers to the data collected successively when the sensor does not have drift or has
a slight drift problem, usually collected under the same conditions using the same equip-
ment for a continuous period. This paper proposes a semi-supervised extreme learning
machine algorithm based on the weighted kernel (SELMWK). Aiming at the problem that
machine olfactory experiments are usually cumbersome and it is relatively difficult to
collect labeled data, the semi-supervised classification problem of the same domain data is
caused. Inspired by a Semi-supervised Extreme Learning Machine (SSELM) and multi-core
learning, the SELMWK algorithm is proposed. It improves the poor operation stability of
semi-supervised extreme learning machines due to random hidden layers, and avoids the
poor applicability of single-core learning. The effectiveness of the algorithm is verified from
two data sets. It has been verified that this algorithm is better than the proposed SSELM
and Semi-supervised Extreme Learning Machine (SKELM) algorithms.

2. Related Work

The self-training algorithm was originally proposed by Yarowsky, who used this
algorithm for semantic elimination to predict the meaning of words based on context [18].
In [19], Li et al. proposed a self-learning semi-supervised deep learning network for
identifying fake news on the network. By adding a belief network layer, the accuracy of the
network was improved.

The co-training algorithm was first proposed by A.Blum and T.Mitchell in [20] for
the task of web page classification. Yaslan and Cataltepe proposed a random subspace
collaborative algorithm, which uses the random subspace generated by the algorithm to
perform semi-supervised ensemble learning on unlabeled data. Experiments show that the
algorithm achieves good results on real data sets [21]. In 2018, Qiao et al., inspired by the
collaborative training method, proposed a deep collaborative training algorithm to com-
plete the task of semi-supervised image recognition by training multiple neural networks
into multiple different views. Demonstrated better performance on the dataset [22].

Joachims T. used transduction support vector machines for the task of text classifi-
cation with great results [23]. In the literature [24], N. Zemmal et al. proposed a semi-
supervised support vector machine algorithm for breast cancer classification. First, three
types of features were extracted, and the dimension of the feature vector was reduced
by using a genetic algorithm. Finally, the semi-supervised classification was carried out.
Classifier S3VM.

The graph semi-supervised method mainly uses labeled and unlabeled data to con-
struct a data graph and propagates the labels according to the adjacency relationship.
Combining the knowledge of graph Laplacian and multi-feature learning, Zhang et al.
proposed a semi-supervised joint learning model based on multi-feature kernels to improve
the robustness of electronic noses [25].
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3. Dataset
3.1. Dataset Description

In this study, two public datasets were selected to verify the effect of the SELMWK
algorithm, namely:

(1) Dataset 1: The gas delivery platform facility at the Chemical Signaling Laboratory
of the Institute of Biological Circuits, University of California, San Diego, was se-
lected using sensors from A Vergara et al. and published this dataset on the UCI
Machine Learning Repository [26,27]. The dataset has a total of 13,910 measure-
ments, using a sensor array consisting of 16 gas sensors to collect data for 6 different
gases at different concentrations. The measurement system platform provides the
versatility to obtain the concentration of desired chemicals with high accuracy and
reproducibility, thereby minimizing common errors caused by human intervention
and allowing focus on chemical sensors. The resulting dataset consists of records from
six different pure gaseous substances, with 8 data points selected from each specific
sensor as feature points over the entire time series, so a set of data yields a total of
8 × 16 = 128-dimensional feature vectors. The dataset was divided into 10 batches in
total, which were collected in different months. Table 1 shows the details of dataset 1.

Table 1. Data volume for different sample gases in 10 batches 6.

Batch ID Month Acetone Acetaldehyde Ethanol Ethylene Ammonia Toluene Total

Batch 1 1–2 90 98 83 30 70 74 445
Batch 2 3–10 164 334 100 109 532 5 1244
Batch 3 11–13 365 490 216 240 275 0 1586
Batch 4 14, 15 64 43 12 30 12 0 161
Batch 5 16 28 40 20 46 63 0 197
Batch 6 17–20 514 574 110 29 606 467 2300
Batch 7 21 649 662 360 744 630 568 3613
Batch 8 22, 23 30 30 40 33 143 18 294
Batch 9 24, 30 61 55 100 75 78 101 470
Batch10 36 600 600 600 600 600 600 3600

(2) Dataset 2: Select the gas data collected by J. Fonollosa et al. using 8 MOX sensors [28].
They exposed the sensor arrays to 10 different ethanol, methane, ethylene, and carbon
monoxide concentrations. The duration of each experiment is 600 s, and the conduc-
tivity of each sensor is 100 Hz, so a set of data has 60,000 × 8 = 480,000 data. In the
experiments of this chapter, in order to train a classifier with better applicability and
make it better to deal with gases of different concentrations, the same type of gas
with different concentrations is set as the same sample, and only the type of target
gas is analyzed. For classification prediction, the labels of the same gas samples with
different concentrations are set to the same class. Table 2 is the information of 8 MOX
sensors, and Table 3 is the number of samples and concentrations of different gases in
this data set.

