SIAM J. SCI1. STAT. COMPUT. © 1992 Society for Industrial and Applied Mathematics
Vol. 13, No. 6, pp. 1460-1469, November 1992 011

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD
MACHINES *

J. E. DENDY, JR.!, M. P. IDA}, AND J. M. RUTLEDGES

Abstract. A semicoarsening multigrid algorithm suitable for use on single instruction multi-
ple data (SIMD) architectures has been implemented on the CM-2. The method performs well for
strongly anisotropic problems and for problems with coefficients jumping by orders of magnitude
across internal interfaces. The parallel efficiency of this method is analyzed, and its actual perfor-
mance is compared with its performance on some other machines, both parallel and nonparallel.

Key words. multigrid, parallel computing

AMS(MOS) subject classifications. 65N20, 65W05

1. Introduction. Some previous papers have examined multigrid methods for
their suitability for calculation on machines with SIMD architectures. Frederickson
and McBryan [FM] developed and analyzed a method that was designed to keep all
the processors busy. Decker analyzed [D1] the performance on SIMD machines of
more traditional multigrid methods. Both of these papers were restricted to Poisson’s
equation with periodic boundary conditions; neither paper attempted to address the
sort of problem we are interested in, namely,

(1.1) = V- (D(z,y)VU(z,y)) + o(z,y)U(z,y) = F(z,y)

in a bounded region Q of R?, where D = (D!, D?), D¢ is positive, ¢ = 1,2, and D?, o,
and F are allowed to be discontinuous across internal boundaries T of €2; moreover,
Dy > Dy and Dy < Dy in different subregions of 2 is possible.

Another method was advocated by Hackbusch [H] and was shown to be robust
for constant coefficient, periodic, anisotropic problems. It can be argued that this
method, or at least its precursor, may be found in [T]. We refer to this method as
the Brandt-Hackbusch~Ta’assan method, if only to arrive at the acronym BHT. The
BHT method, like the Frederickson-McBryan algorithm, preserves the busyness of
the processors, and has the added advantage of only needing point relaxation for
anisotropic problems. However, as shown in §4, the BHT method, as described by
Hackbusch, does not handle problems like (1.1), and it is unclear how to give the
method this capability.

Both the Frederickson-McBryan and BHT methods have the presumed advantage
of keeping all the processors busy. However, idleness of processors is unimportant;
what is important is the convergence factor per machine cycle. If keeping all the
processors busy led to a significantly smaller convergence factor, then the busyness
of processors would indeed be important. Also, busyness of processors may be an
important issue only on grids with less than one point per processor (virtual processor
ratio (VP ratio) less than 1). When the VP ratio is greater than 1, the CM-2 makes
use of virtual processors. In effect, serial do loops (VP loops) are created on each

* Received by the editors March 25, 1991; accepted for publication (in revised form) October 25,
1991. The work of the first two authors was performed under the auspices of the U.S. Department of
Energy under contract W-7405-ENG-36 and was partially supported by the Center for Research on
Parallel Computation through National Science Foundation Cooperative Agreement CCR-8809615.

T Theoretical Division, Los Alamos National Laboratory, Los Alamos, New Mexico 87545.

¥ California Institute of Technology, Pasadena, California 91125.

§ Chevron Oil Field Research Company, P. O. Box 446, La Habra, California 90631.

1460

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1461

processor. Thus, when the VP ratio is greater than 1, “busy processor” methods
actually incur a substantial computational penalty. Since moderate-size problems
easily exceed VP ratios of 1 on today’s machines, “busy processor” methods would
seem to be, at best, methods for the future.

What about the more traditional methods of dealing with (1.1)? The first multi-
grid method to handle such problems successfully was given in [ABDP] and expanded
in [D2]; it used standard coarsening (discussed below), interpolation induced by the
operator, Galerkin coarsening, and alternating red-black line relaxation. An alterna-
tive was first discussed in [DMRRS] for three-dimensional problems. (However, we
must point out that the robustness of line relaxation coupled with semicoarsening
for constant coefficient anisotropic problems was first reported in [W].) The method
discussed in this paper is the two-dimensional analogue of the method in [DMRRS]; it
uses semicoarsening in y, interpolation induced by the operator, Galerkin coarsening,
and red-black line relaxation by lines in 2. Additionally, the method in this paper uses
a technique due to Schafler [S]; without this technique, the semicoarsening method
would not be competitive. The method discussed in this paper is largely the same as
the method given in [SW]. This fact should not be too surprising, since both papers
had their genesis in a code written by Dendy.

