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A Semidefinite Program for Distillable Entanglement
Eric M. Rains

Abstract—We show that the maximum fidelity obtained by a
positive partial transpose (p.p.t.) distillation protocol is given by
the solution to a certain semidefinite program. This gives a number
of new lower and upper bounds on p.p.t. distillable entanglement
(and thus new upper bounds on 2-locally distillable entanglement).
In the presence of symmetry, the semidefinite program simplifies
considerably, becoming a linear program in the case of isotropic
and Werner states. Using these techniques, we determine the p.p.t.
distillable entanglement of asymmetric Werner states and “maxi-
mally correlated” states. We conclude with a discussion of possible
applications of semidefinite programming to quantum codes and
1-local distillation.

Index Terms—Entanglement distillation, quantum communica-
tion, semidefinite programming.

I. INTRODUCTION

ONE of the central problems of quantum information
theory is entanglement distillation [3], [11]: the pro-

duction of (approximate) maximally entangled states from a
collection of nonmaximally entangled states. Of particular
interest are 1-locally distillable entanglement and 2-locally
distillable entanglement (the amount of entanglement that can
be distilled using local operations and a one-way (two-way)
classical channel). Nearly all of the known upper bounds on 1-
or 2-locally distillable entanglement actually apply to a larger
class of operations, known as positive partial transpose (p.p.t.)
operations [11]. This motivates our present study of p.p.t.
distillable entanglement.

We study distillable entanglement via a more refined quan-
tity, the “fidelity of distillation,” which measures how close one
can come to producing a -dimensional maximally entangled
state from a given input. In Theorem 3.1 below, we show that
the fidelity of p.p.t. distillation can be expressed as the solu-
tion to a certain semidefinite program (see [14] for a survey of
semidefinite programming). Then any feasible solution to the
dual problem (Theorem 3.3) gives us an upper bound on fidelity
of distillation.

The rest of the paper is devoted to an exploration of the conse-
quences of this semidefinite program. Section IV gives a number
of results that hold in general, including a new bound combining
the bounds of [9] and [5], and a theorem (Corollary 4.3) to the
effect that maximally entangled states cannot be used to "acti-
vate" fidelity of p.p.t. distillation. In Section V, we show that the
semidefinite program simplifies in the presence of symmetries;
in some cases (e.g., isotropic states, Werner states), this simpli-
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fication turns the semidefinite program into alinearprogram. In
the case of asymmetric Werner states, this linear program can be
solved exactly, showing that the upper bound of [5] is tight in
that case. Section VI sketches a technique for producing asymp-
totic lower bounds, which we then use to strengthen the hashing
lower bound [3] in the p.p.t. case. We also use this technique to
partially resolve a conjecture of [9] by determining the p.p.t. dis-
tillable entanglement of “maximally correlated” states. Finally,
in Section VII, we consider possible applications of semidefinite
programming to the problems of quantum codes and 1-local dis-
tillation. In particular, using the techniques of Section V, we give
a new derivation of the linear programming bound for quantum
codes [13], [8], [10].

II. OPERATORS, SUPEROPERATORS ANDOPERATIONS

If is a Hilbert space, we denote by the space of Her-
mitian operators on . We also let denote the
convex cone of positive semidefinite Hermitian operators; we
will freely write to mean . A state is then
an element of of trace . Quantum information theory can
be thought of as studying the behavior of these concepts under
tensor products.

Given an operator , we define the “partial
trace” to be the (unique) operator in such that

(2.1)

for all . Similarly, given a choice of basis for , we
can define the partial transpose by

(2.2)

where , , and is the transpose of
with respect to the chosen basis. Both of these transformations
extend by linearity to non-Hermitian operators as well.

A positive operator is said to be “separable”
if it can be written in the form

(2.3)

with , ; in other words

(2.4)

Similarly, is said to be p.p.t. if

(2.5)

Note that this does not depend on the choice of basis in. We
also recall that every p.p.t. operator is separable

(2.6)

A “superoperator” from to is a linear transformation
from to . The space of superoperators can be nat-
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urally identified with ; to a superoperator corre-
sponds the unique operator such that

(2.7)

We also define the adjoint superoperator by

(2.8)

Note that

(2.9)

(2.10)

and, if and , then

(2.11)

Of particular interest is the (self-adjoint) superoperator
; in that case, we find

(2.12)

A superoperator is said to be “positive” if when-
ever , and “trace-preserving” if ; equivalently,

. A superoperator is “completely positive” if it
satisfies any of the following equivalent conditions:

• 1) is positive.
• 2) For all Hilbert spaces , is positive.
• 3) There exist operators such that

(2.13)

• 4) For any (some) basis of , the partial transpose
is positive semidefinite.