Table 2. Eight MOX Sensors.

Sensor Type Sensitive Gas

TGS2611 5.65V Methane, natural gas
TGS2612 5.65V Methane, propane, butane
TGS2610 5.65V Propane, butane
TGS2602 5.65V Toluene and other VOC volatile gases
TGS2611 5.00V Methane, natural gas
TGS2612 5.00V Methane, propane, butane
TGS2610 5.00V Propane, butane
TGS2602 5.00V Toluene and other VOC volatile gases
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Table 3. Amounts and concentrations of different gases in dataset 2.

Gas Type Number of Samples Concentration (ppm)

Ethanol 160 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100, 112.5, 125
Methane 160 25, 50, 75, 100, 125, 150, 175, 200, 225, 250

Vinyl 160 12.5, 25, 37.5, 50, 62.5, 75, 87.5, 100, 112.5, 125
Carbon Monoxide 160 25, 50, 75, 100, 125, 150, 175, 200, 225, 250

(3) It can be known from Tables 2 and 3 that the 8 MOX sensors have good sensitivity to
the four gases to be measured so that the response curve of the sensor can be avoided
because the gas to be measured does not react with the sensor array. The lack of more
useful information will eventually make the gas classification effect less effective. At
the same time, it can be seen from the number of samples that the number of four
samples is relatively uniform so that the data skew problem will not be caused due to
the excessive amount of data of certain sample gas, thereby reducing the accuracy of
gas classification.

3.2. Dataset Processing
Data Cropping and Filtering

Different from the data in Dataset 1, Dataset 2 provides the complete data within 600 s
without preprocessing and data extraction. This means that if the data in this dataset is
used directly, each sample will reach a dimension of 480,000. Figure 1 is the response curve
of different gas sensors:
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Figure 1a is a graph of the sensor response for raw 250 ppm methane gas. It can be
seen from the figure that the resistance value of the sensor is not always changing. Only
during the desorption process and a short period during the reaction process does the
resistance value of the sensor change due to the redox reaction. When in the stable and
maximum response stages, the resistance value basically does not change or fluctuates
little. Therefore, there is too much redundant information in the 480,000-dimensional data.
Excessive data dimensions will not only greatly increase the computational complexity
of model training but also cause model training to be slow. Therefore, it is necessary to
perform dimensionality reduction operations on the data. In addition, when processing the
data in the data set, it is found that due to data preservation reasons, many data samples in
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the public data set do not reach the dimension of 480,000, and there is data loss, which will
bring difficulties to the subsequent feature extraction. In order to ensure the uniformity
of the dimensions of the sample data, the entire data set is screened and the data samples
are trimmed. First, discard the samples with too much missing data, and reduce the entire
data set to 600 data samples. After that, the data is trimmed to reduce the amount of data
in the two cleaning processes and the stabilization stage, and finally, the dimension of each
sample is reduced to 25,000 × 8 = 200,000.

Figure 1b–d shows the data response curves of trimmed 250 ppm methane gas, 25 ppm
methane gas and 250 ppm carbon monoxide, respectively. By comparing Figure 1b,c, it can
be seen that the sensor response curves of two gases with different concentrations but the
same type in the same sensor array are different. It can be seen that the gas with higher
concentration makes the resistance value of the sensor change more, but the changing
trend of the resistance value of each sensor is roughly the same. However, it can be
seen in Figure 1b,d that the response values and changing trends of the sensor arrays are
different at the same concentration of carbon monoxide gas and methane gas. The pattern
recognition algorithm of machine smell is to classify the gas by extracting the features in the
response curve. Table 4 below shows the number of different gas samples after cropping
the dataset.

Table 4. Number of different gas samples.