One potential liability of the method considered in this paper is the necessity to
perform line relaxation. The BHT method, were it robust, would avoid this difficulty.
The suggestion was made in [B] that anisotropies could be avoided by the use of local
grid refinement, under the assumption that physical problems are isotropic and that
anisotropies arise from nonuniform gridding. One way to avoid nonuniform gridding
is to use local grid refinement. In [D3], it was shown how to generalize [D2] to the case
of local grid refinement. However, many person-years have been invested in codes that
do not use local grid refinement, and all these codes would have to be rewritten to
use this approach. Moreover, it is not clear how local grid refinement algorithms will
perform on SIMD machines. Finally, there are important physical problems which
are strongly anisotropic; an example is petroleum reservoir engineering [L]. For these
problems, local grid refinement, although it may be desirable for other reasons, does
not lead to isotropic problems on the local grids. Thus it appears that the issue of
anisotropic problems must be directly attacked, not avoided.

Yet another method, due to Mulder [M], seems to have possibilities. The idea is
that each grid has two offspring, one obtained by semicoarsening in z, the other by
semicoarsening in y. When two offspring are of the same size in z and y, they are
declared to be the same offspring. This method is discussed further in §2.

2. Standard versus semicoarsening. In [ABDP] and [D2] standard coarsen-
ing was used; that is, given a Cartesian grid, the coarser grid is obtained by deleting
the even z- and y-lines. In this paper semicoarsening is used; that is, the coarser grid
is obtained by deleting the even y-lines. To handle general anisotropic situations with
standard coarsening seems to require alternating line relaxation, whereas with semi-
coarsening only, line relaxation by lines in z is required. (We note that there are some
situations in both cases that cannot be handled by these choices of relaxation [ABDP],
but for our purposes, these cases are pathological.) What is the sequential relaxation
work for the two methods? Given an nx x ny grid, the relaxation work for semicoars-
ening is of the order of 2(nz)(ny)(1+1/4+---) = (8/3)(nz)(ny). For semicoarsening,
the relaxation work is of the order of (nz)(ny)(1+1/2+---) = 2(nz)(ny).

To do this same counting argument for a SIMD architecture requires a short
discussion of the assumptions. We first consider the case where the VP ratio is less

1462 J. E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

than or equal to 1. In the simplest model for the CM-2, it is important that the
arrays be “compatible,” that is, of the same size; otherwise, great inefficiencies in
communication result. Thus, given a fine grid and a coarser grid, it is assumed that
the data for each grid are stored in compatible arrays. Thus every other row of
the coarse grid matrix contains no useful information. Moreover, on a relaxation
sweep, a mask is employed which makes the processors for these rows idle. The
assumption, therefore, is that for every grid, the amount of work required to solve the
collection of tridiagonal systems on that grid depends only on the number of z- or y-
points on the finest grid. Thus the relaxation work in the standard coarsening case is
2W (nz) log, ny, and the relaxation work in the semicoarsening case is W (nz) log, ny,
where W (nz) is the work to solve an nz x ny tridiagonal system. (There are log, ny
grids, and on each grid the relaxation work is 2W(nz) or W(nz), respectively.) If
sparse Gaussian elimination (a.k.a. the Thomas algorithm) is used, W(nz) = O(nzx).
If straightforward cyclic reduction is used, W(nz) = O(log, nz).

The above argument is correct for the tridiagonal solver currently implemented
in CMSSL (CM Scientific Subroutine Library). However, we can write a tridiagonal
solver that yields the following relaxation work estimate for the standard coarsening
case:

2 (log2 nx + log, % +-) = 2(logy nz + (logy nz — 1) + -)
1
=2 (log2 ne log, ny — 5 (logy ny — 1)(log, ny))

~ log, nz log, ny.