Clearly 2) 1), and 3) 2) is straightforward. To see 1)
4), it suffices to observe that

(2.14)

Finally, 4) 3) follows by taking an eigenvalue decom-
position of . Since the operators we will be dealing
with in the sequel are mostly completely positive, we define

, and use this to identify the space of
superoperators with . Thus, the set of completely
positive superoperators is identified with . An “op-
eration” is defined to be a completely positive, trace-preserving
superoperator; we denote the (convex) set of operations from

to by .1

On tensor product spaces, there are several classes of oper-
ations of interest, which can be defined in terms of the convex
sets and as follows:

• -local: .

1This differs somewhat from the definition of operation given in [11], in that
we are assuming operations to be “nonmeasuring,” but by the main result of that
paper, this incurs no loss of generality when studying entanglement distillation.

• -local:
.

• -local:
.

• separable:
.

• p.p.t.:
.

We also have the class of 2-local operations, defined by allowing
arbitrary compositions of 1-local and 1-local operations. For a
different approach to defining these classes, see [11]. We recall

(2.15)

with all inclusions strict in general. (The class, not discussed
in [11], is simply the closure of the class of local operations
under convex linear combinations (i.e., shared randomness).)
Note that each of these classes is closed under tensor products
(unlike, say, the class of operations taking p.p.t. operators to
p.p.t. operators).

From a physical perspective, the only natural classes are those
of 1 1 2 -local operations. The difficulty, however, is that
in none of these cases do we have an effective way to decide
whether a given operation belongs to the class; this is especially
true in the case of 2-local operations. Thus, the class of sepa-
rable operations is important as a simplification of the class of
2-local operations, while the class of p.p.t. operations is impor-
tant as the smallest class containing the 2-local class for which
we can effectively decide membership. For instance, all of the
known upper bounds on 2-locally distillable entanglement are
really bounds on p.p.t. distillable entanglement; to a large ex-
tent, this even applies to upper bounds on 1-locally distillable
entanglement. Similarly, a lower bound on p.p.t. distillable en-
tanglement provides a limit on how far the current methods can
take us.

III. FIDELITY OF DISTILLATION

For any integer , we define the “maximally entangled”
state by

(3.1)

Given any other state, the “fidelity” of is defined by

(3.2)

Definition 1: Let be a state, and let be
an integer. The “fidelity of -state p.p.t. distillation”
is defined by

(3.3)

where ranges over all p.p.t. operations from to
.

Remark: We can define , , , etc., similarly.

This is a refinement of the concept of distillable entangle-
ment; indeed, we can define (see [3], [11]) the following.
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Definition 2: Let be as above. The p.p.t. distillable entan-
glement of is defined to be the supremum of all positive
numbers such that

Thus, a study of is likely to provide insights into , as
we shall indeed find below.

We first observe that the optimization problem defining
can be rewritten as an optimation over operators.

Theorem 3.1:For any state and any positive integer

(3.4)

where ranges over Hermitian operators such that

(3.5)

Proof: Let be the operation maximizing in the
definition of . Clearly, if we compose with any op-
erator of the form , this leaves unchanged. The
same must then be true after averaging over (“twirling”
[3]). We may thus assume , where is the twirling
superoperator. We find

(3.6)

must have the form , and since

and

(3.7)

we can solve for and . It follows that

(3.8)

But then we compute

(3.9)

(3.10)

Setting , we obtain

(3.11)

This operator is positive if and only if and .
We also find

(3.12)

(3.13)

Since are orthogonal projections, we find that
is positive if and only if

(3.14)

The theorem follows by noting

(3.15)

Definition 3: An operator that satisfies the inequalities (3.5)
will be said to beprimal feasiblefor ; if it maximizes

, it will be said to beprimal optimal.

We will use this result to define for all positive-real
values of ; for an interpretation, see the remark following
Corollary 4.3 below.

Theorem 3.2:The function is convex in and concave in
; that is, for

(3.16)

(3.17)

In particular, is continuous in both variables.
Proof: Let be primal optimal for

Then

(3.18)

(3.19)

(3.20)

Similarly, let and be primal optimal for and
, respectively. Then is primal fea-

sible for , thus, giving the
second inequality.

