1450
Prog. Theor. Phys. Vol. 65, No. 4, April 1981, Progress Letters

A Semiclassical Treatment of Transition Phenomena
by Coherent-State Path Integral

——A Nontrivial Schematic Model—

Yutaka MIZOBUCHI
Department of Physics, Kvoto University, Kyvoto 606
(Received December 1, 1980)

A semiclassical method with path integrals in the SU(2) coherent state representation is
applied to the investigation of transition phenomena in a schematic model which represents
interplay between pairing and quadrupole modes. Numerical evaluation of the semiclassical
quantization condition is performed and the result is compared with the exact calculation.
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For the last few years, many authors have H=—g-P'P 4 @, (g, x>0) (D
investigated microscopic descriptions of -
large-amplitude nuclear collective motion.” P*:EO Cm' Ci'

The time-dependent Hartree-Fock (TDHF)
approximation has been considered as a pos-
sible candidate for the microscopic theory.
The TDHF theory is, however, essentially of
classical nature, and subject to the difficulty
of finding the unambiguous way to quantiza-
tion. Recently, path integral approaches to
nuclear many-body problems have raised in-
creasing interests®® mainly because they
lead us to an intuitive way of describing the
correspondence between classical and quan-
tal concepts. It has been shown in Ref. 3)
that path integrals in the coherent state
representation may be promising to the in-
vestigation of nuclear collective phenomena.
In particular, it would be expected that the
coherent-state path integral provides us a
useful device for the approximate quantiza-
tion of the TDHF theory. In this short note,
we investigate the semiclassical quantization
for a nontrivial schematic model by using the
semiclassical treatment developed by the
present author, together with Kuratsuji.*
The obtained result is compared with the
exact one.

We will work with the schematic model
Hamiltonian suggested by Mottelson®
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where the system is composed of #» identical
particles on a single-; shell (for simplicity,
the case of even £ is considered). The

Hamiltonian (1) illustrates an essential na-
ture of the pairing-plus-quadrupole interac-

tion. P’ and P are the pairing operators,
and @ corresponds to “deformation”.  These
operators are a part of the generators of an
O(4) group, and can be expressed in terms of
two independent spins (i.e., O(4)—SU(2)
X SU(2)):
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Then the Hamiltonian is rewritten as

ﬁ:g( §0(1)+ §0<2))
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Here we find that this model can be regarded
as a system of two interacting (quasi-) spins.
For simplicity, let the number of particles #
be equal to £ and seniorities in both parts of
the shell (|m|< /2 and |m|>8/2) be zero,
and it is sufficient to consider the case of
two spins with the same quantum number
s=8/4. Thus we can treat the model by
using the path integral in the SU(2) coherent
state representation.
We starts with the propagator

€~iﬁr/fz|§r>. (5)

K(£", & T)=<¢"

The coherent state |£> is defined as a direct
product |£>=1£>®|&> of the ones for single
spins |Ce> =(1418:*) 7% exp( £ S:*)s, — s>,

(k=1,2), and has a property of the com-

pleteness relation f|£>d( £)<&|=1. Theuse
of the completeness relation yields a path
integral form of K

KZ/D,U[C]@Z'S/”, (6)

where Du[£] is the invariant path measure.
S is called the action functional and given by

S[g]:fo7'dt[z'hs é}(1+|ck|2)“
X(E Ern—EE)—H ()] (7)
with
(e =L HIES.

The dominant contributions to the path
integral in (6) come from the “classical
paths” which are determined by the extreme

condition 6S =0 (stationary phase approxima-

tion). Using a solution of the condition 65
=(, we obtain the classical approximation
for K

Km:eis”/h , (8)
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where S¢ is a functional of the classical
path.

In order to get the classical trajectories, it
is convenient to introduce the angle variables
by stereographic projection of § through &»
=tan( @/ 2)e P 0< <7, 0<@x<27m; k=1,
2). In the present model, physical paths are
subject to the additional condition n— 2, i.e.,

(818 M+ SoP|Eyeccos B +cos O:=0. (9)

Under the condition (9), the Hamiltonian is
reduced to the following form:

H=—4S?[g-sin’F-cos’p+x-cos’d]  (10)
with

cos 8=cos h=—cos 0, ¢=(p1—¢2)/2,
S=s+1/2.