The point is that when we know that, for example, every other processor is idle, the
cyclic reduction algorithm can be started further along, eliminating every fourth point
instead of every second point. For a VP ratio less than 1, however, communication
dominates computation, so it is unlikely that this improved algorithm will be twice
as fast as using the CMSSL tridiagonal solver, particularly since the latter is written
in carefully optimized assembly language.

When the VP ratio is greater than 1, a hybrid algorithm [J] becomes the algorithm
of choice for solving the tridiagonal systems; this algorithm performs the traditional
Thomas algorithm sequentially on the serial loop part of the i-index on each physical
processor and uses cyclic reduction to solve between physical processors; it is in fact
implemented in the tridiagonal solver in CMSSL. This algorithm is also used in [SW].
It is ironic that the same algorithm is the efficient one for these different architectures
(SIMD and MIMD (multiple instruction, multiple data)); however, the algorithm used
in [SW] is actually a SPMD (single program, multiple data) algorithm.

When the VP ratio is much greater than 1, the serial work on each processor
dominates, and the work estimate for relaxation reverts to the serial case. In any
case, the semicoarsening algorithm appears to be more efficient for all VP ratios than
the standard coarsening algorithm. The semicoarsening algorithm is also conceptually
simpler, particularly in three dimensions, when the alternative to coarsening in z and
performing xy-plane relaxations (using multigrid) [DMRRS] is standard coarsening,
performing alternating plane relaxation [D5]. Bandy and Brickner [BB], however,
are investigating the standard coarsening approach on the CM-2; hence, we should
eventually be able to compare directly the two approaches.

We briefly discuss how the interpolation operators are derived, even though the
description in [SW] is excellent. Let us denote the interpolation operator from the

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1463

coarse grid G*~! to the fine grid G* by I¥_,. (The coarse grid operator L¥~! is given
by Galerkin coarsening from the fine grid operator L*¥ by forming (I¥_,)*L*(If_,).
We are interested in five-point or nine-point discretizations of (1.1); hence, we want
the coarse grid operators also to be five- or nine-point operators.) In [ABDP], [D1],
and [D3], I¥_, was described as follows: At coarse grid points coinciding with fine
grid points, I, ,’j_l is just the identity. At a fine grid point lying vertically between two
coarse grid points, let the template of the operator be given by

NW N NE
(2.1) W C E
SW S SE

Then If_, at v;; is given by av; j_1 + bv; j11, where
a=—(SW+S+SE)/W+C+FE) and b=—-(NW+ N+ NE)/(W+C +E).

That is, we think of summing away the z-dependence to obtain a three-point relation.
A problem with this approach, when using standard coarsening, is that if p = C —
NW—-N-NE-W-—E—-SW —8§—SF is small, then instead of using W+ C+ E in
(2.1), we should use SW + S+ SE + NW + N + NE instead; this point is discussed
in [D3]. With standard coarsening, results are relatively insensitive to switching
between formulas based on the size of p; however, for semicoarsening this is not
the case. With standard coarsening, interpolation is also being performed in the -
direction; hence, there is a possibility of coefficient variations being averaged out in
that direction. In the semicoarsening case, some mechanism for averaging in the z-
direction is apparently needed. Schaffer [S] also came to this conclusion and discovered
the following scheme: Let

A v + A% + ATt =0

be the equation that would give the row v* = (v3,5,4=1,---,nz) in terms of the rows
v~ = (v;j-1,t =1,---,nz) and v* = (v; j31,4 = 1,---,nz). Then
(2.2) 0 = —(A%"HA v + Atoh).

Unfortunately, use of (2.2) would lead to a nonsparse interpolation, leading to non-
sparse coarse grid operators. Schaffer’s idea is to assume that

~(A%714~ and (-A%71l4t

can each be approximated by diagonal matrices in the sense that B~ and BY are
diagonal matrices such that

—(A%"'A"e=B7e and (—A%)"'Ate= BTe,

where e is the vector (1,---,1). To find B~ and B requires just two tridiagonal
solves. The interpolation formula using B~ and B is

' =B v~ + Btvt.