The above optimization problem is an instance of what is
known as “semidefinite programming” (SDP) [14]. That is, it
involves the optimization of a linear function subject to the con-
straint that certain operators (depending linearly on the vari-
ables) must be positive semidefinite. This has several conse-
quences, including the computational one that semidefinite pro-
grams can be solved in polynomial time (typically polynomial
in the dimension, although special structure can greatly reduce
this). Another consequence is that there is a notion of duality for
SDPs.

For a Hermitian operator , we define the positive part
and negative part to be the unique positive operators such
that

(3.21)

We also define .
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Theorem 3.3:For any state and any positive
real number

Tr (3.22)

Proof: Let be an operator satisfying the constraints
above. Then for any operators, , , we have

(3.23)

If , , , and

(3.24)

then the last four terms are all nonnegative, and we have

(3.25)

and, thus,

(3.26)

In fact, by the theory of duality for SDPs, this inequality can be
made tight, to wit

(3.27)

minimizing over operators satisfying the constraints. Upon
adding a variable with , the constraints
become

(3.28)

We, thus, find

(3.29)

But we readily see that

(3.30)

(3.31)

proving the theorem.

Definition 4: An operator such that

(3.32)

will be said to bedual optimalfor .

Thus, given any operator , we obtain bounds on fidelity of
distillation, and conversely any such bound can in principle be
shown by choosing a suitable operator. For instance, The-
orem 3.2 could also be proved as follows.

Proof: If and are dual optimal for and
, then

(3.33)

(3.34)

(3.35)

Similarly, if is dual optimal for

then

(3.36)

(3.37)

(3.38)

IV. GENERAL RESULTS

Lemma 4.1:For any integer , and any

Proof: For , take , . For ,
take , .

Theorem 4.2:For any states and , and any

(4.1)

Proof: For the first inequality, let and be primal
optimal for and ; then is
primal feasible for , giving the inequality.

For the second inequality, let be dual optimal for
. Then, taking , we have

(4.2)

(4.3)

(4.4)

In particular, if , then equality holds in
this theorem, taking . Since this is true for

, we obtain the following.
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Corollary 4.3: For all integers , all , and any state

(4.5)

Remark: This gives us another way to define for
general . For rational , we can define

(4.6)

which is well defined by the theorem. Since the resulting func-
tion is nonincreasing in , there is a unique way to extend it
to a left-continuous function of , which must then agree with
our earlier definition.

Another example is when is p.p.t.; then . We
have the following.

Corollary 4.4: For all , any state , and any p.p.t. state

(4.7)

Corollary 4.5: For any and any state

(4.8)

Proof: By the theorem, we have, writing

(4.9)

Asymptotically, the theorem becomes the following.

Corollary 4.6: For any pair of states ,

(4.10)

In particular

(4.11)

and for any p.p.t. state

(4.12)

Remark 1: Subtracting from the inequality, we ob-
tain the bound of [5]. (But see Theorem
4.13 below.) See also [16], for an independent rederivation.

Remark 2: For other classes of operations, (4.11) is known
only when [3].

Since Definition 1 maximizes over all p.p.t. operations, we
can obtain relations between different values ofand (integral)

by composing with appropriate p.p.t. operations. The next
two results extend this. We recall from [9] that for a superoper-
ator , is defined by

(4.13)

Note that , and thus is p.p.t. if and
only if and are completely positive.

Theorem 4.7:For any state , any , and any trace-
preserving superoperatorsuch that both and are positive

(4.14)

Proof:
(First proof) Let be primal optimal for . Then

is primal feasible for , so

(4.15)

(Second proof) Let be dual optimal for . Then

(4.16)

(4.17)

(4.18)

(4.19)

Here we used the facts that for a positive superoperatorand
an arbitrary operator

and

(4.20)

Remark: It follows from this that we cannot improve on the
p.p.t. fidelity by using trace-preserving superoperatorssuch
that both and are positive. In fact, one can show using the
techniques of Section V that any such operator that produces
isotropic output must in fact be p.p.t.