Gas Type Number of Samples

Ethanol 150
Methane 146

Vinyl 154
Carbon Monoxide 150

4. Method
4.1. Manifold Regularization

Manifold regularization is a graph-based semi-supervised learning method that con-
structs an undirected graph from labeled and unlabeled data. The vertices of the graph are
data samples, and the edges are the similarities between data samples to correlate labeled
data with unlabeled data. Since the manifold regularization framework must satisfy the
manifold assumption, the smoothness assumption is enforced on the data by minimizing
the loss function, which leads to Equation (1):

Lm =
1
2 ∑

i,j
wi,j‖P(y|xi )− P

(
y
∣∣xj
)
‖2 (1)

where wi,j is the similarity i between xi and xj data, j = 1, 2, · · · l + u, l is labeled data, u is
unlabeled data. P(y|x i) and P(y|x j) are conditional probabilities.

Since the conditional probability calculation is relatively difficult, Equation (1) can be
replaced with Equation (2):

L̃m =
1
2 ∑

i,j
wi,j‖ỹi − ỹj‖

2 (2)

where ỹi and ỹj are the prediction results based on the data xi and xj.
By simplifying Equation (2), Equation (3) can be obtained:

L̃m = Tr
(

Ỹ
T

LỸ
)

(3)

where Tr(·) is the trace of the matrix, Ỹ =
[
ỹ1, ỹ2, · · · , ỹl+u

]T.
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According to the principle of Laplacian, L = D−W, D is a diagonal matrix, and the
elements in the matrix are shown in Equation (4):

Dii =
l+u

∑
j=1

wi,j (4)

W is an adjacency matrix. Set the set of k nearest neighbors of the data x to Nk(x),
then the elements in the adjacency matrix can be obtained by Equation (5):

wi,j =

exp
(
− ‖xi−xj‖2

2σ2

)
xi ∈ Nk

(
xj
)

or xj ∈ Nk(xi)

0 otherwise
. (5)

4.2. Semi-Supervised Kernel Extreme Learning Machine Improvement Scheme

The SKELM algorithm has good applicability, but its generalization ability is affected
by the kernel function, and the selection of the kernel function often affects the performance
of the entire SKELM model. In ordinary SKELM models, only one kernel function is usually
used for feature mapping of hidden layers. However, this has drawbacks. For different data,
different kernel functions will give the model different performance, so the applicability of
a single KELM is not outstanding.

Therefore, to make the trained classifier have a better recognition effect and better
stability and generalization ability, this study combines the weighted kernel with the
SKELM model and proposes an improved semi-supervised algorithm SELMWK based on
the weighted kernel extreme learning machine. The model inherits the advantages of the
semi-supervised kernel extreme learning machine and simultaneously makes up for the
problem of the insufficient generalization ability of the single-kernel model.

4.2.1. Improved Design of Kernel Function

To increase the applicability of a single kernel function, combining multiple kernel
functions is a good solution. In the article [29], Gönen M introduced various ways of
combining kernels and showed that using multiple kernels is generally more effective than
using a single kernel. After many experiments, the weighted kernel function calculated by
this calculation method is applied to this semi-supervised learning task. It also shows a
better effect than single-kernel learning. The following is a brief list of four common basic
kernel functions:

(1) Linear Kernel function, whose form is shown in Equation (6):

K
(
xi, xj

)
= xT

i xj (6)

(2) Polynomial Kernel function, c, d are hyperparameters whose form is shown in Equation (7):

K
(
xi, xj

)
=
(

xT
i xj + c

)d
(7)

(3) Radial basis function kernel, σ is a hyperparameter whose form is shown in Equation (8):

K
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ2

)
(8)

(4) Sigmoid kernel function, where a, c are hyperparameters, and its form is shown in
Equation (9):

K
(
xi, xj

)
= tanh

(
axT

i xj + c
)

(9)
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A linear kernel function is a linear map and a special case of the RBF kernel. RBF can
not only non-linearly map data to high-dimensional space but also has fewer parameters
than the poly kernel function, so it has less complexity. In addition, when the parameter d in
the poly kernel function is high, the element value of the kernel matrix tends to be infinitely
large or infinitely small, which greatly increases the difficulty of calculation. Sigmoid as the
basic core will not conform to Mercer’s theorem. Therefore, in this study, the RBF kernel
is selected as the basic kernel function to obtain the weighted kernel function through a
weighted combination. The calculation process is as follows:

First, define a weighted nonlinear mapping function Φ(x), where θ is a weighting
parameter, Φ1(x) and Φ2(x) are two different nonlinear mapping functions, the form is
shown in Equation (10):