At first blush it would appear that the SIMD relaxation work of Mulder’s algo-
rithm [M] is comparable to the SIMD relaxation work of our method, since the number

1464 J. E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

of grids in Mulder’s method, if nz = ny, is approximately (log, ny)?. In [NR], how-
ever, Van Rosendale and Naik (to be identified with the author of [D1]) show that
the subgrids in the Mulder method can be organized so that relaxation on all grids
simultaneously (concurrent relaxation) can be done efficiently. This approach leads to
a degradation in convergence factor as well as processor-to-processor communication
between grids for interpolation and residual weighting. In two dimensions [NR], the
grids can be packed in such a way that communication between grids is efficient, but
then the efficiency of relaxation suffers. Nevertheless, implementation of the Mulder
method on the CM-2 is planned, as is a comparison with the method of this paper.

3. Implementation. Implementation issues are complicated by the fact that
we are aiming at a moving target. The first version of this paper was written when
the compiler on the CM-2 was the bit-serial version. Subsequently, this version was
replaced by the slicewise compiler. For some time there will continue to be improve-
ments in the compiler, operating system, and CMSSL. Rather than delay publication
of this paper indefinitely, we have chosen to report the current status, and to try to
guess what the effects of future developments will be.

In the first version of this paper we discussed the inefficiencies present in the large
VP ratio case when compatible arrays for intergrid communication are assumed. Let
us denote the i-index as the tridiagonal solver direction and the j-index as the multi-
grid coarsening direction. If the j-index is declared parallel, then the code compiles
so that the VP loop on a physical processor always remains the same size, regardless
of the coarse grid size. Thus, if the j-index is declared such that the VP loop size
is 64, it remains so, instead of decreasing to 32, 16, etc., thus reflecting the inactive
j-direction grid elements on coarser grids. One way to avoid this difficulty is to code
the VP loop by splitting the j-index into parallel and serial parts; this kind of split-
ting was done for the CM-2 implementation (by Gyan Bhanot of Thinking Machines)
of Jameson’s FLOW 67 code, a timestepping multigrid code. In the first version of
this paper, this splitting was done for the relaxation routine only, since the coding for
this splitting is extremely cumbersome. Moreover, this splitting does not solve the
problem of wasted storage.

A better solution than splitting the j-index into parallel and serial parts is to have
arrays that are not compatible on fine and coarser grids, and to use temporary arrays
to achieve compatibility. For definiteness, assume that a fine grid array A is nz X ny,
and that a coarser grid array B is nx x %£. If it is desired that A communicate with
B, every other row of A needs to be placed in a temporary nz x & array C. This is an
intraprocessor move of data and can be accomplished efficiently with a routine written
by Brickner. This solution has two difficulties associated with it. The first is that it
creates a ragged array data structure not supported by FORTRAN 8X. (A and B in
the example are really D(k, - - -) and D(k—1,---).) This difficulty has been cured by a
routine written in C which does dynamic storage allocation. With each array D(k, - - -)
is associated an array descriptor that contains the information on the dimensions of
D(k,---). Thus the FORTRAN 8X compiler can be fooled into accepting a ragged
array data structure. The second difficulty is that the current compiler aggressively
monitors array layouts to assure that arrays are evenly distributed on processors. In
many applications, this aggressiveness is a good strategy; however, in this application,
because the semicoarsening leads to rectangular (as opposed to square) arrays, it can
lead to reallocation to different processors of points which need to communicate and
which should be on the same processor. We attempted to bypass this reallocation
by writing routines which essentially informed the compiler to leave our arrays alone.

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1465

Unfortunately, the compiler still intervened when creating temporary arrays, yielding
not only inefficiencies but also wrong answers. Our current remedy has been to
code at a lower level than FORTRAN 8X; this remedy solves the problem of the
compiler trying to take control of the layout, but does not generate as efficient code
per processor as the compiler is capable of generating.

One important aspect of this work has been to identify this compiler shortcoming.
(We must temper these whinings with the observation that the slicewise compiler was
created in an incredibly short time.) Ours has not been the only application in
which it is desirable for the programmer to take away control of the layouts from
the compiler, and indeed, new versions of the compiler have been promised which
will provide this capability. In the standard coarsening case, however, we may not
need this new compiler capability; in this case, the compiler’s choice of layout may
be acceptable.