Lemma 4.8:For any state, the function is non-
decreasing in , while the function

(4.21)

is nonincreasing in .
Proof: We first consider . Writing ,

we have

(4.22)

with subject to the constraints

(4.23)

Since increasing increases the feasible set, the maximum
cannot decrease. Dually

(4.24)

which is nondecreasing in for any choice of .
For , we proceed similarly; taking

, we have

(4.25)

with subject to the constraints

(4.26)
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These constraints become harder to satisfy asincreases, and
thus the maximum cannot increase. Dually

(4.27)

But

(4.28)

(4.29)

(4.30)

This, of course, is nonincreasing in, so we are done.

For integer , this corresponds to composition by the fol-
lowing p.p.t. operations.

Lemma 4.9:Let denote the isotropic state

(4.31)

of dimension and fidelity . If , then for all

(4.32)

Otherwise, for

(4.33)

and for

(4.34)

Proof: For the first claim, take , , at
which point , so . For the second claim,
take

(4.35)

(4.36)

Finally, for the third claim, take

(4.37)

(4.38)

In each case, the lower bound coming fromagrees with
the upper bound coming from , and thus both and are
optimal.

Remark: In particular, we have

The fidelity of an entangled isotropic state cannot be increased
by p.p.t. operations.

It is instructive to translate the relative entropy bounds of [15],
[9] in terms of the dual SDP. We recall the definition

(4.39)

and the following result.

Lemma 4.10 [4, Theorem 2.2]:Let , with a
state. For and , define

(4.40)

where ranges over projection operators on such that
. Then

(4.41)

(4.42)

Remark: In [4], this is stated only when is a state; scale
invariance gives the result in general. Also, if bothand are
diagonal, we may restrict to be diagonal as well; this is just
the analogous result of classical information theory.

We then have the following theorem.

Theorem 4.11 [9]: For any state and any p.p.t. state

(4.43)

Proof: We need to show that for any

(4.44)

Choose between and , and consider the dual SDP
bound with

(4.45)

Then is p.p.t., so ; the first term
is bounded below by the following lemma.

Lemma 4.12:Let and be arbitrary states, and letbe a
nonnegative real number. Then

(4.46)

whenever .
Proof: Let be the projection onto the positive part

of

(4.47)

Then we need to show that

(4.48)

is bounded below. Fix and consider the statement
. For this to be true, we must certainly have

(4.49)

(4.50)

Letting be the largest value of such that these inequali-
ties simultaneously hold for infinitely many, we conclude by
Lemma 4.10 that

(4.51)
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In particular, if , then there exists such that
, so

(4.52)

as required.

Remark: Similarly, using the fact that is optimal
among projections, we can conclude from the other half of
Lemma 4.10 that when .
We also have the natural conjecture that the lemma can be
strengthened to, say, when .

This, of course, suggests that we should remove the require-
ment that be p.p.t.; the same proof then gives the following
statement.

Theorem 4.13:For any states and

(4.53)

When is p.p.t., we recover the previous bound, while when
, we obtain the bound of [5] (see the remark following

Corollary 4.6 above). Note that we could also have obtained
this result using [9, Theorem 1], based on the fidelity bound of
Corollary 4.5; this is essentially just the dual of the above proof.2

The proof given above was chosen to emphasize the fact that
any bound on p.p.t. distillable entanglement can in principle be
deduced from the dual SDP bound.

If we define

(4.54)

then we have the following.

Theorem 4.14:For any states and , and any trace-pre-
serving superoperator with both and positive

(4.55)

For any other state and real number

(4.56)

Finally, we have in general

(4.57)

Proof: Indeed, this is true for each of the functions
and individually, so must be true for their sum.

In general, is not convex in . In particular, we cannot as-
sume that a local maximum of is necessarily a global max-
imum. This is likely to make it very difficult to explicitly com-
pute , although one can still, of course, obtain
bounds from any given value of.

V. EXPLOITING SYMMETRIES

If the state has a large group of local symmetries, we can
greatly simplify the primal and dual SDPs, in several cases to
the point of beinglinear programs. The key observation is that,
by the proof of Theorem 4.7, we have the following theorem.

2M. Horodecki, P. Horodecki, and R. Horodecki (personal communication)
have pointed out a third proof via [6, Theorem 2]; it is reasonably straightfor-
ward to show that the new bound satisfies their criteria for an upper bound to
distillable entanglement.

Theorem 5.1:Let be a trace-preserving superoperator with
both and positive. Then, for any state and any

, if is primal optimal and dual optimal for ,
so are and . In particular, if , we may
assume that is -invariant and is -invariant.