Φ(x) = θΦ1(x) + (1− θ)Φ2(x) (10)

Then define a kernel function K
(
xi, xj

)
= < Φ(xi), Φ

(
xj
)
>, and bring Equation (10)

into it to get Equation (11):

K
(
xi, xj

)
= θ2K1

(
xi, xj

)
+ (1− θ)2K2

(
xi, xj

)
+ 2θ(1− θ)K1,2

(
xi, xj

)
(11)

where K1
(
xi, xj

)
= < Φ1(xi), Φ1

(
xj
)
>, K2

(
xi, xj

)
= < Φ2(xi), Φ2

(
xj
)
> is a common basic

kernel function, K1,2
(
xi, xj

)
is the cross-kernel function.

When RBF is selected as the basic kernel function, their forms can be expressed as
Equations (12)–(14):

K1
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ1
2

)
(12)

K2
(
xi, xj

)
= exp

(
−
‖xi − xj‖2

2σ22

)
(13)

K1,2
(
xi, xj

)
=

(
2σ1σ2

σ1
2 + σ22

)N
2

exp

(
−
‖2xi − xj‖2

σ1
2 + σ22

)
(14)

where σ1 and σ2 are the parameters of the RBF kernel function, and N is the dimension of
the input data x.

The weighted kernel can be obtained by substituting Equations (12)–(14) into
Equation (11), and the weighted kernel form is shown in Equation (15):

K
(
xi, xj

)
= θ2 exp

(
−
‖xi − xj‖2

2σ1
2

)
+ (1− θ)2 exp

(
−
‖xi − xj‖2

2σ22

)
+ 2θ(1− θ)

(
2σ1σ2

σ1
2 + σ22

) N
2

exp

(
−

2‖xi − xj‖2

σ1
2 + σ22

)
(15)

Equation (15) is the weighted kernel function mainly used in this study. Its kernel
function is composed of a single kernel function and a cross kernel function. It improves the
problem of smoothing variable information caused by the direct linear addition of single
kernel functions, maps data to more feature spaces, and obtains more data information,
thereby increasing the classifier’s performance.

4.2.2. Semi-Supervised Weighted Kernel Extreme Learning Machine Algorithm Process

The SELMWK algorithm proposed in this study aims to use the manifold regulariza-
tion method to jointly train a good-performing semi-supervised classifier on both labeled
and unlabeled data. The flowchart of the algorithm is shown in Figure 2:
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Figure 2. SELMWK algorithm flowchart. By using the weighted kernel, SELMWK can observe the
data from multiple angles and extract the key information, while the applicability and operation
stability are relatively good. After obtaining the hidden layer through two constraints and minimizing
the manifold regularization loss function (Min Lm) while minimizing the empirical loss function
(Min L), the trained classifier is finally obtained to test the unlabeled label data.

As can be seen from Figure 2, the most significant difference between the SELMWK
algorithm and the SSELM and SKELM algorithms is the mapping method of the input
data to the hidden layer. SSELM uses explicit random mapping to get hidden layers.
This method has high applicability but has poor operational stability and requires a large
amount of computation when mapping to high dimensions. The other two methods use
kernel mapping, which belongs to implicit mapping and cannot directly calculate the
hidden layer. SKELM using the single-core method, has better operational stability but
lower applicability. By using the weighted kernel, SELMWK can observe the data from
multiple angles and extract the key information, while the applicability and operation
stability are relatively good. After obtaining the hidden layer through two constraints
and minimizing the manifold regularization loss function while minimizing the empirical
loss function, the trained classifier is finally obtained to test the unlabeled label data. The
calculation flow of the SELMWK algorithm will be described in detail below. First, define
the algorithm as an optimization problem as Equation (16):

min
fεF

λLm(f(X)) + CL(YL, f(XL)) + ‖f‖2
H (16)

where λ and C are the penalty parameters, X =
[
XT

L, XT
U

]T
is the input data, XL is the

labeled data, XU is the unlabeled data, YL is the real label of the labeled data, f(·) is the
correlation map. The first term is the loss function of manifold regularization, which aims
to make the predicted results more in line with the geometric structure represented by the
X distribution of the input data. The second term is the empirical loss function, which aims
to align the predicted results more with the actual results. The third term is a regularization
term that prevents the model from overfitting.