A final comment for the large VP ratio case is that line relaxation performs with
nearly the same efficiency as point relaxation, since most of the work is serial work
done on each processor. For large problems, the work performed on the grids with the
VP ratio less than or equal to 1 is a small part of the overall calculation. Related to
this issue is the question of when the coarse grids calculation should be done on the
front-end machine. For a powerful front-end machine, the coarse grids may have to
be fairly fine before it even pays to invoke the CM-2’s power. This issue is addressed
further in §4.

There are at least two versions of the Thomas algorithm. One computes the
LU-decomposition on the tridiagonal matrix as it is needed. Other versions save
the LU-decomposition (one such version was exploited in [ABDP] to avoid expensive
divides on the CDC-7600). There is an analogous situation with respect to cyclic
reduction. In the first version of this paper, we found that a version that saves the
LU-decomposition ran two times faster on the CM-2 than a version that recomputes
the LU-decomposition. However, for cyclic reduction, the LU-decomposition must
be stored at each level of the parallel reduction. The result, for the i-index, is that
the requirement for storage is proportional to nz(log, nx), where nz is the number
of i-grid points. However, for the hybrid version [J}, the storage requirement of the
LU-decomposition is just proportional to nz, assuming that we do not save the two-
cyclic LU-decomposition needed for the processor boundary grid points. (For high VP
ratios, this assumption is reasonable since the cyclic reduction part of the tridiagonal
solves is a small fraction of the overall computational time.)

4. Results. Many authors present gigaflop rates as a figure of merit while others
report on speedup (of many processors compared to a single processor). While both
these measures are useful in comparing the improved running speed of a specific
algorithm, they can be misleading in determining the most efficient algorithm to
solve a given problem. Point Jacobi, for example, applied to solve a discretization of
(1.1), has an impressive gigaflop rate and speedup factor; however, it cannot compete
with the multigrid algorithm of this paper since its convergence factor is abysmally
near 1 for large problems while the multigrid convergence factor stays nicely bounded
away from 1. Hence what we concentrate on in this paper is actual timing data. The
convergence factors for various problems for the multigrid algorithm are reported in
detail in [SW] and need not be repeated here. Finally, it is impossible to give speedup
data for a CM-2 since it is impossible to access just one processor; we do, however,
compare performance of one-quarter of a 2048-processor machine with one-quarter of
a 1024-processor machine.

1466 J. E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

We present timing comparisons of several machines in Table 1. The timing results
are given as seconds per V-cycle and were obtained by running five V-cycles (including
setup time) and dividing by 5. Thus the timing results are independent of the difficulty
of the problem run. All of the CM-2 timings reported in this section were done using
one-quarter of a 2048-Weitek-processor machine or one-quarter of a 1024-Weitek-
processor machine. (These timings may be used to address, at least partially, the
issues of speedup and scalability.) The front end for the CM-2 was a Sun 4/90. The
iPSC/2 machine had 64 nodes of 386-type processors; several configurations of these
processors were considered for each problem size; here we have reported the timings
only for the best [SW].

TABLE 1
Time per V-cycle on three machines.

Size of iPSC/2 CRAY Y-MP CM-2, one-quarter CM-2, one-quarter

problem of 1024 processors of 2048 processors
32 x 32 0.3 0.01 - ——
64 x 64 0.7 0.04 0.65 0.77
128 x 128 2.0 0.09 0.99 0.80
256 x 256 - 0.27 1.84 1.79
512 x 512 — 0.95 4.55 3.04
1024 x 1024 - 3.69 ++ 8.11
2048 x 2048 - - ++ 25.39

++ too large
—- no information

The timing results on the CRAY Y-MP were obtained in a time-sharing envi-
ronment; with a dedicated Y-MP, we could have easily run problems larger than
2048 x 2048; however, if we had used all of a 2048-Weitek processor CM-2 we could
have also run problems larger than 4096 x 4096. The results on the Y-MP show that
great gains are easily made from vectorization for the smaller problems, but for the
larger problems, the asymptote of time being linearly proportional to problem size
has nearly been reached. The code used on the CRAY Y-MP uses only standard
FORTRAN and is run only in single-processor mode. Presumably, speedups could be
obtained using the multiprocessor capability of the Y-MP, but this is not considered
here. The 512 x 512 and 1024 x 1024 cases were too large for the current loader and
used a memory manager, to some obvious disadvantage in performance.