Corollary 5.2: Let be any closed subgroup of ,
and let be a -invariant state; that is, a state such that for all

,

(5.1)

Then for any , there exists primal optimal and dual
optimal invariant under . If we further have

(5.2)

for some with , then we may
further take

(5.3)

(5.4)

Proof: Let be the superoperator

(5.5)

integrating with respect to the uniform probability measure on
. This is trace-preserving,-local (thus p.p.t.), and satisfies

. The first claim thus follows from the theorem.
Similarly, if is the superoperator

(5.6)

then the theorem applies to .

Remark: In particular, if is real, then we can take ,
allowing us to force and to be real as well. If
for some , we will say that is pseudoreal.

To apply this, it will be helpful to work in greater generality
initially. Suppose simply that is a Hermitian operator invariant
under a subgroup ; we would like an efficient repre-
sentation of in which it is still straightforward to test positivity.

Clearly, is invariant under if and only if commutes
with every element of . But then in fact commutes with
the algebra of linear combinations of elements of. In
other words, must be an element of the centralizer algebra

of . From representation theory, we have the following
lemma.

Lemma 5.3:There exists a unitary change of basis exhibiting
an isomorphism

(5.7)

for appropriate constants and such that

(5.8)

(5.9)

In the same basis, the centralizer algebra is given by

(5.10)
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In particular, the state is determined by a set of Hermitian
operators , with dimensions ; furthermore, is positive if
and only if is positive for each . Pseudoreality conditions
also carry over readily: in an appropriate basis, they produce
conditions of the form a) real, b) , or c) quater-
nionic. Finally, we have the trace identity

(5.11)

In particular, our simplification of above can be viewed as
a special case of this, based on the following two examples.

Example: Let be the subgroup of consisting of op-
erators . Any -invariant operator can be written in the
form

(5.12)

with iff .

Partial-transposing the above example, we get another ex-
ample.

Example: Let be the subgroup of consisting of
operators . Any -invariant operator can be written in
the form

(5.13)

with iff .

The following is another important example.

Example: Let be a state of dimension. Then the state
is invariant under the symmetric group, acting by permuting
the tensor factors. If is a generic -invariant operator, then
the blocks are in one-to-one correspondence with the degree

representations of , in such a way that maps to
the image of in the corresponding representation.

If itself has symmetries, then we can simplify further. If
is a homogeneous polynomial in two variables, then

we write

(5.14)

to denote the condition thathas nonnegative coefficients; sim-
ilarly

(5.15)

means that has nonnegative coefficients.

Theorem 5.4:For any real numbers , , and
any integers ,

(5.16)

where and range over homogeneous polyno-
mials of degree such that

(5.17)

(5.18)

(5.19)

Proof: Let be primal optimal for such
that is invariant under and . The representations of
this group are in one-to-one correspondence with the integers

, with and . Writing

(5.20)

(5.21)

we have

(5.22)

(5.23)

(5.24)

We next observe that iff and iff

(5.25)

Similarly, the partial transpose is invariant under and
. Again the representations are indexed by , with

(5.26)

(5.27)

Defining

(5.28)

(5.29)

we obtain the condition

(5.30)

Finally, the relation between and obtains by
noting that

(5.31)

(5.32)

(5.33)

Remark: For , this linear program appeared in [7] as
an upper bound on the fidelity of separable distillation; the ob-
servation that it provides alower bound on p.p.t. distillation is
new.
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Similarly, we get the following.

Theorem 5.5:Fix a real number and an integer
, and let denote the Werner state

(5.34)

where . Then

(5.35)

where

(5.36)

(5.37)

(5.38)

Corollary 5.6: For the antisymmetric Werner state ,
we have

(5.39)

(5.40)

For any state

(5.41)

(5.42)

Proof: We observe that

Thus, if we show that , the proof of Corol-
lary 4.3 will apply to give (5.41); taking gives (5.39),
and the equations for follow immediately. It, thus, remains
to show (since the other inequality is im-
mediate).

Taking

(5.43)

(5.44)

we find

(5.45)

Similar results apply to “iso-Werner” states—states which
are linear combinations of, , and (invariant under

with )—and Bell-diagonal states—states on
which are linear combinations of and

for .
Using Theorem 4.14, we can apply the argument of Corollary

5.2 to conclude that when minimizing , we may insist

that possess the symmetries of. When is isotropic, we learn
nothing new (the earlier bound [7], [15], [9] is unchanged), but
when is Werner, we obtain the following.