Because the kernel mapping is a nonlinear implicit mapping, for the convenience of
expressing the point after the weighted kernel mapping of the input data X is expressed as
Equation (17):

H = Φ(X) (17)

In the formula, H =
[
HT

L, HT
U

]T
, Φ(·) weighted nonlinear mapping function, because

K
(
xi, xj

)
=
〈
Φ(xi), Φ

(
xj
)〉

, where 〈·〉 represents the inner product of vectors, so the kernel
matrix can be expressed as Equation (18):

K = HHT (18)
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Since the predicted labels Ỹ = Hβ, Ỹ =
[
Ỹ

T
L, Ỹ

T
U

]T
, β is the output weight matrix of

the network, the loss function of the first term manifold regularization in Equation (16),
which can be written in the form of Equation (19):

Lm = Tr
(
βTHTLHβ

)
(19)

The second loss function in Equation (16) can be written in the form of Equation (20):

L(YL, f(XL)) = ∑NL
i=1 ‖ỹLi − yLi‖

2 (20)

where parameter NL is the amount of labeled data. Simplifying Equation (20), we can
finally get the loss function of the second term in Equation (16), which can be rewritten in
the form of Equation (21):

L(YL, f(XL)) = ‖HLβ− YL‖2 (21)

Bringing Equation (21) and Equation (19) into Equation (16) can finally obtain the
function that needs to be optimized as Equation (22):

min
β

λ

2
Tr
(
βTHTLHβ

)
+

C0

2
‖HLβ− YL‖2 +

1
2
‖β‖2 (22)

where λ and C0 are custom trade-off parameters used to balance the influence of these two
parts. For the convenience of subsequent calculations, write C0 in the form of a diagonal
matrix, such as Equation (23):

ΛC = dig(C0, C0, · · · , C0, 0, · · · , 0) (23)

In Equation (23), the number of C0 is the number of labeled samples, and the number
of 0 is not the number of unlabeled samples. So, Equation (22) can be rewritten as Equation
(24):

min
β

λ

2
Tr
(
βTHTLHβ

)
+

1
2

Tr
[
(Y∗ −Hβ)T

ΛC(Y∗ −Hβ)
]
+

1
2
‖β‖2 (24)

In the formula, Y∗ ∈ RN, where the first NL rows are true labels with labeled data,
and the rest are pseudo labels without labeled data, set to −1. Solving the optimization
problem of Equation (24) and finding its gradient, Equation (25) can be obtained:

∇ = β+ HTΛC(Hβ− Y∗) + λ·HTLHβ (25)

Let ∇ = 0, the output weight matrix of the network is obtained as Equation (26):

β = HT
(

ΛCHHT + λLHHT + IN

)−1
ΛCY∗ (26)

Substituting Equation (18) into Equation (26), the form of the output weight matrix of
the network can be changed to the form of Equation (27):

β = HT(ΛCK + λLK + IN)
−1ΛCY∗ (27)

Kernel mapping is an implicit mapping, and its specific form is not known. Therefore
HT is not known, so β cannot be calculated. However, the network’s output can be
calculated directly to skip the process of calculating β. The final output of the SELMWK
algorithm is Equation (28):

Yout = [K(xt, x1), · · · , K(xt, xN)](ΛCK + λLK + IN)
−1ΛCY∗ (28)
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5. Result

In this part, we mainly use two public data to conduct related experiments on data
analysis and algorithm performance analysis. It is mainly divided into the following three
parts: (1) The experiment of feature extraction on dataset 2; (2) The algorithm effect before
and after feature extraction is analyzed and compared; (3) The comparison of SELMWK
and other algorithms in recognition effect experiments. These three experiments verify
the effectiveness of the SELMWK algorithm proposed in this study in solving the semi-
supervised classification problem of the same domain data in machine smell.

5.1. Feature Extraction Experiment

After the cutting process of data processing, the problem of data sample data alignment
is solved, and the dimension of the data is reduced to a certain extent. However, the data
sample dimension is still too large, and the information is redundant, which will greatly
increase the calculation in the training and testing process [30]. Directly reducing the
dimension of data samples through random feature matrix mapping is likely to lose a lot of
critical information. This study adopts a very good simple, and effective feature extraction
method. Table 5 shows all the features extracted by this feature extraction method:

Table 5. Features extracted from the data curve.