In the first version of this paper, we compared two versions of the hybrid tridi-
agonal solver: a version which recomputes the LU factorization on each call and a
version which saves the LU factorization; the latter was about two times faster than
the former. The figures in Table 1 use the CMSSL tridiagonal solve routine. This
routine, which recomputes the LU factorization on each call, is as fast as the faster
of our two versions since it is written in carefully optimized assembly language. If a
factor-of-two speedup can be expected from the CMSSL tridiagonal solver which saves
LU factorizations (not yet available), then we can expect to see nearly a factor-of-two
decrease in the timings in Table 1 for the CM-2.

We report in Table 2 the effect of changing the size of the coarsest grid direct
solve. The direct solve is done with a band solver on the front end with the LU-
decomposition of that matrix being precomputed once. The problem in Table 2 has
256 x 256 grid points. (The timings in Table 2 use an earlier version of our code and
should therefore only be considered in relation to each other and not to the timings in
Table 1.) Note that there is a minimum for both the case of saving and not saving the
cyclic reduction LU-decomposition. The reason for this is that on the coarser grids,

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1467

so few Weitek processors are active that the front end (which is considerably faster
than one Weitek processor) is more efficient, even when the time to transfer the data
from the CM-2 to the front end is taken into account.

TABLE 2
Time per V-cycle varying coarsest grid size.

Size of Number of Recompute LU Save LU
coarsest grid grid levels
256 x 1 9 8.57 3.22
256 x 4 7 6.53 2.66
256 x 8 6 5.87 2.69
256 x 16 5 5.98 3.50
256 x 32 4 8.41 6.62

One other possibility for gaining efficiency from this algorithm is to make use
of the multiwire (multiple NEWS communication) library written by R. Brickner
and documented in [CM]. The routines in this library allow one to do simultaneous
communication and computation in each index of an array. We have investigated the
use of this library in a preliminary way, but have postponed further work until the
other issues above have been satisfactorily resolved.

Let us now consider the BHT method; first, for the problem

~-AU+U=1 1in(0,1) x (0,1),
U doubly periodic.

On a 16 x 16 grid we compare the result of using the method of [D4] (standard

coarsening, operator-induced interpolation, Galerkin coarsening, and red-black point

relaxation) to the method of [H]. (We use the method in [D4] because we have not yet

extended the method in this paper to handle periodic boundary conditions.) Both

methods achieve an average convergence factor, over ten V-cycles, of 0.05 per V-cycle.
Now let us consider the problem

Wy -V - (DVUY4+U=F on(0,16) x (0,16),

U doubly periodic,

where D and F are as shown in Fig. 1. Using a 16 x 16 grid, we again compare [D4]
to [H]; the average convergence factor per V-cycle is 0.06 vs 0.54, respectively. If we
modify the method in [H] to attempt to use the same operator-induced interpolation
used in [D4], we obtain an average convergence factor of 0.09 instead. The problem
is that within the context of the method in [H], it is no longer clear what operator-
induced interpolation should be.

Finally, let us comment that we believe that some multigrid method is likely to
be the fastest algorithm for solving problems like (1.1) on SIMD machines. We intend
to substantiate this belief by timing the algorithm of this paper against some possible
competitors, such as preconditioned conjugate gradient methods. In this comparison,
the convergence factor per unit time must be considered for various problems, since
clearly conjugate gradient with no conditioning will win against multigrid on SIMD
machines for well-conditioned elliptic problems. In one sense the contest is over be-
fore it starts, since we already have an example in which a preconditioned conjugate
gradient method stagnates badly, but for which the method of this paper is robust.

1468 J. E. DENDY, JR., M. P. IDA, AND J. M. RUTLEDGE

F=1.
D=1.

NN

F=1.
D=1.

NN

— —

o m
i

00,

F=0.
D=1000.

F1G6. 1. Diffusion coefficients and right-hand side for (4.1).