Corollary 5.7: Fix a real number and an integer
. Then

(5.46)

Proof: By the above argument, we may assume
Now

(5.47)

We find that the optimal satisfies

(5.48)

Plugging in, we obtain the stated bound.

Remark 1: We observe that this bound is differentiable and
convex for , and tight for .

Remark 2: The above bound has recently been indepen-
dently derived in [1], as the regularized relative entropy of
entanglement; that is,

(5.49)

This suggests that the bounds of Theorems 4.11 and 4.13 may
regularize to the same bound.

VI. HASHING ANALOGS

One of the few known lower bounds on distillable entan-
glement is based on the “hashing” protocol [3]; it will be in-
structive to consider this bound (for p.p.t. distillation) via the
present techniques. The key point of the hashing bound is that
on “low-weight” states, it gives fidelity close to, while on
“high-weight” states, it gives fidelity close to. This suggests
the reasoning behind the following proof.

Theorem 6.1:Fix a fidelity and an integer .
Then

(6.1)

Proof: Fix an integer , and consider the set con-
sisting of tensor products

(6.2)
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with each ; note, in particular, that
is a set of mutually orthogonal projections. Since

and (6.3)

we have

(6.4)

where we define to be the number of factors equal to
.

Let us then define an operator

(6.5)

We observe that is a projection, so , and
that

(6.6)

which tends to as as long as

(6.7)

We also compute

(6.8)
If we take , then we obtain the limit

(6.9)

But then, by Theorem 3.1, we conclude that

(6.10)
whenever . Since this is decreasing over
the range, we obtain the strongest bound by taking the limit as

, proving the theorem.

Remark: When , this is precisely the hashing lower
bound (albeit weaker, in that it applies only to p.p.t. distillation).
However, for , the new bound is strictly stronger.

This gives us a general technique for proving lower bounds
on p.p.t.-distillable entanglement: approximate the given state
as a linear combination of projections with well-controlled par-
tial transposes. Our primary application of this will be to “max-
imally correlated states” [9]. We recall that a maximally corre-
lated operator is one of the form

(6.11)

for some positive Hermitian operator, and similarly for a max-
imally correlated state. In [9], an upper bound was given on the

p.p.t. distillable entanglement, and the conjecture was made that
this bound was tight (even for the 1-locally distillable entangle-
ment). We give a partial resolution of this conjecture.

Theorem 6.2:For any maximally correlated state

(6.12)

the p.p.t. distillable entanglement is given by the formula

(6.13)

Proof: That this is an upper bound was shown in [9], so
it suffices to prove the lower bound. We construct a protocol in
two steps.

First, suppose possesses a transitive group of symmetries;
that is, a transitive group of permutations such that

(6.14)

(For instance, the operator

(6.15)

is symmetric under the transitive group of cyclic shifts.) We
decompose

(6.16)

where is the orthogonal projection onto the-eigenspace
of . Then is symmetric under the transitive group ,
and thus has constant diagonal. If we similarly decompose

(6.17)

we find

(6.18)

We can thus apply the following lemma to .

Lemma 6.3:Let be a maximally correlated operator
of dimension such that has constant diagonal. Then

(6.19)

Proof: We compute

(6.20)

This is a block matrix with one- and two-dimensional blocks;
we thus immediately compute that its eigenvalues arefor

, and for . Since is positive,
we have

(6.21)

and, thus, the largest eigenvalue of in absolute value is
. We thus have

(6.22)
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Now, write

(6.23)

(6.24)

Then for , we find that since

(6.25)

we have

(6.26)

(6.27)

Since

we have proved the theorem in the symmetric case.
To reduce the general case to the symmetric case, we adapt the

distillation protocol for pure states given in [2]. Given a word
in the numbers , we write for the number of times

appears in . Then our first step is, given

(6.28)

to measure for . Then the resulting (random) state
is maximally correlated, and admits a transitive action of

. Now

(6.29)
where is the expected value, and the inequality follows
from the fact that the measurement is local, so cannot increase
the expected distillable entanglement. It thus suffices to show
that

(6.30)

Now, the measurement has at mostdifferent outcomes, so it
gives us at most bits of information. But then

(6.31)

(6.32)

so we find

(6.33)

as required.

We also have the following general result.