Steady State Characteristics Dynamic Features

Adsorption stage Desorption stage
∆X max(Y0.01) min(Y0.01)
∆X∗ max(Y0.001) min(Y0.001)

max(Y0.0001) min(Y0.0001)

First, select the steady-state feature, the difference between the maximum data value
and the baseline. The selection method is as shown in Equation (29):

∆X = max
t

x(t)−min
t

x(t) (29)

However, due to sensor drift, the maximum response and baseline of the sensor may
change, so it is not enough to extract a single maximum difference. The effect of sensor drift
can be reduced by comparing the differential value with the baseline so that the normalized
steady-state characteristic can be expressed as Equation (30):

∆X∗ =
max

t
x(t)−min

t
x(t)

min
t

x(t)
(30)

where x(t) represents the time-varying data collected by the sensor, and t represents the
time t ∈ [0, T].

The above two characteristics belong to the steady state characteristics and can only
reflect the characteristics of the steady state. During the gas reaction process and desorption
process, important features of the data are often preserved. In order to represent the dy-
namic characteristics of the sensor, a method in the field of econometrics called Exponential
Moving Average (EMA) will be used. The calculation method is shown in Equation (31):

y(t) = (1− θ)y(t) + θ(x(t)− x(t− 1)) (31)

In Equation (31), t = 1, 2, 3, · · ·T, the initial value y(0) = 0, θ is the smoothing
parameter, and its values are set to 0.01, 0.001, 0.0001 respectively. Figure 3 shows the
exponential moving average transformed graph of the chemical sensor TGS2612 5.65V at
250 ppm methane gas, using different θ parameters:



Appl. Sci. 2022, 12, 9213 11 of 16Appl. Sci. 2022, 12, x FOR PEER REVIEW 11 of 17 
 

 
Figure 3. TGS2612 5.65V after exponential moving average transformation under 250 ppm methane 
gas. 

As seen in Figure 3, the graph reflects the dynamic characteristics of the sensor re-
sponse curve well. The minimum and maximum values of the curve represent the maxi-
mum rate of change of the sensor resistance during the adsorption and desorption phases 
of the sensor array, respectively. At the same time, smoothing parameters are used to re-
duce the influence of resistance value fluctuations during the sensor response process. A 
total of three smoothing parameters were selected in this experiment to extract the maxi-
mum and minimum values of the data after exponential transformation. Therefore, each 
sensor has eight features, including two dynamic features and six steady-state features. 

5.2. Comparative Experiment of Feature Extraction 
Due to the lack of data in some samples in the original data, the original 480,000-

dimensional data was not used for comparison in this experiment. The experiment is 
mainly carried out by comparing the cropped data and the data after feature extraction. 
Table 6 shows the comparison of the computing time required before and after feature 
extraction, and Table 7 shows the difference in recognition accuracy before and after fea-
ture extraction: 

Table 6. Comparison of computing time before and after feature extraction (s). 

Training Set 
Size 

SVM-Linear SVM-rbf LDA SELMWK 

Before feature extraction  
10 5.5 × 10-2 6.5 × 10-2 2.6 × 10-1 1.8 × 10-1 
50 5.7 × 10-1 1.0 1.5 1.4 
500 1.2 1.4 4.1 99.43 

After feature extraction  
10 5.1 × 10-4 4.6 × 10-4 4.6 × 10-3 1.9 × 10-3 
50 6.9 × 10-4 8.4 × 10-4 6.3 × 10-3 6.3 × 10-3 
500 7.8 × 10-4 1.2 × 10-3 3.6 × 10-2 1.1 × 10-1 
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As seen in Figure 3, the graph reflects the dynamic characteristics of the sensor re-
sponse curve well. The minimum and maximum values of the curve represent the maxi-
mum rate of change of the sensor resistance during the adsorption and desorption phases of
the sensor array, respectively. At the same time, smoothing parameters are used to reduce
the influence of resistance value fluctuations during the sensor response process. A total of
three smoothing parameters were selected in this experiment to extract the maximum and
minimum values of the data after exponential transformation. Therefore, each sensor has
eight features, including two dynamic features and six steady-state features.

5.2. Comparative Experiment of Feature Extraction

Due to the lack of data in some samples in the original data, the original 480,000-
dimensional data was not used for comparison in this experiment. The experiment is
mainly carried out by comparing the cropped data and the data after feature extraction.
Table 6 shows the comparison of the computing time required before and after feature
extraction, and Table 7 shows the difference in recognition accuracy before and after feature
extraction:

Table 6. Comparison of computing time before and after feature extraction (s).