We note that symmetry between S and S®
in H causes the degeneracy of states with
the same value of |cos 8|, and reduces the
period of ¢ by half,i.e., 7. Since the value of
H remains constant (4 =FE) along the “clas-
sical path”, we obtain several trajectories on
a unit sphere (S?) which can be regarded as
a “curved” phase space. Figurel illus-
trates some examples of such trajectories,
where cos # is shown as a function of ¢ and
arrows indicate directions of the motion.

The relation between the force strength pa-

rameters is g<y in the case of Fig. 1(a);
trajectory Ci is obtained for the energy region
—4yS?< E< —4gS?, and C, for —4gS*<FE
< 0. Figure 2 shows the case in which g > x;
we get trajectory Cs for —4gS*< E< —4xS*?
and C: for —4xS*<E<0. Trajectory C
corresponds to the “deformation” mode,
while Cs corresponds to the pairing mode.

Trajectories C: and C: lie in the “transi-

tional” region between these modes.
Although this model has started with two
spins, the condition enables us to adopt a
method obtained for the case of a single spin
in Ref. 4). Application of the method yields
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Fig. 1. Examples of the classical trajectories.
Values of the force strength are ¢g=0.5 and
+=0.866 for the case of (a), and ¢g=0.866,
x=0.5 for the case of (b). Energies are
E=—58.62 and —28.58 for trajectories Ci
and C», respectively, in (a), while E= —62.43
and —28.58 for Cs and C;, respectively, in
(b). & is set to be 18.

the quantization rule as follows:
W(E):2<m+f>7r, (m=integer) (11)

where v is the number of turning points on
the trajectory in the course of a period (v =2
for the present trajectories). W(E) is the
action integral defined by

W(E)=2S [ cos by . (12)

The integration is to be performed over the
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interval 0<e@<gx for trajectory C: and the
closed loops in Fig. 1. for Cs, Cz and Cs. The
action integral (12) is bounded because of
compactness of the phase space S?, so that
the number of the “quantum number” m’'s is
finite.

The integration in (12) is numerically per-
formed to obtain the values of E which satis-
fy the condition (11). The result is shown in
Fig. 2 together with the exact one. In Fig. 2,
excitation energies are plotted against the
force parameters g and x which are param-
eterized as ¢°+x°=1. Dotted lines repre-
sent the approximate energies calculated by
the present method, which reproduce the
main trend of the energy levels given by the
exact diagonalization (solid lines). In the
g <yx region, however, there exist dis-
continuities in the approximate energy levels,
which are caused by separatrices that appear

Ex

 Semiclassical *+===*-
Exact

o
g:=0
b (g<x)

Fig. 2. The excitation energies for 2 =18 prot-

ted against ¢ and x parametrized by ¢°+x*

=1. The dotted lines represent the approxi-

mate energies calculated by the present
method, and the solid lines the exact ones.
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in the course of the transition between tra-

jectories C: and C.. These discontinuities

are unavoidable in the semiclassical approxi-
mation because the semiclassical quantiza-

tion cannot he applied to such a critical orbit
as a separatrix. Qutward discontinuities at
g=x come from the discontinuity of the
ground state energy, while the energy levels
of excited states change continuously. The
energy is minimum for a trajectory like C, in
the g <y region, for one like C: at ¢=y, and
for one like Cs in the g>x region. So the
discontinuity is caused by the separatrix
which lies between such trajectories. We
note that the change of trajectories in the
ground state can be regarded as the phase
transition from the “deformed” mode to the
pairing mode, and that competition between
these modes, which is a collective motion
with a large scale, occurs in the excited
states arround ¢g=yx. This type of collective
motion can be visualized as trajectory C: or
Cs in the present method. It should be noted
that we have been able to get a new collec-
tive mode which manifests itself as interplay
of two typical ones and obtain the approxi-
mate energy levels which reproduce the exact
ones fairly well, though our quantization rule
may not be applied to the phase transition
point itself. Thus we can conclude that the
semiclassical treatment with the coherent-
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state path integral yields a good approxima-
tion to the description of large-amplitude
collective phenomena.
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