Theorem 6.4:Fix a finite-dimensional Hilbert space, and
let

(6.34)

be a partition of the identity with the orthogonal projections.
For each , let be the largest eigenvalue of .
Then for any state , we have

(6.35)

where

(6.36)

Proof: To any subset , we associate a
projection

(6.37)

which satisfies

(6.38)

For each and each integer , let be the
minimum over of the largest eigenvalue of subject to the
constraint . Then

(6.39)

(take ). Since

(6.40)

the theorem follows by the classical analog of Lemma 4.10.

VII. CLONES

In this section, we sketch a possible direction to take in ap-
plying the above techniques to 1-local questions (quantum codes
and distillation protocols).

Definition 5: An operator on is an “ -clone” if it
can be written in the form

(7.1)

where each is a positive operator, or can be written as a limit
of such operators.

For a permutation , is the operator on
that permutes the tensor factors by; when , this
agrees with our earlier notation.

Theorem 7.1:Let be an -clone. Then, for all involutions
, and all sets that intersect each

2-cycle of exactly once, the following operator is positive:

(7.2)

Proof: Since nonnegative linear combinations and limits
of positive operators are positive, it suffices to prove the re-
sult for . In that case, factors as a tensor
product of the following operators:

and (7.3)

The first two are clearly positive; that the third is positive is a
special case of the following lemma.

Lemma 7.2:For any operator (not necessarily Hermitian),
the operator

(7.4)

is positive.
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Proof: We have

(7.5)

Since

the result follows.

For instance, let be a quantum code of lengthover an al-
phabet of size , and consider the following average over codes
equivalent to :

(7.6)

This is clearly a 2-clone, so we conclude that the following op-
erators are positive:

(7.7)

We also find that is invariant under operators of the
form , with in the semidirect product of acting on

. Thus, using the techniques of Section V, we conclude
that the three given operators are positive if and only if the
following three polynomials have nonnegative coefficients:

(7.8)

(7.9)

(7.10)

Using the fact that , we find

(7.11)

(7.12)

(7.13)

where

(7.14)

In other words, these are precisely the weight enumerators of
[13], [8], [10]. In the full linear programming bound for

quantum codes, there is an additional inequality

(7.15)

To prove this, we simply extend to a self-dual code by
encoding half of into . We then have

(7.16)

so

(7.17)

(7.18)

(7.19)

In particular, the polynomial must
have nonnegative coefficients.

We can thus extend the linear programming bound to higher
order invariants [12] by using the relevant symmetry group to
decompose the operators attached to

(7.20)

by Theorem 7.1. Note that since for
, we have only operators to consider.

Another application of the clone concept is to 1-local oper-
ations. Fix a Hilbert space , and consider the 1-local
operation

(7.21)

where are operations, and are completely positive super-
operators such that is an operation. Then, as remarked in
[3], we can extend to an operation on the larger Hilbert space

by simply taking

(7.22)

Note that this depends not just on but also on the specific
decomposition (7.21). The following is straightforward.

Lemma 7.3:For any 1-local operation , any integer ,
and any vector , the operator

(7.23)

is an -clone.
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Using Theorem 7.1, we obtain a number of semidefiniteness
constraints that must satisfy; these constraints can, in
principle, be used to obtain bounds on 1-local distillation. (For
instance, the argument of [3] can be restated in these terms,
although we have not done so.) Unfortunately, the resulting
semidefinite programs tend to be fairly complicated, and thus
further ideas would seem to be needed. We also note that the
cloning argument is quite fragile; if we define an “activated”
fidelity

(7.24)

after Corollary 4.3, then we can no longer directly use cloning
to bound the corresponding distillable entanglement.

We close with the following new application of the cloning
argument.

Theorem 7.4:Fix a pair of integers . Then for all
fidelities , we have the strict inequality

(7.25)

Proof: Suppose we had equality. A protocolattaining
this bound would certainly have to be p.p.t.; thus, if we apply
this protocol to , the output fidelity will take the form

for some constants and , or equivalently

(7.26)

for constants , . Evaluating this at , , we find

(7.27)

On the other hand, at , we have

(7.28)

Since the coefficients are both positive, we conclude that
, . In particular, must take to

.
Now, consider the action of on the state .

Since takes the pure state to the pure state , we
conclude that must take to a state of the form

; by symmetry, we conclude that . But

then tracing away the other copy of , we find that takes
to . On the other hand, we have

(7.29)

We thus obtain a contradiction, and the theorem follows.

Remark: From [11], it follows that

(7.30)

whenever . Is this lower bound tight?
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