Training Set
Size SVM-Linear SVM-rbf LDA SELMWK

Before feature extraction
10 5.5 × 10−2 6.5 × 10−2 2.6 × 10−1 1.8 × 10−1

50 5.7 × 10−1 1.0 1.5 1.4
500 1.2 1.4 4.1 99.43

After feature extraction
10 5.1 × 10−4 4.6 × 10−4 4.6 × 10−3 1.9 × 10−3

50 6.9 × 10−4 8.4 × 10−4 6.3 × 10−3 6.3 × 10−3

500 7.8 × 10−4 1.2 × 10−3 3.6 × 10−2 1.1 × 10−1

Table 7. Differences in algorithm recognition accuracy before and after feature extraction (%).

Training Set SVM-Linear SVM-rbf LDA SELMWK

10 +31.69 +38.48 +23.74 +10.2
50 +9.45 +29.09 +0.91 +8

500 +1 +6 0 +5

In this experiment, three traditional machine learning methods are selected to test the
effect of feature extraction, including the semi-supervised learning algorithm SELMWK
proposed in this paper. Three traditional supervised learning methods are linear support
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vector machine (SVM-linear), support vector machine based on RBF kernel function (SVM-
rbf) and LDA. The SELMWK algorithm all uses four labeled data for experiments.

Table 6 mainly analyzes the aspect of the algorithm running time. Due to the reasons
of the computer itself, it cannot be guaranteed that the environment of each running is
the same, so the running time will vary, but the change is not large. The data collected in
this experiment is an average of 20 runs. By comparing the running time before and after
feature extraction, it can be seen that the algorithm’s running time is significantly reduced.
Especially for the SELMWK algorithm, the running time before and after feature extraction
is 99.43 s and 0.11 s, respectively, which greatly shortens the model training time.

Table 7 analyzes the recognition accuracy of the algorithm. The purpose of feature
extraction is to reduce the computational complexity of the model and to grasp the key
information points in the data. The feature extraction process cannot lose too much useful
information in the original data. From the results, the feature extraction method used in
this paper not only does not reduce the recognition accuracy of the algorithm but also
increases the recognition accuracy of the algorithm, especially when the amount of data
is small.

From the above experiments, the feature extraction method used in this study is
simple, effective and easy to implement. While extracting the key information of the data,
the dimension of the data is greatly reduced, thereby reducing the cost of model training.

5.3. SELMWK Algorithm Effect Comparison Experiment
5.3.1. Algorithm Verification

This experiment mainly verifies the proposed SELMWK algorithm and conducts three
sets of comparative experiments. The first set of comparative experiments compares the
SELMWK algorithm’s recognition accuracy with three traditional supervised learning algo-
rithms (SVM-linear, SVM-rbf and ELM) [31,32] and a semi-supervised learning algorithm
SSELM algorithm. The first dataset of this set of experiments selected Batch10 data in
dataset 1, and the second dataset selected dataset 2. Figure 4 shows the test results of five
different algorithms on two datasets:
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Figure 4a shows the effect of 5 different algorithms on Batch10. Take 1000 samples
in the dataset as the test set, and test the recognition accuracy of different algorithms
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when the number of labeled samples = {6,12,24,48,96,192}. As can be seen from Figure 4a,
in this dataset, two SVM algorithms have the lowest recognition accuracy, while another
supervised learning algorithm, ELM, has achieved good results. This is because the random
hidden layer of the ELM algorithm maps the data to extract the features in the data well.
When observing two semi-supervised algorithms, when there is a small amount of labeled
data, the recognition effect of the SELMWK algorithm used in this paper is better than that
of SSELM.

Figure 4b shows the performance of 5 different algorithms on dataset 2. Take 100 data
as test samples, and test the recognition effects of different algorithms when the number
of labeled samples = {4,8,16,32,64,128}. The same conclusion can be drawn from the
figure; the two semi-supervised learning algorithms have better results when there is
only a small amount of labeled data. Among them, the SELMWK algorithm proposed in
this study is based on the SSELM algorithm, obtains a stronger mapping ability through
the weighted kernel, and maps the data from multiple angles. The SELMWK algorithm
can extract features from data from multiple high-dimensional spaces, resulting in better
recognition results.