Nevertheless, we hope to perform a comparison for a set of problems with a wide
range of difficulty.

5. Conclusions. In this paper we have examined several multigrid methods in
an attempt to find one that performs well on SIMD machines for problems with rough
and anisotropic coefficients. We chose a semicoarsening multigrid algorithm for imple-
mentation on the CM-2 and have shown that it does perform well on that machine. We
expect even better performance from this algorithm as compiler, operating systems,
and library improvements become available.

Note added in proof. Recent advances in the version of BHT using operator-
induced interpolation have led to an improved average convergence factor per V-cycle
for (4.1): .09 per V-cycle instead of the .34 per V-cycle reported in this paper.

REFERENCES

[ABDP} R. E. ALCOUFFE, A. BRANDT, J. E. DENDY, JR., AND J. W. PAINTER, The multi-grid
method for the diffusion equation with strongly discontinuous coefficients, SIAM J.
Sci. Statist. Comput. 2(1981), pp. 430-454.

A. BrRANDT, Multi-level adaptive solutions to boundary-value problems, Math. Comp.,
31(1977), pp. 333-390.

[BB] V. BANDY AND R. BRICKNER, private communication.

[D1] N. DECKER, On the parallel efficiency of the Frederickson-McBryan multigrid, SIAM

J. Sci. Statist. Comput., 12 (1991), pp. 208-220.
[D2] J. E. DENDY, JR., Black box multigrid, J. Comp. Phys., 48(1982), pp. 366-386.

(B]

D3] , A priori local grid refinement in the multigrid method, in Elliptic Problems
Solvers II, G. Birkhoff and A. Schoenstadt, eds., Academic Press, New York, 1984,
pp. 439-452.

[D4] , Black box multigrid for periodic and singular problems, Appl. Math. Comput.,
25 (1988), pp. 1-10.

[Ds] , Two multigrid methods for three-dimensional problems with discontinuous and

anisotropic coeffcients, SIAM Sci. Statist. Comput., 8 (1987), pp. 673-685.

A SEMICOARSENING MULTIGRID ALGORITHM FOR SIMD MACHINES 1469

[DMRRS] J. E. DENDY, JR., S. F. MCCORMICK, J. W. RUGE, T. F. RUSSELL, AND S. SCHAFFER,
Multigrid methods for three-dimensional petroleum reservoir simulation, in Proc.
Tenth Symposium on Reservoir Simulation, Houston, TX, February 6-8, 1989, pp.

19-25.

[FM] P. O. FREDERICKSON AND O. A. McCBRYAN, Normalized convergence rates for the
PSMG method, SIAM J. Sci. Statist. Comput., 12 (1981), pp. 221-229.

H] W. HACKBUSCH, The frequency decomposition multigrid method, Part 1. Application
to anisotropic equations, Numer. Math., 56(1989), pp. 229-245.

3 S. L. JOHNSSON, Solving tridiagonal systems on ensemble architectures, SIAM J. Sci.
Statist. Comput., 8 (1987), pp. 354-392.

L] L. W. LAKE, The origins of anisotropy, J. Petrol. Technology, April 1988, pp. 395-396.

M] W. A. MULDER, A new multigrid approach to convection problems, J. Comput. Phys.,
83 (1989), pp. 303-329.

[NR] N. NAIK AND J. VAN ROSENDALE, The improved robustness of multigrid solvers based
on multiple semicoarsened grids, SIAM J. Numer. Anal., 31 (1993), to appear.

(s} S. SCHAFFER, private communication, manuscript.

[SW] R. A. SMITH AND A. WEISER, Semicoarsening multigrid on a hypercube, SIAM J. Sci.
Statist. Comput., 13 (1992), pp. 1314-1329.

T S. TA’ASsAN, Multigrid methods for highly oscillatory problems, Ph. D. thesis, Weiz-
mann Institute of Science, Rehovot, Israel, 1984.

[W] G. WINTER, Fourienanalyse zur Konstruktion schneller MGR- Verfahren, Ph. D. thesis,

Rheinischen Friedrich-Wilhelms-Universitiat zu Bonn, Bonn, Germany, 1982.