5.3.2. Algorithm Stability Comparison

Figure 5 shows the results of the SSELM algorithm running 100 times on the above two
datasets without changing any conditions. The number of labeled samples is 4 and 6, respectively:
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As can be seen from Figure 5, the recognition effect of the SSELM algorithm is not
stable. In Batch10, the highest recognition accuracy of the SSELM algorithm differs from the
lowest recognition accuracy by about 7%. The difference between the highest and lowest
recognition accuracy of the SSELM algorithm in Dataset2 is about 10%. This is because
SSELM uses random hidden layer mapping, so even if the data and hyperparameters are
not changed, the classifier trained by the SSELM algorithm will be different each time, so
the recognition effect will continue to change. In the SELMWK algorithm, the kernel matrix
is generated according to the input data after the parameters are set. The result is the same
every time, so the SELMWK algorithm is more stable than the SSELM algorithm.

5.3.3. Validating the Advantages of Weighted Kernels

The third set of comparative experiments verifies the weighted kernel’s advantages
relative to the single kernel. Figure 6 is a comparison chart of the recognition effects of the
three algorithms on different data sets:
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Figure 6 shows the recognition effects of the three algorithms on Batch1, Batch2, Batch6,
Batch7, Batch10 and Dataset 2. Among them are six labeled data in different batch datasets
in dataset 1 and four labeled data in dataset 2. It can be seen from the figure that the
SELMWK using the weighted kernel function has a good recognition effect on each data
set except Batch1, and the overall recognition effect is also the best. In addition, the effect
of the SKELM algorithm using the RBF kernel from Batch1, Batch2, and Batch3 is lower
than that of the SKELM algorithm using the Poly kernel. Especially in Batch1, it is more
obvious, and the recognition accuracy differs by about 10%.

6. Discussion

The gas data collection process is cumbersome, and it is difficult to label the data,
while it is relatively easy to obtain unlabeled data. In this case, this paper proposes a
semi-supervised learning method based on Weighted Kernel Extreme Learning Machine
(SELMWK) for the semi-supervised classification problem of the same domain data. The
method combines a novel combinatorial weighted kernel with a semi-supervised kernel
extreme learning machine. The model instability problem caused by the random hidden
layer of the traditional semi-supervised extreme learning machine algorithm and the low
generalization ability of the semi-supervised kernel extreme learning machine algorithm
is improved. After verification on two public datasets, the effectiveness of the proposed
algorithm is proved.

In the feature processing stage, since the experiments are carried out in the same
environment, the algorithm’s running time can represent the amount of computation in
the model training process. It can be seen from this that feature extraction can effectively
reduce the amount of computation in the model training process. Aiming for increased
recognition accuracy of the algorithm, this paper believes that this is because when the
data set is small, the algorithm cannot learn the characteristics of the original gas data well,
resulting in poor classification accuracy. When the amount of data increases, the algorithm
gradually learns this part of the features, so the classification accuracy increases.

In the algorithm comparison experiment, two learning methods are compared. When
the number of labels increases, supervised learning uses more data and learns more data
features to gradually increase recognition accuracy. When the labeled data reaches 192, the
recognition effects of the five algorithms are basically the same. On the other hand, when
there are only a few data samples. Two graph-based semi-supervised learning methods
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associate labeled data with unlabeled data. Using a large amount of unlabeled data to learn
the features in the data has a better recognition effect than the supervised algorithm.

In the comparative experiments of different kernel functions, using the RBF kernel has
better results on the latter two datasets. This is because the SKELM algorithm that only
uses a single core has higher requirements on core selection and is less applicable. The
weighted kernel combines the kernel functions in a weighted way to project the data into
different nonlinear spaces so that more useful information in the data can be mined, so the
recognition effect is better.

7. Conclusions

The main problem solved in this study is the semi-supervised classification of data
when there are only a small amount of labeled data and a large amount of unlabeled data in
the same domain. The method of manifold regularization is introduced and inspired by the
two algorithms of SSELM and SKELM; a new weighted kernel and SKELM are combined to
propose a semi-supervised method SELMWK based on a weighted kernel extreme learning
machine. And introduce it into the field of machine smell to solve the semi-supervised
gas classification problem. The algorithm not only absorbs the characteristics of the fast
learning rate of the SSELM algorithm but also absorbs the advantages of good stability of
SKELM and improves the problem of the poor generalization ability of the single-kernel
model. The algorithm is validated on two datasets and compared with four algorithms.
The feature extraction method used in this study is simple, effective, and easy to implement.
While extracting the key information of the data, the dimension of the data is greatly
reduced, thereby reducing the cost of model training. The experimental results show that
the proposed SELMWK algorithm has the best classification performance and can well
solve the semi-supervised gas classification task of the same domain data on both datasets.
In the best case, the recognition accuracy is 10% higher than other algorithms.
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